
2 

Virtual Instruments and Soft Sensors 

2.1 Virtual Instruments 

In this chapter, the concepts of virtual instruments (VIs) and of soft sensors will be 
introduced in some detail. In particular, we will commence in this section with an 
introduction to VIs, to focus in the next one on soft sensors, that are the main topic 
of the book.  

VIs can be considered as a wider class than soft sensors. In fact, soft sensors 
focus on the process of estimation of any system variable or product quality by 
using mathematical models, substituting some physical sensors and using data 
acquired from some other available ones.  

For their part, VIs are based on software that performs any of the typical 
actions involved in a measurement and/or control problem, by exploiting available 
instrumentation, computers and software. This action can either involve, or not, 
modeling capabilities typical of soft sensors. 

VIs are the result of the rapid diffusion that has taken place in the last 20 years 
of low-cost Windows-based personal computers, Macs, and workstations in any 
engineering application field, along with performing software (Foster ,1998).  

They represent an alternative paradigm to traditional instruments and allow us 
both to customize the measuring facility capabilities to user application and to take 
control of the way measurement results are used and presented.  

The flexibility of VIs is obtained by software that is used to transform a 
collection of facilities into the customized instrumentation suitable for the 
measurement task of interest. Also, the use of software allows the adaptation, at 
different times, of the available resources to new measuring problems in such a 
way as to adapt the measuring system to new scenarios, and hence to better exploit 
available resources.  
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Three main functional blocks can be recognized in any instrument, and all of 
them have been affected by changes introduced by the introduction of VIs 
(Combs, 1999): 

• measurement; 
• computation; 
• user interface. 

As regards measurement, this is the very first action that a measuring system 
performs on the observed variable, in order to extract some kind of meaningful 
signal. Signals extracted from real plants are analog in nature, while the majority of 
modern instrumentation is digital. An analog to digital (A/D) converter is, 
therefore, required at this stage along with conditioning circuitry, to adapt 
real-world signals to the A/D input span.  

At this stage, VIs are used mainly to the ease the setting and control of 
measuring systems, especially in routine measurement surveys that require a large 
number of actions, and are usefully automatized using adequate software. This is 
the typical application when a VI is designed, and used, to drive a stand-alone 
system. 

Data acquired from the measurement hardware do not necessarily correspond to 
the searched information. It is generally required either to filter data in some way, 
to combine data acquired from the same device in different times or different 
points, or to combine data acquired from different measuring facilities. At this 
level, computation capability plays a key role and it is possible either to have 
instruments with local computation capabilities or to send raw data to some kind of 
intelligent system that performs the required data manipulation. Of course, these 
two solutions impose different constraints on the designer and have conflicting 
performances. The first one is generally more expensive, because of the need to 
have a number of local intelligent systems, while the other will need a faster 
communication system to handle the large quantity of raw data that needs to be 
transferred.  

The computation level is of course one of the most characterizing aspects of 
VIs. In fact, by using adequate software it is possible to use general measuring 
devices, e.g. acquisition cards or modular instrumentation, to acquire data and 
combine them in a virtually infinite number of ways. Moreover, the same devices 
can be re-used in different applications simply by changing the algorithms used. 

Though modern electronic instrumentation is totally different from older analog 
measuring systems, producers try to maintain the traditional look of the 
instruments. This is because users experience great difficulty when the objects they 
are used to change their appearance. As an example, a modern digital oscilloscope 
has an internal structure that is totally different from traditional analog ones. 
Nevertheless, both of them look very similar and present a number of input 
channels, some knobs and buttons to control the instrument operations, and a 
screen. This allows the user to change from older systems to newer ones with a 
minimum of difficulty: only if he is interested, will he search at some convenient 
time for new functionalities. 

This general rule has been maintained in the case of VIs. The measuring system 
might be realized by using traditional stand-alone instrumentation, with its own 
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user interface, or by using modular instrumentation; in that case the user interface 
is almost totally missing, and so the VI designer will produce, on a host PC 
monitor, a user interface that mimics the traditional instrumentation front panel and 
that will allow interaction with the measuring system. In this way, the user will 
find digital knobs or buttons to control the measurement system and will observe 
the information in which he is interested on some kind of graph, indicator, or in the 
case of surveillance systems, for example, a simulated LED will be turned on by 
the software together with some kind of acoustic signaling.  

An example of a front panel of a VI is shown in Figure 2.1. 

 
Figure 2.1. An example of a VI front panel 

Figure 2.1 shows the front panel of an instrument designed for the estimation of 
the products of a debutanizer column that will be described in greater detail 
elsewhere in the book. In this case, the core of the VI was a soft sensor based on a 
cascade of neural network dynamic models whose objective was the prediction of 
products concentration without the large delay introduced by traditional measuring 
systems. In particular, in Figure 2.1 the presence of a number of time plots, a 
button, and some indicators can be recognized. The button was introduced to allow 
the user to turn the VI on and off, while both the time graphs and the indicators 
show the instrument outputs. 

The availability of low-cost computers with programming capabilities has 
produced a far-reaching and rapid evolution also in the possible measuring 
hardware configurations. In fact, on the one hand, modern instrumentation is 
configured as a digital system whose core is a microprocessor that controls all 
actions required to perform measurements, while on the other one, it is more and 
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more common that the instruments communication capabilities allow for the 
realization of distributed measuring networks where a number of devices cooperate 
and exchange relevant information, either using a shared standard or custom 
communication protocol.  

The simplest and most widely used class of measuring instruments are 
stand-alone devices. In this case, a single box contains all the resources required to 
perform measurements and is equipped with a front panel that is used both to set 
up the instrumentation and to display measurement results. VIs in this case are 
used to realize virtual front panels on a PC that mimics the hardware front panel. 
These instruments can operate by themselves and eventually, if they have digital 
communication capabilities, can be used in a multiple instrument system. For 
example, this is the typical configuration used in IEEE 488.2 compliant 
measurement systems. 

With the evolution of computers, modular measuring instrumentation became 
available. In this case, the instrument front panel is totally missing and the only 
available option to use modular systems is to insert them into a frame and to 
program them by software. VIs are widely used in this context to program and use 
measuring stations. 

Generally, modular measuring systems are realized by using some standard, 
such as VME, VXI or PXI. 

They greatly outperform traditional stand-alone systems especially when the 
required system throughput is high, but they are quite expensive. Also, since they 
are mainly software defined, the available resources can be reconfigured virtually 
an infinite number of times and this is a valuable possibility both for R&D 
purposes, when the measured variables change frequently, and for maintenance and 
control applications, when measuring systems are often updated. 

The latest evolution of modern electronic instrumentation is based on 
networked devices. In this case, each instrument acts as a computer, capable of 
being connected on some LAN and of sharing a common communications line or 
wireless link within a small geographic area, or even by using the Internet. These 
last scenarios are typical of monitoring and control in industrial applications due to 
the distributed nature of processes involved and of air quality monitoring in large 
urban and industrial areas, where a number of measuring stations are installed at 
adequately chosen points to obtain information about air quality.  

Of course, also in the latter case, VIs can be very useful especially if software 
tools with networking programming capabilities are used, which can greatly 
simplify both the troubleshooting and running of the measuring system. 

As mentioned before, the success of Vis is mainly due to the possibility of  
reconfiguring them to perform custom functions. In this sense, they look quite 
different from traditional instrumentation, designed for one specific measurement 
task.  

Apart from the initial system design, which for VIs must start with the 
identification of some minimum hardware resources, the design of a VI is a matter 
of software programming. The importance of having access to powerful 
programming languages is therefore fundamental. It is by using programming 
languages that general measuring tools are customized by the user to the intended 
application. In this sense, the VI designer has much more freedom than the 
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traditional instrumentation designers, even if such flexibility can pose serious 
problems of re-using available software, unless close attention is paid to realizing 
modular software in which previously designed software procedures can be 
included for new applications. 

There are two categories of development environments for VIs available for the 
designer: 

• textual languages; 
• graphical languages. 

In the case of textual languages, traditional programming languages, such as 
BASIC or C/C++, are used to realize a VI. Generally, programming in this case 
involves the use of functions specifically developed by the vendor for the hardware 
in question, and that govern the specific instrument functionalities and I/O 
functions for communication purposes. 

Graphical programming allows the design of VIs using functional blocks 
(icons) that perform specific tasks. These blocks perform desired actions, from 
simple to very complex ones. Information is transferred from one icon to another 
by suitably wiring them. Also, programming languages come with a number of 
libraries (e.g. to perform signal spectrum analysis or digital signal processing) that 
greatly improve the language potentialities. 

To better explain how graphical programming languages work, we will refer to 
the widely used LabVIEWTM by National Instruments, which can be considered a 
standard de facto for VI design, though competing languages have been proposed 
by other companies and still exist on the market. 

A VI consists of a front panel that mimics the user interface and a block 
diagram that lies at the back of the front panel and is used to graphically define the 
VI functionalities. Moreover, during the design phase of a VI, other available VIs 
can be used as subroutines to perform simpler tasks in a hierarchical way.  

The front panel of a VI, presented on the computer monitor, represents the user 
interface and intentionally looks very like a traditional instrument panel. This is the 
part of the VI that allows the user to act on the instrument, and eventually on the 
connected measuring hardware, by setting measurement parameters and loading 
data files. To obtain this capability, the designer can use a number of knobs, 
buttons, switches and so forth. Also, the front panel is used to show the user the 
results of  VI operations (including measurement and computation results).  

A number of tools are available to show VI outputs in the best way. The 
designer can, in fact, use time plots, XY graphs, numeric indicators, to give just a 
few examples, or even digital LEDs in those cases when an immediate alarm is 
better suited to the application. 

As an example, in Figure 2.2 a very simple front panel showing a time graph, a 
numerical indicator, and a LED is reported. 
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Figure 2.2. Example of a typical VI front panel 

The block diagram is the core of a VI: the designer assembles here a number of 
available functional blocks, in the form of icons that carry out specific actions on 
input data, and produce corresponding output results. These blocks can either be 
part of the graphical programming language or have been realized by the user 
during the development of previous VIs. The function of each block can be simple, 
such as adding two input variables and giving the resulting sum, or very complex, 
such as performing sophisticated statistical analysis of input vectors.  

Data are passed from one block to the next one using software wires. In the 
same way, elements in the front panel have icons in the block diagram that can be 
wired to functional blocks in the block diagram to allow commands from the user 
to be passed to the graphical software and final results to be shown on the front 
panel. 

Figure 2.3 shows an example of a VI block diagram. The VI accepts numerical 
inputs from the VI front panel and returns their sum on a front panel indicator.  

 
Figure 2.3. Examples of a typical VI block panel 
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Finally, Figure 2.4 shows a less didactic example of a VI block diagram. The 
reported example is part of the block diagram of the VI whose front panel is given 
in Figure 2.1, which was developed for the realization of a soft sensor for a 
debutanizer column.  

 
Figure 2.4. Part of a block diagram of the VI reported in Figure 2.1, for estimating 
debutanizer products 

It is worth noticing that in the block diagram powerful tools for instrument 
driving, supplied by vendors, networking facilities, and data storage are available, 
all of which make VIs very flexible devices.  

Some functional blocks can take inputs from an A/D converter and/or hardware 
measuring device and elaborate them on the basis of a user designed code. In other 
words, a block in the block diagram can be a soft sensor. Also, the soft sensor can 
either be designed using the graphical programming language that implements the 
VI or can be software, developed using a textual programming language, 
depending on the most suitable approach. 
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As a final remark on the difference between textual and graphical programming 
languages for VI design, it should be noted that, though graphical languages are 
more suitable for their eye appeal in presenting measurement results to the end 
user, they generally are very resource demanding and especially in real-time 
applications can introduce an unacceptable delay.  In contrast, textual based VIs 
are much more conservative as regards computing resources and can be very 
efficient tools for real-time control applications. As usual, the final choice between 
the two alternatives will depend on the designer, who will need to take into account 
velocity constraints imposed by the application. 

Of course, hybrid solutions where complex data elaboration is performed using 
textual programming languages, and where the user interface is realized using a 
graphical language, can be developed. 

2.2 Applications of Soft Sensors 

There are a number of reasons why soft sensors can be profitably used in industrial 
applications; currently they are becoming routine tools with the trend moving from 
open-loop information tools for the operator towards sensors in closed-loop 
inferential and/or adaptive control schemes. 

Moreover, the wide availability of on-line analyzers and digital systems that are 
used both for monitoring and control give designers and operators the tools 
required for the design and implementation of soft sensors with a minimum, or 
even null, increase in the initial costs. In what follows, a description of typical soft 
sensors applications is given. 

2.2.1 Back-up of Measuring Devices 

A huge number of measuring devices connected to realize distributed monitoring 
networks, are used from industrial plants for monitoring and control pourposes.  
They routinely acquire a very large quantity of data. In fact, monitoring the state of 
a plant, even at a fixed time instant, could require sampling hundreds or even 
thousands of different variables.  

Such measuring devices, and the corresponding data transmission systems, are 
required to face very harsh working environments. It is not surprising that working 
conditions impose both the use of very robust measuring hardware and periodic 
maintenance procedures. Notwithstanding such precautions, faults in measuring 
devices occur. Faults can come either in the form of abrupt changes in the working 
mode of measuring devices or in the form of slow changes of metrological 
characteristics. The latter can be even more dangerous than the former, because it 
is more difficult to detect and can hence cause malfunctioning of control systems. 

Irrespective of whether a maintenance intervention be programmed or 
accidental, the measuring hardware needs to be turned off and suitably substituted. 
The back-up of measuring instrumentation is a typical application of soft sensors: 
an inferential model is in this case specifically designed to momentarily substitute 
unavailable measuring equipment and to avoid degradation of plant performance 
and rises in cost.  
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This particular scenario imposes restrictions on the soft sensor designer’s 
possible choices. In particular, care must be taken in those cases when the variable 
inferred by the soft sensor is the output of a dynamic system. In fact, two possible 
choices are common: 

• to restrict the model structure to moving average (MA) or nonlinear 
moving average (NMA) models that do not require past samples of the 
output variable. This corresponds to limiting the class of possible models to 
the class of finite impulse response (FIR) structure (including their 
nonlinear generalization), eventually decreasing the model performance 
with respect to more general model  structures; 

• to use autoregressive models as infinite-step-ahead predictors. In this case, 
the model has among its inputs past samples of its own estimations with 
corresponding feedback of model errors. Such structures are generally 
more efficient than the corresponding MA or NMA structures in the very 
first predicting steps but, generally, their performance quickly degrades due 
to error propagation. This is very true when the envisaged maintenance 
interval is very large compared to the system dynamics, so that a large 
number of successive samples are required to be estimated. 

2.2.2 Reducing the Measuring Hardware Requirements 

Using a software tool instead of a measuring hardware device represents, of course, 
a source of possible budget saving. Experts can therefore be encouraged to design 
inferential models that are intended to definitively substitute hardware devices, 
which become available for further reallocation.  

Also in this case, a NMA model should be preferred to autoregressive 
structures. In any case much care should be taken to critically analyze model 
performance, due to the lack of any redundancy, and periodic model validation 
should be performed by temporarily inserting measuring devices and eventually 
proceeding to soft sensor retuning. 

The problem of periodic soft sensors validation and eventual retuning is 
actually a common issue for any application of soft sensors. The need for such 
retuning can be due to a change in a new process working point (not considered 
during the soft sensor design phase), which can be detected by critically analyzing 
system inputs. This analysis should be constantly performed by checking for 
violation of suitable thresholds imposed for each input variable.  

Soft sensor retuning is also needed when a change in system parameters occurs, 
in the case of slowly time-varying systems (e.g. due to seasonal variations).  

The application scenario considered in this subsection is particularly sensitive 
to these problems. In fact, in the other applications described in this section, 
measuring hardware is always available (at least after a finite maintenance period) 
and this allows the required soft sensor validation operations to be accomplished. 
When the designer intends to eliminate measuring hardware, the availability of 
measuring facilities for sensor validation must be suitably planned, and extra 
hardware must be used temporarily. 
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2.2.3 Real-time Estimation for Monitoring and Control 

The real-time estimation of system variables obtained using soft sensors, as 
opposed to its delayed measurement by means of hardware measuring devices, 
represents the most valuable feature of soft sensors; this is due both to the 
possibility to design a very efficient soft sensor and to the importance of the 
corresponding benefits in terms of process performance. 

Any measuring instrument requires a finite time to perform the actions needed 
to give the final variable measurement. Though such a time can be very small in a 
number of applications, in some cases it can be significant. To give an example, 
this is the case with some gas chromatographs that require measuring times of the 
order of minutes or even greater. Moreover, due to the high cost of some 
measuring devices used in industrial applications, variables can sometimes be 
inferred on the basis of data acquired using measuring hardware that can be located 
on different processes, with a corresponding further delay (see, for example, the 
application reported in Chapter 8). Should this time be comparable with system 
dynamics, the measuring time can be a significant source of delay.  

In the case of measuring instrumentation used for monitoring purposes, this 
corresponds to a delay in the time in which data are presented to the operator, with 
no relevant consequences, unless this information is important for safety issues. 

When information about a variable value is needed in a closed-loop control 
scheme the effects of delay can decrease system performance to the point that the 
measuring hardware is not suitable for the control application.  

In this class of applications the variable measurement is always available, albeit 
with a relevant delay. This allows the use of Auto-Regressive with eXogenous 
inputs (ARX) or Nonlinear ARX (NARX) model structures, which perform finite 
(and small) step-ahead prediction of the variable.  

The real-time estimation obtained by the soft sensor can be used by the 
controller, while the corresponding delayed measurements allow the soft sensor 
performance to be improved, by avoiding the error propagation effect mentioned in 
the previous subsection.  

2.2.4 Sensor Validation, Fault Detection and Diagnosis 

An industrial control system can be seen as a hierarchy of at least three levels: the 
first level is the control level, which implements the actual control loop by means 
of feedback and feedforward controllers, state observers, parameter estimators, and 
so on. Above the control level, the supervision level accomplishes the task of 
continuously monitoring the operational life of the process, making the process 
operation almost independent from the presence of human operators. The highest 
level is dedicated to management, coordination and optimization activities, which 
provide the control system with high-level directives in order to maximize the 
performance of the system with respect to certain criteria.  

Fault detection and diagnosis are part of the supervision functions 
accomplished by modern industrial control systems. In the past, the supervision 
function was essentially limited to checking important variables, and the 
consequent raising of alarms if some safety thresholds were trespassed. This was 
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actually an early stage of fault detection. On the other hand, at present, fault 
detection and diagnosis is performed by means of advanced techniques of 
mathematical modeling, signal processing, identification methods, computational 
intelligence, approximate reasoning, and many others. The main goals of modern 
fault detection and diagnosis systems are to:  

• perform early detection of faults in the various components of the system, 
possibly providing as much information as possible about the fault which 
has occurred (or is occurring), like size, time, location, evaluation of its 
effects; 

• provide a decision support system for scheduled, preventive, or predictive 
maintenance and repair;  

• provide a basis for the development of fault-tolerant systems. 

Fault detection and diagnosis strategies always exploit some form of redundancy. 
This is the capability of having two or more ways to determine some characteristic 
properties (variables, parameters, symptoms) of the process, in order to exploit 
more information sources for an effective detection and diagnosis action. The main 
idea underlying all fault detection strategies is to compare information collected 
from the system to be monitored with the corresponding information from a 
redundant source. A fault is generally detected if the system and the redundant 
source provide two different sets of information. There can be three main kinds of 
redundancy: physical redundancy, which consists of physically replicating the 
component to be monitored; analytical redundancy, in which the redundant source 
is a mathematical model of the component; knowledge redundancy, in which the 
redundant source consists of heuristic information about the process. When dealing 
with industrial applications, an effective fault detection and diagnosis algorithm 
must usually exploit a combination of redundancy sources, rather than a single one.  

Sensor validation is a particular kind of fault detection, in which the system to 
be monitored is a sensor (or a set of sensors). At a basic level, the aim of sensor 
validation is to provide the users of a measurement system (that can be human 
operators, measurement databases, other processes, control systems, etc.) with an 
evaluation about the reliability of the measurement performed. At a higher level, a 
sensor validation system may also provide an estimate of the measurement in the 
case in which the actual sensor is out of order. In this framework, soft sensors are a 
valuable tool to perform sensor validation. Their usefulness is twofold. First, they 
can be exploited as a source of analytical redundancy. They can in fact be 
paralleled with actual sensors, and faults can be detected by comparison between 
the outputs of actual and soft sensors. Second, they can be exploited to provide an 
estimate of the sensor output in the case of sensor fault. Therefore, they can be 
used as a back-up device once a fault has been detected.  

2.2.5 What-if Analysis 

The design process of control systems requires the process behavior to be 
described via adequate theoretical/data-driven models that might be able to predict 
the system output corresponding to suitable input trends, for a given time span. 
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A model is used in this case to perform simulation of the system dynamics 
corresponding to input trends that are of interest, with the aim of obtaining both a 
deeper understanding of system behavior and/or designing suitable control policies. 
This particular use of process models to perform simulation is called what-if 
analysis.   

Though first principle models could be a better choice due to their capability of 
describing the phenomena ruling the process, the difficulty of obtaining accurate 
enough models in a reasonable time can lead experts to adopt data-driven 
inferential models. 

In the case of what-if analysis, inputs are therefore synthetic quantities, i.e. they 
are designed in order to analyze system reactions on a time span that makes sense, 
in accordance with system dynamics.  

In this case, NARX models can be a suitable choice, due to the finite time span 
used in simulations. In fact, in this way, model error effects propagate only for a 
small number of iterations that must, however, be carefully fixed by the designer. It 
is also worth noting that, in the case of what-if analysis, input variables are 
noise-free, thus improving simulation performances.  

On the other hand, much attention must be addressed to a careful choice of 
input trends. Much more than in the cases described in previous subsections, data 
used during soft sensor design must represent the whole system dynamics. 

Also, the usual model validation should be followed by a further test phase in 
which canonical signals are used to force the real plant, and recorded plant 
reactions are compared to model simulations. A case study describing the design of 
a soft sensor to perform the what-if analysis of a real process will be reported in 
Chapter 8. 

  


