
Preface

This book arose out of two graduate courses that the authors have taught
during the past several years; the first one being on measure theory followed
by the second one on advanced probability theory.

The traditional approach to a first course in measure theory, such as in
Royden (1988), is to teach the Lebesgue measure on the real line, then the
differentation theorems of Lebesgue, Lp-spaces on R, and do general mea-
sure at the end of the course with one main application to the construction
of product measures. This approach does have the pedagogic advantage
of seeing one concrete case first before going to the general one. But this
also has the disadvantage in making many students’ perspective on mea-
sure theory somewhat narrow. It leads them to think only in terms of the
Lebesgue measure on the real line and to believe that measure theory is
intimately tied to the topology of the real line. As students of statistics,
probability, physics, engineering, economics, and biology know very well,
there are mass distributions that are typically nonuniform, and hence it is
useful to gain a general perspective.

This book attempts to provide that general perspective right from the
beginning. The opening chapter gives an informal introduction to measure
and integration theory. It shows that the notions of σ-algebra of sets and
countable additivity of a set function are dictated by certain very natu-
ral approximation procedures from practical applications and that they
are not just some abstract ideas. Next, the general extension theorem of
Carathedory is presented in Chapter 1. As immediate examples, the con-
struction of the large class of Lebesgue-Stieltjes measures on the real line
and Euclidean spaces is discussed, as are measures on finite and countable
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spaces. Concrete examples such as the classical Lebesgue measure and var-
ious probability distributions on the real line are provided. This is further
developed in Chapter 6 leading to the construction of measures on sequence
spaces (i.e., sequences of random variables) via Kolmogorov’s consistency
theorem.

After providing a fairly comprehensive treatment of measure and inte-
gration theory in the first part (Introduction and Chapters 1–5), the focus
moves onto probability theory in the second part (Chapters 6–13). The fea-
ture that distinguishes probability theory from measure theory, namely, the
notion of independence and dependence of random variables (i.e., measure-
able functions) is carefully developed first. Then the laws of large numbers
are taken up. This is followed by convergence in distribution and the central
limit theorems. Next the notion of conditional expectation and probability
is developed, followed by discrete parameter martingales. Although the de-
velopment of these topics is based on a rigorous measure theoretic founda-
tion, the heuristic and intuitive backgrounds of the results are emphasized
throughout. Along the way, some applications of the results from probabil-
ity theory to proving classical results in analysis are given. These include,
for example, the density of normal numbers on (0,1) and the Wierstrass
approximation theorem. These are intended to emphasize the benefits of
studying both areas in a rigorous and combined fashion. The approach
to conditional expectation is via the mean square approximation of the
“unknown” given the “known” and then a careful approximation for the
L1-case. This is a natural and intuitive approach and is preferred over the
“black box” approach based on the Radon-Nikodym theorem.

The final part of the book provides a basic outline of a number of special
topics. These include Markov chains including Markov chain Monte Carlo
(MCMC), Poisson processes, Brownian motion, bootstrap theory, mixing
processes, and branching processes. The first two parts can be used for a
two-semester sequence, and the last part could serve as a starting point for
a seminar course on special topics.

This book presents the basic material on measure and integration theory
and probability theory in a self-contained and step-by-step manner. It is
hoped that students will find it accessible, informative, and useful and also
that they will be motivated to master the details by carefully working out
the text material as well as the large number of exercises. The authors hope
that the presentation here is found to be clear and comprehensive without
being intimidating.

Here is a quick summary of the various chapters of the book. After giving
an informal introduction to the ideas of measure and integration theory,
the construction of measures starting with set functions on a small class of
sets is taken up in Chapter 1 where the Caratheodory extension theorem is
proved and then applied to construct Lebesgue-Stieltjes measures. Integra-
tion theory is taken up in Chapter 2 where all the basic convergence the-
orems including the MCT, Fatou, DCT, BCT, Egorov’s, and Scheffe’s are



Preface ix

proved. Included here are also the notion of uniform integrability and the
classical approximation theorem of Lusin and its use in Lp-approximation
by smooth functions. The third chapter presents basic inequalities for Lp-
spaces, the Riesz-Fischer theorem, and elementary theory of Banach and
Hilbert spaces. Chapter 4 deals with Radon-Nikodym theory via the Riesz
representation on L2-spaces and its application to differentiation theorems
on the real line as well as to signed measures. Chapter 5 deals with prod-
uct measures and the Fubini-Tonelli theorems. Two constructions of the
product measure are presented: one using the extension theorem and an-
other via iterated integrals. This is followed by a discussion on convolutions,
Laplace transforms, Fourier series, and Fourier transforms. Kolmogorov’s
consistency theorem for the construction of stochastic processes is taken up
in Chapter 6 followed by the notion of independence in Chapter 7. The laws
of large numbers are presented in a unified manner in Chapter 8 where the
classical Kolmogorov’s strong law as well as Etemadi’s strong law are pre-
sented followed by Marcinkiewicz-Zygmund laws. There are also sections
on renewal theory and ergodic theorems. The notion of weak convergence of
probability measures on R is taken up in Chapter 9, and Chapter 10 intro-
duces characteristic functions (Fourier transform of probability measures),
the inversion formula, and the Levy-Cramer continuity theorem. Chapter
11 is devoted to the central limit theorem and its extensions to stable and
infinitely divisible laws. Chapter 12 discusses conditional expectation and
probability where an L2-approach followed by an approximation to L1 is
presented. Discrete time martingales are introduced in Chapter 13 where
the basic inequalities as well as convergence results are developed. Some
applications to random walks are indicated as well. Chapter 14 discusses
discrete time Markov chains with a discrete state space first. This is fol-
lowed by discrete time Markov chains with general state spaces where the
regeneration approach for Harris chains is carefully explained and is used
to derive the basic limit theorems via the iid cycles approach. There are
also discussions of Feller Markov chains on Polish spaces and Markov chain
Monte Carlo methods. An elementary treatment of Brownian motion is
presented in Chapter 15 along with a treatment of continuous time jump
Markov chains. Chapters 16–18 provide brief outlines respectively of the
bootstrap theory, mixing processes, and branching processes. There is an
Appendix that reviews basic material on elementary set theory, real and
complex numbers, and metric spaces.

Here are some suggestions on how to use the book.

1. For a one-semester course on real analysis (i.e., measure end inte-
gration theory), material up to Chapter 5 and the Appendix should
provide adequate coverage with Chapter 6 being optional.

2. A one-semester course on advanced probability theory for those with
the necessary measure theory background could be based on Chapters
6–13 with a selection of topics from Chapters 14–18.
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3. A one-semester course on combined treatment of measure theory and
probability theory could be built around Chapters 1, 2, Sections 3.1–
3.2 of Chapter 3, all of Chapter 4 (Section 4.2 optional), Sections
5.1 and 5.2 of Chapter 5, Chapters 6, 7, and Sections 8.1, 8.2, 8.3
(Sections 8.5 and 8.6 optional) of Chapter 8. Such a course could
be followed by another that includes some coverage of Chapters 9–
12 before moving on to other areas such as mathematical statistics
or martingales and financial mathematics. This will be particularly
useful for graduate programs in statistics.

4. A one-semester course on an introduction to stochastic processes or
a seminar on special topics could be based on Chapters 14–18.

A word on the numbering system used in the book. Statements of results
(i.e., Theorems, Corollaries, Lemmas, and Propositions) are numbered con-
secutively within each section, in the format a.b.c, where a is the chapter
number, b is the section number, and c is the counter. Definitions, Exam-
ples, and Remarks are numbered individually within each section, also of
the form a.b.c, as above. Sections are referred to as a.b where a is the chap-
ter number and b is the section number. Equation numbers appear on the
right, in the form (b.c), where b is the section number and c is the equation
number. Equations in a given chapter a are referred to as (b.c) within the
chapter but as (a.b.c) outside chapter a. Problems are listed at the end of
each chapter in the form a.c, where a is the chapter number and c is the
problem number.

In the writing of this book, material from existing books such as Apostol
(1974), Billingsley (1995), Chow and Teicher (2001), Chung (1974), Dur-
rett (2004), Royden (1988), and Rudin (1976, 1987) has been freely used.
The authors owe a great debt to these books. The authors have used this
material for courses taught over several years and have benefited greatly
from suggestions for improvement from students and colleagues at Iowa
State University, Cornell University, the Indian Institute of Science, and
the Indian Statistical Institute. We are grateful to them.

Our special thanks go to Dean Issacson, Ken Koehler, and Justin Pe-
ters at Iowa State University for their administrative support of this long
project. Krishna Athreya would also like to thank Cornell University for
its support.

We are most indebted to Sharon Shepard who typed and retyped several
times this book, patiently putting up with our never-ending “final” versions.
Without her patient and generous help, this book could not have been
written. We are also grateful to Denise Riker who typed portions of an
earlier version of this book.

John Kimmel of Springer got the book reviewed at various stages. The
referee reports were very helpful and encouraging. Our grateful thanks to
both John Kimmel and the referees.
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We have tried hard to make this book free of mathematical and ty-
pographical errors and misleading or ambiguous statements, but we are
aware that there will still be many such remaining that we have not
caught. We will be most grateful to receive such corrections and sugges-
tions for improvement. They can be e-mailed to us at kba@iastate.edu or
snlahiri@iastate.edu.

On a personal note, we would like to thank our families for their patience
and support. Krishna Athreya would like to record his profound gratitude
to his maternal granduncle, the late Shri K. Venkatarama Iyer, who opened
the door to mathematical learning for him at a crucial stage in high school,
to the late Professor D. Basu of the Indian Statistical Institute who taught
him to think probabilistically, and to Professor Samuel Karlin of Stanford
University for initiating him into research in mathematics.

K. B. Athreya
S. N. Lahiri

May 12, 2006



8
Laws of Large Numbers

When measuring a physical quantity such as the mass of an object, it
is commonly believed that the average of several measurements is more
reliable than a single one. Similarly, in applications of statistical inference
when estimating a population mean μ, a random sample {X1, X2, . . . , Xn}
of size n is drawn from the population, and the sample average X̄n ≡
1
n

∑n
i=1Xi is used as an estimator for the parameter μ. This is based on

the idea that as n gets large, X̄n will be close to μ in some suitable sense. In
many time-evolving physical systems {f(t) : 0 ≤ t <∞}, where f(t) is an
element in the phase space S, “time averages” of the form 1

T

∫ T

0 h(f(t))dt
(where h is a bounded function on S) converge, as T gets large, to the
“space average” of the form

∫
S
h(x)π(dx) for some appropriate measure π

on S. The above three are examples of a general phenomenon known as the
law of large numbers. This chapter is devoted to a systematic development
of this topic for sequences of independent random variables and also to
some important refinements of the law of large numbers.

8.1 Weak laws of large numbers

Let {Zn}n≥1 be a sequence of random variables on a probability space
(Ω,F , P ). Recall that the sequence {Zn}n≥1 is said to converge in proba-
bility to a random variable Z if for each ε > 0,

lim
n→∞P (|Zn − Z| ≥ ε) = 0. (1.1)
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This is written as Zn −→p Z. The sequence {Zn}n≥1 is said to converge
with probability one or almost surely (a.s.) to Z if there exists a set A in F
such that

P (A) = 1 and for all ω in A, lim
n→∞Zn(ω) = Z(ω). (1.2)

This is written as Zn → Z w.p. 1 or Zn → Z a.s.

Definition 8.1.1: A sequence {Xn}n≥1 of random variables on a probabil-
ity space (Ω,F , P ) is said to obey the weak law of large numbers (WLLN)
with normalizing sequences of real numbers {an}n≥1 and {bn}n≥1 if

Sn − an

bn
−→p 0 as n→∞ (1.3)

where Sn =
∑n

i=1Xi for n ≥ 1.

The following theorem says that if {Xn}n≥1 is a sequence of iid random
variables with EX2

1 <∞, then it obeys the weak law of large numbers with
an = nEX1 and bn = n.

Theorem 8.1.1: Let {Xn}n≥1 be a sequence of iid random variables such
that EX2

1 <∞. Then

X̄n ≡
X1 + . . .+Xn

n
−→p EX1. (1.4)

Proof: By Chebychev’s inequality, for any ε > 0,

P (|X̄n − EX1| > ε) ≤ Var(X̄n)
ε2

=
1
ε2
· σ

2

n
, (1.5)

where σ2 = Var(X1). Since σ2

nε2 → 0 as n→∞, (1.4) follows. �

Corollary 8.1.2: Let {Xn}n≥1 be a sequence of iid Bernoulli (p) random
variables, i.e., P (X1 = 1) = p = 1− P (X1 = 0). Let

p̂n =
#{i : 1 ≤ i ≤ n,Xi = 1}

n
, n ≥ 1, (1.6)

where for a finite set A, #A denotes the number of elements in A. Then
p̂n −→p p.

Proof: Check that EX1 = p and p̂n = X̄n. �

This says that one can estimate the probability p of getting a “head” of
a coin by tossing it n times and calculating the proportion of “heads.” This
is also the basis of public opinion polls. Since the proof of Theorem 8.1.1
depended only on Chebychev’s inequality, the following generalization is
immediate (Problem 8.1).
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Theorem 8.1.3: Let {Xn}n≥1 be a sequence of random variables on a
probability space such that

(i) EX2
n <∞ for all n ≥ 1,

(ii) EXiXj = (EXi)(EXj) for all i 
= j
(i.e., {Xn}n≥1 are uncorrelated),

(iii) 1
n2

∑n
i=1 σ

2
i → 0 as n→∞, where σ2

i = Var(Xi), i ≥ 1.

Then
X̄n − μ̄n −→p 0 (1.7)

where μ̄n ≡ 1
n

∑n
i=1EXi.

Corollary 8.1.4: Let {Xn}n≥1 satisfy (i) and (ii) of the above theorem
and let the sequence {σ2

n}n≥1 be bounded. Let μ̄n ≡ 1
n

∑n
i=1EXi → μ as

n→∞. Then X̄n −→p μ.

An Application to Real Analysis

Let f : [0, 1] → R be a continuous function. K. Weierstrass showed that
f can be approximated uniformly over [0, 1] by polynomials. S.N. Bernstein
constructed a special class of such polynomials. A proof of Bernstein’s result
using the WLLN (Theorem 8.1.1) is given below.

Theorem 8.1.5: Let f : [0, 1] → R be a continuous function. Let

Bn,f (x) ≡
n∑

r=0

f
( r
n

)(n
r

)
xr(1− x)n−r, 0 ≤ x ≤ 1 (1.8)

be the Bernstein polynomial of order n for the function f . Then

lim
n→∞ sup

{
|f(x)−Bn,f (x)| : 0 ≤ x ≤ 1

}
= 0.

Proof: Since f is continuous on the closed and bounded interval [0, 1], it
is uniformly continuous and hence for any ε > 0, there exists a δε > 0 such
that

|x− y| < δε ⇒ |f(x)− f(y)| < ε. (1.9)

Fix x in [0, 1]. Let {Xn}n≥1 be a sequence of iid Bernoulli (x) random
variables. Let p̂n be as in (1.6). Then Bn,f (x) = Ef(p̂n). Hence,

|f(x)−Bn,f (x)| ≤ E|f(p̂n)− f(x)|

= E
{
|f(p̂n)− f(x)|I(|p̂n − x| < δε)

}
+ E

{
|f(p̂n)− f(x)|I(|p̂n − x| ≥ δε)

}
≤ ε+ 2‖f‖P (|p̂n − x| ≥ δε)
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where ‖f‖ = sup{|f(x)| : 0 ≤ x ≤ 1}. But by Chebychev’s inequality,

P (|p̂n − x| ≥ δε) ≤ 1
δ2ε

Var(p̂n)

=
x(1− x)
nδ2ε

≤ 1
4nδ2ε

for all 0 ≤ x ≤ 1.

Thus, sup
{
|f(x)−Bn,f (x)| : 0 ≤ x ≤ 1

}
≤ ε+ 2‖f‖ 1

4nδ2
ε
. Letting n→∞

first and then ε ↓ 0 completes the proof. �

8.2 Strong laws of large numbers

.
Definition 8.2.1: A sequence {Xn}n≥1 of random variables on a probabil-
ity space (Ω,F , P ) is said to obey the strong law of large numbers (SLLN)
with normalizing sequences of real numbers {an}n≥1 and {bn}n≥1 if

Sn − an

bn
→ 0 as n→∞ w.p. 1, (2.1)

where Sn =
∑n

i=1Xi for n ≥ 1.

The following theorem says that if {Xn}n≥1 is a sequence of iid random
variables with EX4

1 <∞, then the strong law of large numbers holds with
an = nEX1 and bn = n. This result is referred to as Borel’s SLLN.

Theorem 8.2.1: (Borel’s SLLN ). Let {Xn}n≥1 be a sequence of iid ran-
dom variables such that EX4

1 <∞. Then

X̄n ≡
X1 +X2 + . . .+Xn

n
→ EX1 w.p. 1. (2.2)

Proof: Fix ε > 0 and let An ≡ {|X̄n − EX1| ≥ ε}, n ≥ 1. To establish
(2.2), by Proposition 7.2.3 (a), it suffices to show that

∞∑
n=1

P (An) <∞. (2.3)

By Markov’s inequality

P (An) ≤ E|X̄n − EX1|4
ε4

. (2.4)

Let Yi = Xi − EX1 for i ≥ 1. Since the Xi’s are independent, it is easy to
check that

E|X̄n − EX1|4 =
1
n4E

(( n∑
i=1

Yi

)4
)
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=
1
n4

(
nEY 4

1 + 3n(n− 1)(EY 2
1 )2

)
= O(n−2).

By (2.4) this implies (2.3). �

The following two results are easy consequences of the above theorem.

Corollary 8.2.2: Let {Xn}n≥1 be a sequence of iid random variables that
are bounded, i.e., there exists a C <∞ such that P (|X1| ≤ C) = 1. Then

X̄n → EX1 w.p. 1.

Corollary 8.2.3: Let {Xn}n≥1 be a sequence of iid Bernoulli(p) random
variables. Then

p̂n ≡
#{i : 1 ≤ i ≤ n,Xi = 1}

n
→ p w.p. 1. (2.5)

An application of the above result yields the following theorem on the
uniform convergence of the empirical cdf to the true cdf.

Theorem 8.2.4: (Glivenko-Cantelli). Let {Xn}n≥1 be a sequence of iid
random variables with a common cdf F (·). Let Fn(·), the empirical cdf based
on {X1, X2, . . . , Xn}, be defined by

Fn(x) ≡ 1
n

n∑
j=1

I(Xj ≤ x), x ∈ R. (2.6)

Then,
Δ̃n ≡ sup

x
|Fn(x)− F (x)| → 0 w.p. 1. (2.7)

Remark 8.2.1: Note that by applying Corollary 8.2.3 to the sequence of
Bernoulli random variables {Yn ≡ I(Xn ≤ x)}n≥1, one may conclude that
Fn(x) → F (x) w.p. 1 for each fixed x. So the main thrust of this theorem
is the uniform convergence on R of Fn to F w.p. 1. It can be shown that
(2.7) holds for sequences {Xn}n≥1 that are identically distributed and only
pairwise independent. The proof is based on Etemadi’s SLLN (Theorem
8.2.7) below.

The proof of Theorem 8.2.4 makes use of the following two lemmas.

Lemma 8.2.5: (Scheffe’s theorem: A generalized version). Let (Ω,F , μ) be
a measure space and {fn}n≥1 and f be nonnegative μ-integrable functions
such that as n → ∞, (i) fn → f a.e. (μ) and (ii)

∫
fndμ →

∫
fdμ. Then∫

|f − fn|dμ→ 0 as n→∞.
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Proof: See Theorem 2.5.4. �

For any bounded monotone function H: R → R, define

H(∞) ≡ lim
x↑∞

H(x), H(−∞) ≡ lim
x↓−∞

H(x).

Lemma 8.2.6: (Polyā’s theorem). Let {Gn}n≥1 and G be a collection of
bounded nondecreasing functions on R → R such that G(·) is continuous
on R and

Gn(x) → G(x) for all x in D ∪ {−∞,+∞},

where D is dense in R. Then Δn ≡ sup{|Gn(x)−G(x)| : x ∈ R} → 0. That
is, Gn → G uniformly on R.

Proof: Fix ε > 0. By the definitions of G(∞) and G(−∞), there exist C1
and C2 in D such that

G(C1)−G(−∞) < ε, and G(∞)−G(C2) < ε. (2.8)

Since G(·) is continuous, it is uniformly continuous on [C1, C2] and so there
exists a δ > 0 such that

x, y ∈ [C1, C2], |x− y| < δ ⇒ |G(x)−G(y)| < ε. (2.9)

Also, there exist points a1 = C1 < a2 < . . . < ak = C2, 1 < k < ∞, in D
such that

max{(ai+1 − ai) : 1 ≤ i ≤ k − 1} < δ.

Let a0 = −∞, ak+1 = ∞. By the convergence of Gn(·) to G(·), on D ∪
{−∞,∞},

Δn1 ≡ max{|Gn(ai)−G(ai)| : 0 ≤ i ≤ k + 1} → 0 (2.10)

as n → ∞. Now note that for any x in [ai, ai+1], 1 ≤ i ≤ k − 1, by the
monotonicity of Gn(·) and G(·), and by (2.9) and (2.10),

Gn(x)−G(x) ≤ Gn(ai+1)−G(ai)
≤ Gn(ai+1)−G(ai+1) +G(ai+1)−G(ai)
≤ Δn1 + ε,

and similarly,
Gn(x)−G(x) ≥ −Δn1 − ε.

Thus
sup{|Gn(x)−G(x)| : a1 ≤ x ≤ ak} ≤ Δn1 + ε. (2.11)
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For x < a1, by (2.8) and (2.10),

|Gn(x)−G(x)| ≤ |Gn(x)−Gn(−∞)|+ |Gn(−∞)−G(−∞)|
+ |G(−∞)−G(x)|

≤ (Gn(a1)−Gn(−∞)) + |Gn(−∞)−G(−∞)|+ ε

≤ |Gn(a1)−G(a1)|+ |G(a1)−G(−∞)|
+ 2|Gn(−∞)−G(−∞)|+ ε

≤ 3Δn1 + 2ε.

Similarly, for x > ak,

|Gn(x)−G(x)| ≤ 3Δn1 + 2ε.

Combining the above with (2.11) yields

Δn ≤ 3Δn1 + 2ε.

By (2.10),
lim sup

n→∞
Δn ≤ 2ε,

and ε > 0 being arbitrary, the proof is complete. �

Proof of Theorem 8.2.4: First note that Δ̃n = supx∈Q |Fn(x) − F (x)|
and hence, it is a random variable. Let B ≡ {bj : j ∈ J} be the set of jump
discontinuity points of F with the corresponding jump sizes {pj : j ∈ J},
where J is a subset of N. Let p =

∑
j∈J pj .

Note that

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x)

=
1
n

n∑
i=1

I(Xi ≤ x,Xi ∈ B) +
1
n

n∑
i=1

I(Xi ≤ x,Xi 
∈ B)

= Fnd(x) + Fnc(x), say. (2.12)

Then, Fnd(x) =
∑

j∈J p̂njI(bj ≤ x), where

p̂nj =
#{i : 1 ≤ i ≤ n,Xi = bj}

n
.

Let p̂n =
∑

j∈J p̂nj = 1
n ·#{i : 1 ≤ i ≤ n,Xi ∈ B}. By Corollary 8.2.3, for

each j ∈ J ,
p̂nj → pj w.p. 1 and p̂n → p w.p. 1.

Since B is countable, there exists a set A0 in F such that P (A0) = 1 and
for all ω in A0, p̂nj → pj for all j ∈ J and

∑
j∈J p̂nj = p̂n → p =

∑
j∈J pj .
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By Lemma 8.2.5 (applied with μ being the counting measure on the set J),
it follows that for ω in A0, ∑

j∈J

|p̂nj − pj | → 0. (2.13)

Let Fd(x) ≡
∑

j∈J pjI(bj ≤ x), x ∈ R. Then,

sup
x∈R

|Fnd(x)− Fd(x)| ≤
∑
j∈J

|p̂nj − pj |, (2.14)

which → 0 as n→∞ for all ω in A0, by (2.13).
Next let,

Fc(x) ≡ F (x)− Fd(x), x ∈ R.

Then, it is easy to check that, Fc(·) is continuous and nondecreasing on R,
Fc(−∞) = 0 and Fc(∞) = 1− p.

Again, by Corollary 8.2.3, there exists a set A1 in F such that P (A1) = 1
and for all ω in A1,

Fnc(x) → Fc(x)

for all rational x in R and

Fnc(∞) ≡ 1− p̂n → 1− p = Fc(∞).

Also, Fnc(−∞) = 0 = Fc(−∞). So by Lemma 8.2.6, with D = Q, for ω in
A1,

sup
x∈R

|Fnc(x)− Fc(x)| → 0 as n→∞. (2.15)

Since P (A0 ∩A1) = 1, the theorem follows from (2.12)–(2.15). �

Borel’s SLLN for iid random variables requires that E|X1|4 < ∞. Kol-
mogorov (1956) improved on this significantly by using his “3-series”
theorem and reduced the moment condition to E|X1| < ∞. More re-
cently, Etemadi (1981) N. improved this further by assuming only that
the {Xn}n≥1 are pairwise independent and identically distributed with
E|X1| <∞. More precisely, he proved the following.

Theorem 8.2.7: (Etemadi’s SLLN ). Let {Xn}n≥1 be a sequence of
pairwise independent and identically distributed random variables with
E|X1| <∞. Then

X̄n → EX1 w.p. 1. (2.16)

Proof: The main steps in the proof are

(I) reduction to the nonnegative case,
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(II) proof of convergence of Ȳn along a geometrically growing subsequence
using the Borel-Cantelli lemma and Chebychev’s inequality, where
Ȳn is the average of certain truncated versions of X1, . . . , Xn, and
extending the convergence from the geometric subsequence to the
full sequence.

Step I: Since the {Xn}n≥1 are pairwise independent and identically dis-
tributed with E|X1| <∞, it follows that {X+

n }n≥1 and {X−
n }n≥1 are both

sequences of pairwise independent and identically distributed nonnegative
random variables with EX+

1 <∞ and EX−
1 <∞. Also, since

X̄n =
1
n

n∑
i=1

Xi =
(

1
n

n∑
i=1

X+
i

)
−

(
1
n

n∑
i=1

X−
i

)
,

it is enough to prove the theorem under the assumption that the Xi’s are
nonnegative.

Step II: Now let Xi’s be nonnegative and let

Yi = XiI(Xi ≤ i), i ≥ 1.

Then,

∞∑
i=1

P (Xi 
= Yi) =
∞∑

i=1

P (Xi > i)

=
∞∑

i=1

P (X1 > i) ≤
∞∑

i=1

∫ i

i−1
P (X1 > t)dt

=
∫ ∞

0
P (X1 > t)dt

= EX1 <∞.

Hence, by the Borel-Cantelli lemma,

P (Xi 
= Yi, infinitely often) = 0.

This implies that w.p. 1, Xi = Yi for all but finitely many i’s and hence, it
suffices to show that

Ȳn ≡
1
n

n∑
i=1

Yi → EX1 w.p. 1. (2.17)

Next, EYi = E(XiI(Xi ≤ i) = E(X1I(X1 ≤ i)) → EX1 (by the MCT)
and hence

EȲn =
1
n

n∑
i=1

EYi → EX1 as n→∞. (2.18)
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Suppose for the moment that for each fixed 1 < ρ <∞, it is shown that

Ȳnk
→ EX1 as k →∞ w.p. 1 (2.19)

where nk = �ρk� = the greatest integer less than or equal to ρk, k ∈ N.
Then, since the Yi’s are nonnegative, for any n and k satisfying ρk ≤ n <
ρk+1, one gets

1
n

nk∑
i=1

Yi ≤ Ȳn =
1
n

n∑
j=1

Yj ≤
1
n

nk+1∑
i=1

Yi

=⇒ nk

n
Ȳnk

≤ Ȳn ≤
nk+1

n
Ȳnk+1

=⇒ 1
ρ
Ȳnk

≤ Ȳn ≤ ρȲnk+1 .

From (2.19), it follows that

1
ρ
EX1 ≤ lim inf

n→∞ Ȳn ≤ lim sup
n→∞

Ȳn ≤ ρEX w.p. 1.

Since this is true for each 1 < ρ <∞, by taking ρ = 1 + 1
r for r = 1, 2, . . .,

it follows that

EX1 ≤ lim inf
n→∞ Ȳn ≤ lim sup

n→∞
Ȳn ≤ EX1 w.p. 1,

establishing (2.17).
It now remains to prove (2.19). By (2.18), it is enough to show that

Ȳnk
− EȲnk

→ 0 as k →∞, w.p. 1. (2.20)

By Chebychev’s inequality and the pairwise independence of the variables
{Yn}n≥1, for any ε > 0,

P (|Ȳnk
− EȲnk

| > ε) ≤ 1
ε2

Var(Ȳnk
) =

1
ε2

1
n2

k

nk∑
i=1

Var(Yi)

≤ 1
ε2

1
n2

k

nk∑
i=1

EY 2
i .

Thus,

∞∑
k=1

P (|Ȳnk
− EȲnk

| > ε) ≤ 1
ε2

∞∑
k=1

1
n2

k

nk∑
i=1

EY 2
i

=
1
ε2

∞∑
i=1

EY 2
i

( ∑
k:nk≥i

1
n2

k

)
. (2.21)
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Since nk = �ρk� > ρk−1 for 1 < ρ <∞,

∑
k:nk≥i

1
n2

k

≤
∑

k:ρk−1≥i

1
ρ(k−1)2 ≤

C1

i2
(2.22)

for some constant C1, 0 < C1 <∞.
Next, since the Xi’s are identically distributed,

∞∑
i=1

EY 2
i

i2
=

∞∑
i=1

EX2
1I(0 ≤ X1 ≤ i)

i2

=
∞∑

i=1

i∑
j=1

EX2
1I(j − 1 < X1 ≤ j)

i2

=
∞∑

j=1

(
EX2

1I(j − 1 < X1 ≤ j)
) ∞∑

i=j

i−2

≤
∞∑

j=1

(
jEX1I(j − 1 < X1 ≤ j)

)
· C2j

−1

= C2EX1 <∞, (2.23)

for some constant C2, 0 < C2 <∞.
Now (2.21)–(2.23) imply that

∞∑
k=1

P (|Ȳnk
− EȲnk

| > ε) <∞

for each ε > 0. By the Borel-Cantelli lemma and Proposition 7.2.3 (a),
(2.20) follows and the proof is complete. �

The following corollary is immediate from the above theorem.

Corollary 8.2.8: (Extension to the vector case). Let {Xn =
(Xn1, . . . , Xnk)}n≥1 be a sequence of k-dimensional random vectors de-
fined on a probability space (Ω,F , P ) such that for each i, 1 ≤ i ≤ k,
the sequence {Xni}n≥1 are pairwise independent and identically distributed
with E|X1i| < ∞. Let μ = (EX11, EX12, . . . , EX1k) and f : Rk → R be
continuous at μ. Then

(i) X̄n ≡ (X̄n1, X̄n2, . . . , X̄nk) → μ w.p. 1, where X̄ni = 1
n

∑n
j=1Xji for

1 ≤ i ≤ k.

(ii) f(X̄n) → f(μ) w.p. 1.

Example 8.2.1: Let (Xn, Yn), n = 1, 2, . . . be a sequence of bivariate iid
random vectors with EX2

1 < ∞, EY 2
1 < ∞. Then the sample correlation
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coefficient ρ̂n, defined by,

ρ̂n ≡
( 1

n

∑n
i=1XiYi − X̄nȲn

)
√( 1

n

∑n
i=1(Xi − X̄n)2

) ( 1
n

∑n
i=1(Yi − Ȳn)2

)
is a strongly consistent estimator of the population correlation coefficient ρ,
defined by,

ρ =
Cov(X1, Y1)√

Var(X1)Var(Y1)
,

i.e., ρ̂n → ρ w.p. 1. This follows from the above corollary by taking f :
R5 → R to be

f(t1, t2, t3, t4, t5) =

⎧⎪⎨
⎪⎩

t5 − t1t2√
(t3 − t21)(t4 − t22)

, for t3 > t21, t4 > t22

0, otherwise,

and the vector (Xn1, Xn2, . . . , Xn5) to be

Xn1 = Xn, Xn2 = Yn, Xn3 = X2
n, Xn4 = Y 2

n , Xn5 = XnYn.

Corollary 8.2.9: (Extension to the pairwise m-dependent case). Let
{Xn}n≥1 be a sequence of random variables on a probability space (Ω,F , P )
such that for an integer m, 1 ≤ m <∞, and for each i, 1 ≤ i ≤ m, the ran-
dom variables {Xi, Xi+m, Xi+2m, . . .} are identically distributed and pair-
wise independent with E|Xi| <∞. Then

X̄n →
1
m

m∑
i=1

EXi w.p. 1.

The proof is left as an exercise (Problem 8.2). For an application of the
above result to a discussion on normal numbers, see Problem 8.15.

Example 8.2.2: (IID Monte Carlo). Let (S,S, π) be a probability space,
f ∈ L1(S,S, π) and λ =

∫
S
fdπ. Let {Xn}n≥1 be a sequence of iid S-

valued random variables with distribution π. Then, the IID Monte Carlo
approximation to λ is defined as

λ̂n ≡
1
n

n∑
i=1

f(Xi).

Note that by the SLLN, λ̂n → λ w.p. 1.

An extension of this to the case where {Xi}i≥1 is a Markov chain, known
as Markov chain Monte Carlo (MCMC), is discussed in Chapter 14.
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8.3 Series of independent random variables

Let {Xn}n≥1 be a sequence of independent random variables on a proba-
bility space (Ω,F , P ). The goal of this section is to investigate the conver-
gence of the infinite series

∑∞
n=1Xn, i.e., that of the partial sum sequence,

Sn =
∑n

i=1Xi, n ≥ 1.
The main result of this section is Kolmogorov’s 3-series theorem (The-

orem 8.3.5). The following two inequalities play a fundamental role in the
proof of this theorem and also have other important applications.

Theorem 8.3.1: Let {Xj : 1 ≤ j ≤ n} be a collection of independent
random variables. Let Si =

∑i
j=1Xj for 1 ≤ i ≤ n.

(i) (Kolmogorov’s first inequality). Suppose that EXj = 0v and EX2
j <

∞, 1 ≤ j ≤ n. Then, for 0 < λ <∞,

P
(

max
1≤i≤n

|Si| ≥ λ
)
≤ Var(Sn)

λ2 . (3.1)

(ii) (Kolmogorov’s second inequality). Suppose that there exists a constant
C ∈ (0,∞) such that P (|Xj − EXj | ≤ C) = 1 for 1 ≤ j ≤ n. Then,
for any 0 < λ <∞,

P
(

max
1≤i≤n

|Si| ≤ λ
)
≤ (2C + 4λ)2

Var(Sn)
.

Proof: Let A = {max1≤i≤n |Si| ≥ λ} and let

A1 = {|S1| ≥ λ},
Aj = {|S1| < λ, |S2| < λ, . . . , |Sj−1| < λ, |Sj | ≥ λ}

for j = 2, . . . , n. Then A1, . . . , An are disjoint,
⋃n

j=1Aj = A and P (A) =∑n
j=1 P (Aj). Since EXj = 0 for all j,

Var(Sn) = ES2
n ≥ E(S2

nIA) =
n∑

j=1

E(S2
nIAj )

=
n∑

j=1

E
[(

(Sn − Sj)2 + S2
j + 2(Sn − Sj)Sj

)
IAj

]

≥
n∑

j=1

E(S2
j IAj ) + 2

n−1∑
j=1

E
(
(Sn − Sj)SjIAj

)
. (3.2)

Note that since {X1, . . . , Xn} are independent, (Sn−Sj) ≡
∑n

i=j+1Xi and
SjIAj are independent for 1 ≤ j ≤ n− 1. Hence,

E
(
(Sn − Sj)SjIAj

)
= E(Sn − Sj)E(SjIAj ) = 0.
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Also on Aj , S2
j ≥ λ2. Therefore, by (3.2),

Var(Sn) ≥
n∑

j=1

λ2P (Aj) = λ2P (A).

This establishes (i). For a proof of (ii), see Chung (1974), p. 117. �

Remark 8.3.1: Recall that Chebychev’s inequality asserts that for λ > 0,
P (|Sn| ≥ λ) ≤ Var(Sn)

λ2 and thus Kolmogorov’s first inequality is signifi-
cantly stronger. Kolmogorov’s first inequality has an extension known as
Doob’s maximal inequality to a class of dependent random variables, called
martingales (see Chapter 13). The next inequality is due to P. Levy.

Definition 8.3.1: For any random variable X, a real number c is called
a median of X if

P (X < c) ≤ 1
2
≤ P (X ≤ c). (3.3)

Such a c always exists. It can be verified that c0 ≡ inf{x : P (X ≤ x) ≥ 1
2}

is a median. Note that if c is a median of X and α is a real number, then αc
is a median of αX and α+c is a median of α+X. Further, if P (|X| ≥ α) < 1

2
for some α > 0, then any median c of X satisfies |c| ≤ α (Problem 8.4).

Theorem 8.3.2: (Levy’s inequality). Let Xj, j = 1, . . . , n be independent
random variables. Let Sj =

∑n
j=1Xi, and cj,n be a median of (Sn−Sj) for

1 ≤ j ≤ n, where cn,n is set equal to 0. Then, for any 0 < λ <∞,

(i) P
(

max
1≤j≤n

(Sj − cj,n) ≥ λ
)
≤ 2P (Sn ≥ λ) ;

(ii) P
(

max
1≤j≤n

|Sj − cj,n| ≥ λ
)
≤ 2P (|Sn| ≥ λ).

Proof: Let

Aj = {Sj − Sn ≤ cj,n} for 1 ≤ j ≤ n,

B =
{

max
1≤j≤n

(Sj − cj,n) ≥ λ
}
,

B1 = {S1 − c1,n ≥ λ}
Bj = {Si − ci,n < λ for 1 ≤ i ≤ j − 1, Sj − cj,n ≥ λ},

for j = 2, . . . , n. Then B1, . . . , Bn are disjoint and
⋃n

j=1Bj = B. Since
X1, . . . , Xn are independent, Aj and Bj are independent for each j =
1, 2, . . . , n. Also for each j, Aj = {Sj − cj,n ≤ Sn}, and hence on Aj ∩Bj ,
Sn ≥ λ holds. Thus,

P (Sn ≥ λ) ≥
n∑

j=1

P (Aj ∩Bj)
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=
n∑

j=1

P (Aj)P (Bj)

≥ 1
2
P

( n⋃
j=1

Bj

)

=
1
2
P (B),

proving part (i). Now part (ii) follows by applying part (i) to both {Xi}n
i=1

and {−Xi}n
i=1. �

Recall that if {Yn}n≥1 is a sequence of random variables, then {Yn}n≥1
converges w.p. 1 implies that {Yn}n≥1 converges in probability as well. A
remarkable result of P. Levy is that if {Sn}n≥1 is the sequence of partial
sums of independent random variables and {Sn}n≥1 converges in proba-
bility, then {Sn}n≥1 must converge w.p. 1 as well. The proof of this uses
Levy’s inequality proved above.

Theorem 8.3.3: Let {Xn}n≥1 be a sequence of independent random vari-
ables. Let Sn =

∑n
j=1Xj for 1 ≤ n < ∞ and let {Sn}n≥1 converge in

probability to a random variable S. Then Sn → S w.p. 1.

Proof: Recall that a sequence {xn}n≥1 of real numbers converges iff it is
Cauchy iff δn ≡ sup{|xk − x| : k, � ≥ n} → 0 as n→∞. Let

Δ̃n ≡ sup{|Sk − S| : k, � ≥ n} and
Δn ≡ sup{|Sk − Sn| : k ≥ n}.

Then, Δ̃n ≤ 2Δn and Δ̃n is decreasing in n. Suppose it is shown that

Δn −→p 0. (3.4)

Then, Δ̃n −→p 0 and hence there is a subsequence {nk}k≥1 such that
Δ̃nk

→ 0 as k → ∞ w.p. 1. Since Δ̃n is decreasing in n, this implies that
Δ̃n → 0 w.p. 1. Thus it suffices to establish (3.4). Fix 0 < ε < 1. Let

Sn, = Sn+ − Sn for � ≥ 1,
Δn,k = max{|Sn,| : 1 ≤ � ≤ k}, k ≥ 1.

Note that for each n ≥ 1, {Δn,k}k≥1 is a nondecreasing sequence,
lim

k→∞
Δn,k = Δn and hence, for any n ≥ 1,

P (Δn > ε) = lim
k→∞

P (Δn,k > ε). (3.5)

Levy’s inequality (Theorem 8.3.2) will now be used to bound P (Δn,k > ε)
uniformly in k. Since Sn −→p S, for any η > 0, there exists an n0 ≥ 1 such
that for all n ≥ n0,

P (|Sn − S| > η) < η.
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This implies that for all k ≥ � ≥ n0,

P (|Sk − S| > 2η) < 2η. (3.6)

If 0 < η < 1
4 , then the medians of Sk − S for k ≥ � ≥ n0 are bounded

by 2η. Hence, for n ≥ n0 and k ≥ 1, applying Levy’s inequality (i.e., the
above theorem) to {Xi : n+ 1 ≤ i ≤ n+ k},

P (Δn,k > ε) = P
(

max
1≤j≤k

|Sn,j | > ε
)

≤ P
(

max
1≤j≤k

|Sn,j − cn+j,n+k| ≥ ε− 2η
)

≤ 2P (|Sn,k| ≥ ε− 2η).

Now, choosing 0 < η < ε
4 , (3.6) yields P (Δn,k > ε) < 4η < ε for all n ≥ n0,

k ≥ 1. Then, by (3.5), P (Δn > ε) ≤ ε for all n ≥ n0. Hence, (3.4) holds. �

The following result on convergence of infinite series of independent ran-
dom variables is an immediate consequence of the above theorem.

Theorem 8.3.4: (Khinchine-Kolmogorov’s 1-series theorem). Let
{Xn}n≥1 be a sequence of independent random variables on a probability
space (Ω,F , P ) such that EXn = 0 for all n ≥ 1 and

∑∞
n=1EX

2
n < ∞.

Then Sn ≡
∑n

j=1Xj converges in mean square and almost surely, as
n→∞.

Proof: For any n, k ∈ N,

E(Sn − Sn+k)2 = Var(Sn − Sn+k) =
n+k∑

j=n+1

Var(Xj) =
n+k∑

j=k+1

EX2
j ,

by independence. Since
∑∞

n=1EX
2
n <∞, {Sn}n≥1 is a Cauchy sequence in

L2(Ω,F , P ) and hence converges in mean square to some S in L2(Ω,F , P ).
This implies that Sn −→p S, and by the above theorem Sn → S w.p. 1. �

Remark 8.3.2: It is possible to give another proof of the above theorem
using Kolmogorov’s inequality. See Problem 8.5.

Theorem 8.3.5: (Kolmogorov’s 3-series theorem). Let {Xn}n≥1 be a
sequence of independent random variables on a probability space (Ω,F , P )
and let Sn =

∑n
i=1Xi, n ≥ 1. Then the sequence {Sn}n≥1 converges w.p.

1 iff the following 3-series converge for some 0 < c <∞:

(i)
∑∞

i=1 P (|Xi| > c) <∞,

(ii)
∑∞

i=1E(Yi) converges,

(iii)
∑∞

i=1 Var(Yi) <∞,
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where Yi = XiI(|Xi| ≤ c), i ≥ 1.

Proof: (Sufficiency). By (i) and the Borel-Cantelli lemma, P (Xi 
=
Yi i.o.) = P (|Xi| > c i.o.) = 0. Hence {Sn}n≥1 converges w.p. 1 iff {Tn}n≥1
converges w.p. 1, where Tn =

∑n
i=1 Yi, n ≥ 1. By (iii) and the 1-series the-

orem, the sequence {
∑n

i=1(Yi −EYi)}n≥1 converges w.p. 1. Hence, by (ii),
{Tn}n≥1 converges w.p. 1 and hence {Sn}n≥1 converges w.p. 1.

(Necessity). Suppose {Sn}n≥1 converges w.p. 1. Fix 0 < c <∞ and let
Yi = XiI(|Xi| ≤ c), i ≥ 1. Since {Sn}n≥1 converges w.p. 1, Xn → 0 w.p.
1. Hence, w.p. 1, |Xi| ≤ c for all but a finite number of i’s. If Ai ≡ {Xi 
=
Yi} = {|Xi| > c}, then by the second Borel-Cantelli lemma,

∞∑
i=1

P (Ai) <∞, establishing (i).

To establish (ii) and (iii), the following construction and the second in-
equality of Kolmogorov will be used. Without loss of generality, assume
that there is another sequence {X̃n}n≥1 of random variables on the same
probability space (Ω,F , P ) such that (a) {X̃n}n≥1 are independent, (b)
{X̃n}n≥1 is independent of {Xn}n≥1, and (c) for each n ≥ 1, Xn =d X̃n,
i.e., Xn and X̃n have the same distribution. Let

Ỹi = X̃iI(|X̃i| ≤ c),
Zi = Yi − Ỹi, i ≥ 1,

Tn ≡
n∑

i=1

Yi,

T̃n ≡
n∑

i=1

Ỹi,

and

Rn ≡
n∑

i=1

Zi, n ≥ 1.

Since {Sn ≡
∑n

i=1Xi}n≥1 converges w.p. 1, and Xi = Yi for all but a
finite number of i, {Tn}n≥1 converges w.p. 1. Since {Yi}n≥1 and {Ỹi}n≥1

have the same distribution on R∞, {T̃n}n≥1 converges w.p. 1. Thus the
difference sequence {Rn}n≥1 converges w.p. 1.

Next, note that {Zn}n≥1 are independent random variables with mean 0
and {Zn}n≥1 are uniformly bounded by 2c. Applying Kolmogorov’s second
inequality (Theorem 8.3.1 (b)) to {Zj : m < j ≤ m+ n} yields

P

(
max

m<j≤m+n
|Rj −Rm| ≤ ε

)
≤ (2c+ 4ε)2∑m+n

i=m+1 Var(Zi)
(3.7)

for all m ≥ 1, n ≥ 1, 0 < ε <∞.
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Let Δm ≡ maxm<j |Rj −Rm|. Let n→∞ in (3.7) to conclude that

P (Δm ≤ ε) ≤ (2c+ 4ε)2∑∞
i=m+1 Var(Zi)

.

Now suppose (iii) does not hold. Then, since Yi and Ỹi are iid, Var(Zi) =
2Var(Yi) for all i ≥ 1, and thus

∑∞
i=m+1 Var(Zi) = ∞ and hence P (Δm ≤

ε) = 0 for each m ≥ 1, 0 < ε < ∞. This implies that P (Δm > ε) = 1 for
each ε > 0 and hence that Δm = ∞ w.p. 1 for all m ≥ 1. This contradicts
the convergence w.p. 1 of the sequence {Rn}n≥1. Hence (iii) holds.

By the 1-series theorem, {
∑n

i=1(Yi − EYi)}n≥1 converges w.p. 1. Since
{
∑n

i=1 Yi}n≥1 converges w.p. 1,
∑∞

i=1EYi converges, establishing (ii). This
completes the proof of necessity part and of the theorem. �

Remark 8.3.3: To go from the convergence w.p. 1 of {Rn}n≥1 to (iii), it
suffices to show that if (iii) fails, then for each 0 < A <∞, P (|Rn| ≤ A) →
0 as n→∞. This can be established without the use of (3.7) but using the
central limit theorem (to be proved later in Chapter 11), which shows that
if Var(Rn) →∞, then

P

(
Rn√

Var(Rn)
≤ x

)
→ Φ(x) ≡ 1√

2π

∫ x

−∞
e−t2/2dt,

for all x in R. (Also see Billingsley (1995), p. 290.)

8.4 Kolmogorov and Marcinkiewz-Zygmund SLLNs

For a sequence of independent and identically distributed random variables
{Xn}n≥1, Kolmogorov showed that {Xn}n≥1 obeys the SLLN with bn = n
iff E|X1| < ∞. Marcinkiewz and Zygmund generalized this result and
proved a class of SLLNs for {Xn}n≥1 when E|X|p <∞ for some p ∈ (0, 2).
The proof uses Kolmogorov’s 3-series theorem and some results from real
analysis. This approach is to be contrasted with Etemadi’s proof of the
SLLN, which uses a decomposition of the random variables {Xn}n≥1 into
positive and negative parts and uses monotonicity of the sum to establish
almost sure convergence along a subsequence by an application of the Borel-
Cantelli lemma. The alternative approach presented in this section is also
useful for proving SLLNs for sums of independent random variables that
are not necessarily identically distributed.

The next three are preparatory results for Theorem 8.4.4.

Lemma 8.4.1: (Abel’s summation formula). Let {an}n≥1 and {bn}n≥1
be two sequences of real numbers. Then, for all n ≥ 2,

n∑
j=1

ajbj = Anbn −
n−1∑
j=1

Aj(bj+1 − bj) (4.1)
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where Ak =
∑k

j=1 aj, k ≥ 1.

Proof: Let A0 = 0. Then, aj = Aj −Aj−1, j ≥ 1. Hence,

n∑
j=1

ajbj =
n∑

j=1

(Aj −Aj−1)bj =
n∑

j=1

Ajbj −
n∑

j=1

Aj−1bj

=
n∑

j=1

Ajbj −
n−1∑
j=1

Ajbj+1,

yielding (4.1). �

Lemma 8.4.2: (Kronecker’s lemma). Let {an}n≥1 and {bn}n≥1 be se-
quences of real numbers such that 0 < bn ↑ ∞ as n → ∞ and

∑∞
j=1 aj

converges. Then,

1
bn

n∑
j=1

ajbj −→ 0 as n→∞. (4.2)

Proof: Let Ak =
∑k

j=1 aj , A ≡
∑∞

j=1 aj = limk→∞Ak and Rk = A−Ak,
k ≥ 1. Then, by Lemma 8.4.1 for n ≥ 2,

n∑
j=1

ajbj = Anbn −
n−1∑
j=1

Aj(bj+1 − bj)

= Anbn −
n−1∑
j=1

(A−Rj)(bj+1 − bj)

= Anbn −A

n−1∑
j=1

(bj+1 − bj) +
n−1∑
j=1

Rj(bj+1 − bj)

= Anbn −Abn +Ab1 +
n−1∑
j=1

Rj(bj+1 − bj)

= −Rnbn +Ab1 +
n−1∑
j=1

Rj(bj+1 − bj). (4.3)

Since
∑∞

n=1 an converges, Rn → 0 as n→∞. Hence, given any ε > 0, there
exists N = Nε > 1 such that |Rn| ≤ ε for all n ≥ N . Since 0 < bn ↑ ∞, for
all n > N ,

∣∣∣∣b−1
n

n−1∑
j=1

Rj(bj+1 − bj)
∣∣∣∣
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≤ b−1
n

N−1∑
j=1

|Rj | |bj+1 − bj |+ ε b−1
n

n−1∑
j=N

(bj+1 − bj)

= b−1
n

N−1∑
j=1

|Rj | |bj+1 − bj |+ ε.

Now letting n→∞ and then letting ε ↓ 0, yields

lim sup
n→∞

∣∣∣∣b−1
n

n−1∑
j=1

Rj(bj+1 − bj)
∣∣∣∣ = 0.

Hence, (4.2) follows from (4.3). �

Lemma 8.4.3: For any random variable X,
∞∑

n=1

P (|X| > n) ≤ E|X| ≤
∞∑

n=0

P (|X| > n). (4.4)

Proof: For n ≥ 1, let An = {n − 1 < |X| ≤ n}. Define the random
variables

Y =
∞∑

n=1

(n− 1) IAn
and Z =

∞∑
n=1

n IAn
.

Then, it is clear that Y ≤ |X| ≤ Z, so that

EY ≤ E|X| ≤ EZ. (4.5)

Note that

EY =
∞∑

n=1

(n− 1)P (An)

=
∞∑

n=2

n−1∑
j=1

P (An)

=
∞∑

j=1

∞∑
n=j+1

P (n− 1 < |X| ≤ n)

=
∞∑

j=1

P (|X| > j).

Similarly, one can show that EZ =
∑∞

j=0 P (|X| > j). Hence, (4.4) follows.
�

Theorem 8.4.4: (Marcinkiewz-Zygmund SLLNs). Let {Xn}n≥1 be a se-
quence of identically distributed random variables and let p ∈ (0, 2). Write
Sn =

∑n
i=1Xi, n ≥ 1.
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(i) If {Xn}n≥1 are pairwise independent and

Sn − nc

n1/p
converges w.p. 1 (4.6)

for some c ∈ R, then E|X1|p <∞.

(ii) Conversely, if E|X1|p <∞ and {Xn}n≥1 are independent, then (4.6)
holds with c = EX1 for p ∈ [1, 2) and with any c ∈ R for p ∈ (0, 1).

Corollary 8.4.5: (Kolmogorov’s SLLN ). Let {Xn}n≥1 be a sequence of
iid random variables. Then,

Sn − nc

n
→ 0 w.p. 1

for some c ∈ R iff E|X1| <∞, in which case, c = EX1.

Thus, Kolmogorov’s SLLN corresponds with the special case p = 1 of
Theorem 8.4.4. Note that compared with the WLLN and Borel’s SLLN
of Sections 8.1 and 8.2, Kolmogorov’s SLLN presents a significant im-
provement in the moment condition, i.e., it assumes the finiteness of only
the first absolute moment. Further, both the Kolmogorov’s SLLN and the
Marcinkiewz-Zygmund SLLN are proved under minimal moment condi-
tions, since the corresponding moment conditions are shown to be neces-
sary.

Proof of Theorem 8.4.4: (i) Suppose that (4.6) holds for some c ∈ R.
Then,

Xn

n1/p
=

Sn − Sn−1

n1/p

=
Sn − nc

n1/p
− Sn−1 − (n− 1)c

n1/p
+

c

n1/p

→ 0 as n→∞, a.s.

Hence, P (|Xn/n
1/p| > 1 i.o.) = 0. By the second Borel-Cantelli lemma

and by the pairwise independence of {Xn}n≥1, this implies

∞∑
n=1

P

(
|Xn|
n1/p

> 1
)
<∞,

i.e.,
∞∑

n=1

P
(
|X1|p > n

)
<∞.

Hence, by Lemma 8.4.3, E|X1|p <∞.
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To prove (ii), suppose that E|X1|p < ∞ for some p ∈ (0, 2). For 1 ≤
p < 2, w.l.o.g. assume that EX1 = 0. Next, define the variables Zn =
XnI(|Xn|p ≤ n), n ≥ 1. Then, by Lemma 8.4.3,

∞∑
n=1

P (Xn 
= Zn)

=
∞∑

n=1

P (|Xn|p > n) =
∞∑

n=1

P (|X1|p > n) ≤ E|X1|p <∞.

Hence, by the Borel-Cantelli lemma,

P (Xn 
= Zn i.o.) = 0. (4.7)

Note that, in view of (4.7), (4.6) holds with c = 0 if and only if

n1/p
n∑

i=1

Zi → 0 as n→∞, w.p. 1. (4.8)

Note that for any j ∈ N, θ > 1 and β ∈ (−∞, 0)\{−1},
∞∑

n=j

n−θ ≤ j−θ +
∞∑

n=j+1

∫ n

n−1
x−θdx

= j−θ +
1

θ − 1
· j−(θ−1)

≤ θ

θ − 1
· j−(θ−1) (4.9)

and similarly,

j∑
n=1

nβ ≤
[
β + j(β+1)]/(β + 1)

≤ β

β + 1
I(β < −1) +

jβ+1

β + 1
I(−1 < β < 0). (4.10)

Now,

∞∑
n=1

Var(Zn/n
1/p)

≤
∞∑

n=1

EX2
1I(|X1|p ≤ n) · n−2/p

=
∞∑

n=1

n∑
j=1

EX2
1I(j − 1 < |X1|p ≤ j) · n−2/p
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=
∞∑

j=1

( ∞∑
n=j

n−2/p

)
· EX2

1I(j − 1 < |X1|p ≤ j)

≤ 2
2− p

∞∑
j=1

j−( 2
p −1) · EX2

1I
(
(j − 1) < |X1|p ≤ j

)
(by (4.9))

≤ 2
2− p

∞∑
j=1

j−( 2
p −1) · E|X1|pI(j − 1 < |X1|p ≤ j) · (j1/p)2−p

=
2

2− p
E|X1|p <∞.

Hence, by Theorem 8.3.4,
∑∞

n=1(Zn − EZn)/n1/p converges w.p. 1. By
Kronecker’s lemma (viz. Lemma 8.4.2),

n−1/p
n∑

j=1

(Zj − EZj) → 0 as n→∞, w.p. 1. (4.11)

Now consider the case p = 1. In this case, E|X1| <∞ and by the DCT,
EZn = EX1I(|X1| ≤ n) → EX1 = 0 as n → ∞. Hence, n−1 ∑n

i=1EZi →
0. Part (ii) of the theorem now follows from (4.8) and (4.11) for p = 1.

Next consider the case p ∈ (0, 2), p 
= 1. Using (4.9) and (4.10), one can
show (cf. Problem 8.12) that

n−1/p
n∑

j=1

EZj → 0 as n→∞. (4.12)

Hence, by (4.8), (4.11), and (4.12), one gets (4.6) with c = 0 for p ∈
(0, 2)\{1}. Finally, note that for p ∈ (0, 1), and for any c ∈ R,

Sn − nc

n1/p
=

Sn

n1/p
− nc

n1/p

→ 0 as n→∞, a.s.,

whenever Sn/n
1/p → 0 as n → ∞, w.p. 1. Hence, (4.6) holds with an

arbitrary c ∈ R for p ∈ (0, 1). This completes the proof of part (ii) for
p ∈ (0, 2)\{1} and hence of the theorem. �

The next result gives a SLLN for independent random variables that are
not necessarily identically distributed.

Theorem 8.4.6: Let {Xn}n≥1 be a sequence of independent random vari-
ables. If

∑∞
n=1E|Xn|αn/nαn <∞ for some αn ∈ [1, 2], n ≥ 1, then

n−1
n∑

j=1

(Xj − EXj) → 0 as n→∞, w.p. 1. (4.13)
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Proof: W.l.o.g. suppose that EXn = 0 for all n ≥ 1. Let Yn =
XnI(|Xn| ≤ n)/n. Note that |EYn| = |n−1(EXn − EXnI(|Xn| > n))| =
n−1|EXnI(|Xn| > n)|, n ≥ 1. Since 1 ≤ αn ≤ 2,

∞∑
n=1

{P (|Xn| > n) + |EYn|}

≤ 2
∞∑

n=1

n−1E|Xn|I(|Xn| > n)

≤ 2
∞∑

n=1

E|Xn|αn/nαn <∞

and
∞∑

n=1

Var(Yn) ≤
∞∑

n=1

n−2EX2
nI(|Xn| ≤ n)

≤
∞∑

n=1

n−αnEXαn
n <∞.

Hence, by Kolmogorov’s 3-series theorem,
∑∞

n=1(Xn/n) converges w.p. 1.
Now the theorem follows from Lemma 8.4.2. �

Corollary 8.4.7: Let {Xn}n≥1 be a sequence of independent random vari-
ables such that for some α ∈ [1, 2],

∑∞
n=1(n

−αE|Xn|α) < ∞. Then (4.13)
holds.

8.5 Renewal theory

8.5.1 Definitions and basic properties
Let {Xn}n≥0 be a sequence of nonnegative random variables that are in-
dependent and, for i ≥ 1, identically distributed with cdf F . Let Sn =∑n

i=0Xi for n ≥ 0. Imagine a system where a component in operation at
time t = 0 lasts X0 units of time and then is replaced by a new one that
lasts X1 units of time, which, at failure, is replaced by yet another new one
that lasts X2 units of time and so on. The sequence {Sn}n≥0 represents
the sequence of epochs when ‘renewal’ takes place and is called a renewal
sequence. Assume that P (X1 = 0) < 1. Then, since P (X1 <∞) = 1, it fol-
lows that for each n, P (Sn <∞) = 1 and limn→∞ Sn = ∞ w.p. 1 (Problem
8.16). Now define the counting process {N(t) : t ≥ 0} by the relation

N(t) = k if Sk−1 ≤ t < Sk for k = 0, 1, 2, . . . (5.1)

where S−1 = 0. Thus N(t) counts the number of renewals up to time t.
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Definition 8.5.1: The stochastic process {N(t) : t ≥ 0} is called a renewal
process with lifetime distribution F . The renewal sequence {Sn}n≥0 and the
renewal process {N(t) : t ≥ 0} are called nondelayed or standard if X0 has
the same distribution as X1 and are called delayed otherwise.

Since P (X1 ≥ 0) = 1, {Sn}n≥0 is nondecreasing in n and for each t ≥ 0,
the event {N(t) = k} = {Sk−1 ≤ t < Sk} belongs to the σ-algebra σ〈{Xj :
0 ≤ j ≤ k}〉 and hence N(t) is a random variable. Using the nontriviality
hypothesis that P (X1 = 0) < 1, it is shown below that for each t > 0, the
random variable N(t) has finite moments of all order.

Proposition 8.5.1: Let P (X1 = 0) < 1. Then there exists 0 < λ < 1 (not
depending on t) and a constant C(t) ∈ (0,∞) such that

P (N(t) > k) ≤ C(t)λk for all k > 0. (5.2)

Proof: For t > 0, k ∈ N,

P (N(t) > k) = P (Sk ≤ t)
= P

(
e−θSk ≥ e−θt

)
for θ > 0

≤ eθtE
(
e−θSk

)
(by Markov’s inequality)

= eθtE
(
e−θX0

)(
E
(
e−θX1

))k

.

By BCT, limθ↑∞E(e−θX1) = P (X1 = 0) < 1. Hence, there exists a θ large
such that λ ≡ E(e−θX1) is less than one, thus, completing the proof. �

Corollary 8.5.2: There exists an s0 > 0 such that the moment generating
function (m.g.f.) E(esN(t)) <∞ for all s < s0 and t ≥ 0.

Proof: From (5.2), for any t > 0, it follows that P
(
N(t) = k

)
= O(λk) as

k → ∞ for some 0 < λ < 1 and hence E
(
esN(t)

)
=

∑∞
k=0(e

s)kP
(
N(t) =

k
)
<∞ for any s such that esλ < 1, i.e., for all s < s0 ≡ − log λ. �

From (5.1), it follows that for t > 0,

SN(t)−1 ≤ t < SN(t)

⇒
(N(t)− 1

N(t)

) SN(t)−1

(N(t)− 1)
≤ t

N(t)
≤

(SN(t)

N(t)

)
. (5.3)

Let A be the event that Sn

n → EX1 as n → ∞ and let B be the event
that N(t) →∞ as t→∞. Since Sn →∞ w.p. 1, it follows that P (B) = 1.
Also, by the SLLN, P (A) = 1. On the event C = A ∩B, it holds that

SN(t)

N(t)
→ EX1 as t→∞.
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This together with (5.3) yields the following result.

Proposition 8.5.3: Suppose that P (X1 = 0) < 1. Then,

lim
t→∞

N(t)
t

=
1

EX1
w.p. 1. (5.4)

Definition 8.5.2: The function U(t) ≡ EN(t) for the nondelayed process
is called the renewal function.

An explicit expression for U(·) is given by (5.13) below.
Next consider the convergence of EN(t)/t. By (5.4) and Fatou’s lemma,

one gets

lim inf
t→∞

EN(t)
t

≥ 1
EX1

. (5.5)

It turns out that the lim inft→∞ in (5.5) can be replaced by limt→∞ and
≥ by equality. To do this it suffices to show that the family {N(t)

t : t ≥ k}
is uniformly integrable for some k < ∞. This can be done by showing
E(N(t)

t )2 is bounded in t (see Chung (1974), Chapter 5). An alternate
approach is to bound the lim sup. For this one can use an identity known
as Wald’s equation (see also Chapter 13).

8.5.2 Wald’s equation
Let {Xj}j≥1 be independent random variables with EXj = 0 for all j ≥ 1.
Also, let S0 = 0, Sn =

∑n
j=1Xj , n ≥ 1.

Definition 8.5.3: A positive integer valued random variable N is called
a stopping time with respect to {Xj}j≥1 if for every j ≥ 1, the event
{N = j} ∈ σ〈{X1, . . . , Xj}〉. A stopping time N is called bounded if there
exists a K <∞ such that P (N ≤ K) = 1.

Example 8.5.1: N ≡ min{n :
∑n

j=1Xj ≥ 25} is a stopping time w.r.t.
{Xj}j≥1, but M ≡ max{n :

∑n
j=1Xj ≥ 25} is not.

Proposition 8.5.4: Let {Xj}j≥1 be independent random variables with
EXj = 0. Let N be a bounded stopping time w.r.t. {Xj}j≥1. Then

E(|SN |) <∞ and ESN = 0.

Proof: Let K ∈ N be such that P (N ≤ K) = 1. Then |SN | ≤
∑K

j=1 |Xi|
and hence E|SN | <∞. Next, SN =

∑K
j=1XjI(N ≥ j) and hence

ESN =
K∑

j=1

E
(
XjI(N ≥ j)

)
.
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But the event {N ≥ j} = {N ≤ j − 1}c ∈ σ〈{X1, X2, . . . , Xj−1}〉. Since
Xj is independent of σ〈X1, X2, . . . , Xj−1〉,

E
(
XjI(N ≥ j)

)
= 0 for 1 ≤ j ≤ K.

Thus ESN = 0. �

Corollary 8.5.5: Let {Xj}j≥1 be iid random variables with E|X1| < ∞.
Let N be a bounded stopping time w.r.t. {Xj}j≥1. Then

ESN = (EN)EX1.

Corollary 8.5.6: Let {Xj}j≥1 be iid nonnegative random variable with
E|X1| <∞. Let N be a stopping time w.r.t. {Xj}j≥1. Then

ESN = (EN)EX1.

Proof: Let Nk = N ∧ k, k = 1, 2, . . .. Then Nk is a bounded stopping
time. By Corollary 8.5.5,

E(SNk
) = (ENk)EX1.

Let k ↑ ∞. Then 0 ≤ SNk
↑ SN and Nk ↑ N . By the MCT, ESNk

↑ ESN

and ENk ↑ EN . �

Theorem 8.5.7: (Wald’s equation). Let {Xj}j≥1 be iid random variables
with E|X1| <∞. Let N be a stopping time w.r.t. {Xj}j≥1 such that EN <
∞. Then

ESN = (EN)EX1.

Proof: Let Tn =
∑n

j=1 |Xj |, n ≥ 1. Let Nk = N ∧ k, k = 1, 2, . . .. Then
by Corollary 8.5.5,

E(SNk
) = (ENk)EX1.

Also, |SNk
| ≤ TNk

and

ETNk
= (ENk)E|X1|.

Further, as k →∞, Nk → N , SNk
→ SN , TNk

→ TN , and

ETNk
→ ETN = (EN)E|X1| <∞.

So, by the extended DCT (Theorem 2.3.11)

ESNk
→ ESN

i.e., (ENk)EX1 → ESN

i.e., ESN = (EN)EX1.

�
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8.5.3 The renewal theorems
In this section, two versions of the renewal theorem will be proved. For this,
the notation and concepts introduced in Sections 8.5.1 and 8.5.2 will be used
without further explanation. Note that for each t > 0 and j = 0, 1, 2, . . .,
the event {N(t) = j} = {Sj−1 ≤ t < Sj} belongs to σ〈{X0, . . . , Xj}〉.
Thus, by Wald’s equation (Theorem 8.5.7 above)

E(SN(t)) =
(
EN(t)

)
EX1 + EX0.

Let m ∈ (0,∞) and X̃i = min{Xi,m}, i ≥ 0. Let {S̃n}n≥0 and {Ñ(t)}t≥0
be the associated renewal sequence and renewal process, respectively.
Again, by Wald’s equation,

E
(
S̃Ñ(t)

)
=

(
EÑ(t)

)
EX̃1 + EX̃0.

But since S̃Ñ(t)−1 ≤ t < S̃Ñ(t), it follows that S̃Ñ(t) ≤ t+m and hence

(EÑ(t))EX̃1 + EX̃0 ≤ t+m.

This yields

lim sup
t→∞

EÑ(t)
t

≤ 1
EX̃1

.

Clearly, for all t > 0, Ñ(t) ≥ N(t) and hence

lim sup
t→∞

E
N(t)
t

≤ 1
EX̃1

. (5.6)

Since this is true for each m ∈ (0,∞) and by the MCT, EX̃1 → EX1 as
m→∞, it follows that

lim sup
t→∞

EN(t)
t

≤ 1
EX1

.

Combining this with (5.5) leads to the following result.

Theorem 8.5.8: (The weak renewal theorem). Let {N(t) : t ≥ 0} be a
renewal process with distribution F . Let μ =

∫
[0,∞) xdF (x) ∈ (0,∞). Then,

lim
t→∞

EN(t)
t

=
1
μ
. (5.7)

The above result is also valid when μ = ∞ when 1
μ is interpreted as zero.

Definition 8.5.4: A random variable X (and its probability distribution)
is called arithmetic (or lattice) if there exists a ∈ R and d > 0 such that X−a

d
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is integer valued. The largest such d is called the span of (the distribution
of) X.

Definition 8.5.5: A random variable X (and its distribution distribution)
is called nonarithmetic (or nonlattice) if it is not arithmetic.

The weak renewal theorem (Theorem 8.5.8) implies that EN(t) = t/μ+
o(t) as t→∞. This suggests that E

(
N(t+ h)−N(t)

)
= (t+ h)/μ− t/μ+

o(t) = h/μ+ o(t). A strengthening of the above result is as follows.

Theorem 8.5.9: (The strong renewal theorem). Let {N(t) : t ≥ 0} be a
renewal process with a nonarithmetic distribution F with a finite positive
mean μ. Then, for each h > 0,

lim
t→∞E

(
N(t+ h)−N(t)

)
=
h

μ
. (5.8)

Remark 8.5.1: Since

N(t) =
k−1∑
j=0

(
N(t− j)−N(t− j − 1)

)
+N(t− k)

where k ≤ t < k + 1, the weak renewal theorem follows from the strong
renewal theorem.

The following are the “arithmetic versions” of Theorems 8.5.8 and 8.5.9.
Let {Xi}i≥0 be independent positive integer valued random variables such
that {Xi}i≥1 are iid with distribution {pj}j≥1. Let Sn =

∑n
j=0Xj , n ≥ 0,

S−1 = 0. Let Nn = k if Sk−1 ≤ n < Sk, k = 0, 1, 2, . . .. Let

un = P (there is a renewal at time n)
= P (Sk = n for some k ≥ 0).

Theorem 8.5.10: Let μ =
∑∞

j=1 jpj ∈ (0,∞). Then

1
n

n∑
j=0

uj →
1
μ

as n→∞. (5.9)

Theorem 8.5.11: Let μ =
∑∞

j=1 jpj ∈ (0,∞) and g.c.d. {k : pk > 0} = 1.
Then

un →
1
μ

as n→∞. (5.10)

For proofs of Theorems 8.5.9 and 8.5.11, see Feller (1966) for an analytic
proof or Lindvall (1992) for a proof using the coupling method. The proof
of Theorem 8.5.10 is similar to that of Theorem 8.5.8.
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8.5.4 Renewal equations
The above strong renewal theorems have many applications. These are via
what are known as renewal equations.

Let F (·) be a cdf such that F (0) = 0. Let B0 ≡ {f | f : [0,∞) → R, f
is Borel measurable and bounded on bounded intervals}.

Definition 8.5.6: A function a(·) is said to satisfy the renewal equation
with distribution F (·) and forcing function b(·) ∈ B0 if a ∈ B0 and

a(t) = b(t) +
∫

(0,t]
a(t− u)dF (u) for t ≥ 0. (5.11)

Theorem 8.5.12: Let F be a cdf such that F (0) = 0 and let b(·) ∈ B0.
Then there is a unique solution a0(·) ∈ B0 to (5.11) given by

a0(t) =
∫

[0,t]
b(t− u)U(du) (5.12)

where U(·) is the Lebesgue-Stieltjes measure induced by the nondecreasing
function

U(t) ≡
∞∑

n=0

F (n)(t), (5.13)

with F (n)(·), n ≥ 0 being defined by the relations

F (n)(t) =
∫

(0,t]
F (n−1)(t− u)dF (u), t ∈ R, n ≥ 1,

F (0)(t) =
{

1 if t ≥ 0
0 t < 0.

It will be shown below that the function U(·) defined in (5.13) is the
renewal function EN(t) as in Definition 8.5.2.

Proof: For any function b ∈ B0 and any nondecreasing right continuous
function G : [0,∞) → R, let

(b ∗G)(t) ≡
∫

[0,t]
b(t− u)dG(u).

Then since F (0) = 0, the equation (5.11) can be rewritten as

a = b+ a ∗ F. (5.14)

Let {Xi}i≥1 be iid random variables with cdf F . Then it is easy to verify
that F (n)(t) = P (Sn ≤ t), where S0 = 0, and Sn =

∑n
i=1Xi for n ≥ 1. Let
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{N(t) : t ≥ 0} be as defined by (5.1). Then, for t ∈ (0,∞),

EN(t) =
∞∑

j=1

P
(
N(t) ≥ j

)
=

∞∑
j=1

P (Sj−1 ≤ t) =
∞∑

n=0

F (n)(t) = U(t).

By Proposition 8.5.1, U(t) < ∞ for all t > 0 and is nondecreasing.
Since b ∈ B0 for each 0 < t < ∞, a0 defined by (5.12) is well-defined. By
definition a0 = b ∗ U and by (5.13), a0 satisfies (5.14) and hence (5.11). If
a1 and a2 from B0 are two solutions to (5.14) then ã ≡ a1 − a2 satisfies

ã = ã ∗ F

and hence
ã = ã ∗ F (n) for all n ≥ 1.

This implies

M(t) ≡ sup{|ã(u)| : 0 ≤ u ≤ t} ≤M(t)F (n)(t).

But F (n)(t) → 0 as n → ∞. Hence |ã| = 0 on (0, t] for each t. Thus
a0 = b ∗ U is the unique solution to (5.11). �

The discrete or arithmetic analog of the renewal equation (5.11) is as
follows. Let {Xi}i≥1 be iid positive integer valued random variables with
distribution {pj}j≥1. Let S0 = 0, and Sn =

∑n
i=1Xi for n ≥ 1. Let un =

P (Sj = n for some j ≥ 0). Then, u0 = 1 and un satisfies un =
∑n

j=1 pjun−j

for n ≥ 1. For any sequence {bj}j≥0, the equation

an = bn +
n∑

j=1

an−jpj , n = 0, 1, 2, . . . (5.15)

is called the discrete renewal equation. As in the general case, it can be
shown (Problem 8.17 (a)) that the unique solution to (5.15) is given by

an =
n∑

j=0

bn−juj . (5.16)

The following convergence results are easy to establish from Theorem 8.5.11
(Problem 8.17 (b)).

Theorem 8.5.13: (The key renewal theorem, discrete case). Let {pj}j≥1
be aperiodic, i.e., g.c.d. {k : pk > 0} = 1 and μ ≡

∑∞
j=1 jpj ∈ (0,∞). Let

{un}n≥0 be the renewal sequence associated with {pj}j≥1. That is, u0 = 1
and un =

∑n
j=1 pjun−j for n ≥ 1. Let {bj}j≥0 be such that

∑∞
j=1 |bj | <∞.

Let {an}n≥0 satisfy a0 = b0 and

an = bn +
∞∑

j=1

an−jpj n ≥ 1. (5.17)
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Then an =
∑∞

j=0 bjun−j, n ≥ 0 and lim
n→∞ an =

1
μ

∞∑
j=0

bj.

The nonarithmetic analog of the above is as follows.

Definition 8.5.7: A function b(·) ∈ B0 is directly Riemann integrable (dri)
on [0,∞) iff (i) for all h > 0,

∑∞
n=0 sup{|b(u)| : nh ≤ u ≤ (n+ 1)h} < ∞,

and (ii) limh→0
∑∞

n=0 h(mn(h)−mn(h)
)

= 0 where

mn(h) = sup{b(u) : nh ≤ u ≤ (n+ 1)h}
mn(h) = inf{b(u) : nh ≤ u ≤ (n+ 1)h}.

Theorem 8.5.14: (The key renewal theorem, nonarithmetic case).
Let F (·) be a nonarithmetic distribution with F (0) = 0 and μ =∫
[0,∞) udF (u) <∞. Let U(·) =

∑∞
n=0 F

(n)(·) be the renewal function asso-
ciated with F . Let b(·) ∈ B0 be directly Riemann integrable.

Then the unique solution to the renewal equation

a = b+ a ∗ F (5.18)

is given by a = b ∗ U and

lim
t→∞ a(t) =

c(b)
μ

(5.19)

where c(b) ≡ lim
h→0

∞∑
n=0

hmn(h).

Remark 8.5.2: A sufficient condition for b(·) to be dri is that it is Rie-
mann integrable on bounded intervals and that there exists a nonincreasing
integrable function h(·) on [0,∞) and a constant C such that |b(·)| ≤ Ch(·)
(Problem 8.18 (b)).

8.5.5 Applications
Here are two important applications of the above two theorems to a class
of stochastic processes known as regenerative processes.

Definition 8.5.8:

(a) A sequence of random variables {Yn}n≥0 is called regenerative if there
exists a renewal sequence {Tj}j≥0 such that the random cycles and
cycle length variables ηj =

(
{Yi : Tj ≤ i < Tj+1}, Tj+1 − Tj

)
for

j = 0, 1, 2, . . . are iid.

(b) A stochastic process {Y (t) : t ≥ 0} is called regenerative if there
exists a renewal sequence {Tj}j≥0 such that the random cycles and
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cycle length variables ηj ≡ {Y (t) : Tj ≤ t < Tj+1, Tj+1 − Tj} for
j = 0, 1, 2, . . . are iid.

(c) In both (a) and (b), the sequence {Tj}j≥0 are called the regeneration
times.

Example 8.5.2: Let {Yn}n≥0 be a countable state space Markov chain
(see Chapter 14) that is irreducible and recurrent. Fix a state Δ. Let

T0 = min{n : n > 0, Yn = Δ}
Tj+1 = min{n : n > Tj , Yn = Δ}, n ≥ 0.

Then {Yn}n≥0 is regenerative (Problem 8.19).

Example 8.5.3: Let {Y (t) : t ≥ 0} be a continuous time Markov chain (see
Chapter 14) with a countable state space that is irreducible and recurrent.
Fix a state Δ. Let

T0 = inf{t : t > 0, Y (t) = Δ}
Tj+1 = inf{t : t > Tj , Y (t) = Δ}.

Then {Y (t) : t ≥ 0} is regenerative (Problem 8.19).

Theorem 8.5.15: Let {Yn}n≥0 be a regenerative sequence of random vari-
ables with some state space (S,S) where S is a σ-algebra on S with regener-
ation times {Tj}j≥0. Let f : S → R be bounded and 〈S,B(R)〉-measurable.
Let

an ≡ Ef(Yn+T0),
bn ≡ Ef(YT0+n)I(T1 > T0 + n). (5.20)

Let μ = E(T1− T0) ∈ (0,∞) and g.c.d. {j : pj ≡ P (T1− T0 = j) > 0} = 1.
Then

(i) an →
∫

S

f(y)π(dy)

where π(A) ≡ 1
μ E

(∑T1−1
j=T0

IA(Yj)
)
, A ∈ S.

(ii) In particular,

‖P (Yn ∈ ·)− π(·)‖ → 0 as n→∞, (5.21)

where ‖ · ‖ denotes the total variation norm.

Proof: By the regenerative property, {an}n≥1 satisfies the renewal equa-
tion

an = bn +
n∑

j=0

an−jpj
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and hence, part (i) of the theorem follows from Theorem 8.5.13 and the
fact

∑∞
n=0 bn = μπ(A).

To prove (ii) note that ãn ≡ Ef(Yn) = E(f(Yn)I(T0 > n)) +∑n
j=0 an−jP (T0 = j) and by DCT limn→∞ ãn = limn→∞ an.
It is not difficult to show that for any two probability measures μ and ν

on (S,S), the total variation norm

‖μ− ν‖ = sup
{∣∣∣ ∫ fdμ−

∫
fdν

∣∣∣ : f ∈ B(S,R)
}

where B(S,R) = {f : f : S → R, F measurable, sup{|f(s)| : s ∈ S} ≤ 1}
(Problem 4.10 (b)). Thus,

‖P (Yn+T0 ∈ ·)− π(·)‖

≤ sup
{∣∣∣Ef(Yn0+T )−

∫
fdπ

∣∣∣ : f ∈ B(S,R)
}
. (5.22)

Now, for any f ∈ B(S,R) and any integer K ≥ 1, from Theorem 8.5.13,∣∣∣Ef(Yn0+T )−
∫
fdπ

∣∣∣
≤

K∑
j=0

bj

∣∣∣un−j −
1
μ

∣∣∣ + 2
∞∑

j=(K+1)

P (T1 − T0 > j) ≡ δn, say (5.23)

where {bj} is defined in (5.20). Since E(T1 − T0) < ∞, given ε > 0, there
exists a K such that

∞∑
j=(K+1)

P (T1 − T0 > j) < ε/2.

By Theorem (8.5.11), un → 1
μ . Thus, in (5.23), lim δn ≤ ε and so from

(5.22), (ii) follows. �

Theorem 8.5.16: Let {Y (t) : t ≥ 0} be a regenerative stochastic process
with state space (S,S) where S is a σ-algebra on S. Let f : S → R be
bounded and 〈S,B(R)〉-measurable. Let

a(t) = Ef(YT0+t), t ≥ 0,
b(t) ≡ Ef(YT0+t)I(T1 > T0 + t), t ≥ 0.

Let μ = E(T1 − T0) ∈ (0,∞) and the distribution of T1 − T0 be nonarith-
metic. Then

(i) a(t) →
∫

S

f(y)π(dy)

where π(A) = 1
μ E

( ∫ T

T0
IA(Y (u))du

)
, A ∈ S.
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(ii) In particular,

‖P (Yt ∈ ·)− π(·)‖ → 0 as t→∞ (5.24)

where ‖ · ‖ is the total variation norm.

The proof of this is similar to that of the previous theorem but uses
Theorem 8.5.14. �

8.6 Ergodic theorems

8.6.1 Basic definitions and examples
The law of large numbers proved in Section 8.2 states that if {Xi}i≥1
are pairwise independent and identically distributed and if h(·) is a Borel
measurable function, then

the time average, i.e.,
1
n

n∑
i=1

h(Xi)

→ Eh(X1), i.e., space average w.p. 1 (6.1)

as n→∞, provided E|h(X1)| <∞.
The goal of this section is to investigate how far the independence as-

sumption can be relaxed.

Definition 8.6.1: (Stationary sequences). A sequence of random variables
{Xi}i≥1 on a probability space (Ω,F , P ) is called strictly stationary if for
each k ≥ 1 the joint distribution of (Xi+j : j = 1, 2, . . . , k) is the same for
all i ≥ 0.

Example 8.6.1: {Xi}i≥1 iid.

Example 8.6.2: Let {Xi}i≥1 be iid. Fix 1 ≤ � < ∞. Let h : R → R be
a Borel function and Yi = h(Xi, Xi+1, . . . , Xi+−1), i ≥ 1. Then {Yi}i≥1 is
strictly stationary.

Example 8.6.3: Let {Xi}i≥1 be a Markov chain with a stationary dis-
tribution π. If X1 ∼ π then {Xi}i≥1 is strictly stationary (see Chapter
14).

It will be shown that if {Xi}i≥1 is a strictly stationary sequence that is
not a mixture of two other strictly stationary sequences, then (6.1) holds.
This is known as the ergodic theorem (Theorem 8.6.1 below).

Definition 8.6.2: (Measure preserving transformations). Let (Ω,F , P )
be a probability space and T : Ω → Ω be 〈F ,F〉 measurable. Then, T is
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called P -preserving (or simply measure preserving on (Ω,F , P )) if for all
A ∈ F , P (T−1(A)) = P (A). That is, the random point T (ω) has the same
distribution as ω.

Let X be a real valued random variable on (Ω,F , P ). Let Xi ≡
X(T (i−1)(ω)) where T (0)(ω) = ω, T (i)(ω) = T (T (i−1)(ω)), i ≥ 1. Then
{Xi}i≥1 is a strictly stationary sequence.

It turns out that every strictly stationary sequence arises this way. Let
{Xi}i≥1 be a strictly stationary sequence defined on some probability space
(Ω,F , P ). Let P̃ be the probability measure induced by X̃ ≡ {Xi(ω)}i≥1

on
(
Ω̃ ≡ R∞, F̃ ≡ B(R∞)

)
where R∞ is the space of all sequences of

real numbers and B(R∞) is the σ-algebra generated by finite dimensional
cylinder sets of the form {x : (xj : j = 1, 2, . . . , k) ∈ Ak}, 1 ≤ k <∞, Ak ∈
B(Rk). Let T : R∞ → R∞ be the unilateral (one sided) shift to the right,
i.e., T

(
(xi)i≥1

)
= (xi)i≥2. Then T is measure preserving on (Ω̃, F̃ , P̃ ). Let

Y1(ω̃) = x1, and Yi(ω̃) = Y1(T i−1ω̃) = xi for i ≥ 2 if ω̃ = (x1, x2, x3, . . .).
Then {Yi}i≥1 is a strictly stationary sequence on (Ω̃, F̃ , P̃ ) and has the
same distribution as {Xi}i≥1.

Example 8.6.4: Let Ω = [0, 1], F = B([0, 1]), P = Lebesgue measure.
Let Tω ≡ 2ω mod 1, i.e.,

Tω =

⎧⎨
⎩

2ω if 0 ≤ ω < 1
2

2ω − 1 if 1
2 ≤ ω < 1

0 ω = 1.

Then T is measure preserving since P ({ω : a < Tω < b}) = (b− a) for all
0 < a < b < 1 (Problem 8.20).

This example is an equivalent version of the iid sequence {δi}i≥1 of
Bernoulli (1/2) random variables. To see this, let ω =

∑∞
i=1

δi(ω)
2i be the bi-

nary expansion of ω. Then {δi}i≥1 is iid Bernoulli (1/2) and Tω = 2ω mod
1 =

∑∞
i=2

δi(ω)
2i−1 (cf. Problem 7.4). Thus T corresponds with the unilateral

shift to right on the iid sequence {δi}i≥1. For this reason, T is called the
Bernoulli shift.

Example 8.6.5: (Rotation). Let Ω = {(x, y) : x2 + y2 = 1} be the unit
circle. Fix θ0 in [0, 2π). If ω = (cos θ, sin θ), θ in [0, 2π) set Tω =

(
cos(θ +

θ0), sin(θ + θ0)
)
. That is, T rotates any point ω on Ω counterclockwise

through an angle θ0. Then T is measure preserving w.r.t. the Uniform
distribution on [0, 2π].

Definition 8.6.3: Let (Ω,F , P ) be a probability space and T : Ω → Ω
be a 〈F ,F〉 measurable map. A set A ∈ F is T-invariant if A = T−1A.
A set A ∈ F is almost T -invariant w.r.t. P if P (A � T−1A) = 0 where
A1�A2 = (A1 ∩Ac

2)∪ (Ac
1 ∩A2) is the symmetric difference of A1 and A2.
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It can be shown that A is almost T -invariant w.r.t. P iff there exists a
set A′ that is T -invariant and P (A�A′) = 0 (Problem 8.21).

Examples of T -invariant sets are A1 = {ω : T jω ∈ A0 for infinitely many
i ≥ 1} where A0 ∈ F ; A2 =

{
ω : 1

n

∑n
j=1 h(T

jω) converges as n → ∞
}

where h : Ω → R is a F measurable function. On the other hand, the event
{x : x1 ≤ 0} is not shift invariant in

(
R∞,B(R∞)

)
nor is it almost shift

invariant if P̃ corresponds to the iid case with a nondegenerate distribution.
The collection I of T -invariant sets is a σ-algebra and is called the in-

variant σ-algebra. A function h : Ω → R is I-measurable iff h(ω) = h(Tω)
for all ω (Problem 8.22).

Definition 8.6.4: A measure preserving transformation T on a probability
space (Ω,F , P ) is ergodic or irreducible (w.r.t. P ) if A is T -invariant implies
P (A) = 0 or 1.

Definition 8.6.5: A stationary sequence of random variables {Xi}i≥1
is ergodic if the unilateral shift T is ergodic on the sequence space
(R∞,B(R∞), P̃ ) where P̃ is the measure on R∞ induced by {Xi}i≥1.

Example 8.6.6: Consider the above sequence space. Then A ∈ F̃ is in-
variant with respect to the unilateral shift implies that A is in the tail
σ-algebra T ≡

⋂∞
n=1 σ(X̃j(ω), j ≥ n) (Problem 8.23). If {Xi}i≥1 are inde-

pendent then by the Kolmogorov’s zero-one law, A ∈ T implies P (A) = 0
or 1. Thus, if {Xi}i≥1 are iid then it is ergodic.

On the other hand, mixtures of iid sequences are not ergodic as seen
below.

Example 8.6.7: Let {Xi}i≥1 and {Yi}i≥1 be two iid sequences with dif-
ferent distributions. Let δ be Bernoulli (p), 0 < p < 1 and independent of
both {Xi}i≥1 and {Yi}i≥1. Let Zi ≡ δXi + (1− δ)Yi, i ≥ 1. Then {Zi}i≥1
is a stationary sequence and is not ergodic (Problem 8.24).

The above example can be extended to mixtures of irreducible positive
recurrent discrete state space Markov chains (Problem 8.25 (a)). Another
example is Example 8.6.5, i.e., rotation of the circle when θ is rational
(Problem 8.25 (b)).

Remark 8.6.1: There is a simple example of a measure preserving trans-
formation T that is ergodic but T 2 is not. Let Ω = {ω1, ω2}, ω1 
= ω2. Let
Tω1 = ω2, Tω2 = ω1, P be the distribution P ({ω1}) = P ({ω2}) = 1

2 . Then
T is ergodic but T 2 is not (Problem 8.26).



274 8. Laws of Large Numbers

8.6.2 Birkhoff’s ergodic theorem
Theorem 8.6.1: Let (Ω,F , P ) be a probability space, T : Ω → Ω be a
measure preserving ergodic map on (Ω,F , P ) and X ∈ L1(Ω,F , P ). Then

1
n

n−1∑
j=0

X(T jω) → EX ≡
∫

Ω
XdP (6.2)

w.p. 1 and in L1 as n→∞.

Remark 8.6.2: A more general version is without the assumption of
T being ergodic. In this case, the right side of (6.2) is a random vari-
able Y (ω) that is T -invariant, i.e., Y (ω) = Y (T (ω)) w.p. 1 and satisfies∫

A
XdP =

∫
A
Y dP for all T -invariant sets A. This Y is called the condi-

tional expectation of X given I, the σ-algebra of invariant sets (Chapter
13).

For a proof of this version, see Durrett (2004).
The proof of Theorem 8.6.1 depends on the following inequality.

Lemma 8.6.2: (Maximal ergodic inequality). Let T be measure preserving
on a probability space (Ω,F , P ) and X ∈ L1(Ω,F , P ). Let S0(ω) = 0,
Sn(ω) =

∑n−1
j=0 X(T jω), n ≥ 1, Mn(ω) = max{Sj(ω) : 0 ≤ j ≤ n}. Then

E
(
X(ω)I

(
Mn(ω) > 0

))
≥ 0.

Proof: By definition of Mn(ω), Sj(ω) ≤Mn(ω) for 1 ≤ j ≤ n. Thus

X(ω) +Mn(Tω) ≥ X(ω) + Sj(Tω) = Sj+1(ω).

Also, since Mn(Tω) ≥ 0,

X(ω) ≥ X(ω)−Mn(Tω) = S1(ω)−Mn(Tω).

Thus X(ω) ≥ max
{
Sj(ω) : 1 ≤ j ≤ n

}
− Mn(Tω). For ω such

that Mn(ω) > 0, Mn(ω) = max
{
Sj(ω) : 1 ≤ j ≤ n

}
and hence

X(ω) ≥ Mn(ω) − Mn(Tω). Also, since X ∈ L1(Ω,F , P ) it follows that
Mn ∈ L1(Ω,F , P ) for all n ≥ 1. Taking expectations yields

E
(
X(ω)I

(
Mn(ω) > 0

))
≥ E

(
Mn(ω)−Mn(Tω)I

(
Mn(ω) > 0

))
≥ E

(
Mn(ω)−Mn(Tω)I

(
Mn(ω) ≥ 0

))
(since Mn(Tω) ≥ 0)

= E
(
Mn(ω)−Mn(Tω)

)
= 0,

since T is measure preserving. �
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Remark 8.6.3: Note that the measure preserving property of T is used
only at the last step.

Proof of Theorem 8.6.1: W.l.o.g. assume that EX = 0. Let Z(ω) ≡
lim supn→∞

Sn(ω)
n . Fix ε > 0 and set Aε ≡ {ω : Z(ω) > ε}. It will be shown

that P (Aε) = 0. Clearly, Aε is T invariant. Since T is ergodic, P (Aε) = 0 or
1. Suppose P (Aε) = 1. Let Y (ω) = X(ω)−ε. LetMn,Y (ω) ≡ max{Sj,Y (ω) :
0 ≤ j ≤ n} where S0,Y (ω) ≡ 0, Sj,Y (ω) ≡

∑j−1
k=0 Y (T kω), j ≥ 1. Then by

Lemma 8.6.2 applied to Y (ω)

E
(
Y (ω)I

(
Mn,Y (ω) > 0

))
≥ 0.

But Bn ≡ {ω : Mn,Y (ω) > 0} = {ω : sup1≤j≤n
1
jSj,Y (ω) > 0}. Clearly,

Bn ↑ B ≡ {ω : sup1≤j<∞
1
jSj,Y (ω) > 0}. Since 1

jSj,Y (ω) = 1
jSj(ω) − ε

for j ≥ 1, B ⊃ Aε and since P (Aε) = 1, it follows that P (B) = 1. Also
|Y | ≤ |X| + ε ∈ L1(Ω,F , P ). So by the bounded convergence theorem,
0 ≤ E(Y IBn) → E(Y IB) = EY = 0 − ε < 0, which is a contradic-
tion. Thus P (Aε) = 0. This being true for every ε > 0 it follows that
P (limn→∞

Sn(ω)
n ≤ 0) = 1. Applying this to −X(ω) yields

P
(

lim
n→∞

Sn(ω)
n

≥ 0
)

= 1

and hence P
(
limn→∞

Sn(ω)
n = 0

)
= 1.

To prove L1-convergence, note that applying the above to X+ and X−

yields

fn(ω) ≡ 1
n

n∑
i=1

X+(T iω) → EX+(ω) w.p. 1.

Since T is measure preserving
∫
fn(ω)dP = EX+(ω) for

all n. So by Scheffe’s theorem (Lemma 8.2.5),
∫
|fn(ω) −

EX+(ω)|dP → 0, i.e., E
∣∣ 1
n

∑n
i=1X

+(T iω)− EX+
∣∣ → 0. Similarly,

E
∣∣ 1
n

∑n
i=1X

−(T iω)− EX−∣∣→ 0. This yields L1 convergence. �

Corollary 8.6.3: Let {Xi}i≥1 be a stationary ergodic sequence of Rk

valued random variables on some probability space (Ω,F , P ). Let h : Rk →
R be Borel measurable and let E|h(X1, X2, . . . , Xk)| <∞. Then

1
n

n∑
i=1

h(Xi, Xi+1, . . . , Xi+k−1) → Eh(X1, X2, . . . , Xk) w.p. 1.

Proof: Consider the probability space Ω̃ = (Rk)∞, F̃ ≡ B
(
(Rk)∞)

and
P̃ the probability measure induced by the map ω → (Xi(ω))i≥1 and the
unilateral shift map T̃ on Ω̃ defined by T̃ (xi)i≥1 = (xi)i≥2. Then T̃ is
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measure preserving and ergodic. So the corollary follows from Theorem
8.6.1. �

Remark 8.6.4: This corollary is useful in statistical time series analysis.
If {Xi}i≥1 is a real valued stationary ergodic sequence, then the mean m ≡
EX1, variance Var(X1), and covariance Cov(X1, X2) can all be estimated
consistently by the corresponding sample functions

1
n

n∑
i=1

Xi,
1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

, and

1
n

n∑
i=1

XiXi+1 −
(

1
n

n∑
i=1

Xi

)2

.

Further, the joint distribution of (X1, X2, . . . , Xk) for any k ≥ 1, can
be estimated consistently by the corresponding empirical measure, i.e.,
Ln(A1, A2, . . . , Ak) ≡ 1

n

∑n
i=1 I(Xi+k ∈ Ak, j = 1, 2, . . . , k), which con-

verges to
P (X1 ∈ A1, X2 ∈ A2, . . . , Xk ∈ Ak) w.p. 1

where Ai ∈ B(R), i = 1, 2, . . . , k.

The next three results (Theorems 8.6.4–8.6.6) are consequences and ex-
tensions of the ergodic theorem, Theorem 8.6.1. For proofs, see Durrett
(2004).

The first one is the following result on the behavior of the log-likelihood
function of a stationary ergodic sequence of random variables with a finite
range.

Theorem 8.6.4: (Shannon-McMillan-Breiman theorem). Let {Xi}i≥1 be
a stationary ergodic sequence of random variables with values in a finite
set S ≡ {a1, a2, . . . , ak}. For each n, x1, x2, . . . , xn in S, let

p(xn | xn−1, xn−2, . . . , x1) = P (Xn = xn | Xj = xj , 1 ≤ j ≤ n− 1)

≡ P (Xj = xj : 1 ≤ j ≤ n)
P (Xj = xj : 1 ≤ j ≤ n− 1)

whenever the denominator is positive and let p(x1, x2, . . . , xn) = P (X1 =
x1, X2 = x2, . . . , Xn = xn). Then

lim
n→∞

1
n

log p(X1, X2, . . . , Xn) = −H exists w.p. 1

where H ≡ limn→∞E
(
− log p(Xn | Xn−1, Xn−2, . . . , X1)

)
is called the

entropy rate of {Xi}i≥1.

Remark 8.6.5: In the iid case this is a consequence of the strong law of
large numbers, and H can be identified as

∑k
j=1(− log pj)pj where pj =
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P (X1 = aj), 1 ≤ j ≤ k. This is called the Kolmogorov-Shannon entropy of
the distribution {pj : 1 ≤ j ≤ k}.

If {Xi}i≥1 is a stationary ergodic Markov chain, then again it is a con-
sequence of the strong law of large numbers, and H can be identified with

E
(
− log p(X2 | X1)

)
=

k∑
i=1

πi

k∑
j=1

(− log pij)pij

where π ≡ {πi : 1 ≤ i ≤ k} is the stationary distribution and P ≡
(
(pij)

)
is

the transition probability matrix of the Markov chain {Xi}i≥1. See Problem
8.27.

A more general version of the ergodic Theorem 8.6.1 is the following.

Theorem 8.6.5: (Kingman’s subadditive ergodic theorem). Let {Xm,n :
0 ≤ m < n}n≥1 be a collection of random variables such that

(i) X0,m +Xm,n ≥ X0,n for all 0 ≤ m < n, n ≥ 1.

(ii) For all k ≥ 1, {Xnk,(n+1)k}n≥1 is a stationary sequence.

(iii) The sequence {Xm,m+k, k ≥ 1} has a distribution that does not de-
pend on m ≥ 0.

(iv) EX+
0,1 <∞ and for all n, EX0,n

n ≥ γ0, where γ0 > −∞.

Then

(i) lim
n→∞

EX0,n

n = inf
n≥1

EX0,n

n ≡ γ.

(ii) lim
n→∞

X0,n

n ≡ X exists w.p. 1 and in L1, and EX = γ.

(iii) If {Xnk,(n+1)k}n≥1 is ergodic for each k ≥ 1, then X ≡ γ w.p. 1.

A nice application of this is a result on products of random matrices.

Theorem 8.6.6: Let {Ai}i≥1 be a stationary sequence of k × k random
matrices with nonnegative entries. Let αm,n(i, j) be the (i, j)th entry in
Am+1, · · · , An. Suppose E| logα1,2(i, j)| <∞ for all i, j. Then

(i) lim
n→∞

1
n logα0,n(i, j) = η exists w.p. 1.

(ii) For any m, lim
n→∞

1
n log ‖Am+1 · · · , An‖ = η w.p. 1, where for any k×k

matrix B ≡ ((bij)), ‖B‖ = max
{∑k

j=1 |bij | : 1 ≤ i ≤ k
}
.
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Remark 8.6.6: A concept related to ergodicity is that of mixing. A mea-
sure preserving transformation T on a probability space (Ω,F , P ) is mixing
if for all A, B ∈ B

lim
n→∞

∣∣P (A ∩ T−nB)− P (A)P (T−nB)
∣∣ = 0.

A stationary sequence of random variables {Xi}i≥1 is mixing if the unilat-
eral shift on the sequence space R∞ induced by {Xi}i≥1 is mixing. If T is
mixing and A is T -invariant, then taking B = A in the above yields

P (A) = P 2(A)

i.e., P (A) = 0 or 1. Thus, if T is mixing, then T is ergodic. Conversely, if
T is ergodic, then by Theorem 8.6.1, for any B in B

1
n

n∑
j=1

IB(T jω) → P (B) w.p. 1.

Integrating both sides over A w.r.t. P yields 1
n

∑n
j=1 P (A ∩ T−jB) →

P (A)P (B), i.e., T is mixing in an average sense, i.e., the Cesaro sense. A
sufficient condition for a stationary sequence to be mixing is that the tail
σ-algebra be trivial. If {Xi}i≥1 is a stationary irreducible Markov chain
with a countable state space, then it is mixing iff it is aperiodic.

For proofs of the above results, see Durrett (2004).

8.7 Law of the iterated logarithm

Let {Xn}n≥1 be a sequence of iid random variables with EX1 = 0, EX2
1 =

1. The SLLN asserts that the sample mean X̄n = 1
n

∑n
i=1Xi → 0 w.p. 1.

The central limit theorem (to be proved later) asserts that for all −∞ <
a < b < ∞, P (a ≤

√
nX̄n ≤ b) → Φ(b) − Φ(a) where Φ(·) is the standard

Normal cdf. This suggests that Sn =
∑n

i=1Xi is of the order magnitude
√
n

for large n. This raises the question of how large does Sn√
n

get as a function
of n. It turns out that it is of the order

√
2n log log n. More precisely, the

following holds:

Theorem 8.7.1: (Law of the iterated logarithm). Let {Xi(ω)}i≥1 be iid
random variables on a probability space (Ω,F , P ) with mean zero and vari-
ance one. Let S0(ω) = 0, Sn(ω) =

∑n
i=1Xi(ω), n ≥ 1. For each ω, let

A(ω) be the set of limit points of
{

Sn(ω)√
2n log log n

}
n≥1

. Then P{ω : A(ω) =

[−1,+1]} = 1.

For a proof, see Durrett (2004).
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A deep generalization of the above was obtained by Strassen (1964).

Theorem 8.7.2: Under the setup of Theorem 8.7.1, the following holds:
Let Yn( j

n ;ω) = Sj(ω)√
2n log log n

, j = 0, 1, 2, . . . , n and Yn(t, ω) be the function
obtained by linearly interpolating the above values on [0, 1]. For each ω, let
B(ω) be the set of limit points of {Yn(·, ω)}n≥1 in the function space C[0, 1]
of all continuous functions on [0, 1] with the supnorm. Then

P{ω : B(ω) = K} = 1

where K ≡
{
f : f : [0, 1] → R, f is continuously differentiable, f(0) = 0

and 1
2

∫ 1
0 (f ′(t))2dt ≤ 1

}
.

8.8 Problems

8.1 Prove Theorem 8.1.3 and Corollary 8.1.4.

(Hint: Use Chebychev’s inequality.)

8.2 Let {Xn}n≥1 be a sequence of random variables on a probability
space (Ω,F , P ) such that for some m ∈ N and for each i = 1, . . . ,m,
{Xi, Xi+m, Xi+2m, . . .} are identically distributed and pairwise inde-
pendent. Furthermore, suppose that E(|X1|+ · · ·+ |Xm|) <∞. Show
that

Xn −→
1
m

m∑
i=1

EXi, w.p. 1.

(Hint: Reduce the problem to nonnegative Xn’s and apply Theorem
8.2.7 for each i = 1, . . . ,m.)

8.3 Let f be a bounded measurable function on [0,1] that is continuous
at 1

2 . Evaluate lim
n→∞

∫ 1
0

∫ 1
0 · · ·

∫ 1
0 f

(
x1+x2+···+xn

n

)
dx1dx2 . . . dxn.

8.4 Show that if P (|X| > α) < 1
2 for some real number α, then any

median of X must lie in the interval [−α, α].

8.5 Prove Theorem 8.3.4 using Kolmogorov’s first inequality (Theorem
8.3.1 (a)).

(Hint: Apply Theorem 8.3.1 to Δn,k defined in the proof of Theorem
8.3.3 to establish (3.4).)

8.6 Let {Xn}n≥1 be a sequence of iid random variables with E|X1|α <∞
for some α > 0. Derive a necessary and sufficient condition on α
for almost sure convergence of the series

∑∞
n=1Xn sin 2πnt for all

t ∈ (0, 1).
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8.7 Show that for any given sequence of random variables {Xn}n≥1, there
exists a sequence of real numbers {an}n≥1 ⊂ (0,∞) such that Xn

an
→ 0

w.p. 1.

8.8 Let {Xn}n≥1 be a sequence of independent random variables with

P (Xn = 2) = P (Xn = nβ) = an, P (Xn = an) = 1− 2an

for some an ∈ (0, 1
3 ) and β ∈ R. Show that

∑∞
n=1Xn converges if and

only if
∑∞

n=1 an <∞.

8.9 Let {Xn}n≥1 be a sequence of iid random variables with E|X1|p = ∞
for some p ∈ (0, 2). Then P (lim sup

n→∞
|n−1/p ∑n

i=1Xi| = ∞) = 1.

8.10 For any random variable X and any r ∈ (0,∞), E|X|r < ∞ iff∑∞
n=1 n

r−1(logn)rP (|X| > n log n) <∞.

(Hint: Check that
∑m

n=1 n
r−1(logn)r ∼ r−1mr(logm)r as m→∞.)

8.11 Let {Xn}n≥1 be a sequence of independent random variables with
EXn = 0, EX2

n = σ2
n, s2n =

∑n
j=1 σ

2
j →∞. Then, show that for any

a > 1
2 ,

s−2
n (log s2n)−a

n∑
i=1

Xi → 0 w.p. 1.

8.12 Show that for p ∈ (0, 2), p 
= 1, (4.12) holds.

(Hint: For p ∈ (1, 2),
∑∞

n=1 |EZn/n
1/p| ≤

∑∞
n=1E|X1|I(|X1| >

n)n−1/p =
∑∞

j=1
∑j

n=1 n
−1/p · E|X1|I(j < |X1|p ≤ j + 1) ≤

p
p−1E|X1|p < ∞, by (4.10). For p ∈ (0, 1),

∑∞
n=1 |EZn/n

1/p| ≤∑∞
j=1(

∑∞
n=j n

−1/p)E|X1|I(j − 1 < |X1|p ≤ j) ≤ 1
1−pE|X1|p, by

(4.9).)

8.13 Let Yi = xiβ + εi, i ≥ 1 where {εn}n≥1 is a sequence of iid random
vectors, {xn}n≥1 is a sequence of constants, and β ∈ R is a constant
(the regression parameter). Let β̂n =

∑n
i=1 xiYi/

∑n
i=1 x

2
i denote (the

least squares) estimator of β. Let n−1 ∑n
i=1 x

2
i → c ∈ (0,∞) and

Eε1 = 0.

(a) If E|ε1|1+δ <∞ for some δ ∈ (0,∞), then show that

β̂n −→ β as n→∞, w.p. 1. (8.1)

(b) Suppose sup{|xi| : i ≥ 1} <∞ and E|ε1| <∞. Show that (8.1)
holds.
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8.14 (Strongly consistent estimation.) Let {Xi}i≥1 be random variables on
some probability space (Ω,F , P ) such that (i) for some integer m ≥ 1
the collections {Xi : i ≤ n} and {Xi : i ≥ n + m} are independent
for each n ≥ 1, and (ii) the distribution of {Xi+j ; 0 ≤ j ≤ k} is
independent of i, for all k ≥ 0.

(a) Show that for every � ≥ 1 and h : R → R with
E|h(X1, X2, . . . , X)| < ∞, there are functions {fn : Rn →
R}n≥1 such that fn(X1, X2, . . . , Xn) → λ ≡ Eh(X1, X2, . . . , X)
w.p. 1. In this case, one says λ is estimable from {Xi}i≥1 in a
strongly consistent manner.

(b) Now suppose the distribution μ(·) of X1 is a mixture of the
form μ =

∑k
i=1 αiμi. Suppose there exist disjoint Borel sets

{Ai}1≤i≤k in R such that μi(Ai) = 1 for each i. Show that
all the αi’s as well as λi ≡

∫
hi(x)dμi where hi ∈ L1(μi) are

estimable from {Xi}i≥1 in a strongly consistent manner.

8.15 (Normal numbers). Recall that in Section 4.5 it was shown that for
any positive integer p > 1 and for any 0 ≤ ω ≤ 1, it is possible to
write ω as

ω =
∞∑

i=1

Xi(ω)
pi

(8.2)

where for each i, Xi(ω) ∈ {0, 1, 2, . . . , p−1}. Recall also that such an
expansion is unique except for ω of the form q/pn, q = 1, 2, . . . , pn−1,
n ≥ 1 in which case there are exactly two expansions, one of which is
recurring. In what follows, for such ω’s the recurrent expansion will
be the one used in (8.2). A number ω in [0,1] is called normal w.r.t.
the integer p if for every finite pattern a1a2 . . . ak where k ≥ 1 is a
positive integer and ai ∈ {0, 1, 2, . . . , p− 1} for 1 ≤ i ≤ k the relative
frequency 1

n

∑n
i=1 δi(ω) where

δi(ω) =
{

1 if Xi+j(ω) = aj+1, j = 0, 1, 2, . . . , k − 1
0 otherwise

converges to p−k as n→∞. A number ω in [0,1] is called absolutely
normal if it is normal w.r.t. p for every integer p > 1. Show that
the set A of all numbers ω in [0,1] that are absolutely normal has
Lebesgue measure one.

(Hint: Note that in (8.2), the function {Xi(ω)}i≥1 are iid random
variables. Now use Problem 8.14 repeatedly.)

8.16 Show that for the renewal sequence {Sn}∞
n=0, if P (X1 > 0) > 0, then

lim
n→∞Sn = ∞ w.p. 1.
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8.17 (a) Show that {an}n≥0 of (5.16) is the unique solution to (5.15) by
using generating functions (cf. Section 5.5).

(b) Deduce Theorems 8.5.13 and 8.5.14 from Theorems 8.5.11 and
8.5.12, respectively.

(Hint: For Theorems 8.5.13 use the DCT , and for Theorem
8.5.14, show first that

k∑
n=0

mn(h)
(
U((n+ 1)h)− U(nh)

)
≤ a(kh)

≤
k∑

n=0

mn(h)
(
U((n+ 1)h)− U(nh)

)
.)

8.18 (a) Let b(·) : [0,∞) → R be dri. Show that b(·) is Riemann inte-
grable on every bounded interval. Conclude that if b(·) is dri it
must be continuous almost everywhere w.r.t. Lebesgue measure.

(b) Let b(·) : [0,∞) → R be Riemann integrable on [0,K] for each
K <∞. Let h(·) : [0,∞) → R+ be nonincreasing and integrable
w.r.t. Lebesgue measure and |b(·)| ≤ h(·) on [0,∞). Show that
b(·) is dri.

8.19 Verify that the sequence {Yn}n≥0 in Example 8.5.2 and the process
{Y (t) : t ≥ 0} in Example 8.5.3 are both regenerative.

8.20 Show that the map T in Example 8.6.4 in Section 8.6 is measure
preserving.

(Hint: Show that for 0 < a < b < 1, P
(
ω : Tω ∈ (a, b)

)
= (b− a).)

8.21 Let T be a measure preserving map on a probability space (Ω,F , P ).
Show that A is almost T -invariant w.r.t. P iff there exists a set A1
such that A1 = T−1A1 and P (A�A1) = 0.

(Hint: Consider A1 =
⋃∞

n=0 T
−nA. )

8.22 Show that a function h : Ω → R is I-measurable iff h(ω) = h(Tω)
for all ω where I is the σ-algebra of T -invariant sets.

8.23 Consider the sequence space
(
R∞,B(R∞)

)
. Show that A ∈ B(R∞)

is invariant w.r.t. the unilateral shift T implies that A is in the tail
σ-algebra.

8.24 In Example 8.6.7 of Section 8.6, show that {Zi}i≥1 is a stationary
sequence that is not ergodic.

(Hint: Assuming it is ergodic, derive a contradiction using the er-
godic Theorem 8.6.1.)
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8.25 (a) Extend Example 8.6.7 to the Markov chain case with two disjoint
irreducible positive recurrent subsets.

(b) Show that in Example 8.6.5, if θ0 is rational, then T is not
ergodic.

8.26 (a) Verify that in Remark 8.6.1, T is ergodic but T 2 is not.
(b) Construct a Markov chain with four states for which T is ergodic

but T 2 is not.

8.27 In Remark 8.6.5, prove the Shannon-McMillan-Breiman theorem di-
rectly for the Markov chain case.

(Hint: Express p(X1, X2, . . . , Xn) as
(

n−1∏
i=1

pXiXi+1

)
p(X1).)

8.28 Let {Xi}i≥1 be iid Bernoulli (1/2) random variables. Let

W1 =
∞∑

i=1

2X2i

4i

W2 =
∞∑

i=1

X2i−1

4i
.

(a) Show that W1 and W2 are independent.
(b) Let A1 = {ω : ω ∈ (0, 1) such that in the expansion of ω in

base 4 only the digits 0 and 2 appear} and A2 = {ω : ω ∈
(0, 1) such that in the expansion of ω in base 4 only the digits
0 and 1 appear}. Show that m(A1) = m(A2) = 0 where m(·)
is Lebesgue measure and hence that the distribution of W1 and
W2 are singular w.r.t. m(·).

(c) Let W ≡W1 +W2. Then show that W has uniform (0,1) distri-
bution.

(Hint: For (b) use the SLLN.)

Remark: This example shows that the convolution of two singular
probability measures can be absolutely continuous w.r.t. Lebesgue
measure.

8.29 Let {Xn}n≥1 be a sequence of pairwise independent and identically
distributed random variables with P (X1 ≤ x) = F (x), x ∈ R. Fix
0 < p < 1. Suppose that F (ζp + ε) > p for all ε > 0 where

ζp = F−1(p) ≡ inf{x : F (x) ≥ p}.

Show that ζ̂n ≡ F−1
n (p) ≡ inf{x : Fn(x) ≥ p} converges to ζp w.p. 1

where Fn(x) ≡ n−1 ∑n
i=1 I(Xi ≤ x), x ∈ R is the empirical distribu-

tion function of X1, . . . , Xn.
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8.30 Let {Xi}i≥1 be random variables such that EX2
i < ∞ for all i ≥ 1.

Suppose 1
n

∑n
i=1EXi → 0 and an ≡ 1

n2

∑n
j=0(n − j)v(j) → 0 as

n→∞ where v(j) = supi

∣∣Cov(Xi, Xi+j)
∣∣.

(a) Show that X̄n −→p 0.

(b) Suppose further that
∑∞

n=1 an <∞. Show that X̄n → 0 w.p. 1.

(c) Show that as n→∞, v(n) → 0 implies an → 0 but the converse
need not hold.

8.31 Let {Xi}i≥1 be iid random variables with cdf F (·). Let Fn(x) ≡
1
n

∑n
i=1 I(Xi ≤ x) be the empirical cdf. Suppose xn → x0 and F (·)

is continuous at x0. Show that Fn(xn) → F (x0) w.p. 1.

8.32 Let p be a positive integer > 1. Let {δi}i≥1 be iid random variable
with distribution P (δ1 = j) = pj , 0 ≤ j ≤ p−1, pj ≥ 0,

∑p−1
0 pj = 1.

Let X =
∑∞

i=1
δi

pi . Show that

(a) P (X ∈ (0, 1)) = 1.

(b) FX(x) ≡ P (X ≤ x) is continuous and strictly increasing in (0,1)
if 0 < pj < 1 for any 0 ≤ j ≤ p− 1.

(c) FX(·) is absolutely continuous iff pj = 1
j for all 0 ≤ j ≤ p− 1 in

which case FX(x) ≡ x, 0 ≤ x ≤ 1.

8.33 (Random AR-series). Let {Xn}n≥0 be a sequence of random variables
such that

Xn+1 = ρn+1Xn + εn+1, n ≥ 0

where the sequence {(ρn, εn)}n≥1 are iid and independent of X0.

(a) Show that if E(log |ρ1|) < 0 and E(log |ε1|)+ <∞ then

X̂n ≡
n∑

j=0

ρ1ρ2 . . . ρj , εj+1 converges w.p. 1.

(b) Show that under the hypothesis of (a), for any bounded contin-
uous function h : R → R and for any distribution of X0

Eh(Xn) → Eh(X̂∞).

(Hint: Show by SLLN that there is a 0 < λ < 1 such that
ρ1, ρ2, . . . , ρj = 0(λj) w.p. 1 as j → ∞ and by Borel-Cantelli
|εj | = 0(λ′j) for some λ′ > 0  λ′λ < 1.)

8.34 (Iterated random functions). Let (S, ρ) be a complete separable met-
ric space. Let (G,G) be a measurable space. Let f : G × S → S be
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〈G × B(S),B(S)〉 measurable function. Let (Ω,F , P ) be a probabil-
ity space and {θi}i≥1 be iid G-valued random variables on (Ω,F , P ).
Let X0 be an S-valued random variable on (Ω,F , P ) independent of
{θi}i≥1. Define {Xn}n≥0 by the random iteration scheme,

X0(x, ω) ≡ x

Xn+1(x, ω) = f
(
θn+1(ω), Xn(x, ω)

)
n ≥ 0.

(a) Show that for each n ≥ 0, the map Xn = S× Ω → S is 〈B(S)×
F ,B(S)〉 measurable.

(b) Let fn(x) ≡ fn(x, ω) ≡ f(θn(ω), x). Let X̂n(x, ω) =
f1(f2, . . . , fn(x)). Show that for each x and n, X̂n(x, ω) and
Xn(x, ω) have the same distribution.

(c) Now assume that for all ω, f(θ1(ω), x) is Lipschitz from S to S,
i.e.,

�i(ω) ≡ sup
x�=y

d(f(θi(ω), x), f(θi(ω), y))
d(x, y)

<∞.

Show that �i(ω) is a random variable on (Ω,F , P ), i.e. that �i(·) :
Ω → R+ is 〈F ,B(R)〉 measurable.

(d) Suppose that E| log �1(ω)| < ∞ and E log �1(ω) < 0,
E| log d(f(θ1, x), x)| < ∞ for all x. Show that limn X̂n(x, ω) =
X̂∞(ω) exists w.p. 1 and is independent of x w.p. 1.

(Hint: Use Borel-Cantelli to show that for each x,
{X̂n(x, ω)}n≥1 is Cauchy in (S, ρ).)

(e) Under the hypothesis in (d) show that for any bounded contin-
uous h : S → R and for any x ∈ S, limn→∞Eh(Xn(x, ω)) =
Eh(X̂∞(ω)).

(f) Deduce the results in Problems 7.15 and 8.33 as special cases.

8.35 (Extension of Gilvenko-Cantelli (Theorem 8.2.4) to the multivari-
ate case). Let {Xn}n≥1 be a sequence of pairwise independent
and identically distributed random vectors taking values in Rk with
cdf F (x) ≡ P

(
X11 ≤ x1, X12 ≤ x2, . . . , X1k ≤ xk

)
where X1 =

(X11, X12, . . . , X1k) and x = (x1, x2, . . . , xk) ∈ R. Let Fn(x) ≡
1
n

∑n
i=1 I(Xi ≤ x) be the empirical cdf based on {Xi}1≤i≤n. Show

that sup{|Fn(x)− F (x)| : x ∈ R} → 0 w.p. 1.

(Hint: First prove an extension of Polyā’s theorem (Lemma 8.2.6) to
the multivariate case.)


