
Chapter 2 

Ergodic Theory 

Ergodic theory for stochastic max-plus linear systems studies the asymptotic 
behavior of the sequence 

x{k + 1) = A{k) ® a;(A;) , A; > 0 , 

where {A{k)} is a sequence of regular matrices in R'^^ and a;(0) = XQ G R^ax-
One distinguishes between two types of asymptotic results: 

(Type I) first-order limits 

l i m ^ , 
fc—»oo k 

(Type II) second-order limits of type 

(a) lim (xi{k) — Xj{k)) and (6) lim (xj{k-\-1) — Xj{k)) . 

A first-order limit of departure times is an inverse throughput in a queu­
ing network. For example, the throughput of the tandem queuing network in 
Example 1.5.2 can be obtained from 

h 
lim 

fc->oo xj{k) 

provided that the limit exists. 
Second-order limits are related to steady-state waiting times and cycle times. 

Consider the closed tandem network in Example 1.5.1. There are J customers 
circulating through the system. Thus, the /c*'' and the {k 4- J )"" departure from 
queue j refers to the same (physical) customer and the cycle time of this cus­
tomer equals 

Xj {k -{- J) — Xj (fc) . 

Hence, the existence of the second-order limit Xj{k -I-1) — Xj{k) implies limit re­
sults on steady-state cycle times of customers. For more examples of the model­
ing of performance characteristics of queuing systems via first-order and second-
order expressions we refer to [10, 77, 84]. 
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The chapter is organized as follows. Section 2.1 and Section 2.2 are devoted 
to limits of type I. Section 2.1 presents background material from the theory of 
deterministic max-plus systems. In Section 2.2 we present Kingman's celebrated 
subadditive ergodic theorem. We will show that max-plus recurrence relations 
constitute in a quite natural way subadditive sequences and we will apply the 
subadditive ergodic theorem in order to obtain a first ergodic theorem for max-
plus linear systems. Limits of type Ila will be addressed in Section 2.3, where 
the stability theorem for waiting times in max-plus linear networks is addressed. 
In Section 2.4, limits of type I and type Ila will be discussed. This section is 
devoted to the study of max-plus linear systems {x{k)} such that the relative 
difference between the components of x(fc) constitutes a Harris recurrent Markov 
chain. Section 2.5 and Section 2.6 are devoted to limits of type lib and type I. 
In Section 2.5, we study ergodic theorems in the so called projective space. In 
Section 2.6, we show how the type I limit can be represented as a second-order 
limit. 

2.1 Deterministic Limit Theory (Type I) 

This section provides results from the theory of deterministic max-plus linear 
systems that will be needed for ergodic theory of max-plus linear stochastic sys­
tems. This monograph is devoted to stochastic systems and we state the results 
presented in this section without proof. To begin with, we state the celebrated 
cyclicity theorem for deterministic matrices, which is of key importance for our 
analysis. 

Let A e Rmax 1 if a; e Rmax ^ 1 * ^ at least one finite element and A € Rmax 
satisfy 

X0X = A^x , 

then we call A an eigenvalue of A and x an eigenvector associated with A. Note 
that the set of all eigenvectors associated with an eigenvalue is a vector space. 
We denote the set of eigenvectors of A by V^(^). The following theorem states 
a key result from the theory of deterministic max-plus linear systems, namely, 
that any irreducible square matrix in the max-plus semiring possesses a unique 
eigenvalue. Recall that a;®" denotes the n*'' power of a; € Kmaxi see equation 
(1.5). 

Theorem 2.1.1 (Cohen et al. [33, 34] and Heidergott et al. [65]) For any irre­
ducible matrix A € Rmajf, uniquely defined integers c{A), a {A) and a uniquely 
defined real number A = A(yl) exist such that for all n > c{A): 

In the above equation, \{A) is the eigenvalue of A; the number c{A) is called 
the coupling time of A and cr(^) is called the cyclicity of A. 

Moreover, for any finite initial vector x{0) the sequence x{k + \) = A® x{k), 
/c > 0, satisfies 

lim ^ = A , 1 < j < J . 
fc—»oo k 
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The above theorem can be seen as the max-plus analog of the Perron-
Probenius theorem in conventional linear algebra and it is for this reason that it 
is sometimes referred to as 'max-plus Perron-Probenius theorem.' We illustrate 
the above definition with a numerical example. 

Example 2.1.1 Matrix 

A = 

fl £ 2 e\ 
lees 
e e e e 

\e e 2 £ J 

has eigenvalue X{A) = 1 and coupling time c{A) = 4. The critical graph of A 
consists of the circuits (1,1) and ((1,2), (2,3), (3,1)), and A is thus of cyclicity 
a-{A) = 1. In accordance with Theorem 2.1.1, ^"+^ = 1 ® A"', for n > 4 and 

lim i^l®l2k = 1, 
k fc—>oo 

1 < i < 4, 

for any finite initial condition XQ . For matrix 

B = 

( \ £ 2 £\ 
\ £ £ £ 
£ e 2 e 

\e e 2 £ ) 

we obtain \{B) = 2, coupling time c{B) = 4. The critical graph of B consists of 
the selfloop (3,3), which implies that (T{B) = 1. Theorem 2.1.1 yields B^'^^ = 
2 (gi B"-, forn>A and 

lim 
[B'' (g> xo)j _ 

for any finite initial condition XQ. Matrix 

2, 1 < j < 4, 

C 

I £ £ 1 £\ 
3 £ £ £ 

£ e £ e 
\£ £ 7 £ J 

has eigenvalue A(C) = 3.5, coupling time c{C) = 4. The critical graph of C 
consists of the circuit ((3,4), (4,3)), which implies thata{C) = 2. Theorem 2.1.1 
yields C"+2 = 3.5®^ ® C " = 7 ® C", / o r n > 4 and 

lim 
{C' ® XQ)J 

fc—too k 

for any finite initial condition XQ, 

= 3.5, 1 < i < 4, 
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Let A G Kmajf ^^'^ recall that the communication graph of A is denoted 
by Q{A). For each circuit f = ((i = 11,12), {i2,h), • • •, {in,in+i = «)), with arcs 
(«m>«m+i) in ^(•^) for 1 < 7n < n, we define the average weight of ^ by 

-. n 1 '^ 

T n = l m = l 

Let C{A) denote the set of all circuits in Q{A). One of the main results of 
deterministic max-plus theory is that for any irreducible square matrix A its 
eigenvalue can be obtained from 

A = max w(£) . 
«ec(A) 

In words, the eigenvalue is equal to the maximal average circuit weight in QiA). 
A circuit ^ in Q{A) is called critical if its average weight is maximal, that is, 

if w(^) = A. The critical graph of A, denoted by S'^{A), is the graph consisting 
of those nodes and arcs that belong to a critical circuit in Q{A). Eigenvectors of 
A are characterized through the critical graph. However, before we are able to 
present the precise statement we have to introduce the necessary concepts from 
graph theory. 

Let {E, V) denote a graph with set of nodes E and edges V. A graph is 
called strongly connected if for any two different nodes i G. E and j & E there 
exists a path from i to j . For i,j € E, we say that iTZj if either i = j or there 
exists a path from i to j and from j to i. We split {E, V) up into equivalence 
classes {Ei,Vi),.. •, {Eq,Vq) with respect to the relation TZ. Any equivalence 
class {Ei,Vi), 1 < i < q, constitutes a strongly connected graph. Moreover, 
{Ei,Vi) is maximal in the sense that we cannot add a node from {E,V) to 
[Ei, Vi) such that the resulting graph would still be strongly connected. For 
this reason we call {Ei, Vi),..., {Eg, Vg) maximal strongly connected subgraphs 
(m.s.c.s.) of {E, V). Note that this definition implies that an isolated node or a 
node with just incoming or outgoing arcs constitutes a m.s.c.s. with an empty 
arc set. We define the reduced graph, denoted by {E, V), hy E = { 1 , . . . , g} 
and {i,j) 6 V" if there exists {k,l) e V with k € Ei and I G Ej. The cyclicity 
of a strongly connected graph is the greatest common divisor of the lengths 
of all circuits, whereas the cyclicity of a graph is the least common multiple of 
the cyclicities of the maximal strongly connected sub-graphs. As shown in [10], 
the cyclicity of a square matrix A (that is, (T{A) in Theorem 2.1.1) is given by 
the cyclicity of the critical graph of A. A class of matrices that is of importance 
in applications are irreducible square matrices whose critical graph has a single 
m.s.c.s. of cyclicity one. Following [65], we call such matrices primitive. In the 
literature, primitive matrices are also referred to as scsl-cycl matrices. For 
example, matrices A and B in Example 2.1.1 are primitive whereas matrix C 
in Example 2.1.1 is not. 

Example 2.1.2 We revisit the open tandem queuing system with initially one 
customer present at each server. The max-plus model for this system is given in 
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Example 1.5.12. Suppose that the service times are deterministic, that is, aj = 
a-j{k) fork G N andO < j < J. The communication graph of A = Ai{k) consists 
of the circuit ((0,1), ( 1 , 2 ) , . . . , (J, 0)) and the recycling loops (0,0), (1,1) to 
{J, J). Set 

L — {i : aj — max{(Ts : 0 < i < J } } . 

We distinguish between three cases. 

• If 1 = \L\, then the critical graph of A consists of the node j E L and the 
arc {j,j). The critical graph has thus a single m.s.c.s. of cyclicity one, A 
is therefore primitive. 

• / / 1 < |L| < J, then the critical graph of A consists of the nodes j € L 
and the arcs (j,j), j € L. The critical graph has thus \L\ m.s.c.s. each of 
which has cyclicity one and A fails to be primitive. 

• / / \L\ = J, then the critical graph and the communication graph coincide 
and A. The critical graph has a single m.s.c.s. of cyclicity one, and A is 
primitive. 

Let A 6 K^ax b^ irreducible. Denote by Ax the normalized matrix, that 
is, the matrix which is obtained by subtracting (in conventional algebra) the 
eigenvalue of A from all components, in formula: {A\)ij = Aij — A, for 1 < 
hj ^ J- The eigenvalue of a normalized matrix is e. For a normalized matrix of 
dimension J x J we set 

A+':^'^{A,r. (2.1) 
fc>i 

It can be shown that A'^ = Ax® (Ax)'^ ® • • • ® {Ax)'^. See, for example, Lemma 
2.2 in [65]. The eigenspaces of A and Ax are equal. To see this, let e denote the 
vector with all components equal to e; for x € V{A), it then holds that 

X^x = A®x 44- X = A^x - A ® e <=> e^x =Ax®x. 

The following theorem is an adaptation of Theorem 3.101 in [10] which charac­
terizes the eigenspace of Ax- We write A.i to indicate the i*'' column of A. 

Theorem 2.1.2 (Baccelli et al. [10]) Let A be irreducible and let A'^ be defined 
as in (2.1). 

(i) If i belongs to the critical graph, then A'\ is an eigenvector of A. 

(a) For i,j belonging to the critical graph, there exists a eR such that 

a®A+=^A+j 

if and only ifi,j belong to the same m.s.c.s. 
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(in) Every eigenvector of A can be written as a linear combination of critical 
columns, that is, for every x € V{A) it holds that 

X = 0 ai®Ati, 

where G'^{A) denotes the set of nodes belonging to the critical graph, and ai G 
' ^max ^''^^f^ ^^^^ 

Example 2.1.3 

© «. 
i6G<=(^) 

Consider the matrix 

- ( ? 

> ^ e . 

t) 
A is irreducible with eigenvalue 0 and the critical graph of A consists of the 
nodes {1,2} and recycling loops (1,1) and (2, 2). The critical graph has thus two 
m.s.c.s., namely, the recycling loops (1,1) and (2,2), and <y{A) = 1. For A it 
holds that 

A = A" = Ax = A+ , n e N . 

Theorem 2.1.2 yields the following representation of the eigenspace of A: A 
vector X e Rmax belongs to V{A) if and only if numbers ai,a2 G Rmax exist with 
ai ® ffl2 7̂  e (in words: at least one of two numbers is finite) such that 

see (1.3) for the definition of scalar multiplication of vectors. 

Let A e Kma:̂  ^^ irreducible with cyclicity one. Recall that we call v, w G 
E;^ax linear dependent if an Q G R exists such that v = a®w. We say that the 
eigenvector of A is unique if any two eigenvectors of A are linear dependent, or, 
equivalently, if there exists v € R'̂  such that 

V{A) = {a®w : a G R} . 

This can conveniently be expressed by saying that the eigenspace of A reduces 
to a single point in R;^ax-

An important consequence of Theorem 2.1.2 is that eigenvectors of prim­
itive matrices are unique. Primitive matrices enjoy the additional properties 
that, for sufficiently large k, A'' <^ x becomes an eigenvector of A for any finite 
vector X. These properties of primitive matrices will be of use in Section 2.5 and 
Section 2.6. The precise statement is as follows. 

Corollary 2.1.1 If A G ̂ majf ^^ '^ primitive matrix, then the eigenvector of A 
is unique. 
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Let x[k + 1) = J4 ® x{k), for k >0, and let x{0) be a finite vector. Then, it 
holds that x{k) G V{A) for k > c{A). Specifically, it holds that 

x{k + l) = X®x{k), k>c{A), 

where A denotes the eigenvalue of A, and consequently, for k > c{A), it holds 
that \\x{k)\\r = a for some finite constant a. 

Proof: Because A is primitive, the critical graph has only one m.s.c.s. Thus, by 
Theorem 2.1.2 (ii), there exists io in the critical graph such that 

A t = Oi ® A.i„ , i e CiA). 

Hence, by Theorem 2.1.2 (iii), any eigenvector v oi A can be written 

v= 0 ai®A+i 

«eG<=(A) 

where 
7 = 0 fli (g) a i e Rmax , 

ieG'iA) 

which establishes uniqueness of the eigenvector. 
We now turn to the proof of the second part of the corollary. Since A is 

primitive, a-{A) in Theorem 2.1.1 is equal to one. This yields for k > c{A): 
4̂*=+! = X0 A'' for any k > c{A). Multiplying both sides of the above equation 

with the initial vector xo concludes the proof. D 
Eigenvalues and eigenvectors of matrices over the max-plus semi-ring can be 

computed in an iterative way. A classical reference is [73]. For more methods 
for computing max-plus eigenvalues and eigenvectors we refer to [10, 65]. A 
recent alternative method based on policy iteration is given in [32], see also 
[65] for a detailed discussion. A general approach for computing cycle times 
(gives eigenvalues only) for so-called min-max-plus systems (an extension of 
max-plus linear systems) is established in [57, 56, 49]. Algorithms for computing 
eigenvalues and eigenvectors of both max-plus and min-max-plus systems can 
be found in [98, 101]. In particular, the algorithm given in [98] yields an upper 
bound for the cyclicity of a matrix in the max-plus semiring. Computing the 
eigenvalue of a matrix A can be achieved in polynomial time. In contrast to 
this, computing the coupling time is NP-hard (in the number of circuits of the 
critical graph), see [25]. Feasible upper bounds for the coupling time can be 
found in [60] and [25]. 
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2.2 Subadditive Ergodic Theory (Type I) 

Subadditive ergodic theory is based on Kingman's subadditive ergodic theorem 
[74, 75] and its appHcation to generalized products of random matrices. We 
start with an elementary result which appears as an exercise in [91]. A sequence 
a — {a„ : n e N} of real numbers is called subadditive if 

ftm+n <an + am , for n, m > 1 . 

If a is subadditive, then an/n has a limit as n —> oo, which may be —oo. To 
see this, note that for given m, any n can be written as n = fc„m + /„, where 
In < rn and fc„ is a multiplier that depends on n. The subadditivity of a implies 

Dividing both sides by n yields 

O n Kn . •*• 

— = —am H a;„ • 
n n n 

Noticing that fc„/n < 1/m and fc„/n -+ 1/m, we have 

lim sup — < — . 
n n m 

Since m is arbitrary, we may take the infimum w.r.t. m over the right-hand side 
and get 

1. On . - Um 
lim sup — < lim mi . 

n n m m 

Therefore, the limit an/n exists (and is equal to liminfn o„ /n) . 
Kingman's [75] result is formulated in terms of subadditive processes. These 

are double indexed processes X = {Xmn '• ITT^JTI e N} satisfying the following 
conditions: 

(SI ) li i < j < k, then Xik < Xij + Xjk a.s. 

(82) For TO > 0, the joint distributions of the process {Xm+in+i : TO < n} are 
the same as those of {Xmn : TO < n} . 

(S3) The expected value g„ = E[Xon] exists and satisfies gn > —en for some 
finite constant c > 0 and all n > 1. 

A consequence of ( S I ) , (S3) and the elementary result given above is that 

A = lim — 
n—*oo 71 

exists and is finite. We can now state Kingman's subadditive ergodic theorem: 
ii X is a subadditive process (that is, ( S I ) , (82) and (S3) hold), then the limit 

^ ,. Xon 
^ = lim 

n—^oo 71 
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exists almost surely, and K[^] = A. Condition (S2), on the shift {Xmn} ~* 
{Xm+in+i}, is a stationarity condition. If all events defined in terms of X that 
are invariant under this shift have probability zero or one, then X is ergodic. In 
this discussed in Kingman [75], the limiting random variable ^ is almost 
surely constant and equal to A. Note that the limit also holds when expected 
values are considered. 

We now turn to homogeneous equations, that is, to max-plus linear systems 
whose dynamic can be described via 

x{k+ 1) = A{k)®x{k) , 

for fc > 0, with a;(0) = xo given. In particular, we write 

x{n+l,xo) = (^A{k)»xo, n > 0 , (2.2) 
fc=0 

to indicate the initial value of the sequence. Recall that e denotes the vector 
with all components equal to e. We set 

Tn—l 

Xnm= ^ A{k)®e 

From this we recover x{k + l , e ) through a;ofc+i = x{k + l , e ) . 

L e m m a 2.2.1 Let {A{k)} be a stationary sequence of a.s. regular and integrable 
matrices in Rj^ax • ^'*en {-||a;„m||min : m > n > 0} and {||a;„m||max ••m> n> 
0} are subadditive ergodic processes. 

Proof: For x,y € R^axi let a; < j / denote the component-wise order. Note 
that X < y implies ||a;||max < ||2/||max; in particular, x < | |a;||max®e, where 
e denotes the vector whose components are equal to e (we refer to (1.3) for 
a definition of the ®-product of a scalar and a vector). Furthermore, for any 
A 6 Kmax it holds that x < y implies A^x < A0y. Combining these statements 
it follows for X e Rj^ax and A G R^ax ^ 

\\A ® xllmax < ||.^ ® (||a;||max ® 6)Umax • (2.3) 

In the same vein, for x e R^ax and A € R^ax ^ 

\\A^x\\ 
min 

>\\A»{\\ (2.4) 
We now show the subadditive property of ||a;„m||n,ax- For 0 < n < p < w, 
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we obtain 

7̂17711 I m a x 

(2.3) 
< 

i—n 

7 7 1 — 1 

i=p 

m —1 

0 ^ ( i ) ® (i|a;„p||max®e) 
i=p 

/ m - l 

Iknpl lmax® <^ A(i) ® e 
\i=p 

m—1 

i-npl Imax + 
i=p 

•^npI Imax ' H-^pTTiUmax i 

which establishes (SI) for Hxnmllmax- The proof that (SI) holds for — ||a; 
as well follows the same line of argument: for 0 < n < p < m, 

nmi rnin 

'^nm\ |min 

(2.4) 
> 

i=n 

m~l 

<^A{i)'S>x, 

m —1 

( g ) ^ ( i ) ® ( | |a;„p|Uin®e) 

/ m - 1 

nin® ^ A{i)®i 

— iFnpHmin + (g) ^(i) ® e 

•̂ riTn mm* which establishes (SI) for —||a;„ 
The stationarity condition (S2) follows immediately from the stationarity of 

{A{k)}. 
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We now turn to condition (S3). We have assumed that each row of A{k) 
contains at least one non-e element, which implies x{k,e) G M.'' for any k. We 
may now prove by induction that x{k,e) is absolutely integrable where we use 
the fact that (i) |min(ffl, 6) | , | max(a,b)| < \a\ + \b\, (ii) A{k) is integrable, and 
that (iii) the initial condition e of x{k, e) is integrable. Prom 

E[||xofc||max] = E[||a;(A;,e)|Uax] (2.5) 

it follows that xok is integrable for any k. Let | | |^ | | | denote the smallest non-£ 
element of ^ (note that (i) and (ii) above imply that E[|||yl(A;)|||] is finite). With 
this definition it is immediate that 

J2n\mm\] <E[iKfe,e)iUx]. (2.6) 
3=0 

Stationarity of {A{k)} implies that E[ |||y4(A;)|||] = c for any k. Integrability of 
A{k) together with the fact that there are at least J finite elements in A{k) 
yields c > —oo. We obtain from (2.6): 

-A;|c|<E[| |x(/e,e)| |„,ax] 

= E[||a;o/c||max] , 

which establishes (S3) for {||a;„m||max : m > l;m > n > 0}. 
We now turn to {—||x„m||min '• m > 1; m > n > 0}. Following the above line 

of argument it holds that, for fc € N, 

E[||a;ofc||min] = E[||a:(A;,e)||min] < oo 

and 

Hence, 

max min J • 
j=Q 

fc-1 

X ^ - E [ | | > l ( i ) | U x ] < E[-\\xok\Un] , 
3=0 

for A; 6 N, and for c = E[ ||v4(l)||max], we obtain 

-\c\k < E[-||a:ofc|Uin], 

which concludes the proof of the lemma. D 
The above lemma provides the means of applying Kingman's subadditive er­

godic theorem to ||a;(A:)||min and ||x(fc)||max, respectively. The precise statement 
is given in the following theorem. 
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Theorem 2.2.1 Let {A{k)} be a stationary sequence of a.s. regular, integrable 
square matrices. Then, finite constants A '°P and A''°* exist, so that for all (non-
random) finite initial conditions XQ : 

^bot def jjj^ ll^(^)ll"'i" < A'̂ P 1|f lim I'^'^^^ll"''^'' a.s. 

fc—>cx) k k—*oo k 

and 

lim \m<mnnn] = A''°* < lim ^E[||:c(fc)|^ax] = A*°P. 
fc—»oo K k~*oo K 

The above limits also hold for random initial conditions provided that the initial 
condition is a.s. finite and integrable. 
Proof: Lemma 2.2,1 applies and subadditivity of ||a;(/e, e)||min and \\x[k, e)||maxi 
respectively, follows. Therefore, Kingman's subadditive ergodic theorem applies 
and the proof with respect to the limit of ||a;(A;, e)||n,in as k tends to oo and the 
limit of ||a;(fc,e)||max as k tends to oo follows. 

It remains to be shown that the limit exists for any finite initial condition. 
To see this note that for any finite initial condition y it holds that: 

\\y\\mm + ||a;(A;,e)||j„ax = l|a;(fc, ||y|| 

min 'o' Gjl jmax 

max 

< ||a:(fc, | | 2 / | | m a x ® e ) | | m a x 

= | | y | | m a x + | | a : (A; ,e) | |max 

(for a proof use the fact that x < y implies A® x < A® y). Thus, 
| | y | |m in + | | a : ( fc , e ) | |max < ||a;(fc, J/) | |max < | |2/ | |max + I |a;(fc, e ) | |max 

and, by similar arguments, 

| | j / | |min + | | a ^ ( ^ i e ) | | m i n < ||a;(fc, 2/)| jmin < l k ( ^ i e ) | | min "r | |y | [max • 

Therefore, for ft > 0, 

Tll2/ | |min + 7: l |a :(A;,e) | |max < rW^ik, y)\\ra2.^ < T l | a ; ( f c , e ) | | m a x + T l ly l lmax 
K K K K rC 

(2.7) 
and 

•rllyllmin + •r||a;(A;,e)||min < •rl|a;(A;,y)||min < T\\x{k,e)\\ram +-\\y\\ma.x • 
rC K K K K 

(2.8) 
Letting k tend to infinity, it follows from (2.7) that the limits of ||a;(A;,e)||inax/^ 
and \\x{k,y)\\ma.x./k coincide. In the same vein, (2.8) implies that the Mmits of 
||a;(fc,e)||n,in/fc and ||a;(A;,2/)||tnin/fc coincide. If, in addition, XQ is integrable, we 
first prove by induction that x{k,xo) is integrable for any A; > 0. Then, we take 
expected values in (2.7) and (2.8). Using the fact that, by Kingman's subadditive 
ergodic theorem, the Hmits of E[||a;(A;,e)||j„ax]/fc and E[||a;(fc,e)||min]/fc as k 
tends to oo exist, the proof follows from letting k tend to oo. D 

The constant A '°P is called the top or maximal Lyapunov exponent of {A{k)} 
and A**"* is called the bottom Lyapunov exponent. 



2.2 Subadditive Ergodic Theory 71 

Remark 2.2.1 Irreducibility is a sufficient condition for A{k) to be a.s. regular, 
see Remark 1.4-1- Therefore, in the literature. Theorem 2.2.1 is often stated with 
irreducibility as a condition. 

Remark 2.2.2 Note that integrablity of {A{k)} is a necessary condition for 
applying Kingman's subadditive ergodic theorem in the proof of the path-wise 
statement in Theorem 2.2.1. 

Remark 2.2.3 Provided that (i) any finite element of A{k) is positive, (ii) 
A{k) is a.s. regular, and (Hi) the initial state XQ is positive, the statement in 
Theorem 2.2.1 holds for || • ||® as well. This stems from the fact that under con­
ditions (i) to (Hi) it holds that ||^(fe)||max = | |^(^) | le- •''* particular, following 
the line of argument in the proof of Lemma 2.2.1, one can show that under the 
conditions of the lemma the sequence ||a;„m||0 constitutes a subadditive process. 

2.2.1 The Irreducible Case 

In this section, we consider stationary sequences {A{k)} of integrable and irre­
ducible matrices in Rj^ax '^'^^ the additional property that all finite elements 
are non-negative and that all diagonal elements are non-negative. We consider 
x{k + 1) = A{k) ® x{k), k >0, and recall that x{k) may model an autonomous 
system (for example, a closed queuing network). See Section 1.4.3. Indeed, A{k) 
for the closed tandem queuing system in Example 1.5.1 is irreducible. As we 
will show in the following theorem, the setting of this section implies that 
A*°P = A ' ' ° ' , which in particular implies convergence oi Xi{k)/k, 1 <i < J. The 
condition that all finite elements of A{k) are non-negative is not very restrictive 
when working with queuing networks. Here the non-e elements of A{k) represent 
sums of service times at the stations, which are by definition non-negative. In 
contrast, the assumption that all diagonal elements are non-negative (and thus 
different from e) is indeed a restriction as illustrated by Example 1.5.5. The 
following theorem goes back to Cohen [35] and Baccelli et al. [10]. 

Theorem 2.2.2 Let {A{k)} be a stationary sequence of integrable and irre­
ducible matrices in IR âx^ •""^^ '̂̂ '̂ ^ "'^^ finite elements are non-negative and all 
diagonal elements are different from e. Then, a finite constant A exists, so that 
for any non-random finite initial condition XQ: 

fc—»oo k fc—»oo k k~*oo k 

and 

lim l:E[xj{k)] = lim iE[||a;(fc)[|„in] = lim iE[||a;(fe)||„ax] = A, 
K—>00 K K—too K fc—»00 K 

for 1 <i j <: J. The above limits also hold true for random initial conditions 
provided that the initial condition is a.s. finite and integrable. 
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Proof: The existence of the limits (except that for Xj{k)/k) is guaranteed 
by Theorem 2.2.1 and in order to prove the theorem we have to show that 
the component-wise limits (that is, the limit of Xj{k)/k as k tends to oo, for 
1 < i < J ) equal the limits of || • ||min and || • ||max-

Irreducibility of A{k) implies that A{k) has fixed support and the commu­
nication graph of A{k) is thus non-random. We have assumed that all elements 
different from £ are non-negative and all diagonal elements are non-negative. 
Hence, Lemma 1.4.1 applies and 

fc-i 
G(fc)= (g ) A{j), k>J, 

3=k-J 

has all elements larger than or equal to zero for all k. This implies for any 
component j 

Xj{k,e)=^{Gik))ji » Xi{k - J,e) 

J 

> 0 O ® a ; i ( A ; - J , e ) 

=||a;(/c — J,ejilmax , 

for fc > J , which yields 

||a;(fc,e)|Uin > ||a;(fe - J,e) | |„ax • (2.10) 

By (2.10), 

^l|a;(fc,e)||min > ^ l l ^ ( ^ - •^'^) 

which implies 

k-~*oo k k—*oo k 

By Theorem 2.2.1, it holds that A*'"' < A'°P and we have thus shown A^°* = A'°P. 

In other words, setting A = A"""' = A'°P we have shown 

k-~*OD k k—*oo k 

and from 

||a;(A;,e)||max > Xj{k,e) > ||a;(A;,e)||min , l<j<J, 

follows: 

lim £ i i M = A a.s. (2.12) 
fc—»oo k 
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for 1 < j < J . 
Like for the proof of Theorem 2.2.1, we show that the hmits in (2.11) and 

(2.12) are independent of the initial condition. This concludes the proof of the 
first part of the theorem. 

We now turn to the proof of the second part of the theorem. Let A, as defined 
in the first part of Theorem 2.2.2, exist. Then Theorem 2.2.1 yields, 

A = lim •-E[||a;(fc)|Uax] = lim -E[||a;(fc)|Uin] 
fc—>oo K k—too K 

and 

implies 

\m<mr^n] < \nxj{k)] < ^ 

A = l̂im -E[xj(A;)] , ..... l l 
fc—tCX) fc 

for \<j<J.n 
The constant A, as defined in (2.9) in Theorem 2.2.2, is called max-plus 

Lyapunov exponent of the sequence of random matrices {A{k)}. There is no 
ambiguity in denoting the Lyapunov exponent of {yl(fc)} and the eigenvalue of 
a matrix A by the same symbol, since for A{k) = A, for all k, the Lyapunov 
exponent of {j4(/e)} is just the eigenvalue of A. 

R e m a r k 2.2.4 Depending on the sequence {A(k)}, it is sometimes possible to 
replace an element of XQ that is equal to e by a finite element without changing 
the value of x{k), for k > 1. In these cases, Theorem 2.2.2 applies even though 
not all elements of XQ are finite. 

R e m a r k 2.2.5 We say that A,BE Rĵ ĵf have the same structure if any ele­
ment (ij) is either finite in A and B, or, is equal to £ (that is, the arc sets of 
communication graph of A and B coincide). The irreducihility condition in the 
above theorem can be replaced by the following weaker condition. There exists 
a.s. a sequence {m„} with lim„_>oo rn„ = oo, such that A{k + m„), 1 < fc < J , 
have the same structure and are irreducible. 

R e m a r k 2.2.6 / / the initial condition XQ is positive, then the statement in 
Theorem 2.2.2 holds for \\ • \\Q, as well. See Remark 2.2.3 for details. 

Computing exactly, or approximating the Lyapunov exponent of products 
of matrices over the max-plus semiring is a long standing problem [35, 96, 93, 
10, 36, 46, 11, 50, 21, 8, 7, 42]. Only for special cases exact formulae are known. 
Upper and lower bounds can be found in [14, 18, 53, 28, 29]. In [12] approaches 
are described which use parallel simulation to estimate the ratio Xj{k)/k for 
large fc. When it comes to discrete event systems, Lyapunov exponents measure 
the cycle time, i.e., the average time between two events. A classical reference on 
Lyapunov exponents of products of random matrices is [24] and a more recent 
one, dedicated to non-negative matrices, is [66]. 
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Consider the system in Example 1.5.1. If we assume that (i) the service 
times cTj(k) are i.i.d. with finite mean for each j and (ii) the sequences {crj{k)} 
[1 < j < J) are mutually independent, then Theorem 2.2.2 applies (indeed, 
{A{k)} is an i.i.d. sequence of irreducible matrices with fixed support). 

Comparing the conditions in Theorem 2.2.2 with those in Theorem 2.2.1, 
Theorem 2.2.2 imposes the additional conditions that (i) the matrices are ir­
reducible (and have thus fixed support), (ii) all elements different from e are 
non-negative and that (iii) all diagonal elements are non-negative. However, 
conditions (i)-(iii) are only needed to establish the pathwise statement in Theo­
rem 2.2.2. Hence, the second part of Theorem 2.2.2 is vaUd under weaker con­
ditions. The exact statement is as follows: 

Corollary 2.2.1 Let {A{k)} be a stationary sequence of a.s. regular and inte-
grable matrices in Rj^^x • V 

• A''"* > A*°P, and 

• the initial condition is integrable, 

then 

lim -E[a;,(fc)] = A, 
A:—*oo k 

for all components 1 < j < J of x{k). 

Proof: By assumption, 

,. ||a;(fc)||niin ,. |p l" ' j | |max , 
fc—»oo k fc—»oo k 

with A = A''°' = A*°P, and Theorem 2.2.1 yields 

lim i M M U = iii„ lE[\\xik)\U] = A, 
fc—•oo K k—*oo K 

lim W^Mk^ = liin iE[||x(fc)|Uax] = A. 
fc—+00 K fc—»oo /C 

For any k eN and 1 < j < J , 

lE[\\x(k)\Un] < In^jik)] < i 

and taking limits yields 

A = lim hixjik)] , 
fc—>oo K 

which concludes the proof. D 
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2.2.2 The Reducible Case 

The setup is as in the previous section except that we now suppose that A{k) 
has fixed support and drop the assumption that it is irreducible. An example 
of a model that has fixed support but fails to be irreducible is the open tandem 
queuing system in Example 1.5.2. We study the homogeneous equation 

x{k+l) = A{k)0x{k), k>0. 

Notice that this setup comprises inhomogeneous equations, such as the standard 
autonomous equation as well, see Section 1.4.3 for details. 

To deal with reducible matrices A{k), we decompose A{k) into its 'irre­
ducible' components. The ergodic theorem, to be proved presently, then states 
that the Lyapunov exponent of the overall matrix is given by the maximal top 
Lyapunov exponent of its irreducible components. However, before we are able 
to present the ergodic theorem and give the proof, we need to introduce some 
concepts from graph theory. For the basic definitions we refer to Section 2.1. 

Let {A{k)} be a sequence of matrices in K^ajf with fixed support. If we 
replace any element of A{k) that is dififerent from s by e, then the resulting 
communication graph of A{k), denoted by Qe{A), is independent of k (and thus 
non-random). Let Ge{A) denote the reduced graph of QeiA). We denote by 

[i] = {j G { 1 , . . . , J } : ilZj} the set of nodes of the m.s.c.s. that contains i. The 
set of all nodes j such that there exists a path from j to i in 5e(^) is denoted 
by 7r"'"(z). Furthermore, we set 7r*{i) = {i} U7r"'"(i); and we define predecessor 
sets 

[< i] = U [J'l 
j€7r*(i) 

and [< i] = [< i] \ [i]. We denote by X^,°,^ the top Lyapunov exponent associated 
with the matrix obtained by restricting A{k) to the nodes in [i]. In case i is an 
isolated node or node with only incoming or outgoing arcs, we set AfT = e. The 
following theorem goes back to [6]. 

Theorem 2.2.3 Let {A{k)} be a stationary sequence of integrable matrices in 
^imx with fixed support such that with probability one all finite elements are non-
negative and the diagonal elements are different from e. For any (non-random) 
finite initial value XQ it holds true that 

lim -^— = A,- a.s. , 
k^oo k -^ 

with 

A,' = 

and 

lim -rE[xj{k)] = Xj , 
fc—•oo K 

for I < j < J • The above limits also hold for random initial conditions provided 
that the initial condition is a.s. finite and integrable. 
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Proof: Under the conditions of the theorem, it a.s. holds, for any k, that 
||a;(A;)||max = |N(fc)||0, see Remark 2.2.3. In the following proof we will only 
work with upper bounds on the growth rate ||a;(fc)||max/'5 and thus adopt the 
notation || • \\^ for the maximal element of a vector/matrix. 

Let i4[i][i](A;) denote the matrix that is obtained from A{k) by restricting 
A{k) to the nodes in [i] and write X[q{k) for x{k) restricted to the nodes in [i]. 
To understand the difficulty that arises when proving the theorem, it is worth 
noting that in general 

lim -||a;[ii(fc)||© ^ A|°P a.s. 

This stems from the fact that Ar̂ '̂' is the top Lyapunov exponent of the matrix 
restricted to the nodes in [i], whereas X!q{k) is also influenced by nodes others 
than those in [i] namely those in [< i] \ [i]. 

We now turn to the proof. In the same way as we have defined A^q [i]{k) and 
X[i]{k), we write ^[<t] [<i]{k) for the restriction of A{k) to the nodes in [< i] and 
X[<i]{k) for x{k) restricted to the nodes in [< i]. By Theorem 2.2.1, the maximal 
Lyapunov exponent of A[<j] [<i](fc), given by Af^P,, exists (indeed. Theorem 2.2.1 
applies to reducible matrices). Note that 

>[i](/c)| |© < Tl|a;[<i](fc)||® 

and thus 
j^u-mvn,^ - ^1 

1 1 
limsup-||a;[i](A;)||©<limsup-||a;[<i](fc)||g 

fc—+00 "^ fc—*00 f^ 

= A g , . (2.13) 

Fixed support of A{k) implies that Ge{A) is non-random. Node i can be reached 
from any node h 6 7r*(j) and since A{k) is of dimension J x J such a path is at 
most of length J . We have assumed that the diagonal elements of A{k) are all 
different from e. Hence, if there is a path of length I from h to i, then there is 
for any p > I a, path of length p from h to i (just add sufficiently many loops of 
length one at h). Any finite element of A{k) is positive and paths have therefore 
positive weights. We thus obtain for any j € [i] 

Xj{k)> 0 Xh{k-J) 
hen'{i) 

=| |a ; [<i](A;-J) | |e , (2.14) 

for k > J. Therefore, 

IN[ij(A:)||© > | |a ; [<i](fe-J) | |e , 

for k > J, which implies that 

liminf-||a;[i](fc)||©>liminf-||a;[<i](A;)||e 
K—•OO A/ K—>00 /v 

= A[<P] a.s. 
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Together with (2.13) we obtain 

£ m i||x[,](A;)||e = A g , a.s. (2.15) 

By (2.14), it holds a.s. for any j G [i] that 

i|k[il(fc)ll® > l^jik) > i | | a ; [< i ] (A;-J ) | | e , (2.16) 

and by (2.15) it follows that 

lim l\\x[^ik)\\^ = lim hx[<i]{k - J)| |® = \\Z^ , (2.17) 

which yields 

In the integrable case, (2.16) implies 

iE[| |xi<„(fc)|M > \n^i{k)] > i E [ m < i , ( & - J ) | M . 

By Theorem 2.2.1, the expected values on the right-hand side and on the left-
hand side in the above inequality converge to Af̂ ,̂ as k tends to oo. Hence, 

,i™^^E[x,-(A)] = A g ] , je[i]. 

It remains to be shown that 

^f<i] = 0 ^Ul • (2-18) 

The reduced graph Qe(A) is acyclic and we obtain 

xii]{k + l) = A[q[i]{k)®X[i]{k)®s{i,k + l), (2.19) 

where 
s{i,k + l) = yl[ij[<i](A;)®a;[<i](A;) 

and j4[i][<i](A;) is defined in the obvious way. By definition, 

\\s{i,k + l ) | | e < ||%][<i](fc)||® ® ||a;[<i](A;)||e 

<||yl(A;)||e®||x[<i,(/=)||®. (2.20) 

Note that 

lim i||yl(fc)||(B = 0 a.s. (2.21) 
K—•oo K 

Indeed, integrability of {A{k)} together with stationarity and ergodicity implies 
that 

k 
^Ihn^ I ^ \\Aik)\\^ = El\\Ail)M < oc a.s. 
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E[||^(l)|y=£m iXIll̂ WII® 
n = l 

fc-1 

(integrability of ||A(1)||® is guaranteed by integrability of A{1)), which gives 

fc 

fc-*oo k 

,. fc-1 1 
= hm —-——• 

fc->oo k k • -

= E[| |A(l) | |e] + lim U\A{k)\\^ a.s. 

and thus establishes (2.21). 
We obtain from (2.20) together with (2.21) 

l imsup- | | s ( i , A; + l)||® < Af° ,̂ a.s. 
fc—.OO ri 

At the same time, following the line of argument that has lead to (2.14), we 
obtain 

||s(i,fc + l)||© > ||a;[<i](fc-J)||® a.s., 

which implies 

l iminf- | |s( i ,fc + l)||© > Af°P, a.s. 
fc—>oo K ' ' 

and thus 

£ i n ^ i | | s ( z , f c + l ) | | e = Af°P a.s. 

It is clear from the definition of s{i,k) that 

l|a;[<ii(fe)||® > ||s(i,fc)||®, 

so that 

A S , > A;°P . (2.22) 
which in turn implies 

Now suppose that Af̂ ,̂ > Af°^i. The existence of the individual limits implies 
that for sufficiently large iiT G N it holds that 

A[i\[q{k) ® x^i^{k) > s{i,k+l) , k>K. 

Accordingly, equation (2.19) reads 

X[ii{k + 1) = ^[j][j|(fc) ®X[{i{k) > s{i,k + 1) , k> K , 

which, by Theorem 2.2.1, yields 

£rn^i||a;[i,(fc)||e = Af"" a.s. 
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and, by (2.17), this implies 
\ t o p \ t o p 

We have thus shown that 

^Si>^s ^ ^a = [̂r- (2.23) 
Combining (2.22) and (2.23) we reach at: 

\ t o p _ \ t o p _ t t o p 

Any node i 6 Gei-A) belongs to a m.s.c.s. that is represented in Ge{A) by the 
single node [i]. Let 7r([i]) denote the set of direct predecessors of [i] in Gl{A) 
and set 7r([i]) = 0 if there is no predecessor. Each element of 7r([?]) represents a 
m.s.c.s. in Qe{A) and we denote by r( i ) the set of nodes in Ge{A.) that belong to 
the m.s.c.s. corresponding to the elements of 7r([i]). If 7r([i]) = 0, we set T{i) = 0. 
Then 

jerii) 

and inserting this into the above equation yields 

, top _ , top „ / r \ X top 

j 6 T ( t ) 

We now repeat the argument until applying r yields no more nodes. In partic­
ular, going from r(i) to {T{J) : j G T{i)} and so forth, we will eventually cover 
the set 7r*(i). This concludes the proof of (2.18). D 

Remark 2.2.7 Suppose that the conditions in Theorem 2.2.3 are satisfied. Con­
tinuity of the operators max and min yields that it holds with probability one that 

A*"" = min(Aj : I < j < J) 

and 
A*°P = max(Aj- : 1 < j < J ) . 

The vector A = (Ai, A2, . . . , Aj), with \j defined in Theorem 2.2.3, is called 
the Lyapunov vector o{ {A{k)}. In the light of Theorem 2.2.2 we can state that 
irreducibility of {A{k)} is a sufficient condition for the components of A to be 
equal. 

Recalling that limfc_,oo Xj{k)/k is the (asymptotic) speed with which transi­
tion j operates, the above theorem matches our intuition that the (asymptotic) 
speed with which the system operates is determined by the slowest component 
of the system. In terms of queuing networks, the throughput of a system is de­
termined by the smallest throughput of one of its components. Moreover, if the 
queuing network is irreducible in the max-plus sense, then the throughput is 
the same at any station. 
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The key conditions on A{k) are that any element of A{k) is either equal to e 
or non-negative, that the elements on the diagonal are non-negative and that it 
has fixed support. As we have already explained, the condition that any element 
different from e has only non-negative values is a natural condition for queuing 
systems, and all examples presented in this monograph enjoy this property. The 
fixed support condition is satisfied by the queuing systems in Example 1.5.1 and 
Example 1.5.2. An example of a system that fails to have fixed support is given 
in Example 1.5.5. Such a system cannot be analyzed via the subadditive ergodic 
theory developed so far. 

2.2.3 Variations and Extensions 

One of the marvels of max-plus theory is that the existence of the top and bot­
tom Lyapunov exponent follows so easily from Kingman's subadditive ergodic 
theorem. See the proof of Theorem 2.2.1. However, the conditions in Theo­
rem 2.2.1 are too weak to guarantee that the top and bottom Lyapunov expo­
nents are equal, or, in other words, that the individual growth rates (that is, 
\imk-^aoXi{k)/k, 1 < j < J) have the same limit. In this section, we discuss 
approaches to establish equality of the top and bottom Lyapunov exponent 
without imposing conditions on the elements of A(k). 

2.2.3.1 The 'Up-Crossing' Property 

In order to show that the individual growth rates coincide we had to impose 
the assumption that (i) any non-e element of A{k) is non-negative, that (ii) 
all diagonal elements are non-negative, and that (iii) A{k) has fixed support. 
The 'non-negativity' condition on the finite elements causes no restriction for 
queuing systems. Therefore, we focus in this section on a relaxation of the 'fixed 
support' and the 'diagonal' condition. 

Inspecting the proof of Theorem 2.2.2 one sees that what is actually needed 
is the following 'up-crossing' property: a subsequence {x(kn)} and a constant 
M exist, such that for any n > 1 

\\x{kn + M)| |min > a„ + 6n||a;(fc„)||max a.S. , 

with 
lim — = 0 and lim 6„ = 1 , 

n—»oo n n—*oo 
see (2.10) on page 72 in the proof of Theorem 2.2.2, where a„ = 0 and &„ = 1 for 
all n. Indeed, Vincent uses in [102] this type of condition to show that the top 
and bottom Lyapunov exponent coincide. Provided that finite elements of A{k) 
are positive, the diagonal condition together with fixed support are sufficient 
for the above 'up-crossing' property to hold, see Lemma 1.4.1. 

2.2.3.2 The 'Memory Loss' Property 

In this section we present an alternative approach to finding sufficient conditions 
for A'°'' = A ' ' ° ' . This approach goes back to [48, 84] and applies to sequences 
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with countable state-space. 
The key observation for this approach is the following. Let A € Kma>f ^^ 

such that any two columns of A are linear dependent. Then, a finite number a 
exists such that 

| | ^®a; | | „ , ax- | | ^®a; | |min = a , xeR'' (2.24) 

(for a proof use the argument put forward in the proof of Corollary 2.1.1). A 
matrix with the property that any two columns are linear dependent is said 
to be of rank 1. While the notation of rank 1 is undisputed, there are several 
notions of rank in the literature, see [37] and [103]. 

Deflnition 2.2.1 A sequence {A{k)} of square matrices is said to have memory 
loss property (MLP) if there exists anN such that A{N-l)®A{N-2)«i- • -^AiO) 
with positive probability has only mutually linear dependent columns, i.e., is of 
rank 1. 

Let A be a matrix with mutually linear dependent columns and assume that 
{A{k)} has MLP with respect to A and N, that is, assume that a finite number 
N exists such that P{A{N - 1) ® A{N - 2) ® • • • ® A{0) = yl) > 0 and ^ is of 
rank 1. Let 

To = inf{fc > AT - 1 : A{k) ® A{k - 1) (g) • • • (E) Aik - N + I) = A} 

denote the first time a partial product of the series of matrix generates A. This 
gives 

To-N 

x{To) = yl ® (g) A{k) » xo , 
fc=0 

where we set the product to S for TQ = A'̂  — 1 and we assume that XQ G R ' ' . By 
(2.24) a finite number a exists such that 

||a;(To)||„ax-l|a;(To)l|min = a, 

for any finite initial value XQ- For n > 0, introduce the time of the (n + 1)^' 
occurrence of the event that a partial product of {A{k)} generates A by 

Tn+i = mi{k >N + Tn: A{k) ® A{k - 1) » • • • ® A{k - N + 1) = A} (2.25) 

and we obtain 
MTk)\U,^ - lla;(Tfc)||„in = a , k>0. (2.26) 

If {A{k)} is stationary and ergodic, then lim„_,oo T^ = oo and Tn < oo with 
probability one; for details see Section E.3 in the Appendix. Specifically, by 
equation (2.26), 

lim ^\\x{n)\\m,^ - ^\\xiTk)\Un = 0 a.s. (2.27) 
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If, in addition, {y4(A;)} is a sequence of a.s. regular and integrable matrices, 
Theorem 2.2.1 yields 

lim ^\\x{n)\U. = A*°P and lim ;^| |x(rfc)|Uin = X""" 

with probability one, and equality of A*°P and A*'"* follows from (2.27). We 
summarize our analysis in the following theorem: 

Theorem 2.2.4 Let {A{k)} be a stationary and ergodic sequence of integrable 
and a.s. regular matrices in M.'^^. If {A{k)} has MLP, then a finite constant A 
exists such that, for any (non-random) finite initial conditions XQ: 

^M _ ,:„ lk(̂ )llmin _ ,_ Mk)\l l i m = l i m LL^^-Lii = i i m iJ -J = A 
fc—>oo k fc—>oo k fc—>oo k 

and 

lim ^E[a;j{A;)] = lim iE[||a;(A;)|Uin] = lim iE[||a;(fc)|Uax] 

for I < j < J. The above limits also hold for random initial conditions provided 
that the initial condition is a.s. finite and integrable. 

It is worth noting that, in contrast to Theorem 2.2.3, the Lyapunov expo­
nent is unique, or, in other words, the components of the Lyapunov vector are 
equal. In view of Theorem 2.2.2 the above theorem can be phrased as follows: 
Theorem 2.2.2 remains valid in the presence of reducible matrices if MLP is 
satisfied. 

MLP is a technical condition and typically impossible to verify directly. A 
sufficient condition for {A{k)} to have MLP is the following: 

(C) There exists a primitive matrix C and N €N such that 

P(A{N - 1) ® A{N - 2) ® • • • 1^ A{0) = c ) > 0 . 

The following lemma illustrates the close relationship between primitive ma­
trices and matrices of rank 1. 

Lemma 2.2.2 / / A is primitive with coupling time c, then A'^ has only finite 
entries and is of rank 1. Moreover, for any matrix A that has only finite entries 
it holds that A is of rank 1 if and only if the projective image of A is a single 
point in the projective space. 

Proof: We first prove the second part of the lemma. '=>': Let A G R^ax be such 
that all elements are finite and that it is of rank L Denote the j * ^ column of A 
by A.j. Since A is of rank 1, there exits finite numbers QJ, with 2 < j < J, such 
that A.I = Uj ® A.j for 2 < j < J. Hence, for a; 6 ffi'^ it holds that 

J 

A«:x = l^ajigiXj®A.i, (2.28) 
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with ai = 0. Let 7^ =^ (8)/=i ^ j ® ^j- Let y 6 M\ with a; ^ y. By (2.28), 
A ® a; = 7x ® ^.1 and 4̂ ® y = 7^ ® ^.i> which implies that A® x and A ® y 
are hnear dependent. Hence, the projective image of A contains only the single 
point A.I. 

'<=': We give a proof by contradiction. Suppose that A is not of rank 1, then 
there exist at least two columns A.j and A.i of A such that A.j and A.i are 
linear independent. Then x^,x^ G R'' can be chosen such that A®x'^ = /?' ® A.i 
and A® x^ — /?•' (8) A.j for finite constants 13'', pK Since ^4.̂  and A.i are linear 
independent, the projective image of A contains at least the two distinct points 
A.i and A.j. 

We now turn to the proof of the first part of the lemma. For 1 < j < J , let 
Bj be the vector with e entries except for element j which is equal to e. Hence, 
A'^ ® Bj = A':j, where A^j denotes the j * ' ' column of A'^. By Theorem 2.1.1, 

A igi A':J = A <Si A" ® ej = X igi A" igi ej = X <S> A^.j, 

with A the unique eigenvector of J4, and the columns of A'- are thus eigenvectors 
of A. Using the fact that eigenvectors of irreducible matrices have only finite 
entries (see, for example. Lemma 2.8 in [65]), it follows that A'' has only finite 
elements. On the one hand, by Corollary 2.1.1, the eigenvector of A is unique. 
On the other hand, by Theorem 2.1.1, "̂̂  ® a; is an eigenvector of A for any x. 
Hence, the projective image of .A is a single point (in formula: 3w e IPR'' Va; € 
K'' : A'^ ®x = v). Applying the second part of the lemma then proves the claim. 
D 

We present a version of Theorem 2.2.4 with a condition that can be directly 
verified. 

Lemma 2.2.3 Let {yl(/c)} he an i.i.d. sequence of a.s. regular integrable matri­
ces in Kmajf ^'^'^ countable state space. If condition (C) holds, then the state­
ment put forward in Theorem 2.2.4 holds. 

Proof: Let C be as given as in (C) and denote the coupling time of C by 
c. Because {A{k)} is i.i.d. with countable state-space, 

P(^A{N -1) = A{N -2) = •.• = ^ ( 0 ) = C ) > 0 , 

implies 

P(A{CN - 1) ® A{cN - 2) ® • • • (g) ^(0) = 0") >0. 

Since C is primitive. Lemma 2.2.2 implies that C^ is of rank 1 and {A{k)} has 
thus MLP. Hence, Theorem 2.2.4 applies. D 

Example 2.2.1 Consider Example 1.5.5. Matrix D2 is primitive. Hence, ap­
plying Lemma 2.2.3 shows that the Lyapunov exponent of the system exists. 

Remark 2.2.8 In principle, MLP and condition (C) restrict the class of se­
quences {A{k)} that can be analyzed to those with countable state-space. A 
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possible generalization is the following. Suppose that the distribution of A{k) 
is a mixture of a discrete distribution on a countable state-space, say A'^, 
and a general distribution on an arbitrary state-space, say A^. If we require 
P{A{N - 1) (g) A{N - 2) ® • • • ® ^(0) eA'')>0 in Definition 2.2.1 and C € A" 
in condition (C), respectively, then the results in this section hold for {A{k)} 
with state space A"^ U A^ as well. 

We conclude this section by presenting a generalization of Theorem 2.2.4. 
As Baccelli and Mairesse show in [11], using the arguments put forward in this 
section, a limit result can be obtained under a slightly weaker condition than 
MLP. 

Theorem 2.2.5 Let {A{k)} be a stationary and ergodic sequence of integrable 
and a.s. regular square matrices in Kma:if • V there exists N & N such that with 
positive probability A{N — 1) ® A{N — 2) ® • • • ® ^(0) has a bounded projective 
image, then the statement put forward in Theorem 2.2.4 holds. 

Proof: By assumption, there exist finite numbers a,b &R such that 

Va ieR ' ' : \\A{N - 1) ® A{N - 2) ® ••• 0 A{0) ® x\\jp G [a,b]. 

In analogy to (2.25), let T^ denote the time index such that for the A;*'' time 
a product A{Tk) ® A{Tk - 1) ® • • • ® A{Tk - N + 1) has been observed whose 
projective image lies within the interval [a,b]; in formula: 

a < ||x(rfc)|Uax - \\x{Tk)\Un < b 

for all k. We have assumed that {A{k)} is stationary and ergodic, which implies 
lim„_,oo Tfc = 00 and T^ < oo with probability one; for details see Section E.3 in 
the Appendix. Since [a, b] is compact, the Bolzano-Weierstrass Theorem yields 
the existence of a subsequence {Tk„} of {Tfc} such that 

lim ||a;(TfcJ|Uax - ||a;(TfcJ|Um = c, 

for some finite constant c, which implies 

lim — ||a;(rfcj||„ax = lim —||a;(TfcJ||„,in. (2.29) 
n-too /e„ n—too /c„ 

By Theorem 2.2.1, convergence of the sequences ||a;(A;)||max/^ and ||a;(/c)||niax/'i; 
as k tends to infinity is guaranteed. Hence, 

lim 7||a;(A;)||max = lim —||a:(rfc„)||max 
k—>oo K n—»oo fcn 

(2.29) 1 
= lim -rrMTkJWmm 

n-*oo kn 

= lim 7||x(fc)||min, 
fc—too K 

which proves the claim. D 
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2.2.3.3 Weak Irreducibility 

An approach relaxing the concept of fixed support can be found in [69, 70]. 
This approach is based on an interpretation of the concept of 'irreducibility' for 
random matrices which we will explain in the following. 

Irreducibility of a matrix A is defined via the communication graph of A, 
denoted by G{A). Specifically, A is called irreducible if for any two nodes in G{A) 
a path from i to j exists in G{A). Let {A{k)} be a random sequence of J x J 
dimensional matrices. The communication graph of a random sequence is itself a 
random variable and we extend the definition of a path to the sequence Q{A{k)) 
as follows. For any two nodes i,j, a sequence of arcs p = ((«ni jn) : 1 < « < fn), 
with i = ii, j — jm and j „ = i„+i for 1 < n < m, is called a path of length m 
from i to j in {A{k)} if {in,jn) is an arc in Q{A{k + n — 1)) ioi 1 < n < m, for 
some k eN. We say that p is a path in Q{A{k + n— 1) : 1 < n < m). 

The weight of a path in G{A) is defined by the sum of the weights of all arcs 
constituting the path; more formally: let p = {{imjn) : 1 < n < m) he a, path 
from i to j of length m, then the weight of p, denoted by \p\w, is given by 

m 

n=l 

with i = ii and j = jm, for some k. 
We now are able to introduce the concept of weak irreducibility: A sequence 

{A{k)} of square matrices is said to be weakly irreducible if for any pair of nodes 
i,j 6 { 1 , . . . , J } a finite number my exists such that there is with positive 
probability a path of length my from i to j ; in formula: for any i,j, with 
1 < «,i < J'l rn-ij G N exists such that 

/mn — l ( / m y - 1 \ \ 

(g) Aik) > £ > 0 
V fc=0 Jji J Theorem 2.2.6 Let {A{k)} be an i.i.d. sequence of regular, integrable matrices 

in Kmajf '̂ *'̂ '* countable state-space. Assume that {A{k)} is weakly irreducible. 
If there exists at least one node j such that j lies with positive probability on a 
circuit of length one, then the Lyapunov exponent of {A{k)} exists. 

Proof: Consider the collection of numbers my for I < i,j < J. We have 
assumed that there exits at least one node j * such that ruj'j' = 1 and the 
greatest common divisor of the collection of numbers my , with 1 < i,j < J, 
is thus equal to one. This implies that a finite number N exists such that each 
m > N can be written as a linear combination of my 's , see [26]. Weak analyticity 
thus implies that for any m > N there exists with positive probability a path 
from any node to any other node; in formula: for any m> N 

Vi,i € { ! , . . . , J } : P { [ ^ A{k)\ > e\ > Q. 
\ \ fc=0 /ji / 
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Let h > N. Since J is finite, we can choose j,i € { 1 , . . . , J} such that a 
sequence {m„}, with hm„_,oo ?»n = oo. exists for which it holds that 

||a;(m„ + /i)||min = a;i(m„ + /i) and \\x{mn)\\mB.x = Xj{mn) , 

for n e N. By assumption, {yl(A;)} is a weakly irreducible i.i.d. sequence. Hence, 
we may select a subsequence {m„,} of {m„} such that there is (at least) a fixed 
path p from j to i of length h in g{A{mni+k) • 0 < k < h) (or any / and 

(g) ^(m) 

is finite. With slight abuse of notation we will identify {m„} and {m„^}. This 
yields 

\\x{mn + /l)||min = a^i(mn + h) 

J /rrin+h—l \ 

fc=l \ m=m„ / ji. ik 

> - | W i j | ®Xj{mn) 

= -\wij\ + i|a;(m„)||max , 

which establishes the up-crossing property with M = /i. D 
Theorem 2.2.6 provides a sufficient condition for the existence of the Lya-

punov exponent completely avoiding the concept of fixed support. The following 
example illustrates this. Consider Ai,A2 6 A, with 

for some finite integrable random variables Yi, 1 < i < 4. Let {A{k)} be an 
i.i.d. sequence such that P{A{k) = Ai) = p > 0 and P{A{k) = A2) = 1 - p > 0, 
for A; > 0. Then {A{k)] satisfies the condition put forward in Theorem 2.2.6. 
However, neither does {A{k)} have fixed support nor does it satisfy the diagonal 
condition. Note that the situation in Example L5.5 is covered by Theorem 2.2.6, 
which follows from the fact that D2 is irreducible and contains one finite element 
on its diagonal. 

As Hong shows in [69, 70], the condition that there is at least one node 
that lies with positive probability on a circuit of length one is not necessary for 
Theorem 2.2.6 to hold. Without this simplifying assumption the proof of the 
theorem becomes however rather technical and the interested reader is referred 
to [69, 70] for details. 

2.3 Stability Analysis of Waiting Times (Type 
Ila) 

A classical result in queuing theory states that if in a G / G / 1 queue the expected 
interarrival time is larger than the expected service time, then the sequence 
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of waiting times converges, independent of the initial condition, to a unique 
stationary regime. The proof of this result goes back to [81]. In this section, we 
generalize the classical result on stability of waiting times in the GI /G/1 queue 
to that of stability of waiting times in open max-plus linear networks. It is worth 
noting that by virtue of the max-plus formalism we can almost literally copy 
the proof of the classical result in [81]. 

We consider the following situation. An open queuing network with J sta­
tions is given such that the vector of departure times from the stations, denoted 
by x{k), follows the recurrence relation 

x{k + 1) = A{k) (g) x{k) ® r(fc -f-1) ® B{k), (2.30) 

with a;(0) = e, where r(/c) denotes the time of the fc*'' arrival to the system. 
See, equation (1.15) in Section 1.4.2.2 and equation (1.27) in Example 1.5.2, 
respectively. As usually, we denote by ao{k) the A;*'' interarrival time, so that 
the k*'^ arrival of a customer at the network happens at time 

k 

r(fc) = ^ < T o ( i ) , fc>l, 

with r(0) = 0. Then, Wj{k) = Xj{k) — T{k) denotes the time the fc"* customer 
arriving to the system spends in the system until completion of service at server 
j . The vector of fc*'' sojourn times, denoted by W{k) = {Wi{k),... ,Wj{k)), 
follows the recurrence relation 

Wik + 1) = A{k) «> C{ao{k + 1)) ® W{k) e B{k) , A; > 0 , 

with W{0) — e, where C[h) denotes a diagonal matrix with —h on the diagonal 
and £ elsewhere. See Section 1.4.4 for details. Alternatively, Xj{k) in (2.30) 
may model the times of the A;*'' beginning of service at station j . With this 
interpretation of x{k), Wj{k) defined above represents the time spent by the 
A;*'' customer arriving to the system until beginning of her/his service at j . For 
example, in the G / G / 1 queue W{k) models the waiting time. 

In the following we will establish sufficient conditions for W{k) to converge 
to a unique stationary regime. The main technical assumptions are; 

( W l ) For A; £ Z, let ^(A;) € Kmajf be a.s. regular and assume that the maximal 
Lyapunov exponent of {^(A;)} exists. 

(W2) There exists a fixed number a, with 1 < Q < J , such that the vector 
B°'{k) = {Bj{k) : 1 < i < Q) has finite elements for any k, and Bj{k) = e, 
for a < j < J and any k. 

(W3) The sequence {{A{k),B°'{k))] is stationary and ergodic, and independent 
of {T(A;)}, where r(A;) is given by 

k 

r{k)^Y.''^^^ A;>1, 
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with T ( 0 ) = 0 and {<T(A;) : A; G Z } a stationary and ergodic sequence of 
positive random variables with mean v 6 (0,oo). 

In what follows, we establish sufficient conditions for {W{k)}, with 

W{k + 1) = A{k) ® C{a{k + 1)) ® W{k) e B{k), k>0, (2.31) 

to have a unique stationary solution. 
Provided that {A(fc)} is a.s. regular and stationary, integrability of A{k) is a 

sufficient condition for ( W l ) , see Theorem 2.2.1. In terms of queuing networks, 
the main restriction imposed by these conditions stems from the non-negativity 
of the diagonal of A[k), see Section 2.2 for a detailed discussion and possible 
relaxations. The part of condition (W3) that concerns the arrival stream of the 
network is, for example, satisfied for Poisson arrival streams. 

The proof goes back to [19] and has three main steps. First, we introduce 
Loynes' scheme for sojourn times. In a second step we show that the Loynes 
variable converges a.s. to a finite limit. Finally, we show that this limit is the 
unique stationary solution of equations of type (2.31). 

Step 1 (the Loynes's scheme): Let M(fc) denote the vector of sojourn times 
at time zero provided that the sequence of waiting time vectors was started at 
time —k in B{—{k + 1)). For A; > 0, we set 

fc-i 

By recurrence relation (2.31), 

Mil) = A{-l)®C{a{Q))®B{-2)®B{-l). 

For M(2) we have to replace B{—2) by 

^ ( - 2 ) ® C(o-(- l)) ® B ( - 3 ) e B ( - 2 ) , (2.32) 

which yields 

M(2) = A{-1) ® C(o-(0)) ® A{-2) ® C ( < T ( - 1 ) ) ® S ( - 3 ) 

®.4( - l ) ® C( (T(0 ) ) ® B{-2) ® B{-\). (2.33) 

By finite induction, we obtain for M{k) 

k j 

Mik) = 0 (g ) A(-i) ® C{a{-i + 1)) ® B{~{3 + 1)) , (2.34) 
j = 0 t = l 

where we set the product 

j 

^A{-i)®C{a{-i+\)) 
i=l 
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to E for j = 0. 
The sequence {M{k)} is called Loynes sequence. The above construction 

implies that {M{k)} is monotone increasing in k. To see this, denote for x,y € 
Ĵ max the component-wise ordering of x and y hy x < y. By calculation, 

k 3 

j = 0 i = l 

fc+1 

< (g) A{-i) ® C(c7(-z + 1)) ® B(-(A; + 1)) 
i = l 

fc J 

j = 0 1=1 

fc+1 J 

= 0 0 ^(-») ® C{a{-i + 1)) ® B( - ( i + 1)) 
3=0 1=1 

==M(fc + l ) , 

for A; > 0, which proves that M{k) is monotone increasing in k. 
The matrix C(-) has the following properties. For any y € R, C{y) commutes 

with any matrix A G pJXj. 
m a x ' 

C{y) ®A = A» C{y) . 

Furthermore, for y,z E R, it holds that 

C{y) ® Ciz) = C{z) ® C{y) = C(2/ + z). 

Specifically, 

( g ) C ( a ( - z + l ) ) = a ( ( g ) a H + l ) ) = C ( - T ( - j ) ) . 

i = l \ i = l / 

Elaborating on these rules of computation, we obtain 

j j 

(g) A{-i) ® C{a{-i)) ® B{-{j + 1)) = C{-T{-j)) ® (g) ^ ( - i ) ® B ( - ( j + 1)) . 
i = l i = l 

Set 
fc 

i?(A;) = (g)A(-i)®B(-(fc + l ) ) , fc>l, 
i = l 

and, for A; = 0, set D{0) = 5 ( - l ) . Note that r(0) = 0 implies that C(-r(0)) = 
i3. Equation (2.34) now reads 

k 

M ( f c ) = 0 C ( - T ( - i ) ) ® D { i ) . 
j = 0 
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Step 2 (pathwise limit): We now show that the hmit of M{k) as k tends to 
00 exists and establish a sufficient condition for the limit to be a.s. finite. 

Because M{k) is monotone increasing in k, the random variable M, defined 
by 

hm M(fc) = 0 C ( - r ( - j ) ) ® i ? ( j ) 
fc—»oo ^ ^ 

3>0 

is either equal to oo or finite. The variable M is called Loynes variable. In what 
follows we will derive a sufficient condition for M to be a.s. finite. As a first step 
towards this result, we study three individual limits. 

(i) Under condition ( W l ) , a number a £ R exists such that, for any x G R'^, 

lim — 
fc—too k 

(ii) Under condition (W3), the strong law of large numbers (which is a special 
case of Theorem 2.2.3) implies 

J i m i | | C ( - r M ) ) l | _ = ^ l i m i r ( - f c ) 

1 
= — lim - y ^ a(i) 

fc—•oo k 

= —V 
i=-fc+l 

a.s. 

(iii) Ergodicity of {B°'{k)] (condition (W3)) implies that, for 1 < j < a, a 
hj G R exists such that 

1 *" 

fc—>oo k a.s., 

which implies that it holds with probability one that 

1 ^ 

,lii". \BA-k) + ,lim ^ ^ ^ B^{-i) 
k fc->oo k k -

1 
: lim TBj{-k) + bj 

fc—>oo re 

and thus 

lim rBji-k) = lim -B, ( - (A; + 1)) = 0 a.s., 
fc->oo k fc->oo k 
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for j < a. Prom the above we conclude that 

1 
,lim^-^l|i^(-^)IL.. = 0 

Prom Lemma 1.6.2 it follows that 

\\C{-Ti-k))®D{k)\l C ( - r ( - f c ) ) ® (g) Ai-i) ® B{-{k + 1)) 

< | | C ( - r ( - f c ) ) | U , + 

+ ||J3(-(fc + l)) | |„ 

Combining the individual limits (i)-(wi), we obtain 

lim i\\C{-T{-k))®D{k)\\^,, <^-u 
fc—»oo K 

0 y l ( - z ) ® e 

and J/ > a implies 

lim \\C{-T{-k))®D[k)\l 
K—••OO 

(2.35) 

Hence, for k sufficiently large, the vector C{—T{~k)) ® D{k) has only negative 
elements and thus doesn't contribute to M{k) (note that M{k) > 0 by defi­
nition). Consequently, M{k) is dominated by the maximum over finitely many 
vectors C(—T(—A;)) ® D{k) whose elements are all finite. We have thus shown 
that V > B. implies that M is an a.s. finite random variable. In the same vein, 
one can show that v < B. implies M = oo with probability one. 

Step 3 (stationarity and uniqueness): We revisit the construction of {M{k)}. 
Under assumption (W3), let 6 denote an ergodic shift operator such that A{k) — 
A o O'^, B{k) = B o 6^ and a{k) = a o O'', for appropriately defined random 
variables A,B,a, see Section E.3 in the Appendix. Equation (2.33) thus reads 

M(2) = Ao0-^ ® C{a) ® M ( l ) o r ^ 0 5 o 9'^ 

(to see this, note that the expression in (2.32) is equivalent to M ( l ) o 6~^). By 
finite induction, 

Mik + 1) = yl o 61-1 ® C{a) ® M{k) oO'^ ® 5 o 9'^ 

and letting k tend to oo in the above equation shows that 

M = AoQ-^ ® Cia) ® M ® BoO-"" . 

In other words, M is the stationary solution of (2.31). 
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It remains to be shown that M is the unique limit. Let M{k, w) denote the 
vector of sojourn times at time 0 provided that the sequence is started at time 
—fc with initial vector w G R'^, or, more formally, set 

1 W M{k, w) = (g) A{-i) ® C{a{-i + 1)) ( 
i=l 

fc-1 
®®C{-T{-j))®DiJ). 

Because w has only finite elements, we have ||w||max < oo. Following the line of 
argument in step 2 above, it readily follows that 

lim 
A:—*oo 

fc 

(g ) A{-i) ® C{a{-i + 1)) ® w = —00 a.s 

for f > a, and 

k fc-1 
( lim 0 A{-i) ® C{a{-i + 1)) ® w ® 0 C{-Ti-j)) <gi D{j) = M a.s. 

Hence, for any finite initial value w, M{k, w) has the same limit as M{k), which 
establishes uniqueness. We have thus shown that M{k,w) converges a.s. to a 
unique stationary limit M, independent of the initial value w. 

For w £ R'^, write W[k,w) for the vector of fc*'' system times, initiated 
at 0 to w. Assumption (W3) implies that M{k,'w) and W{k,w) are equal in 
distribution. Hence, M is the unique weak limit of {W{k,w)} for arbitrary 
w € R''. We summarize our analysis in the following theorem. 

Theorem 2.3.1 Assume that assumptions ( W l ) , (W2) and (W3) are satisfied 
and denote the maximal Lyapunov exponent of {A{k)} by a. If v > a, then the 
sequence 

W{k + 1) = A{k) (g) C{(j{k + 1)) ® W{k) ® B{k) 

converges with strong coupling to an unique stationary regime W, with 

W = D{0) © 0 C ( - r ( - j ) ) ® D{j) , 

where D{0) = B o 9'^ and 

3 

D{j) = (^A{-i)®B{-{j + l)), j > l . 

Proof: It remains to be shown that the convergence of {W{k)} towards W 
happens with strong coupling. For w € R"', let W{k, w) denote the vector of fc*'' 
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sojourn times, initiated at 0 to w. From the forward construction, see (1.22) on 
page 20, we obtain 

k 

W{k + l,w) = 0 A{i) (g> C(a{i + 1)) ® u; 
i=0 

k k 

® 0 (8) A{j)^C{a{j + l))®Bii). 

Prom the arguments provided in step 2 of the above analysis it follows that 

fc 
0 y l ( i ) ® C ( C T ( i + l ) ) ® « ; lim 

A;—>oo 
j = 0 

a.s. , 

provided that v > &. Hence, there exists an a.s. finite random variable /?(w), 
such that 

Vfc > P{w) : \ A[i) ® C{a{i + 1)) ® w 
1=0 

< 0 . 

In words, after /3(w) transitions the influence of the initial vector w dies out. 
We now compare two versions of {W{k)}. One version is initialized to W, the 
stationary regime, and the other version is initialized to an arbitrary finite vector 
w. We obtain that 

Vfc > ra&x{(3{w),l3{W)) : W{k,w) = W{k,W). 

Hence, {W{k, w)) couples after a.s. finitely many transitions with the stationary 
version {W{k,W)]. D 

It is worth noting that /3(w), defined in the proof of Theorem 2.3.1, fails to be 
a stopping time adapted to the natural filtration of {{A{k),B{k)) : fc > 0}. More 
precisely, /?(w) is measurable with respect to the cr-field a{{A{k),B{k)) : fc > 0) 
but, in general, {P{w) = m} ^ cr((A(fc), B{k)) : m > fc > 0), for m € N. 

Due to the max-plus formalism, the proof of Theorem 2.3.1 is a rather 
straightforward extension of the proof of the classical result for the G/G/1 
queue. To fully appreciate the conceptual advantage offered by the max-plus 
formalism, we refer to [6, 13] where the above theorem is shown without using 
max-plus formalism. 

2.4 Harris Recurrent Max-Plus Linear Systems 
(Type I and Type Ha) 

The Markov chain approach to stability analysis of max-plus linear systems 
presented in this section goes back to [93, 41]. Consider the recurrence relation 
x{k + 1) = ^(fc) ® x{k), fc > 0, and let 

Z^-_i(fc) = a;j-(fc)-*i(fc), j > 2 . (2.36) 
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denote the discrepancy between component Xi{k) and Xj{k) in x{k). The se­
quence {Z{k)} constitutes a Markov chain, as the following theorem shows. 

Theorem 2.4.1 The process {Z{k) : k > 0} is a Markov chain. Suppose 
Z{k) = {zi,... ,zj-i) for fixed zj G K. Then the conditional distribution of 
Zj{k + 1) given Z{k) = {zi,..., zj-i), is equal to the distribution of the random 
variable 

J J 

^ j + i i ( f c ) e 0 y l j + i i ( / c ) ® Z i - i - Aiiik) (S ^ Au{k) ® Zi-i , 
i=2 

fori <j < J -1. 

Proof: Note that 

i=2 

a®x®b®y — x=max(a + x,b + y) — 

=max(a, b+ [y — x)) 

=a®b®{y-x). 

Using the above equality, we obtain for 2 < j < J: 

x 

Zj-i{k + \)=Xj{k + 1) - a:i(fc + 1) 

= (v4(fc) ® x{k))j - {A{k) ® x{k))i 

=Aji{k) ® xi{k) e Aj2{k) ®X2{k)®---® Ajj{k) ® xj{k) -

Au(k) (g) xi(k} e Ai2{k) (g) X2ik) e • • • ® Aij(k) ® xj{k) 

=Aji{k) <S> xi{k) ® Aj2(k) ®X2{k) ® ••• ® Ajj{k) ®xj{k) - xi[k) -

{Aii{k) ® xi{k) ® Ai2{h) ® X2{k) ® • • • ® Aij{k) ® xj{k) - xi{k)) 

=Aji{k) e Aj2{k) ® {X2{k) - xi{k)) ® • • • ® Ajj{k) ® {xj{k) - xi{k)) 

Aii{k) ® Ai2{k) ® {x2{k) - xi{k)) ® • • • 0 Aij{k) ® {xj{k) - xi[k)) 

=Aji{k) ® Aj2{k) ® Zi{k) ® • • • ® Ajj{k) ® Zj-i{k) -

Aii(k) ® Ai2ik) ® Zi(/c) ® • • • ® Aij{k) ® Zj^i{k). 

Prom this expression it follows that the conditional distribution of Z{k + 1) 
given Z ( 0 ) , . . . , Z{k) equals the conditional distribution of Z{k + 1) given Z{k) 
and hence the process {Z{k) : A; > 0} is a Markov chain. D 

Now define 
D{k) = xi{k) - xi{k - 1) , k>l. 

Then, we have 
k 

xi{k) = xi{0) + ^Din), k>l, (2.37) 
n=l 

a n d 

fc 

xj{k) = xj{0) + {Zj^i{k)-Zj^i{0)) + ^D{n), k>l,j>2. (2.38) 
n=l 
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Theorem 2.4.2 For any k > 0, the distribution of {D{k + l),Z{k + 
1)) given {Z{0),D{1), Z{1),... ,D{k), Z{k)) depends only on Z{k). If 
Z{k) = {z2,... ,zj), then the conditional distribution of D{k + 1) given 
(Z(0), D(l), Z(l),..., D{k), Z{k)) is equal to the distribution of the random var­
iable 

J 

Anik) ® ^ Aij{k) 1^ Zj-i . 

Proof: We have 

Z)(A; + l)=xi(fc + l)-a;i(A;) 

=An{k) (8> xi{k) ® A^ik) ® x^ik) 0 • • • © Aij{k) ® xj{k) - xi(k) 

=^ii(A;) © Ai2{k) ® {x2ik) - Xi{k)) ® • • • © Aij(k) ® (xj(k) - Xi{k)) 

=Auik) © Ai2{k) ® Zi(A;) © • • • © Aij{k) ® Zj^i{k), 

which, together with the previous theorem, yields the desired result. D 
If {Z{k)} is uniformly ^-recurrent and aperiodic (for a definition we refer to 

the Appendix), then it is ergodic and, as will be shown in the following theorem, 
a type Ila limit holds. Elaborating on a result from Markov theory for so-called 
chain dependent processes, ergodicity of {Z{k)} yields existence of the type I 
limit and thus of the Lyapunov exponent. 

Theorem 2.4.3 Suppose that the Markov chain {Z{k) : k > 1} is aperiodic 
and uniformly (p-recurrent, and denote its unique invariant probability measure 
by TT. Then the following holds: 

(i) For I < i,j < J, Xi{k) — Xj{k) converges weakly to the unique stationary 
regime n. 

(a) If the elements of A{k) have finite first moments, then a finite number A 
exists such that 

lim ^ = A, 3 = 1,...,J, 
fc—too K 

almost surely for any finite initial value, and 

A = E, [D(1)] , 

where E,r indicates that the expected value is taken with Z(0) distributed 
according to TT. 

Proof: For the proof of the first part of the theorem note that 

Xi{k) - Xj{k) = Zi-.i{k) - Zj^i{k), 

for 2 <i,j < J, and 

Xi{k) - xi{k) = Zi^i{k), xi{k) - Xi{k) = -Zj_i(A;), 
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for 2 < i < J . Hence, weak convergence of Z{k) to a unique stationary regime 
implies weak convergence of Xi{k) — Xj{k) to a unique stationary regime. Weak 
convergence of Z{k) to a unique stationary regime follows from uniform </>-
recurrence and aperiodicity of Z{k), see Section F in the Appendix, and we 
have thus shown the first part of the theorem. 

We now turn to the second part. The process {D{k) : fc > 1} is a so-called 
chain dependent process and the limit theorem of Griggorescu and Oprisan [55] 
implies 

1 *= 
Mm - V D{n) = A = E^fD(l)] a.s. , 

fc—>oo k '—' 

for all initial values XQ. This yields for the hmit of xi{k)/k as k tends to oo: 

£mJ..(.fî himfi..(0) + i t^w) 
\ n= l / 
1 '̂  

= lim - V D ( n ) 

= A a.s. 

It remains to be shown that, for j > 2, the limit of Xj{k)/k as k tends to oo 
equals A. Suppose that for j > 2: 

lim jZj-iik) = lim - fz ,_ i ( fe ) - Z , - i (0 ) ) = 0 a.s. (2.39) 
fc—*oo k fc—*oo k \ ' 

With (2.39) it follows from (2.38) that 

lim ia;,(fc)= lim i(Z,_i(/=) - Z,_i(0)) + A 
fc—too K fc—too K 

=A a.s. , 

for j > 2. In what follows we show that (2.39) indeed holds under the conditions 
of the theorem. 

Uniform (^recurrence and aperiodicity of the Markov chain {Z{k) : k > 1} 
implies Harris ergodicity. Hence, for J — 1 > j > 1, finite constants Cj exists, 
such that 

lim 
1 
7:X]^jW = Cj a.s. 
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This implies 

1 '' 

=£-(^^^'^'^^^^^^^-^"^) 
\ n=l / 
1 fc — 1 1 ^~^ 

lim -Zj{k) + lim —;— lim y ^ Z , ( n ) 
n = l 

which yields, for J — 1 > j > 1, 

lim 7Zi(fc) = lim yiZjik) - Z,(0)) = 0 a.s. 

D 

Remark 2.4.1 Let the conditions in Theorem 2.4-3 be satisfied. If, in addition, 
the elements of A{k) and the initial vector have finite second moments, then 

^2 4s.f 

T l = l 

and if a"^ > 0, the sequence 

0 < 0-2 1î  ^ E ^ [ ( D ( 1 ) - X)(D{n) - A)] < oo , 

{xi{k),...,xj{k)) - {kX,...,kX) 

77^ ' '-'' 
converges in distribution to the random vector {Af,... ,Af), where hf is a stan­
dard normal distributed random variable. For details and proof we refer to [93]. 

Remark 2.4.2 If the state space of Z{k) is finite, then the convergence in part 
(i) of Theorem 2.4-3 happens in strong coupling. 

The computational formula for X put forward in Theorem 2.4.3 is also known 
as 'Furstenberg's cocycle representation of the Lyapunov exponent;' see [45]. 

Example 2.4.1 Consider x{k) as defined in Example 1.5.5, and let a = \ and 
a' = 2. Matrix D^ is primitive and has (unique) eigenvector (1,1,0,1)''". Let 
z{\) = ^((1,1,0,1)"'") = ( 0 , - l , 0 ) ' ' ' . It is easily checked that {Z{k)} is a Markov 
chain on state space {z{i) : 1 < i < 5}, with 

z{2) = I 0 I , z(3) = I 0 I , z[A) = I - 2 I and «(5) = j - 1 j . 
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Denoting the transition probability of Z{k) from state z{i) to state z{j), for 
1 < *ii < 5, one obtains the following transition matrix 

/ 1 - , 0 

P = 

V 1 

0 
0 
0 

-e 

0 
0 
0 

e 

e 
e 
0 
0 

0 0 \ 
i - e 0 
1-61 0 

0 1 
0 0 / 

The chain is aperiodic and since the state space is finite it is uniformly <p-
recurrent. Moreover, the unique stationary distribution of Z(k) is this given by 

(1 - ef _ ^(i - e) 02 

e{i - 0) , 0 ( 1 - 0 ) 
7r;(4)=: — and ~ — 

: , 7r^(3) 1 + 0 ( 1 - 0 ) ' 

4 + 0 ( 1 - 0 ) ""' ""^^'^ = 1 + 0 ( 1 - 0 ) • 

Applying Theorem 2.4-3, yields X = E^[£>(1)]. Evoking Theorem 2.4-2, this 
expected value can thus be computed as follows: 

5 

'^=Zl'^^w(l®2®a:2(«)) 

=7r2( l ) + 27r2(2) + 27r2(3) + ''^z{4) + 7''2(5) 

0 
" " • " 1 + 0 - 0 2 ' 

for any 0 6 [0,1]. For a different example of this kind, see f65j. 

Example 2.4.2 Let {A(k)}, with A(k) £ {0,1}2'^2^ jg ^̂ ^ j_j^^^ sequence fol­
lowing the distribution P{Aij{k) = 0) = 1/2 = P{Aij{k) = 1) for 1 < i,j < J. 
We turn to the Markov process {Z{k)} as defined in (2.36). This process has 
state space { — 1,0,1}. By Theorem 2.4-1, the transition probability of Z{k) is 
given by 

P{Z{k + l) = m\Z{k) = z) 

= P ( (^2i(fc + 1) e (^22(fc + 1) (8) z)) - An(k + 1) ® {Ai2{k + I) ® z) = m), 

form,z € {—1,0,1}, and the transition matrix on {Z{k)} can be computed as 

/ 4 2 4 » 

-3 . 5 J . 
16 8 16 

\ 1 1 1 / 
\ 4 2 4 / 

The Markov chain {Z{k)} is aperiodic (all elements ofP are positive), uniformly 
4>-recurrent (the state space is finite) and has unique stationary distribution 

' ^ - ^ = 1 4 ' ^ ° = 1 4 ' ^ ^ = 1 4 
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From Theorem 2.4-3 together with Theorem 2.4-2 follows that 

A= Y. E [ ^ n ( l ) ® ( ^ i 2 ( l ) ® 0 ) ] 7 r , 
2:6{-l,0,l} 

_ 6 
~ 7 ' 

As shown in [93], for this example a (as defined in Remark 2-4-1) is equal to 

33/343. 

The above examples are deceitfully simple in the sense that (i) the transition 
probability (in this case a matrix) of {Z{k)} can be calculated easily and (ii) we 
can deduce that {Z{k)} is aperiodic and uniformly (^-recurrent from inspecting 
the transition matrix of {Z{k)}. In [93], examples with countable state space 
are discussed. For one example, the elements of A{k) are exponentially distrib­
uted with the same parameter; for another example, the elements are assumed 
to be uniformly distributed over the unit interval. Unfortunately, even when 
the elements of A{k) are governed by these ostensibly simple distributions, the 
analysis leads to cumbersome computations. It is mainly for this reason that 
the Markov chain approach, as presented in this section, will be of avail only in 
special cases. 

2.5 Limits in the Projective Space (Type l ib) 

In the previous section, we studied the limit of differences within x{k), that is, 
Xj{k) —xi{k), for 2 < j < J . In what follows, we take a slightly different point of 
view and consider differences betweenx{k) andx{k — l), that is, Xj{k)—Xj{k—1), 
for 1 < j < J. The basic recurrence relation we study is given by 

x{k + 1) = A{k) ® x{k) , k>0, (2.40) 

with a;(0) = XQ e R^^^ and A{k) G R;^^;^, for A; > 0. 
For the following we use a definition of Z{k) that slightly differs from the 

definition in Section 2.4. We now let 

Z{k) = x{k)-x{k-l), k>l, (2.41) 

denote the component-wise increase of x{k). In particular, the components of 
Z{k) are given by 

Zj{k) = Fj{A{k-l),x{k-l)) 

def 
(^Aji{k-l)®Xi{k-l)] - Xj{k-1) 

= Ajj{k - 1) ®^Aji{k - 1) ® {xi{k - 1) - Xj{k - 1)) , j > 1 

m 
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For x{k — 1) £ IPKmaxi the value of Fj doesn't depend on the representative, 
that is, for all X G x{k - 1) we have Zj{k) = F,(^(A;-1) , X) , for 1 < j < J , and 
we write Zj{k) — Fj{A{k — l),x{k — 1)) to express this fact. For the definition 
of the modes of convergence used in the following lemma we refer to Section E.4 
in the Appendix. 

Lemma 2.5.1 Consider the situation in (2.40) and let {A{k) : k >Q} he sta­
tionary. If x{k) 6 PR'^ converges weakly to a unique invariant distribution, 
uniformly over all initial conditions, then Z{k) converges weakly to a unique 
invariant distribution, uniformly over all initial conditions. 

Proof: Consider the sequence y{k) — {A{k),x{k)), k > 0. The sequence 
A{k) is stationary by assumption with stationary distribution TTA. Let A be 
distributed according to TTA. If x{k) converges weakly to x, then y(k) converges 
weakly to {A,x). Because F — {F\,... ,Fj) defined above is continuous, we 
obtain from the continuous mapping theorem (see Appendix, Section E.4) the 
weak convergence of F{A{k),x{k)). D 

In what follows we establish sufficient conditions for weak convergence of 
x{k). By Lemma 2.5.1, this already implies weak convergence of Z{k) which 
in turn yields type l ib second-order ergodic theorems. As we will show in the 
following, in many situations, the convergence of Z{k) occurs even in strong 
coupling. In Section 2.5.1, we will study systems with countable state space 
and, in Section 2.5.2, we will address the general situation. In Section 2.5.3 we 
revisit the deterministic setup. Finally, we present a representation of type lib 
limits via a renewal type approach in Section 2.5.4. 

2.5.1 Countable Models 

In this section, we study models with countable state space. Let ^ be a finite 
or countable collection of J x J-dimensional irreducible matrices. We think of 
A as the state space of the random sequence {A{k)} following a discrete law. 

Definition 2.5.1 Let {A{k)], with A{k) e A, be a random sequence. A matrix 
A € A is called a pattern of {A{k)} if a sequence a = ( a i , . . . , a^) £ A'^ exists 
such that 

(o) A = o;v ® ajv-i ® • • • ® ai 

(fo) P{A{N + k) = aN,...,A{l + k)=ai) >0, k&N. 

We call a the sequence constituting A. 

Note that if {.(4(A;)} is i.i.d., then the second condition in the above definition 
is satisfied if we let A contain only those possible outcomes of A{k) that have 
a positive probability. In other words, in the i.i.d. case, the second condition is 
satisfied if we restrict A to the support of A{k). Existence of a pattern essentially 
implies that A is at most countable, see Remark 2.2.8. 

The main technical assumptions we need are the following: 
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(CI) The sequence {A{k)} is i.i.d. with countable state space .4. 

(C2) Each A^ Ais regular. 

(C3) There is a primitive matrix C that is a pattern of {A{k)}. 

Observe that we have already encountered the concept of a pattern - as 
expressed in condition (C3) - in condition (C) on page 82, although we haven't 
coined the name 'pattern' for it at that stage. _ _ _ 

The following theorem provides a sufficient condition for {x{k)} to converge 
in strong coupling. 

Theorem 2.5.1 Let (CI) - (C3) be satisfied, then {x{k)} converges with strong 
coupling to a unique stationary regime for all initial conditions in R'^. In par­
ticular, x{k) converges in total variation. 

Proof: Let C be defined as in (C3) and denote the coupling time of C by c. 
For the sake of simplicity, assume that C & A, which imphes N = I. Set TQ = 0 
and 

Tk+i = inf{7n > Tk + c : A{m — i) = C : 0 < i < c— 1} , k > 0 . 

In words, at time rfc we have observed for the A;*'' time a sequence of c consecutive 
occurrences of C. The i.i.d. assumption (CI ) implies that r^ < Tk+i < oo for all 
k and that limfc_cx) Tfc = oo with probability one. Let p denote the probability 
of observing C, then we observe C° with probability p'^. By construction, the 
probability of the event {TJ = m} is less than or equal to the probability of the 
event A{k) jtC,0<k<m — c, and A{k) = C, for /c = m — c + 1 , . . . , m. In 
other words, for m > c, it holds that P ( T I = m) > (1 — p)™"'^p'^. Hence, 

oo 

E [ n ] < ^ m ( l - p ) ™ - V 
m=c 

oo 

= 5](m + c)(l-p)>^ 
m - 0 

oo oo 

= c p < ^ X ^ ( l - p ) ' " + p ^ ^ m ( l - p ) ™ 
m=0 m=0 

_cp^ P^jl-p) 

P P^ 
< 0 0 , 

which implies that E[rfc+i — Tk] < oo, for k &N. 
At Tfc, x{Tk) € V{C), see Theorem 2.1.L By condition (C3), C is primitive 

and, by Corollary 2.1.1, the eigenspace of C is a single point in the projective 
space (that is, the eigenvector of C is unique). In other words, {A{k)} has MLP, 
see Lemma 2.2.2. By (C2), x{k) 6 R'', for any k, and from the above line ar­
gument it follows that {x{k)} is a Harris ergodic Markov chain and regenerates 
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whenever the chain hits the single point V{C). This impUes that {x{k)} con­
verges with strong coupling to a unique stationary regime. See Section F in the 
Appendix. D 

What happens if we consider in Theorem 2.5.1 a stationary and ergodic 
sequence instead of an i.i.d. sequence? The key argument in the proof of Theo­
rem 2.5.1 is that {A{k)} has MLP. This is guaranteed by the fact that we 
observe with positive probability a sequence of occurrences of A{k) such that 
the partial product over that sequence equals C, for some primitive matrix C, 
where c denotes the coupling time of C, see Lemma 2.2.2. If the couphng time 
of C is larger than 1, then, under i.i.d. regime, the event that C occurs c times 
in a row has positive probability. However, this reasoning doesn't apply in the 
stationary case. To see this, consider the following example. Let 0 = {wi,W2} 
and P{ijJi) = 1/2, for i = 1,2. Define the shift operator 6 by 6{(JJI) = W2 and 
6{iji>2) = t^i- Then 9 is stationary and ergodic. Consider the matrices A,B as 
defined in Example 2.1.1 and let 

{A{k,wi)} = A,B,A,B,... {Aik,iV2)} = B,A,B,A,... 

The sequence {A{k)} is thus stationary and ergodic. Furthermore, A,B are 
primitive matrices whose coupling time is 4 each. But with probability one we 
never observe a sequence of 4 occurrences in a row of either A or B. Since neither 
^ or B is of rank 1, we cannot conclude that {A{k)} has MLP and, consequently, 
that x{k), with x{k+l) = ^4=0 A{i)iS>xo, is regenerative. However, if we replace, 
for example, A by A'", for m > 4 (i.e., a matrix of rank 1), then the argument 
would apply again. For this reason, we require for the stationary and ergodic 
setup that a matrix of rank 1 exists that is a pattern, so that x{k) becomes a 
regenerative process. Note that the condition 'there exits a pattern of rank 1' 
is equivalent to the condition '{A{k)} has MLP.' The precise statement is given 
in the following theorem. For a proof we refer to [84]. 

Theorem 2.5.2 Let {A(k)} be a stationary and ergodic sequence of a.s. regular 
square matrices. If {A{k)} has MLP, then {x{k)} converges with strong coupling 
to a unique stationary regime for all initial conditions in R'^. In particular, 
{x{k)} converges in total variation. 

2.5.2 General Models 

In this section, we consider matrices A{k) the elements of which may follow 
a distribution that is either discrete or absolutely continuous with respect to 
the Lebesgue measure, or a mixture of both. For general state-space, the event 
{A{N + k) ® ••• ^ A{2 + k) ® A{1) = A} in Definition 2.5.1 typically has 
probability zero. For this reason we introduce the following extension of the 
definition of a pattern. Let M 6 Rma>f t)e a deterministic matrix and rj > 0. We 
denote by B{M, rj) the open ball with center M and radius 77 in the supremum 
norm on R'̂ **'̂ . More precisely, A G B{M,rj) if for all «, j , with 1 < i,j < J, it 
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holds that 
€ {Mij - T], Mij + rf) for Mij ^ e, 

= e ior Mij = e . 

With this notation, we can state the fact that a matrix A belongs to the support 
of a random matrix A by 

V??>0 PiAeB{A,r])) > 0 . 

This includes the case where A is a boundary point of the support. We now 
state the definition of a pattern for non-countable state-space. 

Definition 2.5.2 Let {A{k)} be a random sequence of matrices overM^^ and 
let A e ^i^x b^ ^ deterministic matrix. We call A a pattern of {A{k)} if a 
deterministic number N exists such that for any r] > 0 it holds that 

P(^A(N - 1) ^ A{N - 2) ® • • • ® A{0) 6 5 ( i , r / ) ) > 0. 

Definition 2.5.2 can be phrased as follows: Matrix A is a pattern of {A{k)} if 
Af e N exists such that A lies in the support of the random matrix A{N — 1) ® 
A{N — 2)® • • • ® ̂ (0) . The key condition for general state space is the following; 

(C4) There exists a (measurable) set of matrices C such that for any C 6 C it 
holds that C is a pattern of {A{k)} and C is of rank 1. Moreover, a finite 
number A'' exists such that 

P(A{N - 1) ® A{N - 2) ^ • • • ® A{Q) G c ) > 0. 

Under condition (C4) , the following counterpart of Theorem 2.5.2 for models 
with general state space can be established; for a proof we refer to [84]. 

Theorem 2.5.3 Let {A{k)} be a stationary and ergodic sequence of a.s. regular 
matrices in K;^^^. / / condition (C4) is satisfied, then {a:(fc)} converges with 
strong coupling to a unique stationary regime. In particular, {x{k)} converges 
in total variation to a unique stationary regime. 

In Definition 2.5.2, we required that after a fixed number of transitions the 
pattern lies in the support of the matrix product. The following, somewhat 
weaker, definition requires that an arbitrarily small Tj-neighborhood of the pat­
tern can be reached in a finite number of transitions where the number of tran­
sitions is deterministic and may depend on rj. 

Definition 2.5.3 Let {A{k)] he a random sequence of matrices overR^^ and 
let A e Kmax ^s '^ deterministic matrix. We call A an asymptotic pattern of 
{A{k)} if for any rj > 0 a deterministic number Nn exists, such that 

p(^A{Nr, - 1) ® A{Nr, - 2) ® • • • ® ^(0) G B ( i , r ? ) ) > 0 . 
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Accordingly, we obtain a variant of condition (C4). 

( C 4 ) ' There exists a matrix C such that C is an asymptotic pattern of {A{k)} 
and C is of rank 1. 

Under condition ( C 4 ) ' only weak convergence of {x{k)} can be established, 
whereas (C4) even yields total variation convergence. The precise statement is 
given in the following theorem. 

T h e o r e m 2.5.4 Let {A{k)] he a stationary and ergodic sequence of a.s. regular 
matrices in Kma>f • V condition (C4) ' is satisfied, then {x{k)} converges with 5-
coupling to a unique stationary regime. In particular, {x{k)} converges weakly 
to a unique stationary regime. 

Proof: We only give a sketch of the proof, for a detailed proof see [84]. Suppose 
that a stationary version a; o '̂̂  of x(k) exists, where 6 denotes a stationary and 
ergodic shift. We will show that x{k) converges with 5-coupling to x oO'^. Fix 
?7 > 0 and let T denote the time of the first occurrence of the pattern. Condition 
(C4) ' implies that at time r the projective distance of the two versions is at 
most ?7, in formula: 

d]p(x(r),a;o6'-^) < r?. (2.42) 

As Mairesse shows in [84], the projective distance of two sequences driven by 
the same sequence {A{k)} is non-expansive which means that (2.42) already 
implies 

^k>T : dTp{x{k),xoe'=) < T]. 

Hence, for any rj > 0, 

P[dTp{x{k),xoe'') < 7], k>T) = 1 . 

Stationarity of {A{k)} implies T < co a.s. and the above formula can be written 

lim P{dTp{x{k),xoe'') < ri) = 1. 

Hence, x{k) converges with J-coupling to a stationary regime. See the Appendix. 
Uniqueness of the limit follows from the same line of argument. D 

We conclude this presentation of convergence results by stating the most 
general result, namely, that existence of an asymptotic pattern is a necessary 
and sufficient condition for weak convergence of {x{k)}. 

T h e o r e m 2.5.5 (Theorem 7.4 in [84]) Let {^(A;)} be a stationary and ergodic 
sequence on ^i^^- ^ necessary and sufficient condition for {x{k)] to converge 
in 5-coupling (respectively, weakly) to a unique stationary regime is that (C4) ' 
is satisfied. 
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2.5.3 Periodic Regimes of Deterministic Max-Plus DES 

Consider the deterministic max-plus linear system 

x{k + 1) = A®x{k) , fc > 0 , 

with a;(0) = a;o S K'̂  and A S K^ax ^ regular matrix. A periodic regime of 
period d is a set of vectors x^,... ,x'' e R"̂  such that (i) a;' ^ X'', for 1 < i ^ 
j < d, and (ii) a finite number fj, exists which satisfies 

X '+^ = A®x\ l<i< 

and ^i^x^ = A^x'^. A consequence of the above definition is that x^,... ,x'^ are 
eigenvectors of A'^ and fi is an eigenvalue of A'^. U A is irreducible with cyclicity 
cr{A), then A will possess periodic regimes of period (T{A), see Theorem 2.1.1, 
and A"'-^' will have cr{A) mutually linear independent eigenvectors. 

From a system theoretic point of view, one is interested in the limiting be­
havior of x{k). More precisely, one is interested in the behaviour of x{k) for k 
large. If A is primitive, x{k) converges in a finite number of steps to x, where 
X denotes the unique eigenvector of A. In the general situation, however, there 
are two sources for non-uniqueness of the limiting behavior of x(k). First, if A 
has cyclicity cr{A) > 1, then {x{k)} may eventually reach a periodic regime of 
period cr{A). Secondly, even if A has cyclicity one, if the communication graph 
of A possesses m strongly connected subgraphs, with m > 1, then the eigenspace 
of yl is a TO-dimensional vector space. See Theorem 2.1.2. 

Example 2.5.1 Consider matrix 

3 6 
4 4 

A is irreducible with eigenvalue 5 and the critical graph of A consists of the 
circuit ((1,2), (2,1)). The critical graph has thus one m.s.c.s. and a-{A) = 2. It 
is easily checked that the eigenspace of A is given by 

-m l/(^) = < j ( - ) G K L x | 3 a € K : ( ^ M = a ® f J 

Starting in x{Q) 0 V{A), will lead to a periodic regime of period 2. For example, 
taking x{0) = (0,0), yields 

* ) = © . '(^)-(;2). «(3)=(;9. * ) - ( » 
In other words, A? has eigenvalue 10 and two linear independent eigenvectors, 
namely 

loj ' Uy • 
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We call the set of all initial conditions XQ such that A'' ® xp eventually 
reaches x, for some eigenvector x, (resp. periodic regime x^,..., x'^) the domain 
of attraction of x (resp. a;^,... ,x'''). For example, for the matrix given in Ex­
ample 2.5.1 above, the vector x = (0,0) lies in the domain of attraction of the 
periodic regime (6,4), (10,10). 

For J = 3, Mairesse provides a graphical representation of the domain of 
attraction in the projective space, see [83] and the extended version [82]. In 
particular, the eigenvector (resp. periodic regime) in whose domain of attraction 
an initial value XQ lies can be deduced from a graphical representation of the 
eigenspace of A in the projective space. 

2.5.4 The Cycle Formula 

We revisit the situation in Section 2.2.3.2 and use the notation as introduced 
therein. Specifically, we assume that {A{k)} has MLP. Elaborating on the pro­
jective space, (2.26) reads 

x{Tk) X , fc > 0 . 

for some fixed x G R*̂ . This constitutes a regenerative property of {x(k)}. 
Specifically, the cycles {x{k) : T). < n < Tk+i] constitute an i.i.d. sequence. 
Moreover, {Tfc} is a sequence of renewal times for the process {x{k) — x{k — l)} as 
well. Stationarity and ergodicity of {A{k)) imply that x(k) hits x a.s. infinitely 
often. Hence, {x{k) — x{k — 1)} is a regenerative process with renewal times 
{Tfc}, see Section E.9 in the Appendix. Note that 

E Y, {<k) - x{k - 1)) 
fc=To + l 

E [ x ( r i ) - x{To) 

Let X denote the unique stationary regime of {x{k)}. Provided that 
E[a;(Ti) — a;(ro)] < oo and E[Ti — To] < oo, the limit theorem for regenera­
tive processes yields 

1 ^ 
lim TrT^ {xik)-x(k-l)) = 

k=l 
E[Ti - To] 

fc=To + l 

= (fc-l)) a.s. 

Moreover, ergodicity of {A{k)] yields 

1 ^ 

N->oo N 
fc=l 

for X e X . In particular, for X 6 X, it holds that 

Eixoe-lc] = E[Xoe-x]. 

We summarize the above analysis in the following lemma. 



2.6 Lyapunov Exponents via Second Order Limits 107 

Lemma 2.5.2 (Cycle Formula) Let {A{k)} he a stationary and ergodic se­
quence in Ril^ that has MLP. //E[a;(Ti) - x{To)] < oo and E[Ti - TQ] < oo, 
then 

where X denotes the unique stationary regime of {x{k)}. 

Remark 2.5.1 Note that 

X o 61 = { r I 3a : Y = a ® (X o 0) } 

= { F | 3 Q : Y = {a®X)oe] 

= Xo6> 

and the cycle formula can alternatively he phrased 

E[x(Ti) - x{To)] 
E[Xoe-X] = E[Ti - To] 

Remark 2.5.2 If {A{k)] is i.i.d., then in the above theorem the condition that 
{A{k)} has MLP can be replaced by condition (C), see Lemma 2.2.2. Moreover, 
a simple geometrical trial argument, like the one used in the proof of Theo­
rem 2.5.1, shows that EfTi — TQ] < oo. If, in addition, A{k) is integrable, one 
can show that E[a;(Ti) — x{To)] < cx) holds as well. 

In the following section we will establish sufficient conditions for M[Xo6 — X] 
to be equal to the Lyapunov exponent. 

2.6 Lyapunov Exponents via Second Order Lim­
its (Type l ib) 

The Lyapunov exponent can be defined as a first-order limit, as explained in 
Section 2.2. However, as we will show in this section, under suitable conditions, 
the Lyapunov exponent can be obtained by a second-order limit as well. In 
Section 2.6.1 we establish the general result, whereas in Section 2.6.2 we provide 
a direct analysis via backward coupling. It is this result that will prove valuable 
for the analysis provided in Part II. The basic recurrence relation we study is 
given by 

x{k-I-1) = A{k) ® x{k), fe>0, (2.43) 

with x{0) = a;o G K'̂  and {A{k)} a stationary sequence of a.s. regular matrices 
on R;^^/. 
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2.6.1 The Projective Space 

Suppose that x{k) converges in total variation and let X denote the limiting ran­
dom variable. Goldstein's maximal coupling implies the existence of a random 
variable A'' so that for all A; > A'' 

x(k) = Xoe'' a.s. , 

where, for notational convenience, we have identified the versions of the random 
variables on the underlying common probability space with the original ones. 
Let XQ denote the initial value of the recurrence relation, then we may rephrase 
the above equation as 

^(A:) <8) • • • (g> A(0) ® xo = X o f̂c , A;>A^, 

or, equivalently, 

A{0) iSi A{-1) iSi - • • iSi A{-k) ® xo = X , k>N, 

where {A{k) : k = . . . 1 , 0 , - 1 , . . . } denotes the continuation of the stationary 
sequence {A{k)} to the negative numbers. Hence, for X e X there exists a G R 
so that 

^(0) ® A{-1) ® • • • ® A{-k) ®xo = o ® X , k> N . 

This implies, ior k > N, 

A{1)®A{0) ® A{-1) ® • • • <g) A{-k) (g) xo - ^(0) » • • • (g) A{-k) ® XQ 

=.4(1) ® a ® X - a ® X 

= ^ ( 1 ) ® X - X , 

where a.s. regularity of {A{k)} and our assumption that XQ g R'̂  implies that 
the above differences are well-defined. Taking the limit, 

lim A{1) ® ^(0) ® ^ ( - 1 ) ® • • • ® ^(-A;) ® XQ - ^(0) ® • • • ® A{-k) ® xo 
fc—•OO 

= ^(1) ® ^(0) ® ^ ( - 1 ) ® • • • ® A{~N) ® Xo - A{0) ® • • • ® ^(-A' ' ) ® Xo 

= y l ( l ) ® X - X , 

for all X 6 X. We introduce the following condition: 

(D) A random variable Z G [0, oo)'^ exists such that with probability one 

s u p | ^ ( l ) ® ^ ( 0 ) ® y l ( - l ) ® - - - ® ^ ( - A ; ) ® x o - ^(0)®-••®.A(-A;)®xo| < Z 
k 

and E[Z] is finite. 

In the next section we will provide sufficient conditions for (D). 
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Suppose that condition (D) is satisfied, applying the dominated convergence 
theorem then yields 

lim E[x{k + 1) - x{k)] 
k-~*oo 

k 

= E 

= _lim 'E\A{l)®A{Q)®A{-l)^'--®A{-k)®xo - yl(0) ® • • • ® A(-fc) ® XQ] 

lim (^(1) ® ̂ (0) ® ^ ( - 1 ) ® • • • ® A{-k) ®xo - A{0) ® • • • ® A{-k) ® a;o) 
;—+00 \ / 

= E[A{1)®X -X] < o o . 

Convergence of E[x(fc + 1) — x{k)] implies convergence of the Cesaro-sums (see 
Section G.l in the Appendix) and we obtain 

J fc+i 
lim E[x{k + 1) - x{k)]= lim V E [ a ; ( i ) - x{i - 1)] 

fc—»oo fc—>oo A; + 1 T~f 

= lim E 
fc—*oo 

= lim E 
n—KXi 

= lim E 
fc—>oo 

-l^J^i^'iiJ-xii-l)) 
i=l 

Ixik) 

We summarize our analysis in the following theorem: 

Theorem 2.6.1 Consider the situation in (2.43). If 

• {x{k) : fc > 1} converges in total variation to x, 

• {A{k)} is a.s. regular and stationary, 

• condition (D) is satisfied, 

then there is an a.s. finite random variable N so that 

0 

lim E 
fc—>00 

x{k) 

k 
E ^ ( 1 ) ® 0 ^(«)®a;o - 0 A{i)(^xo 

i=-N i=-N 

for any finite initial value XQ € R'^. 

Under the conditions in Theorem 2.2.3, E[xj{k)]/k, 1 < j < J, tends to the 
Lyapunov vector of {j4(fc)} as k tends to oo. This yields the following represen­
tation for the Lyapunov vector: 

Lemma 2.6.1 Consider the situation in (2.43). If 

(i) {^(fc) : fc > 1} converges in total variation to x. 
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(ii) condition (D) is satisfied, 

(iii) {j4(fc)} is an a.s. regular and stationary sequence of integrable matrices 
such that 

— {A(k)} has fixed support, 

— any finite element is a.s. non-negative, and 

— the elements on the diagonal are a.s. different from e, 

then there is an a.s. finite random variable N such that 

0 0 

E .4(1)® 0 A{i)®xo - 0 A{i)®xo 
i=-N i=-N 

= A, 

for any integrable initial value XQ € R '^ , where X denotes the Lyapunov vector 
of{A{k)}. 

Lemma 2.6.1 can be stated in various forms. For example, if we replace 
condition (iii) by the condition that {.A(fc)} has MLP, then we obtain that the 
components of the Lyapunov vector are equal, see Theorem 2.2.4. 

Recall that we have introduced e as the vector with all elements equal to e. 
For a; G R, the vector with all elements equal to x is then given by a: ® e. For 
sequences {A{k)} with countable state-space. Lemma 2.6.1 can be phrased as 
follows: 

Lemma 2.6.2 Consider the situation in (2.43). If 

• (CI ) — (C3) are satisfied, and 

• condition (D) is satisfied, 

then there is an a.s. finite random variable N so that 

0 0 

E ^ ( 1 ) ® ( ^ A{i)iS>xo - (g) A{i)<^xo 
i=-N i=-Ar 

A® e . 

for any integrable initial value XQ, where A denotes the Lyapunov exponent of 
{A{k)}. 

Proof: Conditions ( C l ) — (C3) imply convergence of {x{k) : A; > 1} in total 
variation, see Theorem 2.5.1. By condition (C3), a primitive matrix, say, C 
exists that is a pattern of {A{k)}, and we assume, for the sake of simplicity, 
that C £ A, which implies A'' = 1, Let c denote the coupling time of C. Prom 
the i.i.d. assumption it follows that the event {A{c — 1) = A{c — 2) = • • • = 
A{0) = C} has positive probability and matrix C therefore satisfies condition 
(C). By Theorem 2.2.4 we obtain limfc_oo ^[xj{k)]/k = A, for 1 < j < J. Hence, 
the proof of the lemma follows directly from Theorem 2.6.1. D 
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We conclude this section with a remark on the cycle formula in Section 2.5.4. 
Under the conditions put forward in the above Lemma it holds that 

E[A{1)<S>X - X] = A ® e . (2.44) 

The cycle formula can therefore be rephrased as follows: let the conditions in 
Lemma 2.6.2 be satisfied and let {Tk} denote the time of the fc"* occurrence of 
the c-fold concatenation of C, see Section 2.5.4 for a formal definition. A simple 
geometrical trial argument, like the one used in the proof of Theorem 2.5.1, 
shows that 

E[r i - To] < 00. (2.45) 

Elaborating on the limit theorem for regenerative processes (see Section 2.5.4 
for details), (2.45) together with (2.44) implies E[a;(T'i) - x{To)] < oo, and the 
cycle formula reads 

E[x(Ti) - x{To)] 

E[Ti - To] 

2.6.2 Backward Coupling 

In the previous section, the existence of a coupling time A'' was shown. In this 
section, we will provide an explicit construction of A'̂  via backward coupling. 
In Markov chain theory, backward coupling, or, coupling from the past, is an 
approach that allows sampling from the stationary distribution of a finite-state 
Markov chain. Suppose that we consider a family of Markov chains X^ on a fi­
nite state space S, each with the same transition probabilities and with common 
unique stationary distribution TT, but with version X" starting in state s 6 5 . If 
we can find a time T in the past such that all versions X^ starting, not at time 
0, but at time —T, have the same value at time 0, then this common value is a 
sample from n, see Theorem 1 in [92]. Intuitively, it is clear why this result holds 
with such a random time T. Consider a chain starting at —oo with TT. This chain 
must at time —T pick some value s, and from then on it follows the trajectory 
from that value. By definition of T, this trajectory reaches at time 0 the same 
state s' that is reached by X^ no matter what choice of s. Therefore, s' is a 
sample from TT. Propp and Wilson coin the name 'coupling-from-the-past' for 
this algorithm since in essence — T is a coupling time with the stationary version 
started at —oo. Based on the same principles, Borovkov and Foss developed in 
[23, 22] the so-called 'renovating events' approach to stability analysis of sto­
chastically recursive sequences. In particular, the approach to stability analysis 
via patterns (see Section 2.5) was originally inspired by backward coupling via 
'renovating events.' 

Elaborating on backward coupling, we combine our results for second-order 
limits with results for first-order limits in order to represent the Lyapunov expo­
nent (a first-order limit) by the difference of two finite horizon experiments. We 
follow the line of argument in [7]. The key assumption for our analysis is that 
{>l(fc)} possesses a pattern A such that A is primitive. The fact that {A{k)} 
admits a pattern resembles a sort of memory loss property of max-plus linear 
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systems. To see this, let x{k + 1) = A{k) ® x{k) be a stochastic sequence de­
fined via {A(/e)} and assume that {A{k)} has a pattern with associated matrix 
A and that {A{k)} is a.s. regular. For vectors x,y & R'', let x — y denote the 
component-wise difference, that is, (a; — y)j = Xj — yj. In what follows we con­
sider the limit of x{k + 1) — x{k) as k tends to oo, where the hmit has to be 
understood component-wise. In order to prove the existence of this limit we will 
work with a backward coupling argument. For this reason it is more convenient 
to let the index k run backwards. More precisely, we set 

0 

Al^ = ' A{Qi) ® A{-1) ® • • • ® A{-m) = ' (g) A{k) 

and 

^0 4?.f AO '^A°_^®xo = (g) A{k)®xo, 

k=—m 

with XQ = a;o e K'^, that is, xt^ is the state of the sequence {x{k)}, started at 
time —m in XQ, at time 0. The sequence {x^^ : m > 0} evolves backwards in 
time according to 

a;° {„+!) = A°_^ (g. A{-{m + 1)) ® xo • 

Note that x{k + 1) and a;̂ ,̂ are equal in distribution. With this notation the 
second-order limit reads 

/ 0 0 \ 

lim ^(1) (gi xlk - x%= lim ^(1) (g) (g) A{m) ® a;o - (g ) A{m) ®xo] • 
K—* OO K—*00 \ / 

\ m=: —fc m=~k / 

Note that the above differences are well-defined due to the a.s. regularity of 
{A{k)} and our assumption that XQ € K'^. 

Let condition (C3) be satisfied. Suppose that, after going 1] steps backwards 
in time, we observe for the first time the c(vl)-fold concatenation of the sequence 
constituting A, the pattern of {A{k)}. More precisely, let (oAr,Ojv-i,. • • ,a i ) 
denote the sequence constituting A, that is, ^ = ajv ® • • • ® a i , and let a denote 
the c(j4)-fold concatenation of the string (a^, ajv-i , • . . , oi) , which implies that 
a has M = c{A) • N components. Then, 

M 

fc=i 

and 7] is defined by 

T] = inf{fc > 01 A{-k) = auA{-k + 1) = a s , . . . , A{-k + {M - 1)) = QM} • 
(2.46) 
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In accordance with Theorem 2.1.1, we obtain that the random variable 

0 

( ^ A{k)®xo, n>0, 

is an eigenvector of A, in formula: 

0 

(g ) A{k)®xo e V{A), n > 0 . 
k=-{ri+n) 

Remark 2.6.1 The random variable ri denotes the index of the matrix that 
completes the first occurrence of a. Since we start counting the elements of the 
series of matrices from zero, the total number of transitions until this happens 
is T] + 1. 

Recall that multiplication of a vector v e Kmax with a scalar 7 € Kmax is 
defined by component-wise multiplication: (7 ® u)j = 7 (gi MJ . It can be easily 
checked that 

V7 e Kmax , V e K;^ax • B®v-C ®v = B®{-y®v)-C®{-y®v) , (2.47) 

for all B,C 6 l^mlx- We now use the fact that the eigenvector of a primitive 
matrix is unique (up to scalar multiphcation): if u, r; 6 V{A), then a 7 G Rmax 
exists such that w = 7 ® u, see Corollary 2.1.1. Hence, (2.47) implies 

Vw, u e V{A) : B®v-C®v = B®u-C®u, (2.48) 

for matrices A,B,C G ^i^x- Combining the above arguments, we obtain 

lim A{1) ® x°_k - x°_k 
fc—+00 

= lim ( A{1) <8) ( ^ A{m) ® XQ - (g) Mm) ® XQ J 
\ m=~k m = —A: / 

0 _ - i ; - l 

= .-4(1)® 0 A{m) <S> A"'-'^^ ® (^ A{m)®xo 

ev(A) 
0 _ - i ; - l 

- (g ) A{m) ® A"'-^^ <8> ( ^ A{m)®xo 
m=—r)+M m.= —00 

^ V ' 

ev(A) 
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(2.48) 
.4(1) ® (g) A{m) (8> A<^'> ® xo 

m,= — ri+M 

0 

m——ri+M 

0 

ev(A) 

A{m) ® A"^^'^ (g) a;o 

eK(A) 

0 

-4 (1 )® (g) yl(TO)®a;o - ( ^ yl(m) ® a;o 

A{1) ® A° ^ (g) Xo - .A'L^ ® aJo < oo . 

Hence, the second-order limit can be represented by a random horizon experi­
ment. 

Next, we will show that the above limit representation also holds if we con­
sider expected values. We have assumed that xo € R"̂ . This together with 
a.s. regularity of A{k) yields that x{k) G K'̂  a.s. for all k. Let {•)j denote the 
projection on the j * ' ' component. Applying Lemma 1.6.1 yields 

k—~m 

< 

fc=—m 

-I- (g ) A{k) iSixo 

A{1)® (g ) ^(A;)®a;oJ - I ( ^ A{k) ® XQ 
—m / j \k= 

0 

A{1)® (g ) A{k)0Xo 
k=~m 

1 

< 2 Y^ \\A{k)\\^ + 2\\xo\\^ . 
k^ — m 

Prom the preceding analysis follows that, for any m, 

A[l)<g) (g) A{k)»xo] - i (g) A{k)S>xo 
k=—m / j \fc=—m 

1 

< 2 ^ ||^(fc)||e -f 2||a:o||e . 
k~~Tj 

Let A{1) be integrable, then E[||A(1)||0] < oo, and assume that E[r]] < oo. By 
construction, for m > 0, the event {77 = m} is independent of {A{—k) : k > m}. 
Provided that {A{k)} is i.i.d., Wald's equality (see Section E.8 in the Appendix) 
yields 

1 

= E[77+l]E[ | |^( l ) | | e ] < 00 E 
k~~rj 

Hence, provided that E[?7] < oo, we may apply the dominated convergence 
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theorem to the second-order limit and obtain 

Urn E[x{k + 1) - x{k)] 
k—*oo 

= \ymE[A{l)<2>x'L^-x°_k] 
fc—too 

= E 

= E 

lim {Ail)®x°_,-x°_,) 
fc—»oo 

1 

( ^ A{k)®xo - ( ^ A{k)»xo 
k~~r} k—~7] 

< 00 . (2.49) 

In particular, the above analysis shows that if E[?7] < oo, then (CI ) — (C3) 
already imply (D), and Lemma 2.6.2 can be phrased as follows: 

Theorem 2.6.2 Let {A{k)] he a sequence of integrable matrices. 7 / (Cl ) —(C3) 
are satisfied, then the Lyapunov exponent of {A{k)}, denoted by A, exists and it 
holds for any initial vector XQ 6 R'̂  / 

A ® e = E (g) A{k)®xo - ( ^ A{k)®xo 
k— — r} k~—ri 

fc-1 

(g ) ^ ( i ) (g) Xo : lim - E 
fc—»oo k 

fc-i 
= lim - ( X ) ^ ( * ) ® ^ o I'S. 

fc—too k ^-^ 
t = 0 

Proof: We show that ¥,[7)] is finite. By assumption (C3), a primitive ma­
trix, say, C exists that is a pattern, and we assume, for the sake of simplicity, 
that C e A, which implies A'' = 1. Let c denote the coupling time of C. Because 
the state space is discrete and the sequence is i.i.d., the probability of observing 
C, denoted by p, is larger than 0. If p = 1, then E[r]] = c. In case 0 < p < 1, we 
argue as follows. By construction, the probability of the event {rj = m} is less 
than or equal to the probability of the event that A(k) ^ C, Q > k > —m + c, 
and A{k) = C, for k — —m + c — 1 , . . . , —m. In other words, for m > c, it holds 
that P{T] = m) > (1 - p ) ' " - ^ . This implies 

0 0 

EM<5^m(l-p)"-V 
Tn=c 

00 

= ^ ( m + c ) ( l - p ) > ^ 
m=0 

00 00 

= c p ^ ^ ( l - p ) ™ + p < ^ ^ m ( l - p ) " 
m = 0 m=0 
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_cp'= p''{l -p) 
p p2 

<oo , 

which concludes the proof. D 
We conclude this section with revisiting the cycle formula in Lemma 2.5.2. 

Corollary 2.6.1 Let (CI) —(C3) he satisfied. IfC is a pattern of{A{k)}, then, 
for any finite initial vector xo G V{C), 

m 
where A denotes the Lyapunov exponent of {A{k)}. 

/ / ^ 




