
Preface 

Artificial neural networks (ANNs) offer a general framework for 
representing non-linear mappings from several input variables to several 
output variables, and they can be considered as an extension of the many 
conventional mapping techniques. In addition to many considerations on 
their biological foundations and their really wide spectrum of applications, 
constructing appropriate ANNs can be seen as a really hard problem. A 
distinguished task in building ANNs is the tuning of a set of parameters 
known as weights. This will be the main focus of the present book. The 
trained ANNs can be later used in classification (or recognition) problems, 
where the ANN outputs represent categories, or in prediction 
(approximation) problems, where the outputs represent continuous variables. 

In the process of training the ANN {supervised learning), the problem is 
to find the values of the weights that minimize the error across a set of 
input/output pairs (patterns) called the training set. In a first stage, the 
training is an unconstrained nonlinear optimization problem, where the 
decision variables are the weights and the objective is to reduce the training 
error. However, the main goal in the design and training of ANNs is to 
obtain a model which makes good predictions for new inputs (which is 
termed as generalization). Therefore the trained ANN must capture the 
systematic aspects of the training data rather than their specific details. 
Hence, as it has been well documented, the optimization problem involved in 
the training/generalization process is of an extreme hardness. 

Metaheuristics provide a means for solving complex optimization 
problems to obtain acceptable solutions or even global optima. These 
methods are designed to search for such global optima in complex problems 
where other mechanisms fail because: the problem is ill-defined, or has a 
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very large dimensionality, or a high interaction between variables exists, or 
require unaffordable computational efforts for exact methods. Experimental 
testing of metaheuristics show that the search strategies embedded in such 
procedures are capable of finding solutions of high quality to hard problems 
in industry, business, and science within reasonable computational time. 
The tools and mechanisms that have emerged from the creation of 
metaheuristic methods have also proved to be remarkably efficient, resulting 
in what has been coined as hybrid methods. 

Apart from some sparse efforts to bring together metaheuristic techniques 
to train ANNs (which include conference sessions on this field), there is no a 
single source of reference for such goal. In this book we aim at giving a 
unified approach to the work of training ANNs with modem heuristics, 
given the overwhelming literature proving their appropriateness to escape 
local optima and to solve problems in very different mathematical scenarios 
(two features that encapsulate important shortcomings of other well-known 
algorithms specifically designed to train ANNs). 

The book's goal is to provide successful implementations of 
metaheuristic methods for neural network training. Moreover, the basic 
principles and fundamental ideas given in the book will allow the readers to 
create successful training methods on their own. Apart from Chapter 1, in 
which classical training methods are reviewed for the sake of the book's 
completeness, we have classified the chapters in three main categories. The 
first one is devoted to local search based methods, in which we include 
Simulated Annealing, Tabu Search, and Variable Neighborhood Search. 
The second part of the book presents the most effective population based 
methods, such as Estimation Distribution algorithms. Scatter Search, and 
Genetic Algorithms. Finally, the third part includes other advanced 
techniques, such as Ant Colony Optimization, Co-evolutionary methods, 
GRASP, and Memetic algorithms. All these methods have been shown to 
work out high quality solutions in a wide range of hard optimization 
problems, while in this book we restrict our attention to their application to 
the ANN training problem. 

This book is engineered to provide the reader with a broad coverage of 
the concepts, methods, and tools of this important area of ANNs within the 
realm of continuous optimization. In fact, many applications dealing with 
continuous spaces could profit from the advances described in it. The 
chapters can be addressed separately depending on the reader's necessities. It 
would be of interest to researchers and practitioners not only in neural 
networks but also in management science, economics, and engineering in 
general. Besides, it can be used as a textbook in a master course, a doctoral 
seminar, or as a reference book for computer science in areas such as 
enterprise resource planning and supply chain management. 
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Abstract: This chapter reviews classical training methods for multilayer neural networks. 
These methods are widely used for classification and function modelling tasks. 
Nevertheless, they show a number of flaws or drawbacks that should be 
addressed in the development of such systems. They work by searching the 
minimum of an error function which defines the optimal behaviour of the 
neural network. Different standard problems are used to show the capabilities 
of these models; in particular, we have benchmarked the algorithms in a non­
linear classification problem and in three function modelling problems. 
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INTRODUCTION 

There are two main approaches to describe 
Artificial Neural Networks (ANNs). Some authors describe ANNs as 
biological models that can be applied to engineering problems (Arbib, 2003). 
However, other authors consider ANNs as mathematical models related to 
statistical models, either linear or non-linear (Bishop, 1995; Ripley, 1996; 
Duda, et al, 2001). These two approaches have coexisted in the theory of 
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neural models from the very beginning, so that advances in this theory have 
come from both approaches. Biological models have provided the inspiration 
for the development of new artificial neural models while mathematical and 
statistical frameworks have consolidated their practical value. This chapter is 
focused on the mathematical approach of artificial neural models. In this 
approach, an artificial neural system can be described as it is shown in 
Figure 1-1. 

Input 

Learning I 
method I 

Cost Functiofi ^j 
Desired 

(only supervised) 

Figure 1-1. Schematic of a neural model. 

Figure 1-1 shows a neural model. Three main parts can be observed: 
• Neural model. It is the structure used to solve a certain problem. This 

model can be either linear or non-linear, it can have one or more than one 
outputs, it can consist of a combination (linear, non-linear, hierarchical, 
etc.) of simple neural models, etc. The performance of this model 
depends on several parameters which determine the complexity of the 
neural model. 

• Cost function. It provides an evaluation about the quality of the solution 
obtained by the neural model. If an external signal to carry out this 
evaluation is available, then the neural model is called supervised model. 
If an external signal is not available, then the neural model is called 
unsupervised model (Haykin, 1999). 

• Learning method. The task of the learning algorithm is to obtain those 
parameters of the neural models that provide a solution to the tackled 
problem. If this solution does not exist, then the task of the learning 
algorithm is to find an optimal solution according to the criterion set by 
the cost function. 

Summarizing, there are three basic elements in an artificial neural model. 
Since all these elements can change independently to the others, there is a 
huge amount of models/cost functions/ learning algorithms (Arbib, 2003). In 
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this chapter, we focus on the most widely used neural model, the Multilayer 
Perceptron (MLP) trained by supervised algorithms (in the case of 
unsupervised training, the resulting model is the so-called Nonlinear 
Principal Component Analysis, NPCA). We also analyse the most common 
cost functions associated with MLPs. For a further analysis of the most 
important neural models, supervised and unsupervised, the reader is 
encouraged to consult the excellent text (Haykin, 1999). 

2. MULTILAYER PERCEPTRON 

In this Section, the Multilayer Perceptron (MLP) is described. It is 
probably the most widely used neural network due to its interesting 
characteristics: universal function approximator and non-linear classifier. 
The MLP has shown excellent results in many different applications. In 
Subsection 2.1, the elementary units which form the MLP, the so-called 
neurons, are presented. Next subsections are devoted to explain how it 
works; in particular, in Subsection 2.2, the MLP architecture is analysed, in 
Subsections 2.3 and 2.4., the cost function, i.e., the error function that must 
be minimised is described, and in Section 2.5., a Bayesian approach to MLP 
learning is presented. Section 3 analyses the learning algorithms used to 
carry out the cost function minimisation. 

2.1 Neurons 

An MLP is a neural network made up by multiple, similar, non-linear 
processing units, termed neurons by analogy to the integrate-and-fire action 
of neural cells in biological nervous systems. Each neuron carries out a 
many-to-one mapping from its inputs to a single scalar output. A general 
schematic of a neuron model is shown in Figure 1-2 (Hecht-Nielsen, 1989). 

Figure 1-2. General schematic of a neuron. 
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This neuron model is formed by the following components: 
• Parameters. These parameters are usually known as synaptic weights. 

They are used in combination with the inputs according to a certain 
function. Considering input vectors and coefficient vectors, the most used 
functions are the scalar product and the Euclidean distance. 

• Activation function. This function is very important since the neural 
network capabilities to solve complex problems stem from it. It is a non­
linear function whose argument is the aforementioned combination 
between synaptic weights and input vector. The most used functions are 
the sign function, the hyperbolic tangent, the sigmoidal function 
(hyperbolic tangent modified by restricting the range of values between 0 
and 1), and the Gaussian function. 

• Local memory. This component is used when neural networks are 
designed to time series modelling. Local memories can store either 
previous inputs or previous outputs, so that the neuron "remembers" 
previous behaviours. There are many different possibilities to implement 
this kind of memories (Weigend & Gershenfeld, 1993). 

In the remainder of the chapter, we will focus on the neuron model shown in 
Figure 1-3: 

Output 

Figure 1-3. Schematic of the most used neuron model. 

This model is formed by the following components: 
• Sum function. This component computes the sum of the product between 

input vectors and synaptic weights. Let be w=[wo, wj, , w/J the 
synaptic weight vector and x=[l, xi, , xij the input vector, this sum can 
be given by the scalar product of both vectors. From a biological point of 
view, this function represents the action of the inputs produced in the 
axons of the biological neurons (Arbib, 2003). The coefficient wo plays a 
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relevant role in the processing of the neuron, and it is called threshold or 
bias. 

• Activation function. Among all the possible choices for this activation 
function, the following ones should be emphasised: 

Sign function. It was the first used activation function in an artificial 
neural model (Arbib, 2003). This function proposes a crisp separation of 
the input data, so that they are classified as ±1. This function is defined 

f - l s i x < 0 
as follows: f (x) = { 

l s i x > 0 

Sigmoidal function. Since many learning algorithms need a 
differentiable activation function, and the sign function can not be 
differentiated in the origin, the sigmoidal function was proposed. This 

function is given by the following expression: f (x) = -^ where a 
1 + e ^ 

stands for the amplitude of the function and b is the slope in the origin; 
the higher the value of b, the closer the sigmoidal function to the sign 
function (but with the outputs ranging between 0 and a). The bipolar 
version of the sigmoidal function (outputs ranging between -a and +a) 

is given by the hyperbolic tangent: f (x) = a -^. 
1 i" G 

Gaussian function. An alternative activation function is used in a 
different type of neural networks, known as Radial Basis Function 

(RBF). Its expression is given by: f{x) = K^ • e'^''^""'"^', being Kj, K2 
and c, values which determine the amplitude of the Gaussian function, 
its width and its centre, respectively. The main characteristic of this 
activation function, which makes different from others, is its locality. 
The function tends to zero from a certain value x on; this way, only in a 
reduced range of input values, the output of the activation function is 
considerably different from zero. Gaussian functions have their centre 
and width values typically heuristically determined from the data. 

2.2 Architecture 

The architecture of a neural model gives information about how neurons 
are arranged in the neural model. In the case of MLP, as shown in Figure 1-
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4, neurons are arranged in layers: one input layer, one output layer, and one 
or more than one hidden layers (Arbib, 2003). This arrangement in layers is 
due to the fact that the outputs of the neurons of a certain layer are used as 
inputs to the neurons of next layer (network without feedback) and/or to 
neurons of previous layers (networks with feedback or recurrent networks). 

Output Layer 

Figure 1-4. Multilayer perceptron. Dotted arrows stand for recurrent neural systems. 

The number of neurons in both input and output layers is given by the 
problem to solve, whereas the number of hidden layers, and the neurons in 
each layer should be chosen by the designer of the neural network. It is 
shown that an MLP with one hidden layer is a universal approximator of 
continuous functions; if the function to model is not continuous, then two 
hidden layers become necessary (Cybenko, 1988). Although there are 
several rules to assess the approximately optimal number of hidden neurons, 
there is no precise methodology to determine this number exactly. Therefore, 
trial-and-error procedures are usually carried out to estimate the number of 
hidden neurons, often relying on cross-validation^ or other evaluation 
procedures. 

23 Cost Function 

A neural system should be designed to present a desired behaviour, 
hence, it is necessary to define what is desired, being used a cost function for 
this task. Two points of view can be considered for cost functions: 
operational and probabilistic. 
• Operational. This point of view consists of implementing the final goal 

of the neural system in the cost function. This is the case of supervised 

^ The cross-validation procedure is described in Section 3.1. 
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systems; in these systems, the model is designed to provide an output as 
similar as possible to a certain desired signal (Figure 1-1), An error signal 
is defined from the difference between the neural model output and the 
desired values. The goal of the neural model is to obtain an error signal 
equal to zero; therefore, if an error function is defined provided that its 
minimum corresponds to a zero error, then the goal is transformed in a 
problem of function minimisation (Hassoun, 1995; Bishop, 1995). 

• Probabilistic. Two kind of problems can be solved by using this point of 
view: function modelling and pattern classification (Haykin, 1999). In the 
former case, the probability distribution of the desired signals 
conditioned by the input variables to the neural model must be modelled. 
In a pattern classification problem, the aim is to model the conditioned 
probabilities of every class, also by the input variables to the neural 
model (Bishop, 1995; Ripley, 1996). 

The two points of view can be related using the maximum likelihood 
principle, so that assuming different probabilistic models for the error 
between the network output and the target values, different cost fianctions are 
obtained (Bishop, 1995). For instance, if the error is assumed to follow a 
Gaussian distribution, then the most used cost function is obtained, the 
mean-square error {L2 in Table 1-1). The most used cost functions are shown 
in Table 1-1 (Cichocki & Amari, 2002; Hassoun, 1995; Bishop 1995). 

Table 1-1. Most used cost functions. The parameter p controls the error ranges in which a 
certain cost function is used; this parameter is used in those cases in which different 
subfunctions are defined for a certain cost function. In the case of the logistic cost function, a 
controls the robustness to outliers. In the remainder of the chapter, the desired signal will be 
denoted by d, the output of the neural model by o and the error signal by e, being e=d-o 

Name Cost Function 

U e^ 

p 
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Name Cost Function 

Entropic d • log — + (1 - a j - log 
\o) \\-o 

0<o<\ 

Logistic — • log(cOSh(«-e)) 
a 

0.5-e' for\Q\<p 
Ruber \ n \ \ ni 

\p'\e\-Q.5' p otherwise 

f0.5-e' for\Q\<B 
Talvar <̂  , 

l0.5-yff Otherwise 

2.4 Relevance of an Adequate Cost Function 

The MLP architecture may be configured in two ways, namely for 
regression, and classification. In the first instance, the hidden layer is 
nonlinear but the output layer is normally linear and the appropriate cost 
function is the sum of square errors, reflecting the assumption that the noise 
in that data is homoscedatic (i.e. uniform across the range of input values) 
and normally distributed about the origin (Ripley, 1996; Bishop, 1995). 

However, if the model is intended for classification, then the output layer 
becomes non-linear. For binary classification this will be a sigmoid, while 
for multi-class assignments it will be a softmax, which is a multivariate 
extension of the sigmoid function. In either case, the appropriate cost 
function to use is entropic (Ripley, 1996; Bishop, 1995). This can be seen 
by means of the following example. 
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Figure 1-5. The solid line represents the optimal response function for binary classification in 
the presence of noise, while the dotted lines are two local minima that arise if the incorrect 
cost-function is used. These local minima may have less cost than the correct fit to the data, 
leading to inconsistency and inaccurate results. 

Consider a model of a single neuron with a single input node directly 
linked to a single output node. Since, this model has only two parameters, 
its weight and bias terms, the cost function can be represented for the 
complete parameter space as a 3D plot. Now, consider the typical problem of 
classification with noisy data, shown in Figure 1-5. In this case there are 
'true' class data, on-class to the right of the origin and off-class to the left, 
but there are also noisy data that overlap into the wrong side of the decision 
boundary, as is often the case in practice. 

It is now a simple matter to plot the cost function for a sum-of squares 
error and for a log-likelihood error, as a function of the model parameters. 
These plots are in Figure l-6a and l-6b. It is straightforward to show that as 
the ratio of true class data to noisy data increases, the local minima along the 
two ravines spreading diagonally across the plot become closer in value to 
the correct minimum at the centre of the graph, while retaining a lower cost 
(i.e. being more optimal) than the true minimum. These ravines correspond 
to the functions shown as dotted lines in Figure 1-5. Fig. 1-6 (a) also shows 
the presence of plateaus even in this simple 1-D problem, a situation that can 
become much more acute in higher dimensions. 
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This example clearly shows that choosing an appropriate cost function is 
not an option, but a necessity, in order to obtain reproducible results that 
generalise well to out-of-sample data. 

Figure 1-6. Complete maps of the cost function for the data in Fig. 1-5, using a sum of 
squares error (a) and a log-likelihood error (b). Two quite different surfaces are obtained, one 
with local minima and the other without. 

2.5 Bayesian Approach to MLP Learning 

MLP learning can be analysed from a Bayesian pint of view (MacKay, 2003; 
Bishop 1995), in which the learning process can be seen as an inference 
process. Since MLP learning is based on mapping an input space into an 
output space, Bayes' Theorem can be formulated, as follows 

P{w\D) = 
P{D\w)'P(w) 

where D is the desired data set and w is the set of network parameters 
(synaptic weights). It is necessary to assume a distribution for the neural 
model parameters; usually, the following expression is used (MacKay, 
2003): 
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P(w) 
Z^{a) 

Ew is an increasing function of the synaptic-weight values and a is a 
parameter known as hyperparameter. Function Z„(a) is only used for 
normalisation purposes. If P(D\w) is a similar distribution to that shown by 
synaptic weights in Bayes' expression, then: 

P{D\w) = 
ZoiP) 

And replacing in the first expression: 

P{w\D)= 
^{-a-E„-PEa) ^{-M(w)) 

Z,{J3)Z^{a) Z, 

Taking logarithms and maximising this expression, the conclusion is that the 
Bayesian objective becomes the minimisation of a cost function, which is 
given by ED, together with a regularisation term of the network parameters 
{Ew)' The Bayesian approach has several advantages over approaches based 
on cost functions (MacKay, 2003; Bishop, 1995). 

3. CLASSICAL LEARNING ALGORITHMS 

A learning algorithm is a procedure which adapts the parameters and/or 
architecture of the neural model in order to solve a certain problem. The 
algorithms to adapt the architecture of the MLP are known as pruning 
methods or growing methods, depending on the strategy to carry out this 
adaptation (Haykin, 1999). Pruning methods have been more widely used 
than growing methods. 
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Learning algorithms to adapt the parameters of the neural model tend to 
be based on the minimisation of the cost function chosen to solve the posed 
problem. First neural models were formed by only one neuron and they used 
L2 as cost function, so that minimum was obtained by solving a system of 
linear equations (Haykin, 1996). However, the practical appHcation of these 
models involved solving this system of equations in every instant of 
processing; taking into account the huge number of unknown quantities and 
the technological state of those years (1950-1960), other approaches were 
researched in order to solve these systems of equations. 

The most important characteristics that a learning algorithm must show, 
are the following (Haykin, 1999): 
• Efficiency. Ability to solve the problem with the minimum computacional 

burden. 
• Robustness. The algorithm should present immunity to undesired noise. 
• Independence on the initial conditions. The algorithm should show 

similar solutions independently of the values used to initialise the 
algorithm. 

• Generalisation capabilities. The algorithm should provide the adequate 
outputs when inputs different to the training data set, are used. 

• Scalability with the size and complexity of the data. The algorithm should 
have a computational burden that does not strongly depend on the 
dimensionality and size of the problem to solve. 

3.1 Backpropagation Algorithm (BP) 

The BP was the first algorithm used for MLP adaptation (Werbos, 1974; 
LeCun, 1985; Rumelhart, 1986), and it is still the most known and used 
nowadays. The goal pursued by the algorithm is to obtain the minimum of 
the cost function (Section 2.3 of this chapter), which is denoted as J. The 
actual solution of J is computationally unfeasible in many applications. 
Moreover, the solution of 7 in a certain instant may be uninteresting in many 
cases since the properties of the input signals to the neural model may be 
time-dependent and the neural models must adapt to these changes. An 
iterative solution is proposed: 

^n^\=^n^^^n (1) 
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where w are the parameters of the neural model and the subscript stands 
for the time instant. Many algorithms are designed to accomplish Eq. (1); 
within these algorithms, there are two possibilities for learning (Haykin, 
1999): 
• On-Line, The MLP is fed during all the training process with the input of 

every pattern and the corresponding desired output. Then, the error is 
measured and the synaptic weights are adapted depending on this error 
by using the chosen algorithm. 

• Batch. In this case, the error between the network output and the desired 
values is computed for all the patterns. Then, the model parameters are 
adapted depending on the average error for all the patterns. The 
computation of all the outputs of the neural model for all the available 
input patterns is known as epoch. 
One of the keys of Eq. (1) is to find out the optimal increase/decrease in 

the parameters that enables to find the minimum of the function. A low 
computational burden approach is based on a geometrical analysis of the 
problem. This analysis is based on finding the direction of the minimum 
from a certain point w^ in the parameter space of the neural model. Since the 
function gradient points to the direction of the function maximum, the 
approach will be based on finding the function minimum by moving the 
synaptic weights in the opposite gradient direction (Bishop, 1995; 
Luenberger, 1984): 

% + i = > ^ « - ^ - V , / (2) 

where a is the so-called learning rate or adaptation constant. 
The BP algorithm, based on Eq. (2), is a gradient-descent algorithm 

which backpropagates the error signals from the output layer to the input 
layer, thus optimising the values of the synaptic weights through an iterative 
process. Therefore, two stages can be considered: 
• Feed-forward propagation: The output of the neural network is obtained, 

and then, the error is computed by comparing this output with the desired 
signal. 

• Backpropagation: Depending on the error between the network output 
and the desired values, the algorithm optimises the values of the synaptic 
weights by means of error backpropagation from the output layer to the 
input layer, and through the hidden layers. 
A schematic of a general connection between two neurons (i,j) is shown 

in Figure 1-7. 
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Figure 1-7, Schematic of a connection between two neurons. 

The gradient of the cost function must be computed with respect to the 
parameters of the neural network, i.e., the synaptic weights. The following 
notation will be used: y^^; z\~^ stands for the output of the sum function 
and the activation function, respectively (neuron s and layer L-T). Therefore, 
taking all these facts into account: 

,L-\ L-1 

where S!^ 
dJ 

(3) 

5 is known as local gradient, an can be obtained as follows: 

^̂ ' w^ '̂ 

(4) 

Therefore, an iterative procedure is used to compute local gradients of 
first layers from local gradients of last layers. The output layer gradient is 
given by: 

^ _ 3 / de^ dzj^ _ dJ dz,^ 

de^ dz^ dy^ de^ dy^ 
(5) 

Output gradient depends on the error and activation functions. A very 
attractive advantage of using a sigmoidal/hyperbolic tangent activation 
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function stems from the fact that their derivatives can be expressed by using 
the own activation functions (Haykin, 1999). 

In spite of the advantages offered by the BP algorithm, it also shows a 
number of drawbacks that should be known (Haykin, 1999; Arbib, 2003; 
Bishop 1995; Orr & Muller, 1998): 

• Neuron saturation. Since the derivative of the activation function appears 
in the weight update, and this derivative equals zero for the most used 
activation functions (hyperbolic tangent and sigmoidal) in the function 
extremes, weights are not updated in these zones although the modelling 
error is different from zero. 

• Weight initialisation. Weight initialisation is basic in order to achieve a 
good modelling. Since the learning algorithm is based on finding the 
minimum of the error function that is closest to a certain initial point, this 
minimum may be a local minimum, not a global one, and therefore this 
initial point is fundamental for ensuring that the network finally achieves 
a global minimum. Weight initialisation affects algorithm behaviour in 
three main factors a) Convergence speed; the convergence speed depends 
not only on the learning rate, but also on the initial distance to the 
minimum, b) Minimum achieved, the algorithm finds the closest 
minimum to the initial point, which may be a local minimum, c) Neuron 
saturation; large values of the weights can involve a neuron saturation. 

• Plateaus. Weight update is proportional to the derivative of the error 
function. This derivative equals zero or a very low value on the flat parts 
of the error function. Therefore, weights are hardly updated. 

• Choice of the learning rate. Too high values may involve instabilities 
while too low values may make the converge speed very slow. There are 
many algorithms which propose strategies to find an optimal learning 
rate. They tend to be based on the following claim: "the value of the 
learning rate should be high far away from the minimum and should be 
low near the minimum '\ 

• Early stopping. There are different criteria to carry out the learning 
stopping, such as, to fix a number of epochs in advance, an error 
threshold, to find plateaus in the cost function, etcetera. Data are usually 
split into two sets: a training set and a generalisation set. The former is 
used to train the network, whereas the latter is used to check the 
behaviour of the network with patterns different from those used in the 
training process. The goal is to obtain a model with good generalisation 
properties. The generalisation error tends to decrease as the learning 
process is progressing until a certain epoch, in which the generalisation 
error starts to increase because the network is overfitting the patterns of 
the training data set. When this change in the tendency of the 
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generalisation error is observed, the learning must be stopped. This 
procedure is known as cross-validation. There are also different criteria 
to decide the rate of patterns that should be assigned to each data set: 
66% of the patterns to the training set, a small percentage if there is a 
large amount of data available, and there are also dynamic processes to 
carry out the selection of these sets (Haykin, 1999; Bishop, 1995). 

• Architecture choice. The number of hidden neurons and layers is a 
difficult choice, being determined in many cases by using trial-and-error 
procedures. Nonetheless, there also pruning and growing methods that 
are used to find optimal structures (Reed, 1993; Reed & Marks, 1999). 

3,2 Variants of the BP Algorithm 

Some variants have been proposed in order to overcome the different 
problems observed in BP algorithm. In this section, we will focus on four of 
the most classical variants, namely. Momentum term, Silva-Almeida, Delta-
Bar-Delta and Rprop. 

3.2.1 Momentum Term 

This variant (backpropagation with momentum, BPM) is very similar to 
the classical backpropagation algorithm. The difference is an additional 
term, which provides information about the weight change in the previous 
epoch. Therefore, weight update is given by (Haykin, 1999): 

A w , , , = - ^ - ( V J ) , + / / - A w „ (6) 

This new term controls the speed of convergence, speeding up the 
process when far from the minimum, and slowing it down when close to the 
minimum. The momentum coefficient // gives more or less importance to the 
momentum term. This algorithm shows instabilities near the minimum. 

3.2.1.1 Silva-Almeida 

This variant adapts the value of the learning rate depending on the 
distance to the minimum. This distance is evaluated through two consecutive 
signs of the gradient of the error function. These gradients should show the 
same sign far away from the minimum (the algorithm is approaching the 
minimum in the same direction) whereas the signs should be different near 
the minimum since the algorithm should be oscillating around the minimum. 
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Weight update is identical to that carried out by the classical 
backpropagation but taking into account that learning rate is determined by 
(Silva & Almeida, 1990): 

M « - 1 ) - W O ( V J ) „ - ( V J L > 0 

^^"^-V(n-1).JO(VJ)„.(VJL<0 '̂̂  

being d<\ and w>l. 

Moreover, this algorithm incorporates a sort of ''pocket technique'' since 
if an increase in the network error is observed, then the previous weights are 
retrieved. 

3.2.2 Delta-Bar-Delta 

This variant is similar to Silva-Almeida, since the learning rate is also 
adapted. In this case, the adaptation is given by (Jacobs, 1988): 

^''' \a{n-\yd<^{VJlidl_,<0 (8) 

provided that 0</9<l. 

Equation (8) shows two main differences with regard to Silva-Almeida 
method: 

• The increase in the learning rate to speed up the convergence is not an 
exponential increase, but a linear one. Therefore, it is less likely the 
presence of instabilities in the algorithm due to an excessively high value 
of the learning rate. 

• The increase or decrease of the learning rate does not depend only on two 
consecutive gradients, but it is carried out by comparing the gradient and 
a weighted average of previous gradients given by the parameter S. 

A variation in weight update is proposed in (Minai & Williams, 1990): 
1. An exponentially decreasing function of d'^. is used instead of increasing 

the learning rate by using a constant factor. 
2. A momentum term is added. It is updated likewise the learning rate. 
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3. Maximum and minimum values are imposed for the coefficients. 
4. The "pocket technique" is used in order to ensure that the minimum error 

is obtained. 

3.2.2.1 Rprop (Resilient Backpropagation) 

This algorithm also proposes an adaptation of the learning rate. 
Moreover, weight update is somewhat different to the other variants, and it is 
given by (Riedmiller & Braun, 1993): 

^w^^,=-a'signi^J\ (9) 

Using the sign of the gradient involves less computational burden. The 
learning rate is adapted as follows: 

| m a x K ^ ) + ^ , ^ ^ J « (VJ)„. ( V J L < 0 

being u>\ and J<1. 

Therefore, the learning rate can show two different values, depending on 
the sign of the two last gradients. The aim is to have a low value of the 
learning rate near the minimum and a higher value far away from the 
minimum, thus controlling the convergence speed. The possible values of 
the learning rate are limited in order to avoid either an excessively high 
value which can lead to instabilities or a too low value which can lead to a 
very slow convergence speed. 

Another first order algorithm is that proposed in (Chan & Fallside, 
1987). This algorithm analyses the relationship between the directions 
defined by the gradient of the error function and the previous weight 
increase. In particular, it is used the following parameter: 

c o s ( ^ ( - ) ) - - | f | A ^ (11) 

where ||-|| stands for the norm. This algorithm helps in overcoming the 
irregular parts of the error surface. This is because if there is not an 
appreciable change in the direction between the previous weight increase 
and the search direction (the gradient of the error function with opposite 
sign), then it means that the search process stays in a stable situation. 
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This Section has shown a small illustration of the most important variants 
of the BP algorithm. There are many other variants. A deeper review and 
comparison among these algorithms can be found in (Schiffmann et al., 
1994), (Moreira & Fiesler, 1995). 

3.3 Other Algorithms 

In spite of BP algorithm and its variants are usually chosen to train 
MLPs, more complex algorithms have also been proposed. These algorithms 
tend to show a higher computational burden and faster convergence speed 
than BP. 

3.3.1 Conjugate Gradient Algorithms 

These algorithms show a convergence speed faster than that obtained by 
BP, in exchange for a small increase in the computational burden 
(Luenberger, 1984). Weight update is given by the following expression 
(Bishop, 1995): 

%+i=>^ .+^(^) -^ ( ' ^ ) (12) 

where a(n) is the learning rate and d(n) stands for the search direction of 
the minimum. This search direction is a linear combination of the gradient of 
the function (with opposite sign) and the previous search direction. 
Therefore, d(n+I) is given by: 

d(n-\-l) = -g(n + l)-h ^(n)' d(n) 

where d{0) = -g(0) 

g(k) is the gradient of the cost function at instant k. These gradients are 
computed using the procedure followed in the BP algorithm. It should be 
pointed out that parameter fi(n) is used to define the relationship between the 
two directions in weight update. There are several variants of this algorithm 
depending on the value of this parameter (Bishop, 1995; Luenberger, 1984). 
The most used variants are the following (superscript t means transposition): 

Fletcher-Reeves (FR). J3(n) = ^\^)'Sy) (14) 
g ( / 7 - l ) - g ( / ? - l ) 
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Polak-Ribiere (PR). ^(,)= g'(^Hg(^)-f(^-0] ^,,^ 

^ ' '^^^ g'(n-\)-g{n-\) 

All these algorithms obtain the learning rate a(n) dynamically, using a 
line search procedure (Luenberger, 1984). 

3.3.2 BFGS Algorithm 

The goal of the learning of a neural network can be stated as a function 
minimisation problem. One of the most known methods of function 
minimisation is the Newton's method, which is faster than the other methods 
previously depicted. Weight update is given by the following expression: 

w„,,^w„-[H{n)X-g{n) (16) 

The main problem of this algorithm lies in the requirement of knowing 
the Hessian matrix H(n). This matrix contains the second derivatives of the 
cost function with respect to the parameters of the problem, the synaptic 
weights in this case. An approximation can be calculated, with an additional 
problem, which is the requirement of the approximation to be positive 
definite in order to guarantee algorithm convergence (Luenberger, 1984; 
Press et al., 1992). Usually, far away from the minimum and if the cost 
function is not quadratic, the matrix is not positive definite. 

There is a kind of algorithms based on the Newton's method, the so-
called quasi-Newton methods. These methods estimate the inverse Hessian 
matrix, forcing this matrix to be posifive definite in every step (Press et al., 
1992). Weight update is stated as follows: 

^n^x=^n-(^{^y ^{^y S{n) (17) 

M(n) is an estimation of the inverse Hessian matrix, which is updated 
every iteration. The most widely used quasi-Newton method is BFGS, 
acronym of the names of the authors who proposed the method (Broyden-
Fletcher-Goldfarb-Shanno). This algorithm carries out the following 
processing (Luenberger 1984): 

1) Algorithm initialisation; M(0) is considered to be any positive definite 
matrix, the identity matrix, for instance. 
2) Search direction is calculated as follows: 
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d{n) = -M{ri)'g{n) (18) 

3) a(n) is optimised within the cost function J[w+a(n) 'd(n)] by means of a 
Une search procedure (Luenberger, 1984; Press et al., 1992). 

4) The following expressions are calculated: 

p{n) = a{n)' d{ri) 

q{n) = g{n + \)-g{n) (19) 

[p[n)\ 'p[n) [q[n)\ 'M[n)'q{n) 

5) Go to next iteration n=n+l, and go to step 2. 

3.3.3 Levenberg-Marquardt 

The Levenberg-Marquardt (LM) algorithm was proposed to be used with 
the quadratic cost function (Bishop, 1995): 

J-yU-J (20) 
^ k 

being ek the error for pattern k and appearing the factor V2 for the sake of 
simplicity (after differentiation, all the constant terms are cancelled). If the 
vector of components ek is denoted by e, and if small perturbations of the 
synaptic weights are considered (Bishop, 1995): 

el =el + L 4 H / ^ - H J (21) 
\new \ola *- \ola \new-* 

where L is a the following matrix 

1̂ =^ (22) 

The cost function shown in Eq. (20) can be written as: 
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•' 4 • Sfe)' 4 • H ' = \ • IN- *' • IH- - H.Jlf P3) 

The minimisation of this function with respect to the new weights leads 
to the following weight update: 

H..=4,.-{^'-4'-^'-eL (24) 

The matrix L is easy to be obtained since it only needs the first 
derivatives of the cost function. This procedure depends on the requirement 
of small changes of the synaptic weights in Eq. (21), so that if this condition 
is not true, then the algorithm can become instable. LM algorithm solves this 
problem forcing the change of the weights to be small by means of a cost 
function: 

•^=f IhL.+^ • N . . - H. j r + ^ • He. - Aout (25) 

The minimisation of Eq. (25) with respect to the new weights leads to: 

4.. = H./.-t'-^+^-^r-^'-«L (26) 
being / the identity matrix. If X takes a very high value, then the BP 

algorithm is obtained. There are iterative procedures to obtain this factor 
(Bishop, 1995). 

The main drawback of this algorithm lies in the need of saving the 
inverse matrix of L. The size of this matrix is the square of the number of 
synaptic weights of the network. Therefore, this method is not a good choice 
when the number of weights is large (Nelles, 2001). 

4. EXPERIMENTAL RESULTS 

In this section, the algorithms presented in previous sections are 
benchmarked in two different kind of problems: a classification problem and 
three modelling problems. Algorithms are compared in terms of accuracy 
and convergence speed. The accuracy achieved by the algorithm is obviously 
important since it is a measure of the capability of the algorithm to solve the 
problem. Moreover, in many practical applications (channel equalisation, for 
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instance), the necessary time to find the solution can be almost as important 
as the accuracy achieved. Experiments were carried out using the hyperbolic 
tangent as activation function in the hidden neurons. One hundred tests were 
run for every experiment, using different weight initialisations; however, the 
same one hundred different initialisations were used in all the networks in 
order to obtain unbiased results. The value for the learning rate was equal to 
0.5/N, being N the number of hidden neurons, and the value of the 
momentum term was chosen as equal to 0,8. 

4.1 Classification Problems 

Channel equalisation is a typical problem of application of neural 
networks in Communications (Qureshi, 1985; Chen et al., 1990). A general 
communication system is shown in Figure 1-8. 

Noise v(n) 

JM. Channel I ° (" ) . (^ y(") . 

Figure 1-8. General schematic of a communication system. 

Figure 1-8 shows a message x(n) which is sent through a communication 
channel. This message is modified and corrupted by the transmission 
channel and by the ambient noise, v(n), which is modelled by a Gaussian 
distribution with mean 0, being used its variance to characterise the noise. 
The goal is to decode the emitted message from the received message, as it is 
shown in Figure 1-9. 

x(n) Channel 

I 
Noise v(n) 

•^^^Vi>7777::% Equalizer 

>. 

1 c|>(n) 

1 W 

y(n-k) 

only training phase 

Figure 1-9. Schematic of a communication channel with equaliser, 
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Figure 1-9 shows how the equaHser works. During the training process, a 
sequence is transmitted, being this sequence known by both the emitter and 
the receiver (dotted Hne). This way, the desired signal needed by every 
supervised system is available. The emitted message is decoded by the 
equaliser, using as inputs the message received in the current instant, and 
also that received in previous instants, denoted ?isy(n-k) in Figure 1-9. 

We chose a widely used channel, whose difference equation is the 
following (Gibson et al., 1991): 

o(n)=0.5'x(n)+x(n-l) (27) 

The message emitted in our simulations was ±1 (this signal is known in 
Engineering as 2-PAM), with equal probabilities. The noise variance was 
varied. Signal-to-Noise Ratio (SNR) was used to characterise the transmitted 
signal and the environmental noise (Proakis, 2001): 

SNR =-20-log^.M (28) 

where dv is the standard deviation of noise signal v(n); this SNR is 
measured in dB. A representation of emitted data in the space of received 
data is shown in Figure 1-10 for different values of SNR. 

In Figure 1-10, the classification problem is not linearly separable, and its 
structure is similar to other standard classification problems, as those shown 
in (Ripley, 1996). The main advantage of using this problem lies in the 
easiness to change the problem conditions, and also in their actual practical 
application. 

Convergence speed for different algorithms is compared in Tables 1-2 
and 1-3. Two different architectures were considered, setting the SNR equal 
to 20 dB. In order to measure convergence speed, the algorithm was 
supposed to converge in that iteration in which, the mean square error (MSB) 
of the neural network was less or equal to 15% of the error of the neural 
network in the first epoch after its initialisation. Since it was a relative 
threshold, results should also be interpreted the same way, i.e., as a relative 
comparison of different algorithms. Tables 1-2 and 1-3 show the frequency 
of each relative position of the algorithms with respect to convergence 
speed; in case of draw (for instance, if three algorithms achieved the 
threshold at the same time), the best position was considered for all the 
algorithms (for instance, the three algorithms would be assigned to the first 
position). 
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Figure I-IO. Representation of emitted data in the space of received data for different values 
of SNR. The transmitted symbols are '*' x(n)=l and 'o' x(n)=-L (a) SNR=5 dB, (b) SNR=10 
dB, (c) SNR=15 dB, (d) SNR=20 dB. 

Table 1-2. Architecture 2x3x2x1. Frequency of relative positions of the different algorithms 
in terms of convergence speed. The most frequent algorithm for each relative position is 
highlighted in bold 

r 2" 
BP 
BPM 
FR 
BFGS 
LM 

0 
0 
6 
32 
64 

0 
1 
27 
52 
21 

1 
18 
56 
11 
12 

7 
79 
11 
4 
1 

92 
2 
0 
1 
2 

Table 1-3. Architecture 2x10x1. Frequency of relative positions of the different algorithms in 
terms of convergence speed. The most frequent algorithm for each relative position is 
highlighted in bold 

r 2° 3" 
BP 
BPM 
FR 
BFGS 
LM 

0 
2 
9 
31 
66 

0 
4 
28 
52 
17 

0 
23 
41 
11 
16 

6 
68 
21 
4 
1 

94 
3 
1 
2 
0 



32 Chapter 1 

Tables 1-2 and 1-3 show that algorithms based on gradient descent 
exclusively, such as BP and BPM, were the slowest ones. In particular, the 
algorithm using the least information, BP, was the slowest algorithm. On the 
contrary, LM algorithm was the fastest algorithm for the selected 
architectures. 

Tables 1-4 and 1-5 show a comparison of the accuracy achieved by 
different algorithms. This accuracy was measured by means of the so-called 
Bit Error Rate (BER). BER is a measure of the relationship between the 
transmitted bits (each symbol x(n) is a bit) and the error between the network 
output and the desired values. Results show an average of 100 tests for 
different values of SNR and different architectures. 

Table 1-4. Bit-Error-Rate. Architecture 2x4x1. Different values of SNR are shown in the 
different columns. The best results for each SNR are highlighted in bold 

10 15 20 
BP 

BPM 
FR 

BFGS 
LM 

0.15±0.04 
0.14±0.04 
0.14±0.04 
0.14±0.04 
0.1410.04 

0.075±0.026 
0.054±0.017 
0.056±0.021 
0.062±0.021 
0.056±0.018 

0.050±0.009 
0.016±0.010 
0.017±0.013 
0.019±0.012 
0.031±0.016 

0.027±0.008 
0.007±0.007 
0.00710.007 
0.022±0.018 
0.028±0.015 

Table 1-5. Bit-Error-Rate. Architecture 2x6x1. Different values of SNR are shown in the 
different columns. The best results for each SNR are highlighted in bold 

10 15 20 
BP 

BPM 
FR 

BFGS 
LM 

0.14±0.04 
0.1310.04 
0.14+0.04 
0.14±0.04 
0.14±0.04 

0.065±0.023 
0.04010.012 
0.04010.011 
0.046±0.014 
0.048±0.015 

0.020+0.013 
0.00710.005 
0.025±0.018 
0.013±0.007 
0.026+0.034 

0.013+0.011 
0.00110.003 
0.009±0.010 
0.021+0.015 
0.023+0.022 

Although BPM was not the fastest algorithm, Tables 1-4 and 1-5 show 
that BPM did yield the most accurate results. 

4.2 Modelling Problems 

Three different function modelling problems were used to carry out a 
comparison of algorithms' modelling capabilities. First, two simple 
functions (/} and/^) were used (Sexton et al., 2004); in addition, a more 
complex function was also used (/}): 
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J\y^\^^2)~-^\ •'"-"-2 

A (^P ^2) =^1*^2 (29) 

[/3 (xj 5X2) = sin c(xi) • sin c(x2) 

. / X sin(;r-x) 
where sm c\x) = — ^ , 

T t ' X 

Table 1-6. Problem X1+X2. Architecture 2x2x1. Frequency of relative positions of the different 
algorithms in terms of convergence speed. The most frequent algorithm for each relative 
position is highlighted in bold 

JO 2« y r 5° 
BP 
BPM 
FR 
BFGS 
LM 

1 
1 
29 
21 
85 

4 
0 
28 
61 
6 

2 
0 
43 
17 
7 

41 
54 
0 
1 
1 

52 
45 
0 
0 
1 

Two hundred patterns formed by pairs (xi,X2) uniformly distributed in the 
range (-1,1) were used as training data set. Every experiment was carried out 
100 times with the same initialisation for every neural network. As in the 
case of classification problems, convergence speed and accuracy was used to 
benchmark algorithms' performance. With respect to convergence speed, the 
convergence threshold was taken as a 15% of the initial MSE. Results are 
shown in Tables 1-6, 1-7 and 1-8. 

Table 1-7. Problem X1X2 Architecture 2x4x1. Frequency of relative positions of the different 
algorithms in terms of convergence speed. The most frequent algorithm for each relative 
position is highlighted in bold 

JO 2« 3^ 4" 5" 
BP 
BPM 
FR 
BFGS 
LM 

10 
10 
68 
57 
61 

3 
0 
23 
31 
7 

11 
1 
9 
11 
22 

43 
38 
0 
0 
3 

33 
51 
0 
1 
7 

Table 1-8. Problem sinc(xi)sinc(x2). Architecture 2x4x3x1. Frequency of relative positions 
of the different algorithms in terms of convergence speed. The most frequent algorithm for 
each relative position is highlighted in bold 

JO 2« 3° 4" 5° 
BP 
BPM 
FR 
BFGS 
LM 

33 
33 
49 
59 
42 

5 
6 
22 
5 
37 

10 
12 
29 
11 
10 

22 
38 
0 
8 
6 

30 
11 
0 
17 
5 
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Note that LM is not the best choice always (Nelles, 2001); in fact, FR 
algorithm shows a faster convergence speed than LM in Tables 1-7 and 1-8. 

In order to test the accuracy, the error of the neural network after training 
for a data set different from the training set, was measured. Five thousand 
patterns uniformly distributed within the range (-1, 1) were used for this 
accuracy test. Average results of 100 tests are shown in Table 1-9. 

Table 1-9. Accuracy yielded (MSB) by the different algorithms in the three proposed 
problems. The best result for each problem is highlighted in bold 

X1+X2 Xi-X2 sinc(xi)-sinc(x2) 
2x2x1; 500 epochs 2x4x1; 1000 epochs 2x4x3x1; 1500 epochs 

BP 
BPM 
FR 
BFGS 
LM 

(8.12±1.26)10-^ 
(1.01±0.09)10-^ 
(8.55+1.67)10-^ 
(1.17+0.09)-10"^ 
(L30±0.67).10-^ 

(12.15±1.34)10-^ 
(2.15+0.32)-10-^ 
(6.37±1.41)10-^ 
(6.63±3.03).10-^ 

(5.89+11.79)10-'^ 

(19.83+3.37)10-^ 
(1.82+0.39)10-^ 
(1.45+0.21)10-^ 
(2.41±0.84)-10-^ 
(3.11+4.54)10-^ 

Table 1-9 shows that the fastest algorithms were also the most accurate 
ones. Nevertheless, results achieved by other algorithms were also quite 
accurate, hence they could also be a good choice in applications involving a 
high computational burden; for instance, applications involving a large 
number of inputs (high dimensionality). 

5. CONCLUSIONS 

A review of classical training methods has been provided in this chapter. 
It is mainly focused on the most widely used neural model, the so-called 
Multilayer Perceptron. It shows many attractive features; e.g., it is a 
universal function approximator and it is able to carry out non-linear 
classification. Classical training algorithms, based on the first and second 
derivatives, have been described. Several experiments applied to standard 
problems have been used to benchmark the capabilities of the different 
training algorithms. 

Unfortunately, the reduced length of this chapter does not allow to 
summarise all the learning algorithms, new applications, theoretical 
developments and research directions related to neural models. Readers are 
encouraged to consult the excellent texts provided in the bibliography, as 
well as the following chapters of this book, as a nice way to get involved 
with the fascinating world of neural networks. More expert readers, rather 
concerned about last advances in this field, are encouraged to have a look at 
the updated issues of some excellent journals {IEEE Transactions on Neural 
Networks, Neural Networks and Neurocomputing, among others). 
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The practical implementation of the algorithms presented in this chapter 
is far less difficult than some years ago was. There are different software 
solutions for Statistics, e.g., SPSS® and Statistica®, which provide a neural 
network toolbox. Moreover, other software products used for numerical and 
symbolic computing, e.g. Matlab® and Mathematica®, also include a neural 
network toolbox. In addition, there is another software product 
(Neurosolutions®), which includes many different neural network 
implementations, thus allowing their use in a straightforward way. 
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