
Preface

Artificial neural networks (ANNs) offer a general framework for
representing non-linear mappings from several input variables to several
output variables, and they can be considered as an extension of the many
conventional mapping techniques. In addition to many considerations on
their biological foundations and their really wide spectrum of applications,
constructing appropriate ANNs can be seen as a really hard problem. A
distinguished task in building ANNs is the tuning of a set of parameters
known as weights. This will be the main focus of the present book. The
trained ANNs can be later used in classification (or recognition) problems,
where the ANN outputs represent categories, or in prediction
(approximation) problems, where the outputs represent continuous variables.

In the process of training the ANN {supervised learning), the problem is
to find the values of the weights that minimize the error across a set of
input/output pairs (patterns) called the training set. In a first stage, the
training is an unconstrained nonlinear optimization problem, where the
decision variables are the weights and the objective is to reduce the training
error. However, the main goal in the design and training of ANNs is to
obtain a model which makes good predictions for new inputs (which is
termed as generalization). Therefore the trained ANN must capture the
systematic aspects of the training data rather than their specific details.
Hence, as it has been well documented, the optimization problem involved in
the training/generalization process is of an extreme hardness.

Metaheuristics provide a means for solving complex optimization
problems to obtain acceptable solutions or even global optima. These
methods are designed to search for such global optima in complex problems
where other mechanisms fail because: the problem is ill-defined, or has a

2 METAHEURISTICS FOR NEURAL NETWORKS

very large dimensionality, or a high interaction between variables exists, or
require unaffordable computational efforts for exact methods. Experimental
testing of metaheuristics show that the search strategies embedded in such
procedures are capable of finding solutions of high quality to hard problems
in industry, business, and science within reasonable computational time.
The tools and mechanisms that have emerged from the creation of
metaheuristic methods have also proved to be remarkably efficient, resulting
in what has been coined as hybrid methods.

Apart from some sparse efforts to bring together metaheuristic techniques
to train ANNs (which include conference sessions on this field), there is no a
single source of reference for such goal. In this book we aim at giving a
unified approach to the work of training ANNs with modem heuristics,
given the overwhelming literature proving their appropriateness to escape
local optima and to solve problems in very different mathematical scenarios
(two features that encapsulate important shortcomings of other well-known
algorithms specifically designed to train ANNs).

The book's goal is to provide successful implementations of
metaheuristic methods for neural network training. Moreover, the basic
principles and fundamental ideas given in the book will allow the readers to
create successful training methods on their own. Apart from Chapter 1, in
which classical training methods are reviewed for the sake of the book's
completeness, we have classified the chapters in three main categories. The
first one is devoted to local search based methods, in which we include
Simulated Annealing, Tabu Search, and Variable Neighborhood Search.
The second part of the book presents the most effective population based
methods, such as Estimation Distribution algorithms. Scatter Search, and
Genetic Algorithms. Finally, the third part includes other advanced
techniques, such as Ant Colony Optimization, Co-evolutionary methods,
GRASP, and Memetic algorithms. All these methods have been shown to
work out high quality solutions in a wide range of hard optimization
problems, while in this book we restrict our attention to their application to
the ANN training problem.

This book is engineered to provide the reader with a broad coverage of
the concepts, methods, and tools of this important area of ANNs within the
realm of continuous optimization. In fact, many applications dealing with
continuous spaces could profit from the advances described in it. The
chapters can be addressed separately depending on the reader's necessities. It
would be of interest to researchers and practitioners not only in neural
networks but also in management science, economics, and engineering in
general. Besides, it can be used as a textbook in a master course, a doctoral
seminar, or as a reference book for computer science in areas such as
enterprise resource planning and supply chain management.

Chapter 1

CLASSICAL TRAINING METHODS

Emilio Soria\ Jose David Martin^ and Paulo J. G. Lisboa^
^ Grupo de Procesado Digital de Senales, Dpt. Enginyeria Electrdnica, Escola Tecnica
Superior d'Enginyeria, Universitat de Valencia, Spain.
^ The Statistics and Neural Computation Research Group, School of Computing and
Mathematical Sciences, LiverpoolJohn Moores University, United Kingdom,

Abstract: This chapter reviews classical training methods for multilayer neural networks.
These methods are widely used for classification and function modelling tasks.
Nevertheless, they show a number of flaws or drawbacks that should be
addressed in the development of such systems. They work by searching the
minimum of an error function which defines the optimal behaviour of the
neural network. Different standard problems are used to show the capabilities
of these models; in particular, we have benchmarked the algorithms in a non­
linear classification problem and in three function modelling problems.

Key words: MuUilayer perceptron; delta rule; cost function.

INTRODUCTION

There are two main approaches to describe
Artificial Neural Networks (ANNs). Some authors describe ANNs as
biological models that can be applied to engineering problems (Arbib, 2003).
However, other authors consider ANNs as mathematical models related to
statistical models, either linear or non-linear (Bishop, 1995; Ripley, 1996;
Duda, et al, 2001). These two approaches have coexisted in the theory of

8 Chapter 1

neural models from the very beginning, so that advances in this theory have
come from both approaches. Biological models have provided the inspiration
for the development of new artificial neural models while mathematical and
statistical frameworks have consolidated their practical value. This chapter is
focused on the mathematical approach of artificial neural models. In this
approach, an artificial neural system can be described as it is shown in
Figure 1-1.

Input

Learning I
method I

Cost Functiofi ^j
Desired

(only supervised)

Figure 1-1. Schematic of a neural model.

Figure 1-1 shows a neural model. Three main parts can be observed:
• Neural model. It is the structure used to solve a certain problem. This

model can be either linear or non-linear, it can have one or more than one
outputs, it can consist of a combination (linear, non-linear, hierarchical,
etc.) of simple neural models, etc. The performance of this model
depends on several parameters which determine the complexity of the
neural model.

• Cost function. It provides an evaluation about the quality of the solution
obtained by the neural model. If an external signal to carry out this
evaluation is available, then the neural model is called supervised model.
If an external signal is not available, then the neural model is called
unsupervised model (Haykin, 1999).

• Learning method. The task of the learning algorithm is to obtain those
parameters of the neural models that provide a solution to the tackled
problem. If this solution does not exist, then the task of the learning
algorithm is to find an optimal solution according to the criterion set by
the cost function.

Summarizing, there are three basic elements in an artificial neural model.
Since all these elements can change independently to the others, there is a
huge amount of models/cost functions/ learning algorithms (Arbib, 2003). In

CLASSICAL TRAINING METHODS 9

this chapter, we focus on the most widely used neural model, the Multilayer
Perceptron (MLP) trained by supervised algorithms (in the case of
unsupervised training, the resulting model is the so-called Nonlinear
Principal Component Analysis, NPCA). We also analyse the most common
cost functions associated with MLPs. For a further analysis of the most
important neural models, supervised and unsupervised, the reader is
encouraged to consult the excellent text (Haykin, 1999).

2. MULTILAYER PERCEPTRON

In this Section, the Multilayer Perceptron (MLP) is described. It is
probably the most widely used neural network due to its interesting
characteristics: universal function approximator and non-linear classifier.
The MLP has shown excellent results in many different applications. In
Subsection 2.1, the elementary units which form the MLP, the so-called
neurons, are presented. Next subsections are devoted to explain how it
works; in particular, in Subsection 2.2, the MLP architecture is analysed, in
Subsections 2.3 and 2.4., the cost function, i.e., the error function that must
be minimised is described, and in Section 2.5., a Bayesian approach to MLP
learning is presented. Section 3 analyses the learning algorithms used to
carry out the cost function minimisation.

2.1 Neurons

An MLP is a neural network made up by multiple, similar, non-linear
processing units, termed neurons by analogy to the integrate-and-fire action
of neural cells in biological nervous systems. Each neuron carries out a
many-to-one mapping from its inputs to a single scalar output. A general
schematic of a neuron model is shown in Figure 1-2 (Hecht-Nielsen, 1989).

Figure 1-2. General schematic of a neuron.

10 Chapter 1

This neuron model is formed by the following components:
• Parameters. These parameters are usually known as synaptic weights.

They are used in combination with the inputs according to a certain
function. Considering input vectors and coefficient vectors, the most used
functions are the scalar product and the Euclidean distance.

• Activation function. This function is very important since the neural
network capabilities to solve complex problems stem from it. It is a non­
linear function whose argument is the aforementioned combination
between synaptic weights and input vector. The most used functions are
the sign function, the hyperbolic tangent, the sigmoidal function
(hyperbolic tangent modified by restricting the range of values between 0
and 1), and the Gaussian function.

• Local memory. This component is used when neural networks are
designed to time series modelling. Local memories can store either
previous inputs or previous outputs, so that the neuron "remembers"
previous behaviours. There are many different possibilities to implement
this kind of memories (Weigend & Gershenfeld, 1993).

In the remainder of the chapter, we will focus on the neuron model shown in
Figure 1-3:

Output

Figure 1-3. Schematic of the most used neuron model.

This model is formed by the following components:
• Sum function. This component computes the sum of the product between

input vectors and synaptic weights. Let be w=[wo, wj, , w/J the
synaptic weight vector and x=[l, xi, , xij the input vector, this sum can
be given by the scalar product of both vectors. From a biological point of
view, this function represents the action of the inputs produced in the
axons of the biological neurons (Arbib, 2003). The coefficient wo plays a

CLASSICAL TRAINING METHODS 11

relevant role in the processing of the neuron, and it is called threshold or
bias.

• Activation function. Among all the possible choices for this activation
function, the following ones should be emphasised:

Sign function. It was the first used activation function in an artificial
neural model (Arbib, 2003). This function proposes a crisp separation of
the input data, so that they are classified as ±1. This function is defined

f - l s i x < 0
as follows: f (x) = {

l s i x > 0

Sigmoidal function. Since many learning algorithms need a
differentiable activation function, and the sign function can not be
differentiated in the origin, the sigmoidal function was proposed. This

function is given by the following expression: f (x) = -^ where a
1 + e ^

stands for the amplitude of the function and b is the slope in the origin;
the higher the value of b, the closer the sigmoidal function to the sign
function (but with the outputs ranging between 0 and a). The bipolar
version of the sigmoidal function (outputs ranging between -a and +a)

is given by the hyperbolic tangent: f (x) = a -^.
1 i" G

Gaussian function. An alternative activation function is used in a
different type of neural networks, known as Radial Basis Function

(RBF). Its expression is given by: f{x) = K^ • e'^''^""'"^', being Kj, K2
and c, values which determine the amplitude of the Gaussian function,
its width and its centre, respectively. The main characteristic of this
activation function, which makes different from others, is its locality.
The function tends to zero from a certain value x on; this way, only in a
reduced range of input values, the output of the activation function is
considerably different from zero. Gaussian functions have their centre
and width values typically heuristically determined from the data.

2.2 Architecture

The architecture of a neural model gives information about how neurons
are arranged in the neural model. In the case of MLP, as shown in Figure 1-

12 Chapter 1

4, neurons are arranged in layers: one input layer, one output layer, and one
or more than one hidden layers (Arbib, 2003). This arrangement in layers is
due to the fact that the outputs of the neurons of a certain layer are used as
inputs to the neurons of next layer (network without feedback) and/or to
neurons of previous layers (networks with feedback or recurrent networks).

Output Layer

Figure 1-4. Multilayer perceptron. Dotted arrows stand for recurrent neural systems.

The number of neurons in both input and output layers is given by the
problem to solve, whereas the number of hidden layers, and the neurons in
each layer should be chosen by the designer of the neural network. It is
shown that an MLP with one hidden layer is a universal approximator of
continuous functions; if the function to model is not continuous, then two
hidden layers become necessary (Cybenko, 1988). Although there are
several rules to assess the approximately optimal number of hidden neurons,
there is no precise methodology to determine this number exactly. Therefore,
trial-and-error procedures are usually carried out to estimate the number of
hidden neurons, often relying on cross-validation^ or other evaluation
procedures.

23 Cost Function

A neural system should be designed to present a desired behaviour,
hence, it is necessary to define what is desired, being used a cost function for
this task. Two points of view can be considered for cost functions:
operational and probabilistic.
• Operational. This point of view consists of implementing the final goal

of the neural system in the cost function. This is the case of supervised

^ The cross-validation procedure is described in Section 3.1.

CLASSICAL TRAINING METHODS 13

systems; in these systems, the model is designed to provide an output as
similar as possible to a certain desired signal (Figure 1-1), An error signal
is defined from the difference between the neural model output and the
desired values. The goal of the neural model is to obtain an error signal
equal to zero; therefore, if an error function is defined provided that its
minimum corresponds to a zero error, then the goal is transformed in a
problem of function minimisation (Hassoun, 1995; Bishop, 1995).

• Probabilistic. Two kind of problems can be solved by using this point of
view: function modelling and pattern classification (Haykin, 1999). In the
former case, the probability distribution of the desired signals
conditioned by the input variables to the neural model must be modelled.
In a pattern classification problem, the aim is to model the conditioned
probabilities of every class, also by the input variables to the neural
model (Bishop, 1995; Ripley, 1996).

The two points of view can be related using the maximum likelihood
principle, so that assuming different probabilistic models for the error
between the network output and the target values, different cost fianctions are
obtained (Bishop, 1995). For instance, if the error is assumed to follow a
Gaussian distribution, then the most used cost function is obtained, the
mean-square error {L2 in Table 1-1). The most used cost functions are shown
in Table 1-1 (Cichocki & Amari, 2002; Hassoun, 1995; Bishop 1995).

Table 1-1. Most used cost functions. The parameter p controls the error ranges in which a
certain cost function is used; this parameter is used in those cases in which different
subfunctions are defined for a certain cost function. In the case of the logistic cost function, a
controls the robustness to outliers. In the remainder of the chapter, the desired signal will be
denoted by d, the output of the neural model by o and the error signal by e, being e=d-o

Name Cost Function

U e^

p

14 Chapter 1

Name Cost Function

Entropic d • log — + (1 - a j - log
\o) \\-o

0<o<\

Logistic — • log(cOSh(«-e))
a

0.5-e' for\Q\<p
Ruber \ n \ \ ni

\p'\e\-Q.5' p otherwise

f0.5-e' for\Q\<B
Talvar <̂ ,

l0.5-yff Otherwise

2.4 Relevance of an Adequate Cost Function

The MLP architecture may be configured in two ways, namely for
regression, and classification. In the first instance, the hidden layer is
nonlinear but the output layer is normally linear and the appropriate cost
function is the sum of square errors, reflecting the assumption that the noise
in that data is homoscedatic (i.e. uniform across the range of input values)
and normally distributed about the origin (Ripley, 1996; Bishop, 1995).

However, if the model is intended for classification, then the output layer
becomes non-linear. For binary classification this will be a sigmoid, while
for multi-class assignments it will be a softmax, which is a multivariate
extension of the sigmoid function. In either case, the appropriate cost
function to use is entropic (Ripley, 1996; Bishop, 1995). This can be seen
by means of the following example.

CLASSICAL TRAINING METHODS 15

Figure 1-5. The solid line represents the optimal response function for binary classification in
the presence of noise, while the dotted lines are two local minima that arise if the incorrect
cost-function is used. These local minima may have less cost than the correct fit to the data,
leading to inconsistency and inaccurate results.

Consider a model of a single neuron with a single input node directly
linked to a single output node. Since, this model has only two parameters,
its weight and bias terms, the cost function can be represented for the
complete parameter space as a 3D plot. Now, consider the typical problem of
classification with noisy data, shown in Figure 1-5. In this case there are
'true' class data, on-class to the right of the origin and off-class to the left,
but there are also noisy data that overlap into the wrong side of the decision
boundary, as is often the case in practice.

It is now a simple matter to plot the cost function for a sum-of squares
error and for a log-likelihood error, as a function of the model parameters.
These plots are in Figure l-6a and l-6b. It is straightforward to show that as
the ratio of true class data to noisy data increases, the local minima along the
two ravines spreading diagonally across the plot become closer in value to
the correct minimum at the centre of the graph, while retaining a lower cost
(i.e. being more optimal) than the true minimum. These ravines correspond
to the functions shown as dotted lines in Figure 1-5. Fig. 1-6 (a) also shows
the presence of plateaus even in this simple 1-D problem, a situation that can
become much more acute in higher dimensions.

16 Chapter 1

This example clearly shows that choosing an appropriate cost function is
not an option, but a necessity, in order to obtain reproducible results that
generalise well to out-of-sample data.

Figure 1-6. Complete maps of the cost function for the data in Fig. 1-5, using a sum of
squares error (a) and a log-likelihood error (b). Two quite different surfaces are obtained, one
with local minima and the other without.

2.5 Bayesian Approach to MLP Learning

MLP learning can be analysed from a Bayesian pint of view (MacKay, 2003;
Bishop 1995), in which the learning process can be seen as an inference
process. Since MLP learning is based on mapping an input space into an
output space, Bayes' Theorem can be formulated, as follows

P{w\D) =
P{D\w)'P(w)

where D is the desired data set and w is the set of network parameters
(synaptic weights). It is necessary to assume a distribution for the neural
model parameters; usually, the following expression is used (MacKay,
2003):

CLASSICAL TRAINING METHODS 17

P(w)
Z^{a)

Ew is an increasing function of the synaptic-weight values and a is a
parameter known as hyperparameter. Function Z„(a) is only used for
normalisation purposes. If P(D\w) is a similar distribution to that shown by
synaptic weights in Bayes' expression, then:

P{D\w) =
ZoiP)

And replacing in the first expression:

P{w\D)=
^{-a-E„-PEa) ^{-M(w))

Z,{J3)Z^{a) Z,

Taking logarithms and maximising this expression, the conclusion is that the
Bayesian objective becomes the minimisation of a cost function, which is
given by ED, together with a regularisation term of the network parameters
{Ew)' The Bayesian approach has several advantages over approaches based
on cost functions (MacKay, 2003; Bishop, 1995).

3. CLASSICAL LEARNING ALGORITHMS

A learning algorithm is a procedure which adapts the parameters and/or
architecture of the neural model in order to solve a certain problem. The
algorithms to adapt the architecture of the MLP are known as pruning
methods or growing methods, depending on the strategy to carry out this
adaptation (Haykin, 1999). Pruning methods have been more widely used
than growing methods.

18 Chapter 1

Learning algorithms to adapt the parameters of the neural model tend to
be based on the minimisation of the cost function chosen to solve the posed
problem. First neural models were formed by only one neuron and they used
L2 as cost function, so that minimum was obtained by solving a system of
linear equations (Haykin, 1996). However, the practical appHcation of these
models involved solving this system of equations in every instant of
processing; taking into account the huge number of unknown quantities and
the technological state of those years (1950-1960), other approaches were
researched in order to solve these systems of equations.

The most important characteristics that a learning algorithm must show,
are the following (Haykin, 1999):
• Efficiency. Ability to solve the problem with the minimum computacional

burden.
• Robustness. The algorithm should present immunity to undesired noise.
• Independence on the initial conditions. The algorithm should show

similar solutions independently of the values used to initialise the
algorithm.

• Generalisation capabilities. The algorithm should provide the adequate
outputs when inputs different to the training data set, are used.

• Scalability with the size and complexity of the data. The algorithm should
have a computational burden that does not strongly depend on the
dimensionality and size of the problem to solve.

3.1 Backpropagation Algorithm (BP)

The BP was the first algorithm used for MLP adaptation (Werbos, 1974;
LeCun, 1985; Rumelhart, 1986), and it is still the most known and used
nowadays. The goal pursued by the algorithm is to obtain the minimum of
the cost function (Section 2.3 of this chapter), which is denoted as J. The
actual solution of J is computationally unfeasible in many applications.
Moreover, the solution of 7 in a certain instant may be uninteresting in many
cases since the properties of the input signals to the neural model may be
time-dependent and the neural models must adapt to these changes. An
iterative solution is proposed:

^n^\=^n^^^n (1)

CLASSICAL TRAINING METHODS 19

where w are the parameters of the neural model and the subscript stands
for the time instant. Many algorithms are designed to accomplish Eq. (1);
within these algorithms, there are two possibilities for learning (Haykin,
1999):
• On-Line, The MLP is fed during all the training process with the input of

every pattern and the corresponding desired output. Then, the error is
measured and the synaptic weights are adapted depending on this error
by using the chosen algorithm.

• Batch. In this case, the error between the network output and the desired
values is computed for all the patterns. Then, the model parameters are
adapted depending on the average error for all the patterns. The
computation of all the outputs of the neural model for all the available
input patterns is known as epoch.
One of the keys of Eq. (1) is to find out the optimal increase/decrease in

the parameters that enables to find the minimum of the function. A low
computational burden approach is based on a geometrical analysis of the
problem. This analysis is based on finding the direction of the minimum
from a certain point w^ in the parameter space of the neural model. Since the
function gradient points to the direction of the function maximum, the
approach will be based on finding the function minimum by moving the
synaptic weights in the opposite gradient direction (Bishop, 1995;
Luenberger, 1984):

% + i = > ^ « - ^ - V , / (2)

where a is the so-called learning rate or adaptation constant.
The BP algorithm, based on Eq. (2), is a gradient-descent algorithm

which backpropagates the error signals from the output layer to the input
layer, thus optimising the values of the synaptic weights through an iterative
process. Therefore, two stages can be considered:
• Feed-forward propagation: The output of the neural network is obtained,

and then, the error is computed by comparing this output with the desired
signal.

• Backpropagation: Depending on the error between the network output
and the desired values, the algorithm optimises the values of the synaptic
weights by means of error backpropagation from the output layer to the
input layer, and through the hidden layers.
A schematic of a general connection between two neurons (i,j) is shown

in Figure 1-7.

20 Chapter 1

V:
f >

1
\ J

J

w
•

f(x)
Zj Yi
J I • f(x)

Neuron j
Layer L-1

Neuron i
Layer L

Figure 1-7, Schematic of a connection between two neurons.

The gradient of the cost function must be computed with respect to the
parameters of the neural network, i.e., the synaptic weights. The following
notation will be used: y^^; z\~^ stands for the output of the sum function
and the activation function, respectively (neuron s and layer L-T). Therefore,
taking all these facts into account:

,L-\ L-1

where S!^
dJ

(3)

5 is known as local gradient, an can be obtained as follows:

^̂ ' w^ '̂

(4)

Therefore, an iterative procedure is used to compute local gradients of
first layers from local gradients of last layers. The output layer gradient is
given by:

^ _ 3 / de^ dzj^ _ dJ dz,^

de^ dz^ dy^ de^ dy^
(5)

Output gradient depends on the error and activation functions. A very
attractive advantage of using a sigmoidal/hyperbolic tangent activation

CLASSICAL TRAINING METHODS 21

function stems from the fact that their derivatives can be expressed by using
the own activation functions (Haykin, 1999).

In spite of the advantages offered by the BP algorithm, it also shows a
number of drawbacks that should be known (Haykin, 1999; Arbib, 2003;
Bishop 1995; Orr & Muller, 1998):

• Neuron saturation. Since the derivative of the activation function appears
in the weight update, and this derivative equals zero for the most used
activation functions (hyperbolic tangent and sigmoidal) in the function
extremes, weights are not updated in these zones although the modelling
error is different from zero.

• Weight initialisation. Weight initialisation is basic in order to achieve a
good modelling. Since the learning algorithm is based on finding the
minimum of the error function that is closest to a certain initial point, this
minimum may be a local minimum, not a global one, and therefore this
initial point is fundamental for ensuring that the network finally achieves
a global minimum. Weight initialisation affects algorithm behaviour in
three main factors a) Convergence speed; the convergence speed depends
not only on the learning rate, but also on the initial distance to the
minimum, b) Minimum achieved, the algorithm finds the closest
minimum to the initial point, which may be a local minimum, c) Neuron
saturation; large values of the weights can involve a neuron saturation.

• Plateaus. Weight update is proportional to the derivative of the error
function. This derivative equals zero or a very low value on the flat parts
of the error function. Therefore, weights are hardly updated.

• Choice of the learning rate. Too high values may involve instabilities
while too low values may make the converge speed very slow. There are
many algorithms which propose strategies to find an optimal learning
rate. They tend to be based on the following claim: "the value of the
learning rate should be high far away from the minimum and should be
low near the minimum '\

• Early stopping. There are different criteria to carry out the learning
stopping, such as, to fix a number of epochs in advance, an error
threshold, to find plateaus in the cost function, etcetera. Data are usually
split into two sets: a training set and a generalisation set. The former is
used to train the network, whereas the latter is used to check the
behaviour of the network with patterns different from those used in the
training process. The goal is to obtain a model with good generalisation
properties. The generalisation error tends to decrease as the learning
process is progressing until a certain epoch, in which the generalisation
error starts to increase because the network is overfitting the patterns of
the training data set. When this change in the tendency of the

22 Chapter 1

generalisation error is observed, the learning must be stopped. This
procedure is known as cross-validation. There are also different criteria
to decide the rate of patterns that should be assigned to each data set:
66% of the patterns to the training set, a small percentage if there is a
large amount of data available, and there are also dynamic processes to
carry out the selection of these sets (Haykin, 1999; Bishop, 1995).

• Architecture choice. The number of hidden neurons and layers is a
difficult choice, being determined in many cases by using trial-and-error
procedures. Nonetheless, there also pruning and growing methods that
are used to find optimal structures (Reed, 1993; Reed & Marks, 1999).

3,2 Variants of the BP Algorithm

Some variants have been proposed in order to overcome the different
problems observed in BP algorithm. In this section, we will focus on four of
the most classical variants, namely. Momentum term, Silva-Almeida, Delta-
Bar-Delta and Rprop.

3.2.1 Momentum Term

This variant (backpropagation with momentum, BPM) is very similar to
the classical backpropagation algorithm. The difference is an additional
term, which provides information about the weight change in the previous
epoch. Therefore, weight update is given by (Haykin, 1999):

A w , , , = - ^ - (V J) , + / / - A w „ (6)

This new term controls the speed of convergence, speeding up the
process when far from the minimum, and slowing it down when close to the
minimum. The momentum coefficient // gives more or less importance to the
momentum term. This algorithm shows instabilities near the minimum.

3.2.1.1 Silva-Almeida

This variant adapts the value of the learning rate depending on the
distance to the minimum. This distance is evaluated through two consecutive
signs of the gradient of the error function. These gradients should show the
same sign far away from the minimum (the algorithm is approaching the
minimum in the same direction) whereas the signs should be different near
the minimum since the algorithm should be oscillating around the minimum.

CLASSICAL TRAINING METHODS 23

Weight update is identical to that carried out by the classical
backpropagation but taking into account that learning rate is determined by
(Silva & Almeida, 1990):

M « - 1) - W O (V J) „ - (V J L > 0

^^"^-V(n-1).JO(VJ)„.(VJL<0 '̂̂

being d<\ and w>l.

Moreover, this algorithm incorporates a sort of ''pocket technique'' since
if an increase in the network error is observed, then the previous weights are
retrieved.

3.2.2 Delta-Bar-Delta

This variant is similar to Silva-Almeida, since the learning rate is also
adapted. In this case, the adaptation is given by (Jacobs, 1988):

^''' \a{n-\yd<^{VJlidl_,<0 (8)

provided that 0</9<l.

Equation (8) shows two main differences with regard to Silva-Almeida
method:

• The increase in the learning rate to speed up the convergence is not an
exponential increase, but a linear one. Therefore, it is less likely the
presence of instabilities in the algorithm due to an excessively high value
of the learning rate.

• The increase or decrease of the learning rate does not depend only on two
consecutive gradients, but it is carried out by comparing the gradient and
a weighted average of previous gradients given by the parameter S.

A variation in weight update is proposed in (Minai & Williams, 1990):
1. An exponentially decreasing function of d'^. is used instead of increasing

the learning rate by using a constant factor.
2. A momentum term is added. It is updated likewise the learning rate.

24 Chapter 1

3. Maximum and minimum values are imposed for the coefficients.
4. The "pocket technique" is used in order to ensure that the minimum error

is obtained.

3.2.2.1 Rprop (Resilient Backpropagation)

This algorithm also proposes an adaptation of the learning rate.
Moreover, weight update is somewhat different to the other variants, and it is
given by (Riedmiller & Braun, 1993):

^w^^,=-a'signi^J\ (9)

Using the sign of the gradient involves less computational burden. The
learning rate is adapted as follows:

| m a x K ^) + ^ , ^ ^ J « (VJ)„. (V J L < 0

being u>\ and J<1.

Therefore, the learning rate can show two different values, depending on
the sign of the two last gradients. The aim is to have a low value of the
learning rate near the minimum and a higher value far away from the
minimum, thus controlling the convergence speed. The possible values of
the learning rate are limited in order to avoid either an excessively high
value which can lead to instabilities or a too low value which can lead to a
very slow convergence speed.

Another first order algorithm is that proposed in (Chan & Fallside,
1987). This algorithm analyses the relationship between the directions
defined by the gradient of the error function and the previous weight
increase. In particular, it is used the following parameter:

c o s (^ (-)) - - | f | A ^ (11)

where ||-|| stands for the norm. This algorithm helps in overcoming the
irregular parts of the error surface. This is because if there is not an
appreciable change in the direction between the previous weight increase
and the search direction (the gradient of the error function with opposite
sign), then it means that the search process stays in a stable situation.

CLASSICAL TRAINING METHODS 25

This Section has shown a small illustration of the most important variants
of the BP algorithm. There are many other variants. A deeper review and
comparison among these algorithms can be found in (Schiffmann et al.,
1994), (Moreira & Fiesler, 1995).

3.3 Other Algorithms

In spite of BP algorithm and its variants are usually chosen to train
MLPs, more complex algorithms have also been proposed. These algorithms
tend to show a higher computational burden and faster convergence speed
than BP.

3.3.1 Conjugate Gradient Algorithms

These algorithms show a convergence speed faster than that obtained by
BP, in exchange for a small increase in the computational burden
(Luenberger, 1984). Weight update is given by the following expression
(Bishop, 1995):

%+i=>^ .+^(^) -^ (' ^) (12)

where a(n) is the learning rate and d(n) stands for the search direction of
the minimum. This search direction is a linear combination of the gradient of
the function (with opposite sign) and the previous search direction.
Therefore, d(n+I) is given by:

d(n-\-l) = -g(n + l)-h ^(n)' d(n)

where d{0) = -g(0)

g(k) is the gradient of the cost function at instant k. These gradients are
computed using the procedure followed in the BP algorithm. It should be
pointed out that parameter fi(n) is used to define the relationship between the
two directions in weight update. There are several variants of this algorithm
depending on the value of this parameter (Bishop, 1995; Luenberger, 1984).
The most used variants are the following (superscript t means transposition):

Fletcher-Reeves (FR). J3(n) = ^\^)'Sy) (14)
g (/ 7 - l) - g (/ ? - l)

26 Chapter 1

Polak-Ribiere (PR). ^(,)= g'(^Hg(^)-f(^-0] ^,,^

^ ' '^^^ g'(n-\)-g{n-\)

All these algorithms obtain the learning rate a(n) dynamically, using a
line search procedure (Luenberger, 1984).

3.3.2 BFGS Algorithm

The goal of the learning of a neural network can be stated as a function
minimisation problem. One of the most known methods of function
minimisation is the Newton's method, which is faster than the other methods
previously depicted. Weight update is given by the following expression:

w„,,^w„-[H{n)X-g{n) (16)

The main problem of this algorithm lies in the requirement of knowing
the Hessian matrix H(n). This matrix contains the second derivatives of the
cost function with respect to the parameters of the problem, the synaptic
weights in this case. An approximation can be calculated, with an additional
problem, which is the requirement of the approximation to be positive
definite in order to guarantee algorithm convergence (Luenberger, 1984;
Press et al., 1992). Usually, far away from the minimum and if the cost
function is not quadratic, the matrix is not positive definite.

There is a kind of algorithms based on the Newton's method, the so-
called quasi-Newton methods. These methods estimate the inverse Hessian
matrix, forcing this matrix to be posifive definite in every step (Press et al.,
1992). Weight update is stated as follows:

^n^x=^n-(^{^y ^{^y S{n) (17)

M(n) is an estimation of the inverse Hessian matrix, which is updated
every iteration. The most widely used quasi-Newton method is BFGS,
acronym of the names of the authors who proposed the method (Broyden-
Fletcher-Goldfarb-Shanno). This algorithm carries out the following
processing (Luenberger 1984):

1) Algorithm initialisation; M(0) is considered to be any positive definite
matrix, the identity matrix, for instance.
2) Search direction is calculated as follows:

CLASSICAL TRAINING METHODS 27

d{n) = -M{ri)'g{n) (18)

3) a(n) is optimised within the cost function J[w+a(n) 'd(n)] by means of a
Une search procedure (Luenberger, 1984; Press et al., 1992).

4) The following expressions are calculated:

p{n) = a{n)' d{ri)

q{n) = g{n + \)-g{n) (19)

[p[n)\ 'p[n) [q[n)\ 'M[n)'q{n)

5) Go to next iteration n=n+l, and go to step 2.

3.3.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm was proposed to be used with
the quadratic cost function (Bishop, 1995):

J-yU-J (20)
^ k

being ek the error for pattern k and appearing the factor V2 for the sake of
simplicity (after differentiation, all the constant terms are cancelled). If the
vector of components ek is denoted by e, and if small perturbations of the
synaptic weights are considered (Bishop, 1995):

el =el + L 4 H / ^ - H J (21)
\new \ola *- \ola \new-*

where L is a the following matrix

1̂ =^ (22)

The cost function shown in Eq. (20) can be written as:

28 Chapter 1

•' 4 • Sfe)' 4 • H ' = \ • IN- *' • IH- - H.Jlf P3)

The minimisation of this function with respect to the new weights leads
to the following weight update:

H..=4,.-{^'-4'-^'-eL (24)

The matrix L is easy to be obtained since it only needs the first
derivatives of the cost function. This procedure depends on the requirement
of small changes of the synaptic weights in Eq. (21), so that if this condition
is not true, then the algorithm can become instable. LM algorithm solves this
problem forcing the change of the weights to be small by means of a cost
function:

•^=f IhL.+^ • N . . - H. j r + ^ • He. - Aout (25)

The minimisation of Eq. (25) with respect to the new weights leads to:

4.. = H./.-t'-^+^-^r-^'-«L (26)
being / the identity matrix. If X takes a very high value, then the BP

algorithm is obtained. There are iterative procedures to obtain this factor
(Bishop, 1995).

The main drawback of this algorithm lies in the need of saving the
inverse matrix of L. The size of this matrix is the square of the number of
synaptic weights of the network. Therefore, this method is not a good choice
when the number of weights is large (Nelles, 2001).

4. EXPERIMENTAL RESULTS

In this section, the algorithms presented in previous sections are
benchmarked in two different kind of problems: a classification problem and
three modelling problems. Algorithms are compared in terms of accuracy
and convergence speed. The accuracy achieved by the algorithm is obviously
important since it is a measure of the capability of the algorithm to solve the
problem. Moreover, in many practical applications (channel equalisation, for

CLASSICAL TRAINING METHODS 29

instance), the necessary time to find the solution can be almost as important
as the accuracy achieved. Experiments were carried out using the hyperbolic
tangent as activation function in the hidden neurons. One hundred tests were
run for every experiment, using different weight initialisations; however, the
same one hundred different initialisations were used in all the networks in
order to obtain unbiased results. The value for the learning rate was equal to
0.5/N, being N the number of hidden neurons, and the value of the
momentum term was chosen as equal to 0,8.

4.1 Classification Problems

Channel equalisation is a typical problem of application of neural
networks in Communications (Qureshi, 1985; Chen et al., 1990). A general
communication system is shown in Figure 1-8.

Noise v(n)

JM. Channel I ° (") . (^ y(") .

Figure 1-8. General schematic of a communication system.

Figure 1-8 shows a message x(n) which is sent through a communication
channel. This message is modified and corrupted by the transmission
channel and by the ambient noise, v(n), which is modelled by a Gaussian
distribution with mean 0, being used its variance to characterise the noise.
The goal is to decode the emitted message from the received message, as it is
shown in Figure 1-9.

x(n) Channel

I
Noise v(n)

•^^^Vi>7777::% Equalizer

>.

1 c|>(n)

1 W

y(n-k)

only training phase

Figure 1-9. Schematic of a communication channel with equaliser,

30 Chapter 1

Figure 1-9 shows how the equaHser works. During the training process, a
sequence is transmitted, being this sequence known by both the emitter and
the receiver (dotted Hne). This way, the desired signal needed by every
supervised system is available. The emitted message is decoded by the
equaliser, using as inputs the message received in the current instant, and
also that received in previous instants, denoted ?isy(n-k) in Figure 1-9.

We chose a widely used channel, whose difference equation is the
following (Gibson et al., 1991):

o(n)=0.5'x(n)+x(n-l) (27)

The message emitted in our simulations was ±1 (this signal is known in
Engineering as 2-PAM), with equal probabilities. The noise variance was
varied. Signal-to-Noise Ratio (SNR) was used to characterise the transmitted
signal and the environmental noise (Proakis, 2001):

SNR =-20-log^.M (28)

where dv is the standard deviation of noise signal v(n); this SNR is
measured in dB. A representation of emitted data in the space of received
data is shown in Figure 1-10 for different values of SNR.

In Figure 1-10, the classification problem is not linearly separable, and its
structure is similar to other standard classification problems, as those shown
in (Ripley, 1996). The main advantage of using this problem lies in the
easiness to change the problem conditions, and also in their actual practical
application.

Convergence speed for different algorithms is compared in Tables 1-2
and 1-3. Two different architectures were considered, setting the SNR equal
to 20 dB. In order to measure convergence speed, the algorithm was
supposed to converge in that iteration in which, the mean square error (MSB)
of the neural network was less or equal to 15% of the error of the neural
network in the first epoch after its initialisation. Since it was a relative
threshold, results should also be interpreted the same way, i.e., as a relative
comparison of different algorithms. Tables 1-2 and 1-3 show the frequency
of each relative position of the algorithms with respect to convergence
speed; in case of draw (for instance, if three algorithms achieved the
threshold at the same time), the best position was considered for all the
algorithms (for instance, the three algorithms would be assigned to the first
position).

CLASSICAL TRAINING METHODS 31

i 0

'•.«?
- 3 - 2 - 1 0 1 2 3

y(n)

1.5

0,5

i . 0

-0.5

-1.5

i #

(d)

o ^

•->

i ^ '
f f ^

*•

^ -

Figure I-IO. Representation of emitted data in the space of received data for different values
of SNR. The transmitted symbols are '*' x(n)=l and 'o' x(n)=-L (a) SNR=5 dB, (b) SNR=10
dB, (c) SNR=15 dB, (d) SNR=20 dB.

Table 1-2. Architecture 2x3x2x1. Frequency of relative positions of the different algorithms
in terms of convergence speed. The most frequent algorithm for each relative position is
highlighted in bold

r 2"
BP
BPM
FR
BFGS
LM

0
0
6
32
64

0
1
27
52
21

1
18
56
11
12

7
79
11
4
1

92
2
0
1
2

Table 1-3. Architecture 2x10x1. Frequency of relative positions of the different algorithms in
terms of convergence speed. The most frequent algorithm for each relative position is
highlighted in bold

r 2° 3"
BP
BPM
FR
BFGS
LM

0
2
9
31
66

0
4
28
52
17

0
23
41
11
16

6
68
21
4
1

94
3
1
2
0

32 Chapter 1

Tables 1-2 and 1-3 show that algorithms based on gradient descent
exclusively, such as BP and BPM, were the slowest ones. In particular, the
algorithm using the least information, BP, was the slowest algorithm. On the
contrary, LM algorithm was the fastest algorithm for the selected
architectures.

Tables 1-4 and 1-5 show a comparison of the accuracy achieved by
different algorithms. This accuracy was measured by means of the so-called
Bit Error Rate (BER). BER is a measure of the relationship between the
transmitted bits (each symbol x(n) is a bit) and the error between the network
output and the desired values. Results show an average of 100 tests for
different values of SNR and different architectures.

Table 1-4. Bit-Error-Rate. Architecture 2x4x1. Different values of SNR are shown in the
different columns. The best results for each SNR are highlighted in bold

10 15 20
BP

BPM
FR

BFGS
LM

0.15±0.04
0.14±0.04
0.14±0.04
0.14±0.04
0.1410.04

0.075±0.026
0.054±0.017
0.056±0.021
0.062±0.021
0.056±0.018

0.050±0.009
0.016±0.010
0.017±0.013
0.019±0.012
0.031±0.016

0.027±0.008
0.007±0.007
0.00710.007
0.022±0.018
0.028±0.015

Table 1-5. Bit-Error-Rate. Architecture 2x6x1. Different values of SNR are shown in the
different columns. The best results for each SNR are highlighted in bold

10 15 20
BP

BPM
FR

BFGS
LM

0.14±0.04
0.1310.04
0.14+0.04
0.14±0.04
0.14±0.04

0.065±0.023
0.04010.012
0.04010.011
0.046±0.014
0.048±0.015

0.020+0.013
0.00710.005
0.025±0.018
0.013±0.007
0.026+0.034

0.013+0.011
0.00110.003
0.009±0.010
0.021+0.015
0.023+0.022

Although BPM was not the fastest algorithm, Tables 1-4 and 1-5 show
that BPM did yield the most accurate results.

4.2 Modelling Problems

Three different function modelling problems were used to carry out a
comparison of algorithms' modelling capabilities. First, two simple
functions (/} and/^) were used (Sexton et al., 2004); in addition, a more
complex function was also used (/}):

CLASSICAL TRAINING METHODS 33

J\y^\^^2)~-^\ •'"-"-2

A (^P ^2) =^1*^2 (29)

[/3 (xj 5X2) = sin c(xi) • sin c(x2)

. / X sin(;r-x)
where sm c\x) = — ^ ,

T t ' X

Table 1-6. Problem X1+X2. Architecture 2x2x1. Frequency of relative positions of the different
algorithms in terms of convergence speed. The most frequent algorithm for each relative
position is highlighted in bold

JO 2« y r 5°
BP
BPM
FR
BFGS
LM

1
1
29
21
85

4
0
28
61
6

2
0
43
17
7

41
54
0
1
1

52
45
0
0
1

Two hundred patterns formed by pairs (xi,X2) uniformly distributed in the
range (-1,1) were used as training data set. Every experiment was carried out
100 times with the same initialisation for every neural network. As in the
case of classification problems, convergence speed and accuracy was used to
benchmark algorithms' performance. With respect to convergence speed, the
convergence threshold was taken as a 15% of the initial MSE. Results are
shown in Tables 1-6, 1-7 and 1-8.

Table 1-7. Problem X1X2 Architecture 2x4x1. Frequency of relative positions of the different
algorithms in terms of convergence speed. The most frequent algorithm for each relative
position is highlighted in bold

JO 2« 3^ 4" 5"
BP
BPM
FR
BFGS
LM

10
10
68
57
61

3
0
23
31
7

11
1
9
11
22

43
38
0
0
3

33
51
0
1
7

Table 1-8. Problem sinc(xi)sinc(x2). Architecture 2x4x3x1. Frequency of relative positions
of the different algorithms in terms of convergence speed. The most frequent algorithm for
each relative position is highlighted in bold

JO 2« 3° 4" 5°
BP
BPM
FR
BFGS
LM

33
33
49
59
42

5
6
22
5
37

10
12
29
11
10

22
38
0
8
6

30
11
0
17
5

34 Chapter 1

Note that LM is not the best choice always (Nelles, 2001); in fact, FR
algorithm shows a faster convergence speed than LM in Tables 1-7 and 1-8.

In order to test the accuracy, the error of the neural network after training
for a data set different from the training set, was measured. Five thousand
patterns uniformly distributed within the range (-1, 1) were used for this
accuracy test. Average results of 100 tests are shown in Table 1-9.

Table 1-9. Accuracy yielded (MSB) by the different algorithms in the three proposed
problems. The best result for each problem is highlighted in bold

X1+X2 Xi-X2 sinc(xi)-sinc(x2)
2x2x1; 500 epochs 2x4x1; 1000 epochs 2x4x3x1; 1500 epochs

BP
BPM
FR
BFGS
LM

(8.12±1.26)10-^
(1.01±0.09)10-^
(8.55+1.67)10-^
(1.17+0.09)-10"^
(L30±0.67).10-^

(12.15±1.34)10-^
(2.15+0.32)-10-^
(6.37±1.41)10-^
(6.63±3.03).10-^

(5.89+11.79)10-'^

(19.83+3.37)10-^
(1.82+0.39)10-^
(1.45+0.21)10-^
(2.41±0.84)-10-^
(3.11+4.54)10-^

Table 1-9 shows that the fastest algorithms were also the most accurate
ones. Nevertheless, results achieved by other algorithms were also quite
accurate, hence they could also be a good choice in applications involving a
high computational burden; for instance, applications involving a large
number of inputs (high dimensionality).

5. CONCLUSIONS

A review of classical training methods has been provided in this chapter.
It is mainly focused on the most widely used neural model, the so-called
Multilayer Perceptron. It shows many attractive features; e.g., it is a
universal function approximator and it is able to carry out non-linear
classification. Classical training algorithms, based on the first and second
derivatives, have been described. Several experiments applied to standard
problems have been used to benchmark the capabilities of the different
training algorithms.

Unfortunately, the reduced length of this chapter does not allow to
summarise all the learning algorithms, new applications, theoretical
developments and research directions related to neural models. Readers are
encouraged to consult the excellent texts provided in the bibliography, as
well as the following chapters of this book, as a nice way to get involved
with the fascinating world of neural networks. More expert readers, rather
concerned about last advances in this field, are encouraged to have a look at
the updated issues of some excellent journals {IEEE Transactions on Neural
Networks, Neural Networks and Neurocomputing, among others).

CLASSICAL TRAINING METHODS 35

The practical implementation of the algorithms presented in this chapter
is far less difficult than some years ago was. There are different software
solutions for Statistics, e.g., SPSS® and Statistica®, which provide a neural
network toolbox. Moreover, other software products used for numerical and
symbolic computing, e.g. Matlab® and Mathematica®, also include a neural
network toolbox. In addition, there is another software product
(Neurosolutions®), which includes many different neural network
implementations, thus allowing their use in a straightforward way.

REFERENCES

Arbib, M., 2003, The Handbook of Brain Theory and Neural Networks, MIT Press.
Bishop, C. M., 1995, Neural Networks for Pattern Recognition, Clarendon Press.
Chan, L. W., Fallside, F., 1987, An adaptive training algorithm for backpropagation.

Computer Speech and Language, 2:205-218.
Chen, S., Gibson, G. J., Cowan, C. F. N., Grant, P. M., 1990, Adaptive equalization of finite

non-linear channels using multilayer perceptrons, Signal Processing 20:107-119.
Cichocki, A., Amari, S., 2002, Adaptive Blind Signal and Image Processing, John Wiley &

Sons.
Cybenko, G., 1988, Continuous valued neural network with two hidden layers are sufficient,

Tech. Report, Department of Computer Science, Tufts University, Medford, USA.
Duda, R. O., Hart, P. E., Stork, D. G., 2001, Pattern Classification, Wiley.
Gibson, G. J., Siu, S., Cowan, C. F. N., 1991, The application of nonlinear structures to the

reconstruction of binary signals, IEEE Transactions on Signal Processing 39:1877-1881.
Haykin, S., 1996, Adaptive Filter Theory, Prentice-Hall.
Haykin, S., 1999, Neural Networks: A Comprehensive Foundation, Prentice Hall.
Hassoun, M. H.,1995, Fundamentals of Artificial Neural Networks, MIT Press.
Hecht-Nielsen, R., 1989, Neurocomputing, Addison-Wesley.
Jacobs, R. A., 1988, Increased rates of convergence through learning rate adaptation. Neural

Networks 1:295-301.
LeCun, Y., 1985, Une procedure d'apprentissage pour reseau a seuil asymmetrique (a

Learning Scheme for Asymmetric Threshold Networks), Proceedings ofCognitiva 85:599-
604.

Luenberger, D. G., 1984, Linear and Nonlinear Programming, Addison-Wesley.
MacKay, D. J. C, 2003, Information Theory, Inference and Learning Algorithms, Cambridge

University Press.
Minai, A. A., WiUiams, R. D., 1990, Acceleration of backpropagation through learning rate

and momentum adaptation, in: Proceedings ofIJNCNN-90, pp. 616-619.
Moreira, M., Fiesler, E., 1995, Neural networks with adaptive learning rate and momentum

terms. Technical Report 95-04, IDIAP, Martigny, Switzerland.
Nelles, O., 2001, Nonlinear System Identification From Classical Approaches to Neural

Networks and Fuzzy Models, Springer.
Orr, G. B., Miiller, K. R., 1998, Neural Networks: Tricks of the Trade, Lecture Notes in

Computer Science, Springer.
Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., 1992, Numerical Recipes in

C, Cambridge University Press.

36 Chapter 1

Proakis, J. G., 2001, Digital Communications, McGraw-Hill.
Qureshi, S. U. H., 1985, Adaptive equalization, Procs. oftheIEEE13:U49 1387.
Reed, R., 1993, Pruning Algorithms: A Survey, IEEE Transactions on Neural Networks

4(5):740-747.
Reed, R. D., Marks II, R. J., 1993, Neural Smithing, Supervised Learning in Feedforward

Artificial Neural Networks, MIT Press.
Riedmiller, M., Braun, H., 1993, A direct adaptive method for faster backpropagation

learning: the RPROP algorithm, in: Proceedings of IEEE International Conference on
Neural Networks, pp. 586-591.

Ripley, B. D., 1996, Pattern Recognition and Neural Networks, Cambridge University Press.
Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986, Learning representations by back-

propagating errors. Nature 323:533-536.
Schiffmann, W., Joost, M., Werner, R., 1994, Optimization of the backpropagation algorithm

for training multilayer perceptrons. Technical Report, University of Koblenz, Institute of
Physics, Germany.

Sexton, R. S., Dorsey, R. E., Sikander, N. A., 2004, Simultaneous optimization of neural
networks function and architecture algorithm. Decision Support Systems 36:283-296.

Silva, F. M., Almeida, L. B., 1990, Acceleration techniques for the backpropagation
algorithm, in: Proceedings of the EURASIP Workshop, Lecture Notes in Computer
Science, vol. 412 of Lecture Notes on Computer Science, Springer-Verlag, pp. 110-119.

Weigend, A. S., Gershenfeld, N. A., 1993, Time Series Prediction: Forecasting the Future
and Understanding the Past, Addison-Wesley.

Werbos, P. J., 1974, Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, PhD thesis, Harvard University, Cambridge, MA, USA.

