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Abstract The use of transmission line models in high-speed circuit analysis is here reviewed, by means of a unifying
approach which allows getting insight on both the numerical simulation and theoretical investigation. Starting from a
detailed analysis of the physical meanings of the transmission line models, the paper analyzes the effects of electrical
interconnects on signal propagation by using a suitable time-domain equivalent circuit representation of the lines.
Qualitative and quantitative analysis are carried out, with particular emphasys to nonlinear dynamics.

1 Introduction

Transmission line (TL) theory is a classic topic of Electromagnetics and several well-assessed analysis tech-
niques are available to study through TL models the effects of propagation in a very wide class of problems,
e.g., [1]. Many of such techniques are only suitable for linear problems or for steady-state solutions. How-
ever, there are applications such as high-speed electronic circuits where the presence of nonlinear devices
and the interest on fast transients require time-domain analysis of systems made by distributed and lumped
elements. Due to the high operating frequencies and small sizes of such circuits, a reliable design must ac-
count for the signal distortion due to the propagation along the electrical interconnects, present at various
hierarchical levels, e.g.: [2]-[6].

Under suitable hypotheses, the interconnects may be described by means of TL models. The TLs of
practical interest have losses, parameters depending on the frequency and may be spatially non-uniform. In
many cases the physical parameters of the lines are uncertain and a description of statistical type is required,
[4]. Lumped circuits may contain dynamic elements (e.g., inductors, capacitors, transformers), resistive
elements that may be nonlinear and time-varying (e.g., diodes, transistors, operational amplifiers, logic
gates, inverters) and integrated circuits. The interactions between these devices and the TLs, and between
the TLs themselves, are described by continuity conditions for voltages and currents at the ’boundaries’
between the TLs and the lumped circuit elements, and between the TLs themselves.

To analyze such systems, coupled problems of a profoundly different nature have to be studied: TLs
are described by linear and time-invariant partial differential equations, while lumped circuits are modeled
by algebraic-ordinary differential equations, eventually time-varying and nonlinear. For such reasons, TL
model has recently received renewed attention, focused on important issues concerning both the qualitative
(well-posedness of the models, convergence of numerical solutions, study of nonlinear dynamics,...) and
the quantitative point of view (efficient simulation of large systems, model-order reduction,...), e.g.: [2]-[6].

Here we present a unifying approach to get an insight on all the above questions. In Sect. 2.1 we first
focus on some important physical properties of the TL models, in order to highligth the limits of the
standard TL model and to suggest a way to generalize it. Then in Sect. 2.2 a general method is presented
to characterize the terminal behavior of TLs lines, in order to study of networks composed of TLs and
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lumped circuits by means of the Circuit Theory approach[7], [8]. To this aim, the most suitable time-
domain characterizations of a line is based on an input-state-output representation, where the traveling-
wave solutions of TL equations are chosen to represent the ‘state’. Such a representation provides a circuit
description of the TLs in terms of resistive elements, delayed sources and dynamic elements. Here we
refer, for the sake of simplicity, to two-conductor TLs. However, the method is applicable to any kind
of line: multiconductor lines, lines with frequency-dependent parameters, and lines with space-varying
parameters, [6].

After deriving such a characterization, the analysis of networks composed of TLs and lumped circuits
is reduced to the study of networks where TLs are modeled in the same way as the lumped elements:
multiports representing the TLs lines differ from multiports representing the lumped elements only in their
characteristic relations. In Sect. 3.1 the problem of the well-posedness of both analytical and numerical
models describing TLs connected to nonlinear and/or dynamic terminations is addressed. This problem
is of a great importance both from a theoretical and from a practical point of view: even if a stable and
consistent numerical scheme is adopted, the convergence of the numerical solution is assured only if the
analytical and the numerical models are both well-posed: these basic requirements cannot be taken for
granted. In Sect. 3.2 some case-studies are presented. The first is intended to highlight the effects of TL
modeling on the integrity of propagating signals. The second case-study provides an example of a class of
nonlinear circuits, where the role of TLs is crucial to provide a wide richness of nonlinear dynamics, such
as multiple steady state solutions, bifurcations and chaotic dynamics.

2 Transmission line models

2.1 Physical interpretation of the TL models

Let us consider the simple interconnect of Fig. 1, made of two perfectly conducting parallel wires of length
2l with arbitrary cross-sections, geometrically long, embedded in a homogeneous dielectric. The electro-
magnetic field can be represented, in the frequency domain, through the potentials ϕ and A, as

E = −jωA −∇ϕ,B = ∇× A, (1)

where ω is the angular frequency and the potentials ϕ and A are expressed, assuming Lorentz gauge, in
terms of the surface charge σ and current density Js by means of the integral relations

A(rP ) = µ

∫
Σ1∪Σ2

G(rPQ)Js(rQ)ds, (2)

ϕ(rP ) =
1
ε

∫
Σ1∪Σ2

G(rPQ)σ(rQ)ds, (3)

where Σ1, Σ2 are the conductor surfaces, rPQ is the distance between the field and source points, G is the

Green function for the homogeneous space G(r) = exp(−jkr)
4πr and k = ω

√
εµ. Here we assume that the

Fig. 1. (a) Schematic representation of the interconnect geometry; (b) cross-section
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characteristic dimensions of the devices are small compared to the interconnect length, hence their effects
are neglected in (2) and (3).

The unknown distributions σ and Js are determined by imposing the boundary conditions and the
charge conservation law:

E · t̂ = 0 on Σ1 and Σ2, (4)

∇ · Js = −jωσ on Σ1 and Σ2. (5)

The fundamental assumptions to derive the TL models are the following:

1. the current field density has only the longitudinal component;
2. the common mode variables are equal to zero;
3. the dependence of σ and Js on the transverse and longitudinal coordinates is of a separable type;
4. the interconnect is transversally electrically short.

Hypothesis 1 depends on the cylindrical symmetry of the structure and on the way the structure is excited.
In such a condition, the magnetic field is of transverse type (TM), hence it is possible to define uniquely at
each section the voltage between the two conductors V (z), which is related to the per-unit-length (p.u.l.)
flux Φ(z) through:

−dV (z;ω)
dz

= jωΦ(z;ω). (6)

Hypothesis 2 is well founded if there are no external sources of electromagnetic field. As a consequence of
this assumption and of the conservation equation, the differential current at each section I(z) is related to
the p.u.l. electric charge Q(z) through:

−dI(z;ω)
dz

= jωQ(z;ω). (7)

Hypothesis 3 holds if the characteristic dimensions of the conductor sections are electrically short, i.e. are
small compared to the characteristic signal wavelength. The transverse problem may be solved considering
the electrostatic potentials produced by the same conductor pair, but of infinite length. Hypotheses (1)-(3)
allow to derive a transmission line model, defined by (6), (7) and by the following two integral relations:

Φ(z;ω) = µ

∫ −l

l

H(z − z′;ω)I(z′;ω)dz′, (8)

V (z;ω) =
1
ε

∫ −l

l

H(z − z′;ω)Q(z′;ω)dz′, (9)

which could be easily derived from (2), (3), as shown in [9]. The kernel of such relations H(z) is expressed
in terms of the Green function G and become of impulsive type if hypothesis 4 holds [9]. With such an
additional condition we have Φ(z) = LI(z), V (z) = Q(z)/C, where L and C are, respectively, the
p.u.l. inductance and capacitance of the interconnect evaluated by solving the transverse 2D problem. By
combining the above results we obtain the standard TL model described by the telegrapher’s equations

−dV (z;ω)
dz

= jω LI(z;ω), −dI(z;ω)
dz

= jω CV (z;ω). (10)

From a physical point of view, it is well-known that the TL model (10) describe the propagation of a field of
transverse electromagnetic type (TEM), e.g., [1]. Instead, the TL model (6), (7), (8), and (9) is a generalized
model which could describe also the presence of continuum spectrum modes along with the fundamental
one. This allows the description of high-frequency effects like radiation losses and dispersion which are
not predicted by the standard TL model [9]. Table 1 summarizes the conditions when the lumped models,
the standard TL model (STL) and the above enhanced TL model (ETL) have to be used, expressed in
terms of operating frequency (through the wavenumber k), characteristic longitudinal (2l) and transverse
(h) dimensions, and mean radius of conductor section a. A full-wave model is required for the analysis of
all those cases not included in Table 1.
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Table 1. Interconnect models for different cases

model k · 2l k · h k · a
lumped << 1 << 1 << 1
STL ≥ 1 << 1 << 1
ETL ≥ 1 ≈ 1 << 1

Even in hypothesis 4, when considering non-ideal structures, conductor and dielectric losses have to
be taken into account: their effects destroy, in principle, the TEM structure of the field. However, in the
quasi-TEM assumption (e.g., [1]) the propagation may be still described by the TL model:

−dV (z;ω)
dz

= Z(z, ω)I(z, ω), −dI(z;ω)
dz

= Y (z, ω)V (z). (11)

where Z(z, ω) and Y (z, ω) are the line parameters, i.e. the p.u.l. impedance and admittance. The line
parameters depend on the actual physical realization of the line: they can describe the simple ideal case
(10) when Z = jωL and Y = jωC. Instead, when Z = R + jωL and Y = G + jωC, they describe the
so-called RLGC lines (lossy uniform lines with negligible frequency effects). More generally they could
describe non-uniform lines with strong frequency dependence, for instance due to conductor skin-effect and
dielectric dispersive behavior: for most cases of practical interest, they could be conveniently described by
the following Laplace domain model, e.g., [6]:

Z(s) = R∞ + sL∞ + K
√
s + Zr(s) (12)

Y (s) = G∞ + sC∞ + Yr(s) (13)

where (.)∞ stands for the high-frequency limit, which may be evaluated from the physical model of the
line or even from frequency-domain samples of the parameters provided by measurements, e.g., [10]. It is
important to stress that Zr(s) and Yr(s) tends to zero as 1/s for s → ∞.

2.2 Equivalent circuit models

There are many possible two-port equivalent representations of TLs, both in frequency and time domain:
the optimal choice strongly depends, of course, on the particular problem to be solved, e.g., [11].

When dealing with high-speed circuits, usually one has to perform time-domain transient analysis of
circuits made by linear TLs and non-linear lumped elements. In such cases, among all the possible two-
port representations, a very convenient one is provided by the input-state-output representation obtained
by assuming forward and backward waves as state-variables of the dynamic system. Such an approach
would lead in the ideal-line case to the same result obtained by Branin, [12], by applying the Method of
Characteristics. In the general case, it provides the following time domain model (e.g., [6]):

i1(t) = yc(t) ∗ i1(t) + j1(t), i2(t) = yc(t) ∗ v2(t) + j2(t), (14)

where ∗ indicates the convolution product, subscripts 1,2 indicates the two line ends and j1 and j2 are two
controlled current sources given by

j1(t) = p(t) ∗ [−2i2(t) + j2(t)], i2(t) = p(t) ∗ [−2i1(t) + j1(t)]. (15)

Such a dynamic model is characterized by two impulse responses: the characteristic admittance yc(t)
and the propagation function p(t), which can be obtained by reverse-transforming their Laplace domain
expressions:

Yc(s) =
√

Y (s)/Z(s), P (s) = exp
(
−2ls

√
Y (s)Z(s)

)
. (16)

The impulse responses may always be split into irregular and regular parts: the first contains irregular
functions like Dirac pulses, and may be evaluated analytically from the asymptotic behavior of (16).
After such asymptotic behavior is extracted, the regular parts may be easily evaluated numerically by
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Fig. 2. Norton-type equivalent circuit representation of a two-conductor line

reverse transforming the Laplace domain remainders. We obtain, in the general case, the following
decomposition:

yc(t) = Y0δ(t) + ycr(t), p(t) = exp(−µT )[δ(t− T ) + pr(t− T )], (17)

where Y0 =
√

C∞/L∞ is the ideal line characteristic admittance, T = 2l
√
C∞L∞ is the one-

way delay time, µ is a damping factor which is known analytically, ycr(t) and pr(t) are the regu-
lar parts of the impulse responses, often known only numerically. Note that such properties hold for
the general case of multiconductor lines with frequency-dependent parameters, with slight differences
in the case of pronounced skin-effect, e.g. [6]. Such a line representation provides advantages both
in the qualitative and numerical analysis, as shown in Sect. 3. Eqs. (14) and (15) describe each line
end through the time-domain equivalent circuit of Norton type shown in Fig. 2. Apart for the effect
of Y0, which is always present, the solution at each line end is due to the contribution of the dy-
namic one-port ycr(t), which describes dispersion effects due to losses and frequency-dependence of
line parameters, and of the controlled source jk(t), k = 1, 2, which takes into account the reflec-
tion at the other end, the delay and dispersion introduced by the propagation along the line. Note that
jk(t), k = 1, 2 vanishes if the line is matched at the other end. The most important property of such
a model is the fact that, at a given time instant t, j1(t) only depends on the solution history in the
time interval (0, t − T ). Therefore, it could be treated as independent source, if the problem is solved
iteratively.

3 Transmission lines and lumped circuits

3.1 Qualitative properties of the solution

Let us consider a two-conductor lossy line connecting two lumped nonlinear resistors. From the above
considerations, the adopted circuit representation is a dynamic system which introduces a state variable,
namely the current flowing into the dynamic one-port ycr(t). If we solve the problem recursively, at each
time instant t we find at the line terminations two uncoupled networks which may be simply represented
by a resistive circuit, obtained by substituting the dynamic one-port ycr(t) with a constant current source
Iy , see Fig. 3a. Note that such a procedure extends to distributed elements the concept of associated re-
sistive circuit, introduced in the past for the analysis of lumped circuits, e.g., [7]. Dynamic loads may be
easily taken into account in a similar way: their corresponding associated resistive circuits are obtained
by substituting each capacitor with a constant voltage source, and each inductor with a constant current
source.

The analytical model obtained by combining (14),(15) with the characteristics of the lumped resistors
is well-posed if it is possible to express all the non-state circuit variables as single-valued functions of the
state variables and of the source variables. In fact, in such a case it can be proven that the model may
be reduced to a well-posed system of Volterra integral equations in normal form, [6], [13]. For instance,
considering two voltage-controlled nonlinear resistors

ik(t) = gk(vk(t)), k = 1, 2, (18)
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Fig. 3. Transmission line connecting two nonlinear resistors: (a) associated resistive circuit; (b) discrete resistive circuit

the following conditions are sufficient to obtain the well-posedness of the model

1. function gk is continuous;
2. the resistor is weakly active;
3. the following inequality holds:

dgk/dv > −Y0. (19)

Inequality (19) is always satisfied if the characteristics of the resistors are monotonically increasing. In-
stead, it may be not satisfied if the characteristic has tracts with negative slopes. When this occurs, the
associated resistive circuit can have more than one solution, so a normal form Volterra integral equation
system may not exist and the solution may be not unique. The presence of a capacitor in parallel with the
nonlinear resistor (even a parasitic one) ensures uniqueness even when the above condition of the slope
of g(v) is not satisfied, [6], [13]. Note that such a result may be easily generalized to multiconductor
lines, [14].

Besides the associated resistive circuit, the line representation adopted here allows to introduce also the
so-called discrete resistive circuit, [8], which describes the problem to be solved at any discrete time-step
tn = n∆t, where ∆t is the time discretization step (let xn indicate the generic variable x(t) at t = tn).
Note that discrete circuits associated with different integration algorithms are different: Fig. 3b shows the
circuit obtained by using the trapezoidal rule to integrate the convolutions (the variables at port 2 have
analoguos definitions of those of port 1). The transient analysis reduces to the dc analysis of the resistive
circuit of Fig. 3b: we can solve the associated discrete circuit step by step, by any efficient method, such
as modified nodal analysis combined with Newton-Raphson method [8], through recursive updating of Sn

1

and Sn
2 .

We observe that the associated discrete circuit of Fig. 3b tends to the associated resistive circuit of
Fig. 3a for ∆t → 0. This implies that, if the associated resistive circuit has one and only one solution,
and hence the dynamic circuit has one and only one solution, the numerical model has one and only one
solution converging to the actual solution, [6], [15]. In fact, it is easy to show that the conditions ensuring
the well-posedness of the associated discrete circuit are the same derived above for the associated resistive
circuit, provided that Y0 is replaced with Yeff , see Fig. 3b:

dgk/dv > −Yeff . (20)

If (19) is satisfied, there exists a sufficiently small ∆t to satisfy (20) also, and vice-versa, and the numerical
model admits one and only one solution. If we consider non-linear resistors described through voltage-
controlled non-monotone characteristics, (19) could be no longer verified, hence the original equations may
admit several solutions, and condition (20) is not satisfied even if ∆t is arbitrarily small. As a consequence,
the numerical model admits several solutions, and the discrete time sequence approximating the solution is
no longer unique. In this case, a well-posed model is again obtained if we take into account the capacitive
parasitic effects, neglected during modeling, that have a strong influence on the dynamics of the network,
[6], [15].
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3.2 Numerical analysis of practical applications

Whatever is the adopted two-port representation, the main drawback of such an approach is the high com-
putational cost of transient analysis, mainly due to time convolution. Therefore, the literature proposes
many techniques to obtain convenient reduced-order models, e.g., [3]. It is known in literature that the
model adopted here is the most suitable to perform transient analysis of long transmission lines, i.e. lines
for which the propagation delay plays a significant role, e.g., [10]. This is because such a model allows
to extract analytically all the unbounded terms contained in the line impulse responses, which are then
represented by simple resistive circuits and damped delayed sources. Only the regular remainders are ap-
proximated with reduced-order models, and then represented through low-order lumped networks.

Let us now refer to the case-study 1, consisting in a two-conductor microstrip of length 20cm analyzed
in [4]. The interconnect is modeled as a TL with frequency-dependent parameters by using expressions
(12) and (13), with: C∞ = 88.25µF/m,L∞ = 0.806µH/m,R∞ = 86.206Ω/m,G∞ = 67nS/m,K =
2.4mΩs−1/2/m, while Zr(s) = Yr(s) = 0. The line presents a characteristic admittance Y0 = 10.5mS
and a delay time T = 1.69ns.

The line is synthesized by means of the equivalent circuit model of Fig. 2, by using a rational approxi-
mation for the two impulse responses remainders ycr(t) and pr(t). The near end is terminated on a driver,
modeled as a voltage source in series with a resistor R1 = 50Ω. The voltage source supplies a rectangular
pulse of amplitude 1V , that lasts 2ns, with rise and fall time tr = ts = 50ps. The far end is connected to a
pn-junction diode, modeled by

i = Is (exp(v/VT ) − 1) , (21)

with VT = 1V and Is = 40µA.
Figure 4 shows the far-end voltage obtained by using three different TL models: the complete one (skin),

an approximated one obtained by neglecting the skin-effect (RLGC) and the lossless line limit (ideal). The
simulation puts on evidence the strong effect of TL modeling on the signal shape: a correct modeling of
TLs is crucial to foresee critical effects for signal integrity, like delay in the receiver switching, and false
switching which may be caused by unwanted reflections, [16].

The second case-study analyzed here is intended to highlight the richness of behavior which could be
observed when TLs connect nonlinear devices: multiple steady state solutions, bifurcations and chaotic
dynamics. Let us consider an ideal TL connecting two nonlinear resistors: such a line is described by (17)
with ycr(t) = pr(t) = 0, µ = 0, hence the circuit state equations, obtained by combining (14) and (15)
with the resistor characteristics, are nonlinear difference equations with one delay. The dynamics of the
problem may be studied by analyzing the behavior of a nonlinear one-dimensional map, in which the time
is no longer a continuous variable but a sequence of discrete values:

Fig. 4. Far-end voltage for case-study 1 predicted by different line models
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Fig. 5. Bifurcation diagram for case-study 2

un+1 = f(un), (22)

with a proper definition of the state variable un, [6]. By studying the main properties of these maps, bifur-
cations, periodic oscillations and chaos may observed when at least one terminal resistor is active and the
other is nonlinear, e.g., [6], [17].

Let us consider an ideal line of length 1m, with the following parameters: C = 3.00pF/m,L =
3.70µH/m, leading to Y0 = 0.90mS and T = 3.33ns. Let us assume that the far-end is connected to an
active linear resistor of conductance G1, and the near-end is terminated on the diode of Eq.(21). A non-zero
initial condition is imposed, by applying a unit voltage pulse at the far-end. In such a case, the map f in
(22) reduces to the logistic map f = λun(1 − un), where the parameter λ is given by:

λ =
Y0 −G1

Y0 + G1
. (23)

and the state variable is expressed in terms of the backward voltage wave at the far-end:

un = λ
v1 − i1/Y0

2
1

(1 − β − ln(β))VT
, β =

Is

VTY0
. (24)

Figure 5 shows the bifurcation diagram of such a map. For 0 ≤ λ ≤ 1 the only fixed point is u =
0, while for increasing λ we enter a region where a non-zero asymptotically stable fixed point may be
observed. Then stable periodic orbits of period 2, 4, and so on may be observed, until λ reaches a value
such to excite chaotic dynamics. Note that the chaotic regime is interrupted by some windows where the
asymptotic behavior of the orbits is again periodic.
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