chronically inflamed tonsils produced nothing. But a few drops of procaine into the injured fingertip, in which no macroscopic change was discernible, were enough to make the paralysis vanish completely and permanently within a few minutes of the injection. His wife, a physiotherapist, had been giving him daily treatment with such dedication that his muscles had not become completely atrophied. Had he failed to mention this pinprick with the hypodermic, he would without any doubt have remained chained to his wheelchair for the rest of his life. However, in the event, he has been back at work without relapse since 1956.

After being cured, he presented himself again at the specialist’s who had produced the diagnosis that he was suffering from this obscure disease. The specialist asked him what he had done to cure his “incurable” disease. The veterinary surgeon told him about my successful procaine injection with its surprise result. The specialist’s reply deserves to be quoted: “What, procaine? We could have done that, too!” Without a doubt, but they did not. That is, of course, the difference between potential skills and actually making use of them. Since we cannot treat genuine hereditary disease, the only possible explanation in this case is that of a disorder produced by an interference field, which presented with the symptoms of a hereditary disease but which was not hereditary at all.

After his personal experience, it is hardly surprising that this veterinary surgeon should want to see whether this new therapeutic principle could also be used with animals. He has meanwhile published details of a number of segmental cures and lightning reactions that he has achieved in animals. Amongst these, two are perhaps of special interest here.

An Alsatian dog was lame on one hind leg. He had received a large number of different injections in the past, all to no avail. Yet, after a procaine injection into a head scar, this dog was able to jump down from the operating table. The second case was of a horse that had been unable to feed for 6 days because of pharyngeal paralysis. This animal was cured instantly when Dr. S. injected procaine into the scar of an esophageal fistula. On account of its inability to feed, the horse had been practically at the end of its strength. Now, it ate hungrily.

Kothbauer has reported how a therapy-resistant mastitis in a cow was also cured instantly when he injected procaine into a palm-sized scar in the pelvic area caused by barbed wire. Another case of obstinate indigestion, which had persisted for several days with febrile attacks, disappeared instantly after procaine treatment of a patently tender cesarian scar. Digestive disturbances in another cow were cured within hours after he had injected procaine to eliminate the interference-field effect of a painful scar left by the surgical removal of a foreign body. Such cures must surely convince even the most obstinate skeptics that the curative effect in a Huneke phenomenon is connected not with psychological but with organic processes, and that the frequently repeated objection that it is based on suggestion cannot be upheld any longer. In animals there is no such thing as suggestion as we know it in the human being!

The case of Dr. S. shows us that truly any point in the body, even a mere pinprick, can become an interference field. The many injections that we have to administer in neural therapy do not turn into interference fields, because any interference that we might cause is immediately extinguished by the procaine injection that follows. If we remember in this connection that a serum rash can be stopped by anesthetizing the entry point where the serum has been injected (Muschawek), and when we learn that the best treatment for snakebite is to inject procaine around the fresh bite, new and interesting relationships are opened to us with regard to allergic and toxic reactions that occur under the direction of the nervous system.

Amputation Scars as Interference Fields

A separate section is devoted to amputation scars, since their importance as a pathogenic cause is all too often underestimated. From what has already been stated in the last section, it will be obvious that even a superficial scar may become an interference field. But after the amputation of a limb, we have at a single site scars in skin, bone, vessels, and nerves. The neuroglia on the nerve stump itself produces trophic and vasomotor disturbances and creates interference stimuli that can produce not only pain but also every kind of regulatory disturbance. For example, it is common knowledge that patients who have had a leg amputated above the knee tend to be subject to gastric ulcers, cardiac disorders, indigestion, sweating, obesity, hypertension, plethora, and other autonomic and hormonal disorders, to an extent well above average. But how many physicians are there who will draw the obvious conclusions from this knowledge and look for an interference field there as the cause?

We test the limb-amputation site as follows. First loosen the scar by injecting a small quantity of air under the surface. Procaine is then injected with the needle left in situ. The small scar at the site of a drain should not be forgotten in this. If the patient tells us that we may put the needle anywhere but into one particular spot, he is drawing our attention to the very point we must inject. When this is being done, it is essential that both the patient and an assistant hold the stump immobile, since any sudden movement by the patient resulting from the painful injection may break the needle. After the pain of the injection has passed off, the amputee will often tell us spontaneously that