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Fuzzy Variables and Measurement Uncertainty

Chapter 1 has presented a short survey of the basic concepts of the measure-
ment theory. In particular, it has shown that the result of a measurement
represents incomplete knowledge of the measurand and this knowledge can
be usefully employed only if its ‘incompleteness’ can be somehow estimated
and quantified. It has also been shown that this approach requires a suitable
mathematics for handling, from the quantitative point of view, incomplete
knowledge. Current practice refers mainly to the probability theory, because
it is the best known and most assessed mathematical theory that treats in-
complete knowledge.

However, the probability theory deals only with that particular kind of
incomplete knowledge originated by random effects. As seen in the previous
chapter, this implies that all other recognized significant effects, including the
systematic ones, are fully compensated.

A systematic effect affects the measurement process always with the same
value and sign. If this value was exactly known, it could be treated as an error
and the measurement result could be corrected by compensating it in the
measurement procedure. Of course, this situation does not generally occur.
The normal situation is that the presence of a systematic contribution is
recognized, but its exact value is not known, even if it is possible to locate it
within a closed interval of �, that is, from a mathematical point of view, an
interval of confidence. By definition, a systematic contribution always takes
the same value, although unknown, within this estimated interval. This means
that each value of the interval does not have the same probability to occur, but
it has, in absence of further evidence, the same possibility to occur, because
no value is preferable to the others.

This situation can be also used to represent a more general case. In many
practical situations, there is evidence that some unknown effect is affecting
the measurement result. The only available information shows that the con-
tribution related to this unknown effect falls, with a given level of confidence,
within a given interval, but it is not known whereabouts. Moreover, nothing
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else can be assumed, not even if the effect is a systematic or a random one.
This situation is called total ignorance.

Even if the two kinds of contributions are represented in the same way—an
interval of confidence—they should not be confused with each other. In fact,
when total ignorance is considered, no other information is available; on the
contrary, when a systematic contribution is considered, an important piece of
information is available, that is, the systematic behavior of the contribution
itself. This additional information should be carefully taken into account when
modeling the measurement process.

Let us consider the following simple example. Let m1 and m2 be two
measurement results for the same quantity, for instance, the weight of an
object obtained with the method of the double weighing with a weighbridge.
The final measurement result is supposed to be obtained by the arithmetic
mean of m1 and m2. Let us suppose that no random contributions are present,
but only one contribution of a different nature, whose possible values fall
within interval ±100 g. Two cases can be considered:

1. No additional information is available for this uncertainty contribution,
so that it must be classified as total ignorance. In this case the following
applies:

r =
(m1 ± 100 g) + (m2 ± 100 g)

2
=

(m1 + m2)
2

± 100 g

and the measurement uncertainty associated with the result is the same
as the initial one.

2. Additional information is available showing that the uncertainty contri-
bution is due to the different length of the two beams of the weighbridge.
In this case, thanks to the available information about this uncertainty
contribution, it is known that it affects m1 and m2 with the same absolute
value, even if not known, and opposite signs (in fact, let us remember that
m1 and m2 are obtained by placing the object to be weighed on the two
different plates of the weighbridge). Therefore, the contribution can be
classified as systematic and the following applies:

r =
(m1 ± 100 g) + (m2 ∓ 100 g)

2
=

(m1 + m2)
2

and the final measurement result has zero associated uncertainty because,
in the arithmetic mean, the considered contribution is compensated.

This simple example shows the importance of using all available infor-
mation while modeling a measurement process. In fact, if the additional in-
formation about the reason for the systematic behavior was not taken into
account, the measurement uncertainty of the final result would have been
overestimated.
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Hence, it can be stated, also from a mathematical point of view, that a
systematic contribution is a particular case of total ignorance, where addi-
tional information is added. If this additional information is given, together
with the reasons of the presence of the systematic contribution itself, then it
can sometimes be used to suitably and correctly propagate the uncertainty
through the measurement process, as in the case of the double weighing with
the weighbridge.

The aim of this chapter is to find a mathematical object able to represent
total ignorance and its particular cases.

When the probability theory is considered to handle incomplete knowledge,
total ignorance is represented by a random variable with a uniform probability
distribution over the estimated confidence interval. However, this assumption
is inconsistent with the concept of total ignorance.

In fact, let us first consider the general case of total ignorance. In this
case, by definition, no assumptions can be made about the actual probability
distribution, and all probability distributions are, in theory, possible. Hence,
assuming a uniform probability distribution means to arbitrarily add infor-
mation that is not available.

Let us now consider the particular case of a systematic effect. In this case,
by definition, only one unknown value has 100% probability to occur, whereas
all others have null probability. Hence, assuming a uniform probability, which
implies that all values within the given interval have the same probability to
occur, leads to a bad interpretation of the available information.

Of course, the assumption of whichever other probability distribution
brings one to the same considerations. Hence, it can be concluded that the
probability theory and the random variables are not able to represent in-
complete knowledge, whenever this is due to uncertainty effects that are not
explicitly random. Therefore, different mathematical variables should be con-
sidered for this aim.

In the second half of the twentieth century, fuzzy variables have been
introduced in order to represent incomplete knowledge. This approach is less
known than the statistical one, and it is completely lacking in the current
standards; therefore, the whole chapter is dedicated to this approach.

2.1 Definition of fuzzy variables

Fuzzy variables and fuzzy sets have been widely used, in the last decades,
especially in the field of automatic controls, after Zadeh introduced the basic
principles of fuzzy logic and approximate reasoning [Z65]-[Z73]-[Z75]-[Z78].

In the traditional mathematical approach, a variable may only belong or
not belong to the set into which it is defined. The function describing the
membership of such a crisp variable to its appertaining set can therefore take
only the value 1, if the variable belongs to the set, or 0, if the variable does
not belong to the set.
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Fig. 2.1. Example of membership functions: (a) rectangular, (b) trapezoidal, and
(c) triangular.

When fuzzy variables and fuzzy sets are considered, the function describing
the membership of a variable to its appertaining set is allowed to take all
values within the 0–1 interval. This means that, given the referential set � of
the real numbers, a fuzzy variable X is defined by its membership function
µX(x), where x ∈ �. The membership function of a fuzzy variable satisfies
the following properties [KG91]:

• 0 ≤ µX(x) ≤ 1;
• µX(x) is convex;
• µX(x) is normal (which means that at least one element x always exists

for which µX(x) = 1).

Figure 2.1 shows some examples of membership functions: The rectangular
one, the trapezoidal one, and the triangular one. Of course, different shapes are
allowed, which do not need to be symmetric. Moreover, membership functions
that only increase or only decrease qualify as fuzzy variables [KY95] and
are used to represent the concept of ‘large number’ or ‘small number’ in the
context of each particular application. An example of such a membership
function is given in Fig. 2.2.

The membership function µX(x) of a fuzzy variable can be also described
in terms of α-cuts at different vertical levels α. As the membership function of
a fuzzy variable ranges, by definition, between 0 and 1, its α-cuts are defined
for values of α between 0 and 1.

Each α-cut, at the generic level α, is defined as

Xα = {x µX(x) ≥ α} (2.1)
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Fig. 2.2. Membership function describing the fuzzy statement ‘greater than 5.’

According to Eq. (2.1), each α-cut defines an interval [xα
1 , xα

2 ], where it is
always xα

1 ≤ xα
2 . The equality of xα

1 and xα
2 can be reached only for α = 1 and

only if the membership function has a single peak value, for instance, in the
case of the triangular membership function reported in Fig. 2.1c. Generally,
xα

1 and xα
2 take finite values, but in some cases, as the one in Fig. 2.2, it could

be xα
1 = −∞ and/or xα

2 = +∞. If, for any value α, it is xα
1 = xα

2 , then the
fuzzy variable degenerates into a crisp variable. An example of α-cut, for level
α = 0.3, is given in Fig. 2.3.

The importance of representing a fuzzy variable in terms of its α-cuts
is that the α-cuts of a fuzzy variable and the corresponding levels α can be
considered as a set of intervals of confidence and associated levels of certitude.
The level of certitude contains information about how certain a person is about
its knowledge. If a person, for instance, remembers exactly the birthday of a
friend, his knowledge is certain; but if he only remembers the month, but
not the day, the certainty of his knowledge is lower. In the first case, the
available knowledge can be represented by a crisp value, that is, the exact
day of the year (April, 15th); in the second case, the available knowledge can
be represented by a set, which contains the 30 days of April. Hence, as the
level of certitude increases, the width of the corresponding confidence interval
decreases.

As simply shown by the previous example, the link between the level α of
certitude and the confidence interval at the same level corresponds to the nat-
ural, often implicit, mechanism of human thinking in the subjective estimation
of a value for a measurement.
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Fig. 2.3. α-cut of a triangular membership function for level α = 0.3.

The following example shows how a fuzzy variable can be built, starting
from the information, or personal idea, of one, or more human beings. Let us
consider again the birthday of a friend, whose name is Sam. Tom is sure that
Sam’s birthday is April 15th; John is not so sure about the date, even if he
remembers well that the birthday falls in April. From a mathematical point
of view, the interval of confidence estimated by Tom is [April 15, April 15],
whereas the interval of confidence estimated by John is [April 1, April 30]. The
levels of certitude associated with the two intervals are 1 and 0, respectively.
If now a fuzzy variable must be associated with the available information, the
following applies.

Let us suppose the only available information is from Tom. In this case,
the available information can be represented by a crisp value. In fact, in this
case, full certainty is given.

Let us now suppose the only available information is from John. In this
case, the available information can be represented by a rectangular fuzzy
variable, like the one in Fig. 2.1a.

However, it is also possible to combine the information given by Tom and
John. As the level of certitude associated with John’s interval is zero and those
associated with Tom’s interval is one, these two intervals can be considered as
the α-cuts of the fuzzy variable, which represents Sam’s birthday, at levels of α
zero and one, respectively. Since, as the level of certitude increases, the interval
of confidence becomes narrower, the fuzzy variable could be, for instance,
triangular, like the one in Fig. 2.1c.

This simple example also shows, in an intuitive way, a relationship be-
tween the level of certitude and the level of confidence, which, according to
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the Theory of Uncertainty, should always be associated with an interval of
confidence. The level of certitude indicates how much a person is sure about
a certain event. If, for instance, the example of Sam’s birthday is consid-
ered again, this means that the surer a person is about the birthday’s date,
the smaller is the extimated range of days. On the other hand, the level
of confidence indicates the probability of a certain event. Therefore, consid-
ering the same example of Sam’s birthday, the smaller the given range of
days, the smaller the probability that Sam’s birthday falls within those dates.
If only one date is given, the probability that this is exactly Sam’s birth-
day is zero, as also shown by Eq. (1.4). In other words, although the level
of certitude increases as the width of the confidence interval decreases, the
opposite applies to the levels of confidence. Hence, the levels of confidence
equal to one and zero are assigned to intervals [April 1, April 30] and [April
15, April 15], respectively. Moreover, intuitively, it can also be assessed that,
given the confidence interval at level α, the associated level of confidence is
1 − α1[FS03, FGS04, FS04, FS05a, FS05b, FS05c].

The use of fuzzy variables in the context of measurement uncertainty is
particularly interesting, if we remember that the most useful way to express
the result of a measurement is in terms of confidence intervals and ‘the ideal
method for evaluating and expressing measurement uncertainty should be ca-
pable of readily providing such a confidence interval ’ [ISO93]. Therefore, it can
be stated that a fuzzy variable can be effectively employed to represent the re-
sult of a measurement, because it provides all available information about the
result itself: the confidence intervals and the associated levels of confidence.

The good measurement practice also requires that the uncertainty of a
measurement result is directly usable as a component in evaluating the un-
certainty of another measurement in which the first result is used [ISO93];
that is, measurement uncertainties have to be composed among each other.
Thus, arithmetic operations among fuzzy variables must be defined, in order
to ensure that fuzzy variables are able to propagate measurement results and
related uncertainties.

2.2 Mathematics of fuzzy variables

As shown in the previous section, a fuzzy variable A can be described in two
ways: by means of its membership function µA(x), for x ∈ �; or by means of
its α-cuts Aα, for 0 ≤ α ≤ 1. These two ways to represent a fuzzy variable
are, of course, equivalently valid and contain the same information, because
the α-cuts can be determined starting from the membership function and vice
versa. Similarly, the mathematics of fuzzy variables can also be defined in two
different ways, which refer to membership functions and α-cuts, respectively.
1 This statement will be proven, in a more general context, in the next chapter.

For the moment, let us rely on the given intuitive example.
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As the α-cuts of a fuzzy variable are confidence intervals and the aim of a mea-
surement process is indeed to find confidence intervals, the second approach
is preferable and hence reported in this section.

Let us consider fuzzy variables with a finite support, like, for instance, the
ones in Fig. 2.1. Even if these variables are only a part of the whole kind of
possible fuzzy variables, as shown in the previous section, this assumption is
coherent with the measurement practice, where the possible values that can
be assumed by a measurand are almost always confined into a closed interval.
Moreover, even when the probability distribution of the measurement results
is supposed to be greater than zero in every point of �, like, for instance, a
Gaussian distribution, the probability that the measurand takes values outside
a suitable confidence interval is very small and it is possible to consider this
last interval as the support of the fuzzy variable, which correspond to the
Gaussian distribution.2

Under the assumption of finite support, fuzzy arithmetic can be then de-
fined on the basis of the two following properties:

• Each fuzzy variable can fully and uniquely be represented by its α-cuts.
• The α-cuts of each fuzzy variable are closed intervals of real numbers.

These properties enable one to define arithmetic operations on fuzzy num-
bers in terms of arithmetic operations on their α-cuts or, in other words,
arithmetic operations on closed intervals [KG91, KY95]. These operations are
a topic of the interval analysis, a well-established area of classic mathemat-
ics. Therefore, an overview of the arithmetic operations on closed intervals is
previously given.

Let ∗ denote any of the four arithmetic operations on closed intervals:
addition +, subtraction −, multiplication ×, and division /. Then, a general
property of all arithmetic operations on closed intervals is given by

[a, b] ∗ [d, e] = {f ∗ g a ≤ f ≤ b, d ≤ g ≤ e} (2.2)

except that the division is not defined when 0 ∈ [d, e]. The meaning of Eq. (2.2)
is that the result of an arithmetic operation on closed intervals is again a closed
interval.

This last interval is given by the values assumed by the proper operation
f ∗g between numbers f and g, taken from the original intervals. In particular,
the four arithmetic operations on closed intervals are defined as follows:

[a, b] + [d, e] = [a + d, b + e] (2.3)

[a, b] − [d, e] = [a − e, b − d] (2.4)

[a, b] × [d, e] = [min (ad, ae, bd, be) , max (ad, ae, bd, be)] (2.5)

2 The information contained in a probability distribution can also always be repre-
sented in terms of a fuzzy variable. This is possible thanks to suitable probability–
possibility transformations, as will be shown in Chapter 5.
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and, provided that 0 /∈ [d, e]

[a, b] / [d, e] = [a, b] × [1/e, 1/d]

= [min (a/d, a/e, b/d, b/e) , max (a/d, a/e, b/d, b/e)]
(2.6)

It can be noted that a real number r may also be regarded to as a special
(degenerated) interval [r, r]. In this respect, Eqs. (2.3) to (2.6) also describe op-
erations that involve real numbers and closed intervals. Of course, when both
intervals degenerate, the standard arithmetic on real numbers is obtained.

The following examples illustrate the arithmetic operations over closed
intervals, as defined by Eqs. (2.3)–(2.6):

[2, 5] + [1, 3] = [3, 8] [0, 1] + [−6, 5] = [−6, 6]

[0, 1] − [−6, 5] = [−5, 7] [2, 5] − [1, 3] = [−1, 4]

[3, 4]× [2, 2] = [6, 8] [−1, 1]× [−2,−0.5] = [−2, 2]

[−1, 1]/ [−2,−0.5] = [−2, 2] [4, 10] / [1, 2] = [2, 10]

Arithmetic operations on closed intervals satisfy some useful properties.
Let us take A = [a1, a2] , B = [b1, b2] , C = [c1, c2] , D = [d1, d2] , 0 = [0, 0],
and 1 = [1, 1]. Then, the properties can be formulated as follows:

1. Commutativity: A + B = B + A; A × B = B × A.
2. Associativity: (A + B) + C = A + (B + C); (A × B) × C = A × (B × C).
3. Identity: A = 0 + A = A + 0;A = 1 × A = A × 1.
4. Subdistributivity: A × (B + C) ⊆ A × B + A × C.
5. Distributivity:

a. If b×c ≥ 0 for every b ∈ B and c ∈ C, then A×(B+C) = A×B+A×C.
b. If A = [a, a], then a × (B + C) = a × B + a × C.

6. 0 ∈ A − A and 1 ∈ A/A.
7. Inclusion monotonicity: If A ⊆ C and B ⊆ D, then A ∗ B ⊆ C ∗ D.

These properties can be readily proven from Eqs. (2.3)–(2.6).
These same equations can be also used to define the arithmetic of fuzzy

variables. In fact, as stated, a fuzzy variable can be fully and uniquely rep-
resented by its α-cuts, which are indeed closed intervals of real numbers.
Therefore, it is possible to apply the interval analysis over each α-cut of the
fuzzy variable.

Let A and B denote two fuzzy variables, whose generic α-cuts are Aα and
Bα. Let ∗ be any of the four basic arithmetic operations. As A and B are
fuzzy variables, A ∗B is also a fuzzy variable. The α-cuts of the result A ∗B,
denoted by (A ∗ B)α, can be easily evaluated from Aα and Bα as

(A ∗ B)α = Aα ∗ Bα (2.7)

for any α between 0 and 1. Let us remember that, when the division is con-
sidered, it is required that 0 /∈ Bα for every α between 0 and 1.
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Fig. 2.4. Arithmetic operations on fuzzy variables: (a) addition, (b) subtraction,
(c) multiplication, and (d) division.

For the sake of clearness, let us consider the three fuzzy variables A, B,
and C, where C = A ∗ B, and let us denote the generic α-cuts of A, B, and
C as Aα = [aα

1 , aα
2 ] , B = [bα

1 , bα
2 ], and C = [cα

1 , cα
2 ], respectively. Then:

• ADDITION: C = A + B
[cα

1 , cα
2 ] = [aα

1 + bα
1 , aα

2 + bα
2 ]

• SUBTRACTION: C = A − B
[ cα

1 , cα
2 ] = [aα

1 − bα
2 , aα

2 − bα
1 ]

• MULTIPLICATION: C = A × B
[cα

1 , cα
2 ]=[min (aα

1 bα
2 , aα

2 bα
1 , aα

1 bα
1 , aα

2 bα
2 ), max (aα

1 bα
2 , aα

2 bα
1 , aα

1 bα
1 , aα

2 bα
2 )]

• DIVISION: C = A/B
Provided that 0 /∈ [bα

1 , bα
2 ]:

[cα
1 , cα

2 ] =
[min (aα

1 /bα
2 , aα

2 /bα
1 , aα

1 /bα
1 , aα

2 /bα
2 ), max (aα

1 /bα
2 , aα

2 /bα
1 , aα

1 /bα
1 , aα

2 /bα
2 )]

for every α between 0 and 1.

Figure 2.4 shows an example of the four arithmetic operations on the two
fuzzy variables A and B, represented by the dashed and solid lines, respec-
tively. Starting from the arithmetic operations between fuzzy variables, it is
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Fig. 2.5. Square root of a fuzzy variable.

also possible to define other mathematical operations. As an example, the
square root of a fuzzy variable can be defined as follows.

Let A be a fuzzy variable, defined by its α-cuts Aα = [aα
1 , aα

2 ], and let
us consider the square root C =

√
A. Provided that the fuzzy number A is

positive, that is, 0 ≤ aα
1 ≤ aα

2 for every α, the generic α-cut of C is

[cα
1 , cα

2 ] = [
√

aα
1 ,

√
aα
2 ] (2.8)

Figure 2.5 shows an example.
It is important to underline that, in some particular applications, it could

be also necessary to perform a square root of a fuzzy variable that falls across
the zero value. In fact, when the measurement uncertainty of a value near zero
is considered, the correspondent confidence interval (and the correspondent
fuzzy variable too) contains the zero value. Hence, when the measurement
uncertainty of the square root of such a value is considered, the correspondent
confidence interval (and the correspondent fuzzy variable too) still contains
the zero value. In this case, Eq. (2.8) modifies as follows. If the fuzzy variable
is like the one in Fig. 2.6a, that is, the zero value is crossed by the left side of
its membership function, it is

cα
1 =

{−√−aα
1 α < k∗√

aα
1 α ≥ k∗

cα
2 =

√
aα
2

where k∗ = α|aα
1 =0.
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Fig. 2.6. Square root of a fuzzy variable across the zero value. In this example,
k∗ = 0.4.

If the fuzzy variable is like the one in Fig. 2.6b, that is, the zero value is
crossed by the right side of its membership function, it is

cα
1 = −√−aα

1

cα
2 =

{−√−aα
2 α > k∗√

aα
2 α ≤ k∗

where k∗ = α|aα
2 =0.

2.3 A simple example of application of the fuzzy
variables to represent measurement results

It has already been stated that a fuzzy variable can be suitably employed
to represent a measurement result together with its associated uncertainty
[MBFH00, MLF01, UW03, FS03]; in fact, a fuzzy variable can be represented
by a set of confidence intervals (the α-cuts) and associated levels of confidence
(strictly related to levels α).

Moreover, when an indirect measurement is considered, the mathematics
of fuzzy variables allows one to directly obtain the final measurement result
in terms of a fuzzy variable. This means that the final measurement result
and associated uncertainty can be obtained together, in a single step, which
involves fuzzy variables.

In fact, if y = f(x1, x2, . . . , xn) is the measurement algorithm, the fuzzy
variable Y associated with the measurement result and its associated uncer-
tainty is readily given by Y = f(X1, X2, . . . , Xn), where X1, X2, . . . , Xn are
the fuzzy variables associated with the input quantities. The operations are
of course performed according to the mathematics of fuzzy variables.
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Fig. 2.7. Method of the double weighing. M1 and M2 are the two direct measure-
ments, and R is the final result in the two different cases.

Let us consider again the example of the double weighing, and let m1

and m2 be 2 kg and 2.4 kg, respectively. The two measurement results can be
represented, together with their uncertainty, by two fuzzy variables M1 and
M2. Let us suppose again that the contributions to uncertainty fall in the
interval ±100 g and are not random.

The available information is that the measurement result belongs to the
given interval and that each point of the interval is as plausible as the others.
Therefore, the fuzzy variables M1 and M2 have a rectangular membership
function (Fig. 2.7a and b): The confidence interval is given with a level of
confidence equal to one, and no other assumptions can be done.

The final measurement result, that is, the arithmetic mean of M1 and M2,
obtained with the proposed approach, is the fuzzy variable:

R =
M1 + M2

2
shown with a solid line in Fig. 2.7c.

Obviously, as stated at the beginning of this chapter, all available informa-
tion should be used in modeling the measurement process. Therefore, if it was
known that the uncertainty contribution behaves systematically and it is due
to a difference in length between the two beams of the weighbridge, and thus
always takes the (unknown) value a, belonging to interval ±100 g, then the
double weighing naturally compensates it, because it affects measurement m1

with positive sign (+a) and measurement m2 with negative sign (−a). Hence,
the following applies:

R =
(m1 + a) + (m2 − a)

2
=

m1 + m2

2



28 2 Fuzzy Variables and Measurement Uncertainty

and the final measurement result, shown with a dashed line in Fig. 2.7c, is not
affected by this uncertainty contribution. The method of the double weighing
is indeed used for the compensation of the systematic error due to the different
length of the beams.

This particular example has been suitably chosen in order to underline the
importance of the measurement model associated with the available informa-
tion. Of course, this is a really particular case and the fact that the systematic
contribution to uncertainty compensates depends on the kind of considered
contribution and the considered measurement procedure. The readers should
not erroneously think that compensation is a particular characteristic of sys-
tematic contributions! In fact, if the two measurements m1 and m2 were per-
formed on the same plate (instead of one on each opposite plate), the knowl-
edge that the uncertainty contribution behaves systematically would not be
useful in any way and a similar result as in the case of total ignorance would
be obtained.

2.4 Conclusions

In this chapter, fuzzy variables and their mathematics have been defined. Fur-
thermore, it has been shown how they can be used to represent and propagate
measurement results each time the uncertainty affecting the results themselves
is due to totally unknown contributions, including the systematic ones, when
their presence can be only supposed but nothing else can be said about their
behavior.

The simple example given in the previous section has shown how imme-
diate is the use of fuzzy variables. When this approach is followed, many
advantages can be drawn. Operations are performed directly on fuzzy vari-
ables, and no further elaborations are needed in order to process measurement
uncertainties.

The measurement result is directly provided in terms of a fuzzy variable,
which contains all available information about the measurement result. For
instance, if the confidence interval at level of confidence 1 is needed, it simply
corresponds to the α-cut at level α = 0.

The computational burden is low.
According to their mathematics, the approach based on fuzzy variables

can be seen as an attempt to modernize the old theory of errors. In fact,
the mathematics are similar (both are based on the interval analysis), but the
approach based on fuzzy variables does not refer to the unknowable true value
of the measurand.

On the other hand, this approach can be also seen as a complement of
the modern Theory of Uncertainty. In fact, it encompasses all concepts of
confidence intervals and levels of confidence, while providing a different way
to represent incomplete knowledge.
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However, the approach based on fuzzy variables must not be considered as
an alternative to the statistical approach. In fact, fuzzy variables and random
variables are defined in a different way and they obey different mathematics.

Fuzzy variables compose each other according to the mathematics of the
intervals; this means, for instance, that the sum of the fuzzy variables A and
B (see Fig. 2.4a) is a fuzzy variable whose α-cuts show a width that is the sum
of the widths of the corresponding α-cuts of A and B. Therefore, it can be
assessed that fuzzy variables are not subject to compensation phenomena. On
the other hand, random variables compose each other according to statistics;
this means, for instance, that the sum of the random variables A and B is
a random variable whose standard deviation is smaller than the sum of the
standard deviations of A and B. Hence, random variables are subject to a
natural compensation phenomena.

As a result, fuzzy and random variables can be considered to represent
different kind of physical phenomena: Fuzzy variables may represent totally
unknown phenomena, which physically do not compensate each other, includ-
ing the systematic ones; random variable may represent, as widely known,
random phenomena, which physically compensate each other. Hence, with
respect to the Theory of Uncertainty, fuzzy variables and random variables
cannot be considered competitive but, rather, complementary. In fact, uncer-
tainty arises in the measurement processes because of the presence of all kinds
of uncertainty contributions (random, systematic, unknown). Thus, both ap-
proaches are needed.

However, it is not practical and not effective, of course, to follow the two
approaches separately. Therefore, a unifying mathematical theory, as well as
a unifying mathematical variable, should be found.

This theory is the Theory of Evidence, which encompasses both the prob-
ability theory, the mother of random variables, and the possibility theory, the
mother of fuzzy variables. The theory of evidence is the topic of Chapter 3.




