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2Computational Fluid Dynamics in Screw 
Machines

2.1 Introduction

As computer technology and its associated computational methods advance, the 
use of 3-D Computational Fluid Dynamics (CFD) to design and analyse positive 
displacement machinery working processes is gradually becoming more practica-
ble. In general, the CFD modelling process can be split into four phases.

The first phase is concerned with defining the problem that has to be solved. 
Both the ease of solution and implementation of results into the design process are 
heavily dependent on this critical starting step. Two different approaches are 
available for screw machines. The first is to select one interlobe on the main rotor 
and the corresponding interlobe on the gate rotor in order to make a computational 
domain. This is probably the easiest to implement but takes no account of impor-
tant phenomena such as interlobe leakage, blow-hole losses, oil injection and oil 
distribution. Another approach assumes that the whole domain of a screw machine 
is analysed. This includes the suction chamber and its port, the compression or ex-
pansion chamber with its moving rotor boundaries and the discharge system of the 
machine. By this means, the leakage paths and any additional inlet or outlet ports 
are included in the domain to be analysed. Realism in representing the machine 
working process gives a large advantage to this approach. The design procedure 
and the CFD numerical analysis can then be easily connected and interchanged 
and the calculation of the operational parameters of such machines is thereby fa-
cilitated. Unfortunately, such a complex geometry cannot be represented by a 
small number of computational points. 

In the second phase, a mathematical model that is capable of describing the 
problem has to be selected. There are again two types of situation. The first is 
where an adequate mathematical description exists and can be used, e.g. heat con-
duction, elastic stress analysis and laminar fluid flow. The second is where such a 
description either does not exist or is impracticable to use, e.g. non-linear stress 
analysis and turbulent fluid flow. In the case of positive displacement machines, it 
is unlikely that any analytical solutions exist. This is because highly compressible 
flow appears inside both domains with turbulent flow regimes and domains with 
low Reynolds numbers. There is additional non-linearity introduced by two-phase 
flow, particle flow, moving and stretching domains and sliding boundaries. Due to 
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all these, the mathematical model implemented here needs to cope with a variety 
of different requirements. It is based on the general laws of mass, momentum, en-
ergy and space conservation. The resulting system of governing equations is not 
closed because it contains more unknowns than resulting equations. It is closed by 
constitutive relations, which give information about the response of a particular 
continuum material to external influences. The whole concept of mathematical 
modelling is based on a phenomenological approach which employs the principle 
of a continuum as the physical background. It can be applied only when an ele-
mentary part of material or the smallest characteristic length of the flow, which 
has to be analysed, is much bigger then the mean free molecular path. Fortunately, 
this condition is fulfilled for the majority of fluids and practically for all solid 
structures. 

The mathematical description of problems in continuum mechanics is very 
rarely amenable in a closed-form of analytical solution and an iterative numerical 
procedure is thus the only alternative that can be applied to solve models in posi-
tive displacement machines. Numerical methods transform the differential equa-
tions of the mathematical model into a system of algebraic equations. The third 
phase is therefore to select the discretisation method. To do that a number of ap-
proximations are made: the continuum is replaced by a set of computational points 
with finite distances between them in space and time, while the continuous func-
tions which represent the exact solution of the mathematical model are approxi-
mated by polynomials, typically of a second order. Because of the complexity of 
positive displacement machines, the standard approach to spatial discretisation is 
not applicable and a special grid generation method has to be developed and ap-
plied to them. The equations are discretised by the finite volume method, which 
appears to have a more conservative form of governing laws then any other nu-
merical method. The result of discretisation is a system of algebraic equations the 
size of which depends on the number of numerical cells. 

The resulting set of algebraic equations is then solved by approximate iterative 
methods. Iterations are necessary due to the non-linearity of the mathematical 
model. Even for linear problems, an iterative solution method is usually more effi-
cient than a direct one. In addition, iterative solution methods are less sensitive to 
round-off errors due to the finite accuracy of the computer arithmetic. 

2.2 Continuum Model applied to Processes in Screw Machines

A mathematical model of the transport processes, which exist within both twin 
screw and other types of positive displacement machine, is presented here. It in-
cludes the mass, momentum and energy conservation equations in integral form, a 
space conservation law, which has to be satisfied for problems with a moving 
mesh, constitutive relations required for the problem closure, a model of dispersed 
flow, models of turbulence in fluid flow and boundary conditions.
All the equations are presented in a symbolic coordinate-free notation which di-
rectly conveys the physical meaning of particular terms without unnecessary ref-
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erence to any coordinate system. However, numerical solution of these equations 
requires a coordinate system and vectors and tensors have to be specified in terms 
of their components. 

2.2.1 Governing Equations 

Fluid contained within a screw compressor can be gas, vapour or a wet mixture of 
liquid and vapour. In some cases, it can be pure liquid. Its density varies with both 
pressure and temperature. The compressor flow is governed by equations based on 
the general laws of continuity, momentum and energy conservation. The most 
general approach is to write these equations in integral form and apply them to an 
arbitrary part of the fluid or solid continuum of volume V, which is bounded by a 
moving surface S, as shown in Figure 2-1.

Reynolds’ transport theorem can be expressed as:  

( )
CM CV

s
V V S

d ddV dV d
dt dt

       v v s (2.1)

where, VCM is the volume of the control mass, VCV is the control volume enclosed 
by the surface S. Vector ds stands for the outward pointing surface vector, defined 
by its unit vector n and surface area dS as ds=n dS. In equation (2.1),  represents 
any intensive property based on mass, momentum, energy, concentration or other 
parameter. 

Figure 2-1 Control volume of part of the continuum

Vector vs is the velocity with which the surface of the control volume moves. If 
the control volume is fixed, then its surface velocity vs=0. Equation (2.1) then 
makes the rate of change of the amount of property in the control mass equal to 
the sum of the rate of change of that property within the control volume and its net 
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flux through the control volume boundary due to relative fluid motion. If the con-
trol volume moves with the same velocity as the boundary of the control mass, 
then the boundary velocity is equal to the velocity of the control mass, v=vs. For 
convenience, the control volume is denoted as V and its surface as S. 

If the variable  in equation (2.1) has the value of 1, then the equation repre-
sents that of continuity:

s( ) 0
V S

d dV d
dt

      v v s , (2.2)

If the conserved property is velocity, i.e.  =v, then equation (2.1) becomes that of 
the conservation of momentum:

s( )
V S

d dV d
dt

      v v v v s f (2.3)

where the right hand side of the equation represents the sum of surface and body 
forces which act on the matter in the control volume. Since the body forces acting 
on the whole matter trapped in the control volume are independent of the shape of 
the boundary surface, they represent a vector field and can be integrated over the 
control volume. However, surface forces such as pressure forces, normal and shear 
stress forces or surface tension forces, depend on the surface on which they act, 
and they represent momentum fluxes across the surface. More details of this can 
be found in Ferziger and Peric (1995). In order to close the system of equations, 
these fluxes must be written in terms of properties whose conservation is governed 
by the equation in question. In equation (2.3) the conserved property is the veloc-
ity v. For Newtonian fluids, a constitutive relation between stress T and strain D is 
Stokes’ law. Hookes’ law gives a constitutive relation for thermo-elastic solids. 
The momentum equation (2.3) then becomes:

s( ) b
V S S V

d dV d d dV
dt

         v v v v s T s f (2.4)

where T is the stress tensor and fb is the resultant body force.
If the conserved property  in equation (2.1) is scalar, then the equation can be 

written in the following form:

s( )
V

d dV d
dt       

S

v v s f , (2.5)

where the term on the right hand side is the sum of all the modes of transport of 
the property , other than convection, which is already on the left side of this 
equation, and any sources or sinks of that property. This sum generally consists of 
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two terms; the diffusive transport and the sink or source of the conserved property. 
The diffusive transport is:

gradd

S S

f d d      s q s . (2.6)


 is the diffusivity of . Equation (2.5) in that case becomes a general conserva-
tion equation:

s( )
V S S V

d dV d d S dV
dt           v v s q s (2.7)

where S is the source or sink of property  per unit mass. Equation (2.7) appears
to be a generic equation valid for all intensive properties of matter. 

From equation (2.7) one can get the energy equation, in the form of enthalpy, 
directly as:

s

s

( ) +

( grad : grad ) p

h h
V S S V

V S V

d hdV h d d s dV
dt

dp dV d pdV
dt

     

    

   

  

v v s = q s

v S v v s

(2.8)

S is the viscous part of the stress tensor:

p S T I (2.9)

I is a unit tensor.

If applied to the concentration scalar i
i

mc m , where mi denotes the mass of 

the dispersed fluid in the working fluid and m defines the overall mass, equation 
(2.7) becomes:

s( )
i ii i c c

V S S V

d c dV c d d S dV
dt

         v v s q s , (2.10)

where qci is the diffusion flux and Sci is the source or sink of the dispersed phase.
If the conserved property in equation (2.7) is defined as =1/ then this equa-

tion becomes the space conservation law which must be satisfied in all cases even 
if the domain boundaries move:

s 0
V S

d dV d
dt

    v s . (2.11)
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This equation links the rate of change of volume V and surface the velocity vs.
Equations (2.2), (2.4), (2.8), (2.10) and (2.11) constitute a mathematical model 

which is valid for the majority of fluids and solids in engineering practice. For the 
numerical modelling of a screw machine, the first three of these equations should 
be solved for the working gas or vapour, which is a background fluid. Equation 
(2.10) is solved for the disperse phase, which is either oil or other fluid injected 
into the working chamber and dispersed into the background fluid, while the equa-
tion of space must be satisfied for any case, because the compression or expansion 
in a positive displacement machine is caused entirely by the movement of the
boundary. In two-phase flow, the liquid phase of the working fluid can also be 
considered as the dispersed phase. This approach assumes that the dispersed phase 
is a passive ‘species’ in the background fluid. It allows separate calculation for 
these two phases. The influence of the dispersed phase on the main flow and vice 
versa is through the source terms in the governing equations. Such a method does 
not require the additional calculation of mixture properties such as density and 
viscosity. This is convenient and physically sound in the case of an oil-injected 
compressor where the two phases are fluids of a different type. Although these 
two flows are usually calculated from the unique density and viscosity of the va-
pour-liquid mixture, it is more convenient to take account of the values of the va-
pour and liquid properties separately with concentration as the blending factor be-
tween them.

2.2.2 Constitutive Relations 

The numerical method contains information about material properties that have to 
be incorporated into the model. These are used to express the stress tensor T, heat 
flux qh and diffusion flux qci. Relatively simple assumptions can be made to de-
fine values for these in many engineering circumstances. The stress tensor, which 
represents the viscous rate of transport of momentum and closes equation (2.4), 
can be defined for Newtonian fluids by Stokes law as:

22 div
3

p   T D vI I , (2.12)

where the rate of strain is defined as:

 1 grad grad 
2

T   D v v . (2.13)

Superscript T represents the transposed tensor. Stokes law gives the relation be-
tween the stress and the rate of deformation for Newtonian fluids.

Solid material can be treated as thermo-elastic. For such solids, the constitu-
tive relation that closes equation (2.4) is Hooke’s law. It defines the relation be-
tween the stress and strain in solids as:
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2 div (3 + 2 ) t+ T      T D u I I , (2.14)

where the strain tensor is:

 1 grad grad 
2

T   D u u . (2.15)

Equations (2.12) and (2.14) have the same form. This allows them to be incorpo-
rated into a mathematical model and solved by the same method. By this means, 
the simultaneous calculation of fluid flow and deformation in solids permits the 
analysis of fluid-solid interaction.

The viscous part of the stress tensor, which appears in equation (2.8), is now 
fully defined by equations (2.9), (2.12) and (2.13). 

The heat flux through the surface boundary qh is defined through Fourier’s law 
as the product of the thermal conductivity  and the temperature gradient.

h grad Tq . (2.16)

The mass flux of the dispersed phase, relative to the mean flow is defined by equa-
tion (2.10), by the use of Fick’s law:

ic gradi iD cq , (2.17)

where Di is the mass diffusivity of the dispersed phase. In the case of only one 
fluid dispersed in the main flow, which is the most common case in oil injected 
screw compressors, equation (2.17) satisfies the overall mass concentration equa-
tion:

ic ( )
ii c mc q v v . (2.18)

The velocity of the dispersed phase is vci, while the mass averaged velocity of the 
mixture is 

0 i

N
m i ci

c


 v v . Equation (2.18) is satisfied if the fluid is dispersed. 

Otherwise, it is valid if each fluid satisfies its own equation. On the other hand, 
Fick’s law satisfies equation (2.18) only if 

0
0

i

N
i ci

c


 q . This happens only if the 

diffusion coefficients of all the dispersed fluids have the same value. 
Even if all the variables, which define the material properties, are known, the 

system of equations is still not closed because the pressure p exists in both, the en-
ergy equation (2.8) and in the stress tensor (2.12) which forms part of the momen-
tum equation (2.10). An equation of state, which balances the mass equation with 
thermodynamic properties, usually pressure and temperature, is then required to 
close the system. This is normally of the form:
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( , ), ( , )p T e e T    (2.19)

Equations of state are directly applicable to all engineering fluids and solids, both 
ideal and real. Common examples are incompressible fluids and solids where 
=const, or ideal gases where =p/RT. However, real fluids are not rare in screw 
machinery. In that case, the density of the real gas or mixture can be calculated 
based on a user specified procedure and later introduced to the model. These equa-
tions must have the form of equation (2.19).

2.2.3 Multiphase Flow

In an oil-flooded screw compressor, the dispersed phase in the working fluid is
comprised of both the liquid part of the working fluid and the oil. Both compo-
nents give flow through the machine a multiphase character. There are two differ-
ent approaches to multiphase flows. One of them is the Eulerian approach where 
each of two or more phases is contained in its own domain, strictly separated in 
space from any other but connected with them through a boundary interface. An 
example of this is an oil tank in which the level of oil is above space occupied by 
water. If the Eulerian approach is assumed, then a sharp interface exists between 
the oil and the water and separate numerical meshes can be generated. Both, the 
oil and the water have to satisfy the governing equations described in 2.2.1. 

This is not applicable to two-phase flow within a screw machine. Here, the so-
called Eulerian-Lagrangian approach is more appropriate, in which both phases 
occupy a common working domain without a strict interface between them. In 
such a case, the background fluid must satisfy the governing equations of mass, 
energy and momentum, while the dispersed phase should satisfy the governing 
equation of concentration. Such an approach allows for the dispersed phase to be 
either a passive or an active component. The dispersed phase in the form of oil or 
other injected liquid has an important role in the screw compressor working cycle. 
It is there to cool the fluid, seal the clearance gaps and lubricate the compressor 
moving parts. The influence of the dispersed phase on the background fluid and 
vice versa must be incorporated in the governing equations. This is done through 
source terms in the mass, momentum and energy equations. 

The Energy Source

The energy balance of a dispersed phase trapped in the control volume can be 
written in the following form:

( )i i i i
i iL con mass

d m h dh dm
m h Q Q

dt dt dt
     (2.20)

The first term on the right hand side of this equation represents the convective heat 
flux between the dispersed phase and the background fluid while the second term 
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represents the heat transfer due to mass interchange between the phases. The last 
one is significant only for two-phase flow of the same fluid in the working cham-
ber. In the case of an oil-flooded compressor, the convection term has a significant 
role. In equation (2.20) hi is the specific enthalpy per unit mass while hiL defines 
the specific enthalpy of vaporisation. It represents the difference between the spe-
cific enthalpies of the liquid and vapour phases, i.e. the dispersed and continuous 
phases. If the specific heat of oil is constant, then equation (2.20) becomes:

( )
o

i i o L
o p L con mass

d m T dT dmm C h Q Q
dt dt dt

     , (2.21)

There are two approaches to allow for convective heat transport between the dis-
persed phase and the background fluid.

The first approach assumes that the dispersed phase is completely dissolved in 
the background fluid. That means that the droplet size of the dispersed phase is 
very small, ie. 0od  . In that case, an ideal process of heat transfer can be as-
sumed where the temperature of the dispersed phase is assumed to be equal to the 
temperature of the background fluid T=To. Heat exchange between the phases is 
then calculated from the temperature difference of the continuous phase, at two 
consecutive instants of time, multiplied by the mass and specific heat of the dis-
persed phase as:

1

o o

k k

con o p o p
dT T TQ m C m C
dt t


  , (2.22)

where Tk is the temperature in the current time step and Tk-1 is the temperature 
from the previous time step or iteration. t is the time step. If the time step is 
small then this equation has the exact differential form of convective heat transfer. 
The assumption of an infinitesimally small droplet size is not completely correct 
but analysis of the influence of oil on screw compressor process performance by 
Stosic et al (1992) showed that a change in droplet size from 0 to 10 m, does not 
affect the oil and consequently the gas temperature very much. Therefore, it is ac-
curate enough to calculate the heat exchanged between the continuous and dis-
persed phases by means of equation (2.22). 

When necessary, another approach can be used to calculate the convective heat 
transfer term in equation (2.21). It should be applied whenever the temperatures of 
the continuous and dispersed phases cannot be considered to be equal. It is then 
assumed that the dispersed phase, contained in the control volume, consists of 
spherical droplets with a Sauter mean diameter defined as:

0.7
10.0092 1o o

o
o

d
c

   
      v

(2.23)
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where o is the surface tension and v is the absolute value of the fluid velocity. 
The convective heat flux then becomes:

Nu ( )con o oQ d T T   , (2.24)

where, T and To are temperatures of the continuous and dispersed phases respec-
tively and the Nusselt number is given by:

0.5 0.33Nu 2 0.6 Re Pr  . (2.25)

In the previous equation the Prandtl number is defined as:

Pr pC


 (2.26)

Reynolds number is:

Re o od




v v

, (2.27)

The velocity of the dispersed phase is ov . There are again two possible ap-
proaches. The first is to assume the velocity of the dispersed phase to be the same 
as the velocity of the continuous phase. In this case v=vo. This can be assumed if 
the size of the droplet defined by equation (2.23) is small, e.g. less then 20 m. If 
this is not the case, a different approach has to be applied and the velocity vector 
of the dispersed phase has to be calculated by another procedure. Whatever the ve-
locity, the temperature of the dispersed phase is derived from the balance of two 
equations that define heat transfer namely: (2.22), which represents the amount of 
heat taken in by the dispersed phase, and (2.24) which defines amount of heat 
given out by the continuous phase. This can be written as:

1

Nu ( )
o

k k
ko o

o p o o
T T

m C d T T
t

 



  , (2.28)

where To
k and To

k-1 are temperatures of the dispersed phase in the two consecutive 
time steps.

When equation (2.25) is applied, the temperature of the dispersed phase becomes:

1

1

k
k t o

o o
t

T k TT T
k


 


, (2.29)
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where the time constant kt is defined as:

Nu
oo p

t
o

m C
k

d t  
 (2.30)

In all the previous equations, the mass of the dispersed phase in the control vol-
ume is calculated from the mass concentration co defined from equation (2.10) as:

(1 )
o o

o o o
o o o

V cm V
c c

 


 
 

 
(2.31)

where o and  are the densities of the dispersed and the continuous phases respec-
tively. Both densities are calculated from the equation of state (2.19). 

The last term in equation (2.21) represents heat transfer due to mass transfer 
between the phases. It is significant when a real fluid evaporates or condenses in 
the machine. It can be expressed as:

s
L L L L

mass L L L L L
dm m m mQ h h h h m
dt t t 

      , (2.32)

where mL is the mass exchanged between the liquid dispersed phase and the con-
tinuous phase. It is defined as the difference between the mass of the continuous 
phase in the control volume, calculated from the mass balance equation (2.2), and 
the mass of the continuous phase, calculated by the equation of state (2.19), at the 
pressure obtained from the governing equations and the saturation temperature at 
the same pressure. 

The latent heat of evaporation hL is the difference between the specific en-
thalpy of the liquid hl and the specific enthalpy of the vapour hv at saturation pres-
sure p, which is calculated from the model:

L v lh h h  (2.33)

Since these two specific enthalpies at present are not known they should be calcu-
lated together with other properties of the real fluid.
The heat fluxes calculated from equations (2.24) and (2.32) represent the source 
terms in the energy equation (2.8).

The Mass Source

The mass of the dispersed phase changes in two-phase flow because of evapora-
tion or condensation in the control volume. The amount of mass exchanged be-
tween the two phases is defined as:
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s
L L L L

L
dm m m mm
dt t t 

 
   . (2.34)

In practice, if the control volume is assumed constant during one time step, the 
pressure and temperature are calculated from the governing equations together 
with the mass of the continuous phase. The mass concentration of the dispersed 
phase is calculated from equation (2.10). This procedure defines the mass of the 
dispersed phase mo through equation (2.31). If two-phase flow exists in the control 
volume, the temperature of the mixture is the saturation temperature for the calcu-
lated pressure. If the temperature calculated by the model does not satisfy this 
condition, mass must be exchanged between the dispersed and continuous phases 
to establish equilibrium. The exchanged mass transfers the heat of evaporation be-
tween the phases until equilibrium is established. The heat of evaporation is calcu-
lated from the balance equation of the heat exchanged between the phases and the 
heat required to adjust the temperature of the mixture to the saturation temperature 
for the pressure calculated in the control volume:

( )L L pm satm h m C T T      (2.35)

This mass becomes either a source or a sink in the mass equation for the continu-
ous phase. Also, it is subtracted from the concentration of the dispersed phase 
through the source term in equation (2.10). 

The Momentum Source

The equation of motion for an individual droplet of the dispersed phase in a posi-
tive displacement machine is given in the form of an ordinary differential equation 
based on Newton’s second law:

( )o o
drag pres body am

d m
dt

   
v f f f f , (2.36)

where, often, the pressure forces, fpres, body forces, fbody, and apparent mass forces, 
fam, can be neglected. The interphase drag force fdrag is:

1
(

2drag o drag o oA C   f v v v v) , (2.37)

where 2 4o oA d  is the surface of the dispersed phase particle with Sauter 
mean diameter do, vo is the velocity of the dispersed phase in the control volume 
and Cdrag is the drag coefficient which, in case of a Newtonian fluid, depends only 
on the Reynolds number defined by equation (2.27). When applicable, equation 
(2.36) is used to calculate the velocity of the dispersed phase while equation (2.27)
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gives a source term for the momentum equation. If one assumes ideal heat transfer 
with a particle of size 0, then the drag force is also 0.

2.2.4 Equation of State of Real Fluids

Refrigerating and air conditioning and process compressors, as well as process gas 
compressors operate with real fluids i.e. where the assumption of ideal gas rela-
tionships is too gross. In such a case, complex functions are required to describe 
the fluid property changes. Commercial software packages are available today for 
the calculation of real fluids. Most of these packages are impractical for use in 
CFD because of the large number of calculations required to obtain the required 
thermodynamic properties. However, often users develop property software for 
their own requirements which gives good agreement over the required range of 
operating conditions. 

In the case of two-phase flow, the required thermodynamic properties are: 
saturation temperature, density of the mixture, specific heat of the mixture, latent 
heat of evaporation and C he latter is a constant that appears in the mass flux 
correction in the coupling procedure of the mass equation and equation of state. It 
defines the rate of change of density with change in pressure to correct the pres-
sure-velocity coupling procedure. It is expressed as:

T

C
p
 

   
, (2.38)

for constant temperature in one iteration. In the case of an ideal gas, the value of 
this constant is derived directly from the equation of state p RT  as:

1

T

C
p p RT
      

. (2.39)

However, for a real fluid, the equation of state is expressed as:

( , )p z RT z p T RT


  , (2.40)

where z is the compressibility factor. This is generally a non-linear function of 
pressure and temperature. There are approximations derived for this factor and it 
is assumed here to be a linear function of the working pressure:

1 2z p B B  , (2.41)
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where B1 and B2 are constants with different values for each fluid. For the ideal 
gas B1=0 and B2=1. The compressibility factor is approximated such that coeffi-
cients B1 and B2 are calculated from measured thermodynamic properties of satu-
rated vapour at pressures of 1 and 20 bar. Screw machines usually operate within 
this range of working pressures regardless of their application and this approxima-
tion does not involve a large error in the estimation of thermodynamic properties. 
It leads to a maximum error of approximately 2% at 10 bar. This is sufficiently ac-
curate, but outside this range different coefficients need to be used. 

If the compressibility factor at the working pressure and temperature is known, 
then the density of the vapour or gas is derived from:

v
p

z RT
  , (2.42)

It can be assumed that liquids in screw machines used for lubrication and gener-
ated as a result of the condensation process, are incompressible at the machine 
pressures. This means that the density of the liquid is constant:

l const  , (2.43)

The density of a liquid-vapour mixture in the saturated domain can be written as:

 2 2 2
2

1
1 1

v l l

p
c c cc zRT p



  

 


  
, (2.44)

To obtain an equation for C, the temperature is regarded as constant within the it-
eration. The first derivative of equation (2.44) gives:

2
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2
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1 (1 )

(1 )
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dz cc RT
dpd

cdp c zRT p

 
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

  
 

 
   

. (2.45)

The derivative in the second term on the right side represents the change of com-
pressibility factor with pressure. It follows from equation (2.41) that this deriva-
tive is constant and has the value B1. Introducing that feature into the previous 
equation, the coefficient C can finally be obtained as:
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. (2.46)

If as a consequence of the pressure and temperature in the control volume, the 
working fluid is liquid, which gives c2 =1, the coefficient C reads zero and its 
value is not a function of pressure. If only vapour or real gas occupy the working 
chamber, c2=0 and equation (2.46) becomes:

11 v

T

BdC
dp zRT z

 
   

 
. (2.47)

If the fluid is ideal, then B1 becomes zero and z tends to one. In that case equation 
(2.46) becomes the same as equation (2.39). However, if the fluid is real, B1 be-
comes slightly negative and z tends to values less then 1. This means that the sec-
ond term becomes positive and it contributes to the value of the first term. The 
value of that term increases with the change of the ‘fluid reality’, which is ex-
pressed through constants B1 and B2 in (2.41). This term becomes significant in 
comparison with the first term if the fluid is real. In the case of ammonia, for ex-
ample, at a pressure of 5 bar the first term has a value of 6.7�10-6 while the value 
of the second term is 2.9�10-2. The coefficient C derived from equation (2.47) is 
later used for the calculation of pressure in the pressure-velocity-density coupling 
procedure.

Other thermodynamic properties are not directly derived from the equation of 
state but, as a consequence of the fluid behaviour, these are calculated from ther-
modynamic properties of both the liquid and vapour phases. 

The saturation temperature is calculated from a modified version of Antoine’s 
equation, which is in its original form expressed as: 

2
1

3

log Ap A
t A

 


(2.48)

which is an explicit expression for saturation pressure as a function of tempera-
ture, Walas (1984). Constants A1, A2 and A3 vary for different fluids and they are 
obtained from experimental results. The value of the coefficient A3 is usually 
small and in many cases can be neglected. In that case, the equation explicitly 
gives saturation temperature in terms of pressure as:

2
3

1 logsat
AT A

A p
 


(2.49)
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The saturation temperature calculated from the previous equation is used in equa-
tion (2.35) to estimate the mass exchanged during evaporation/condensation. That 
equation gives the mass which transfers the latent heat of evaporation from one 
phase to the other. The latent heat of evaporation is calculated for the saturation 
pressure by means of the Clapeyron equation. This is expressed as:

L sat lv
sat

dph T v
dT

    
, (2.50)

where vlv is the difference between the vapour and liquid specific volumes. Typi-
cally, more about equation (2.50) can be found in Cengel and Boles (1989). 

The specific heat at constant pressure is a fluid property needed to calculate the 
specific enthalpy of the mixture. The specific heat of the mixture Cpm is the 
weighted sum of the specific heats of vapour Cpv and liquid Cpl for constant pres-
sure, ie:

2 2(1 )pm pv plC c C c C   (2.51)

The specific heat of vapour can be calculated from the following equation:

2 3
0 1 2 3pvC D D T D T D T    (2.52)

where D0, D1, D2 and D3 are constants which vary for different fluids. Their values 
can be found in Sonntag and Borgnakke (2001). If the specific heat of liquid at 
constant pressure is assumed constant, which is reasonably accurate over a limited 
temperature range, then equation (2.51) gives the specific heat of the mixture. 
Even if the concentration of the liquid phase in the working chamber is equal to 
zero, this equation can be used to express the specific heat of the working fluid, 
which in this case is vapour.

By use of the equations derived in this Section, the properties of real fluids, 
which are liquid, vapour or their mixture, are completely described. The procedure 
is fast and efficient for calculation in the numerical CFD solver, because all equa-
tions are analytical and the variables are derived explicitly from the pressure, the 
value of which is obtained from the mass-velocity-pressure coupling procedure. 
The procedure is equally applicable to ideal gases, and incompressible fluids. The 
coefficient C calculated from the equation (2.46) is used in the next iteration as a 
source term. 

2.2.5 Turbulent Flow

Turbulent flows are well described by the governing differential equations pre-
sented in section 2.2. However, their direct numerical simulation requires a mesh 
with spacing smaller than the length scale of the smallest turbulent eddies, at 
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which the energy is transformed to heat, and time steps smaller than the smallest 
time scale of the turbulent fluctuations. Some calculations show that the average 
length scale of the smallest eddies in positive displacement machines is of the or-
der of 10m while their time scale is of the order of a couple of milliseconds. This 
requires computer resources, which are not yet available.

Alternatives are either large eddy simulation, in which only the largest un-
steady motions are resolved and the rest is modelled, or a solution to the Reynolds 
averaged Navier-Stokes equations where all turbulent effects on the mean flow are 
modelled as functions of mean fluid flow quantities. 

The Reynolds averaged Navier-Stokes equations (RANS) are obtained by us-
ing a statistical description of the turbulent motion formulated in terms of aver-
aged flow quantities. Many such models of turbulence are developed to date, 
which are suitable for different fluid flow situations. Only two of them are de-
scribed in some details in Appendix A. These are the Zero-Equation model and the 
Standard k- two-equation model. More details on turbulence phenomena can be 
found for example in Wilcox (1993). 

2.2.6 Pressure Calculation

The pressure in the source term of the fluid momentum equation is unknown be-
cause it does not appear explicitly in the continuity equation. This constraint is sat-
isfied only if the pressure field is adjusted to the resulting fluid flow. The method 
of calculation of the pressure and pressure gradient fields consists now of three 
steps. The first one is to obtain the velocity field from the momentum equation re-
gardless of whether the continuity equation is satisfied or not. The second is a pre-
dictor stage in which a pressure correction is calculated to satisfy the continuity 
equation and the third one is a corrector stage in which new values of the velocity, 
pressure and density fields are calculated. The method is known as a SIMPLE al-
gorithm and is described in Appendix C.

2.2.7 Boundary Conditions

Special treatment of boundaries is introduced due to the compressor communicat-
ing with its surroundings through small receivers at suction and discharge and also
through oil injection. The common practice is to keep the pressure in these receiv-
ers constant. Therefore, an appropriate amount of mass and energy is added or 
subtracted from these receivers. 

Wall Boundaries

There are two types of walls applied to a screw compressor; moving walls, if they 
bound the domain on the compressor rotors, and stationary walls in other places. 
Boundary conditions on these walls are explicitly given for all equations in the 
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numerical model. In the case of turbulent flow, dependent variables vary steeply 
near the solid boundaries and a method, which can model near wall effects, is
used. If the flow is laminar, then the dependent variable is either known on the 
boundary, or its flux is given on the boundary. The walls are treated as ‘no-slip 
walls’, which is the case when viscous fluid sticks to the boundary wall.

Boundary conditions for the momentum equation are given through the known 
velocities on the wall. For the rotor walls, the velocities are calculated from the 
given rotational speed n of the male rotor as:

1 1 1
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2 1 2 2
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2 ;
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 
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  

v r

v r
(2.53)

Subscript 1 indicates the male rotor while the value 2 is related to the female rotor. 
z1 and z2 are the number of lobes on the rotors, r1i and r2i are radius vectors of the 
boundary points on the male and female rotors respectively in an absolute coordi-
nate system. 1 and 2 are the angular velocities on the male and female rotors 
respectively. For all stationary walls, the wall velocity is equal to zero.

More details of the equations, which incorporate wall boundaries to the mathe-
matical model of the screw compressor process, are given in B. 

Constant Pressure in the Inlet, Outlet and Oil Receivers

Even if the compressor cycle can be considered steady, this is true only if it is av-
eraged in time over a period in which a compressor completes a number of cycles. 
However, within one cycle, the compressor system is always in a state of transi-
tion. Such a transition is caused by rotation of the rotors, which moves the corre-
sponding part of the numerical mesh. That movement is defined by the angular ve-
locity r. Movement of the computational domain causes change in its volume, 
which further causes pressure change within it. The pressure difference between 
the cells causes fluid to flow through the machine. Contrary to the rotor domains, 
other parts of the compressor such as the inlet and outlet ports and receivers main-
tain a constant volume. The fluid flow induced between the rotors inevitably leads 
to change of the pressure in the parts which keep a constant volume. In a real 
compressor, such a situation causes additional fluid to flow into or out of the 
chambers, keeping the pressure constant. This process is simulated in the numeri-
cal procedure. 

The first possibility is to apply standard inlet and outlet boundaries. However, 
in that case, either the inlet velocity or the mass flux should be prescribed in ad-
vance, which is extremely difficult. The compressor flow depends on the rotor 
speed and varies considerably during the cycle. Additionally, reverse flow can ex-
ist at the outlet boundary if it is not far enough from the discharge port. That situa-
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tion is not allowed with the standard boundary conditions. Therefore, these 
boundary conditions are not adequate for a screw compressor. 
The other possibility is to apply pressure boundaries at the inlet and outlet. In the 
standard pressure boundary condition a prescribed pressure on the boundary is 
combined with the following boundary condition:

0
Bn

    

v (2.54)

to obtain boundary velocities vB(rb,t). Other treatments are necessary in the case of 
supersonic and subsonic flows. If the outlet flow is supersonic, then both the pres-
sure and the velocity should be obtained by extrapolating from the upstream re-
gion. It is obvious that the pressure boundary conditions are similar to the inlet or 
outlet boundaries, firstly because they couple pressure and velocity directly and 
secondly because for all equations, apart from the momentum equation, the 
boundary properties are calculated from the velocity. This procedure may cause 
instability in the compressor cycle especially when the flow changes its direction 
at the boundary.

In opposition to both types of boundary condition mentioned above, applica-
tion of the boundary domain, in which an amount of mass is added or subtracted to 
maintain constant pressure, is natural and gives a stable and relatively fast solu-
tion. 

Starting from the equation of state for a real fluid (2.40) for constant instant 
temperature and density of fluid in a receiver of volume V, or in an individual nu-
merical cell of volume Vi, the following equation can be derived:

i i i
add

i

V V pV
t p t 

   (2.55)

It gives the relation between the volume change and the pressure change. The 
value of Vi is the volume flow that corresponds to the change in pressure ip dur-

ing time t . As the density is assumed constant, then the mass flux, which corre-
sponds to the pressure change, is:

i i
add i

i

V pm
p t

 



 (2.56)

This is the amount of mass, which must be added or subtracted to a receiver of 
constant volume V or to an individual numerical cell placed in the considered re-
ceiver to maintain constant pressure. 

The amount of mass calculated from (2.56) represents a mass source in the 
pressure correction procedure explained in Section 2.2.6. It will maintain constant 
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pressure in the considered cell and the momentum equation correction would re-
sult in a new velocity in the cell. 

The energy equation is corrected in order to keep the system in balance. It is 
done through the volume source in the governing equation of energy:

i i r
add i pi i pi

T T Tq m C m C
t t

 
 

 
 . (2.57)

In the last term of equation (0.57) Ti is the temperature calculated in the cell, Tr is 
the specified temperature which has to be maintained and t is the time step.

When an amount of mass of dispersed phase is added to the selected set of 
cells, the equation for species also has to be updated. The concentration of the dis-
persed phase can be known, or prescribed, in some domains while in others it has 
to be estimated. For example, the concentration of oil in the oil injection port al-
ways has a value which is close to 1. Similarly, the concentration of liquid in the 
inlet port of a two-phase expander is defined by the pressure and quality of the 
mixture. However, there are some compressor domains where the value of con-
centration is not known but the pressure has to be maintained constant. In that 
case, the value of concentration must be extrapolated from the neighbouring do-
main. 

When the concentration is known, then its value should be kept as close as 
possible to the prescribed value. The mass of the dispersed phase carried by the 
continuous phase is calculated by equation (2.31) in which the concentration co is 
substituted by the prescribed value cp. The last term in the transport equation for 
the concentration of the dispersed phase (2.10), is the volume source term, which 
is expressed as:
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This volume source, when integrated over the cell volume, is the amount of mass 
of the dispersed phase added to or subtracted from the mass of the numerical cell. 
If the concentration of the dispersed phase has to be maintained constant, a correc-
tion to the equation of species has to be added through the volume source. The 
source term in equation (2.10) is the mass flux of the dispersed phase. Its calcula-
tion is based on the desired concentration of the dispersed phase. Equation (2.31)
is used for that and co is replaced by the desired concentration in the cell. In such a 
situation, the volume source in the oil concentration equation becomes:
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In the case of two-phase flow with evaporation or condensation, the equation for 
the concentration of the liquid phase of the working fluid has to be updated 
through its volume source term. This term is calculated from equation (2.34) as:

l l

L
c c L

V

mS S dV m
t


      (2.60)

Other equations, like these for the turbulence model, do not need to be updated for 
this case.

2.3 Finite Volume Discretisation

2.3.1 Introduction 

The finite volume method is employed to solve fluid flow equations. It can also
be applied to solid body stress analysis, independently or when coupled with fluid 
flow. The method is fully implicit and can accommodate both structured and un-
structured moving grids with cells of arbitrary topology. Although the procedure is 
described here for fluid flow in screw compressors, it is general and can be used 
for any physical problem which is described by the given equation set.

A segregated approach is used to solve the resulting set of coupled non-linear 
system of algebraic equations. The equations are solved by an iterative conjugate 
gradient solver which retains the sparsity of a coefficient matrix, thus achieving 
the efficient use of computer resources.

If an appropriate constitutive relation is applied to each conservation law, 
namely mass, momentum and energy balance, a closed set of M equations is ob-
tained for each numerical cell in a particular time step. The number of equations 
M depends on the problem that has to be solved. 7 equations are required for a 
screw compressor, including two-phase flow with oil injection. All the conserva-
tion equations can be conveniently written in the form of the following generic 
transport equation:

( ) grads S V
V S S S V

d dV d d ds q dV
dt                  v v s s q (2.61)

The continuity equation is combined with the momentum equation to obtain an 
equation for pressure or pressure correction. The meaning of symbols used in this 
equation is given in the nomenclature. The diffusive flux and sources are given in 

Table 2-1 for each property . 
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Table 2-1 Terms in the generic transport equation (2.61)
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The ability of expressing all transport equations in the form of a prototype equa-
tion (2.61) facilitates the discretisation procedure, which together with the ap-
pro5priate initial and boundary conditions, forms the mathematical model of con-
tinuum mechanics problems.

The Finite Volume Method (FVM) is used to discretise the governing equa-
tions. All dependent variables are stored in a collocated variable arrangement, 
which requires only one set of control volumes to be generated. This enables even-
tual implementation of the multigrid method and local grid refinement. 

Equation (2.61) can be written for a control volume in a Cartesian coordinate 
frame, as presented in Figure 2-2. This equation is still general and exact:
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It consists of four terms which describe the effects of rate of change with time, 
convection, diffusion and source respectively. For each cell, all quantities are then 
written in the form of equation (2.62) and set up as a system of n*m partial differ-
ential equations. Each cell acts as a control volume, the total number of which is n,
while the number of unknowns for each cell is m. These are all transferred to a 
system of n*m algebraic equations in order to be solved numerically.
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Figure 2-2 Notation applied to a hexahedral control volume

Therefore, the surface and volume integrals, appearing in the equations are re-
placed by quadrature approximations, the spatial derivatives are replaced by an in-
terpolation function and the time integration scheme is selected and after that the 
control volume surface velocities vs are determined.

2.3.2 Space Discretisation

In this work, space is discretised by an unstructured mesh with polyhedral control 
volumes with an arbitrary number of faces. However, hexahedra are used wher-
ever possible, which facilitates the local grid refinement. In some cases this may 
be essential for accuracy. The spatial discretisation of a screw compressor working 
domain is presented in a separate chapter.

2.3.3 Time Discretisation

The time interval of interest is divided into an arbitrary number of subinterval time 
steps, which are not necessarily of the same duration. However, the procedure 
used for mesh movement requires the time steps in the simulation procedure of the 
screw compressor working cycle to be constant. It is aimed that all variables at the 
start and end of a calculation cycle are equal. The calculation cycle is represented 
by rotation of the male rotor either for a full revolution or only for one lobe rota-
tion. The constant time step, however, is not given arbitrarily. It depends on the 
chosen number of rotational steps within the tooth span angle on the male rotor 
and the speed of rotation n. The angular speed of the male rotor is:

1 2 [ / ].
60
n rad s  (2.63)
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If the compressor rotates at constant speed, the unit angle is:

angn
  (2.64)

where  is the interlobe angle of the male rotor and nang is number of divisions of 
that angle for the rotation of one full interlobe. The time step is then defined as 

1

t 


 (2.65)

Although the time step in the majority of calculations of screw compressor per-
formance is constant, if a transient state has to be calculated, the time step changes 
during marching in time. This is especially the case for compressor start up and 
shut down procedures. In these cases, the time step within two consequent rota-
tions of the compressor rotors depends on the first time derivative of the compres-
sor speed. Again, it is necessary to calculate the angular velocity for each time 
step and consequently to update the time step.

2.3.4 Discretisation of Equations 

Discretisation Principles

The result of discretisation of the prototype equation (2.62) is a system of alge-
braic equations. Surface and volume integrals are replaced by quadrature ap-
proximations, spatial derivatives are replaced by some interpolation function and 
either a two-times-level or a three-times-level integration scheme in time is se-
lected. These procedures are explained in detail in Appendix C.

Boundary and Initial Conditions

The boundary conditions on the cell faces which coincide with the solution do-
main boundary are applied prior to solution of the algebraic equations. All com-
pressor solid parts are no-slip walls with either, a known temperature or a tem-
perature approximated, in advance, through a known procedure. Therefore a cell 
face flux j

* represents the boundary flux B for all equations in the boundary 
cells. In such a case, the mass flux in the momentum equation at the boundary is 
zero, the heat flux through the boundary for the energy equation is calculated from 
the wall temperature and the thermal conductivity in the near wall region, while 
the concentration flux is zero. Diffusive fluxes are also replaced with their bound-
ary values. 



2.3 Finite Volume Discretisation 31

Screw compressor flow simulation is transient, which requires initial conditions to 
be prescribed for the dependent variables in each control volume. A close match 
of these is important for quick solution convergence. 

The initial values of the velocities in the momentum equation are set to zero in 
all cells within the working chamber. The initial pressures prescribed for the cells 
in the inlet and outlet receiver are the inlet and outlet pressure. For all other cells 
the initial values are calculated by linear interpolation between these values with 
respect to the relative distance in the z direction as:

 0 0 0 0i
i inl out inl

zp p p p
L

   . (2.66)

zi is the cell centre distance starting from the coordinate origin, while L is the 
overall compressor length. This simple method to prescribe initial values often 
gives a consistent final solution within 4 to 5 compressor cycles. The initial tem-
perature is calculated in the same manner as the pressure by linear interpolation 
between prescribed inlet and outlet temperatures. The density is then calculated 
according to equation (2.44) Concentration is also interpolated between the pre-
scribed values at the inlet 0

inl and outlet 0
out of the compressor similarly to the 

other variables. The initial values of kinetic energy and its dissipation rate are set 
as zero throughout the domain. 

If implicit time integration is employed, these prescribed values at time t0 are 
sufficient for the calculation. If, however, the three time level implicit scheme is 
used, values at the time 1 0 0t t t   must be given. They are set at the same 
value as those at time t0.

Derived System of Algebraic Equations

If discretisation methods and boundary conditions are implemented in the proto-
type equation (2.62) for all control volumes then the derived algebraic equation 
has the same form for all variables:

00 P P
1

i

j

n

j
j

a a b   


  (2.67)

where index 0 determines the control volume in which the variable is calculated 
and index j defines the neighbouring cells. Symbol ni represents a number of in-
ternal cell faces between the calculating cell and its neighbouring cells. The right 
hand side contains all terms for which the variables are known from either the 
previous iteration or the time step. All the coefficients, central a0, neighbouring 
aj and right hand side b, are treated explicitly using a deferred correction ap-
proach to increase computational efficiency.
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(2.68)

dj is a distance vector. It is effective if the mesh is non-orthogonal and it is then 
used to correct the cell face value. It is defined as the normal distance between the 
line connecting two neighbouring cell points and the cell face centre. nB is the 
number of boundary faces surrounding the cell P0. The coefficient a for the cen-
tre point at the boundary cell face is calculated similarly to the neighbouring coef-
ficient aj, assuming the distance between the boundary point and the centre of the 
cell. 

2.4 Solution of a Coupled System of Nonlinear Equations

Equations in the form of (2.67) are obtained for each dependent variable like ve-
locity, pressure, temperature and concentration at all points of the computational
domain. As a consequence of convective transport and because of other flow char-
acteristics, the equations are non-linear and coupled. In order to be solved, they 
are linearized and decoupled. The segregate iterative algorithm is adopted. 

Coefficients aj and source terms b are known in advance from the previous 
iteration or time step. As a result, a system of linear algebraic equations is ob-
tained for each dependent variable. This can be written in matrix notation as:

A  b (2.69)

Here A  is an N x N matrix, the vector  contains values of the dependent vari-
ables  at N nodal points in the CV centres and b is the source vector. The result-
ing matrix A  obtained by the discretisation method is sparse, with the number of 
non-zero elements in each row equal to the number of nearest neighbours plus 
one, ni +1. The matrix is symmetric only for the momentum equation of an elastic 
solid body and the pressure correction for incompressible fluids. The matrix is di-
agonally dominant 

0 1

i

j

n

j
A a 

  . This allows solution of the equation system 
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(2.69) by a number of iterative methods resulting in reasonable computer memory 
requirements. The conjugate gradient method (CG) is used when the matrix is 
symmetric and the preconditioned conjugate gradient stable method (CGSTAB) is 
used when the matrix is asymmetric.

Equation (2.69) is then solved in sequence for each dependent variable. There 
is no need to solve it to a tight tolerance since its coefficients and sources are only 
approximate based on the values of the dependent variables from the previous it-
eration or time step. These iterations are called inner iterations. 

The sequence is then repeated in the outer iterations by updating the coeffi-
cient matrix and the source terms until the solution converges. 

A   r b (2.70)

The convergence criterion is usually achieved when the residuals of (2.70) are re-
duced by three to four orders of magnitude.

2.5 Calculation of Screw Compressor Integral Parameters

Once a solution is obtained in the form of the velocity and pressure fields within 
the compressor, integral parameters which quantify the screw compressor working 
cycle, are calculated. 

Integral parameters are used to evaluate and compare the processes in screw 
machines and to serve as input parameters for the design of these machines. They 
are divided into two groups; those based on the compressor delivery, which is the 
volume flow calculated at the suction conditions, and those based on the compres-
sor power input. Other integral parameters are calculated from the previous two. 
These are specific power, volumetric and adiabatic efficiencies, load on the com-
pressor rotors and bearings, torque on the male and female rotors and oil flow. 
Apart from these, the indicator diagram can be calculated from the pressure distri-
bution within the compressor working cycle. 

The volume flow is calculated at the inlet and at the outlet of the screw com-
pressor by the use of the Gauss divergence theorem to calculate flow from the ve-
locity in each particular cell in a cross section and then to integrate all of them 
over the complete cross section, or by integration of the mass sources along the 
inlet and outlet receivers.

The Gauss divergence theorem: 

s V

d div dV v s v= (2.71)

This equation is integrated over a layer of cells in the cross section of the inlet or 
outlet port to get:
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where index f represents the direction of flow. S and v are the cell surface area and 
the velocity component in the direction of fluid flow. Equation (2.72) is calculated 
for each time step in the compressor working cycle and integrated over the com-
plete cycle to estimate the volumetric flow at that cross section pressure and tem-
perature:

( ) 360 min
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t t
V V m
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      . (2.73)

The volume flow obtained from this equation can be compared with the volume 
flow calculated from the mass added to or subtracted from the inlet and outlet re-
ceivers. These two should be the same for each time step as well as for the com-
plete compressor cycle.

The mean density values for equal cell volumes are calculated for each time 
step together with the main flow:

( ) 1
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t i

I
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(2.74)

If the mean density is multiplied by the corresponding volume flow it gives the 
mass flow in its integral form as:

( ) ( )
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t t

t t
m V 



   (2.75)

The compressor mass flow is calculated separately for the inlet and outlet cham-
bers and these values must be identical for steady flow conditions. If they differ, 
then the procedure has not converged. 

Another group of variables is based on the value of pressure in the working 
chamber. 

A cell on the rotor boundary is shown in Figure 2-3. The pressure in the cell 
generates the force on the boundary surface. That force is calculated as the product 
of the pressure in the rotor boundary cell and the boundary cell surface area. This 
force can be also divided in three components acting in the x, y and z directions of 
the absolute coordinate system. When calculated, these three components are:

; ;x b xb y b yb z b zbF p A F p A F p A   , (2.76)
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where pb is the pressure in the boundary cell and Axb, Ayb and Azb are projections of 
the boundary cell surface in the main directions of the absolute coordinate system. 

Figure 2-3 Pressure forces on the boundary surface

A free body diagram, with all pressure forces acting on a cell face and the restraint 
forces, is shown in Figure 2-4.

The balance for both, male and female rotor is expressed by the same set of 
equations:
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(2.77)

In these equations l is the rotor length. This set of equations applies both to the 
male rotor, where a=0 and to the female rotor where a is equal to the distance be-
tween the centre lines of the rotor axes. 
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Figure 2-4 Restraint forces and torques on rotors

The torque and restraint forces on the suction and discharge bearings are calcu-
lated from these equations as: 
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(2.78)

All the forces in equation (2.78) are support forces caused by the pressure loads in 
one boundary cell i. To obtain the integral radial and axial forces and the torque 
they are integrated over the whole boundary and for both rotors:
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(2.79)

Once calculated, the torque is used to estimate the power transmitted to the rotor 
shaft:

2 ( ), [ ]m m f fP n T n T W  (2.80)

where n is the speed of the male rotor while TM and TF are the torque on the male 
and female rotors respectively. Specific power is defined as:



2.5 Calculation of Screw Compressor Integral Parameters 37

3, min1000
kWPPspec mV

      (2.81)

And finally, the values v and i , the volumetric and adiabatic efficiencies respec-
tively are:

ad
v i

d

PV
V P   (2.82)

where Vd is the theoretical displacement and Pad is the adiabatic power input.
Since the pressure across the working chamber does not vary too much within 

one time step, it is sufficiently accurate to average the pressure values arithmeti-
cally in each working chamber in order to plot a pressure versus shaft angle, (p-
diagram. 
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