FUNDAMENTAL ONE-DIMENSIONAL VARIABLES

A. Gaussian

The PDF, CDF, and CF of a Gaussian RV $\mathbf{X} \in N_{n}\left(\overline{\mathbf{X}}, \sigma^{2}\right)$ are given in (1.1), (1.2), and (1.5) respectively with σ_{X} replaced by σ. For $\overline{\mathbf{X}}=0$, the even moments of the components of \mathbf{X} are given by

$$
\begin{equation*}
E\left\{X_{i}^{2 k}\right\}=\overline{X_{i}^{2 k}}=\frac{(2 k)!}{k!}\left(\frac{1}{2} \sigma^{2}\right)^{k}, k \text { integer } \tag{2.1}
\end{equation*}
$$

All odd moments are equal to zero.

B. Rayleigh

1. $n=1$

Since the square root always yields a positive quantity, then by definition $R=\sqrt{X^{2}}=|X|$, i.e., a single-sided Gaussian RV with PDF and CDF given by

$$
\begin{gather*}
p_{R}(r)=\frac{2}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right), r \geq 0 \tag{2.2}\\
P_{R}(r)=1-2 Q\left(\frac{r}{\sigma}\right), r \geq 0 \tag{2.3}
\end{gather*}
$$

Also, the moments of R are given by

10 PROBABILITY DISTRIBUTIONS INVOLVING GAUSSIAN RANDOM VARIABLES

$$
\begin{equation*}
E\left\{R^{k}\right\}=\frac{\left(2 \sigma^{2}\right)^{k / 2}}{\sqrt{\pi}} \Gamma\left(\frac{k+1}{2}\right), k \text { integer } \tag{2.4}
\end{equation*}
$$

2. $n=2$

Here R corresponds to a conventional Rayleigh RV with PDF and CDF

$$
\begin{align*}
& p_{R}(r)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right), r \geq 0 \tag{2.5}\\
& P_{R}(r)=1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right), r \geq 0 \tag{2.6}
\end{align*}
$$

Also, the moments of R are given by

$$
\begin{equation*}
E\left\{R^{k}\right\}=\left(2 \sigma^{2}\right)^{k / 2} \Gamma\left(1+\frac{k}{2}\right), k \text { integer } \tag{2.7}
\end{equation*}
$$

3. $n=2 m$

$$
\begin{align*}
& p_{R}(r)=\frac{2 r^{2 m-1}}{\left(2 \sigma^{2}\right)^{m}(m-1)!} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right), r \geq 0 \tag{2.8}\\
& P_{R}(r)=1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)_{i=0}^{m-1} \frac{1}{i!}\left(\frac{r^{2}}{2 \sigma^{2}}\right)^{i}, r \geq 0 \tag{2.9}\\
& E\left\{R^{k}\right\}=\left(2 \sigma^{2}\right)^{k / 2} \frac{\Gamma\left(m+\frac{k}{2}\right)}{(m-1)!}, k \text { integer } \tag{2.10}
\end{align*}
$$

4. $n=2 m+1$

$$
\begin{gather*}
p_{R}(r)=\frac{2 r^{2 m}}{\left(2 \sigma^{2}\right)^{m+1 / 2} \Gamma(m+1 / 2)} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right), r \geq 0 \tag{2.11}\\
P_{R}(r)=-\cdots- \tag{2.12}
\end{gather*}
$$

$$
\begin{equation*}
E\left\{R^{k}\right\}=\left(2 \sigma^{2}\right)^{k / 2} \frac{\Gamma\left(m+\frac{k+1}{2}\right)}{\Gamma(m+1 / 2)}, k \text { integer } \tag{2.13}
\end{equation*}
$$

C. Rician

1. $n=1$

$$
\begin{gather*}
p_{R}(r)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{r^{2}+a^{2}}{2 \sigma^{2}}\right)\left[\exp \left(\frac{a r}{\sigma^{2}}\right)+\exp \left(-\frac{a r}{\sigma^{2}}\right)\right], r \geq 0 \tag{2.14}\\
P_{R}(r)=Q\left(\frac{a-r}{\sigma}\right)-Q\left(\frac{a+r}{\sigma}\right), r \geq 0 \tag{2.15}\\
E\left\{R^{k}\right\}=\left(2 \sigma^{2}\right)^{k / 2} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right) \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{\pi}}, F_{7}\left(\frac{k+1}{2} ; \frac{1}{2} ; \frac{a^{2}}{2 \sigma^{2}}\right), k \text { integer } \tag{2.16}
\end{gather*}
$$

where ${ }_{1} F_{1}(\alpha ; \beta ; \gamma)$ is the confluent hypergeometric function [2] and $a=|\bar{X}|$.
2. $n=2$

Here R corresponds to a conventional Rician RV with parameter $a=\|\overline{\mathbf{X}}\|$.

$$
\begin{gather*}
p_{R}(r)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}+a^{2}}{2 \sigma^{2}}\right) I_{0}\left(\frac{r a}{\sigma^{2}}\right), r \geq 0 \tag{2.17}\\
P_{R}(r)=1-Q_{1}\left(\frac{a}{\sigma}, \frac{r}{\sigma}\right), r \geq 0 \tag{2.18}\\
E\left\{R^{k}\right\}=\left(2 \sigma^{2}\right)^{k / 2} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right) \Gamma\left(1+\frac{k}{2}\right), F_{1}\left(1+\frac{k}{2}, 1 ; \frac{a^{2}}{2 \sigma^{2}}\right), k \text { integer } \tag{2.19}
\end{gather*}
$$

where

12 PROBABILITY DISTRIBUTIONS INVOLVING GAUSSIAN RANDOM VARIABLES

$$
\begin{equation*}
Q_{1}(\alpha, \beta)=\int_{\beta}^{\infty} x \exp \left(-\frac{x^{2}+\alpha^{2}}{2}\right) I_{0}(\alpha x) d x \tag{2.20}
\end{equation*}
$$

is the first-order Marcum Q-function [8]. ${ }^{2}$
3. $n=2 m$

$$
\begin{gather*}
p_{R}(r)=\frac{r^{m}}{\sigma^{2} a^{m-1}} \exp \left(-\frac{r^{2}+a^{2}}{2 \sigma^{2}}\right) I_{m-1}\left(\frac{r a}{\sigma^{2}}\right), r \geq 0 \tag{2.21}\\
P_{R}(r)=1-Q_{m}\left(\frac{a}{\sigma}, \frac{r}{\sigma}\right), r \geq 0 \tag{2.22}
\end{gather*}
$$

$E\left\{R^{k}\right\}=\left(2 \sigma^{2}\right)^{k / 2} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right)^{\Gamma\left(m+\frac{k}{2}\right)}(m-1)!F_{1}\left(m+\frac{k}{2} ; m ; \frac{a^{2}}{2 \sigma^{2}}\right), k$ integer
where

$$
\begin{equation*}
Q_{m}(\alpha, \beta)=\frac{1}{\alpha^{m-1}} \int_{\beta}^{\infty} x^{m} \exp \left(-\frac{x^{2}+\alpha^{2}}{2}\right) I_{m}(\alpha x) d x \tag{2.24}
\end{equation*}
$$

is the generalized (m th-order) Marcum Q-function [8].
4. $n=2 m+1$

$$
\begin{align*}
p_{R}(r) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}}\left(\frac{r}{a}\right)^{m} \exp \left(-\frac{r^{2}+a^{2}}{2 \sigma^{2}}\right)\left[\exp \left(\frac{r a}{\sigma^{2}}\right) \sum_{i=0}^{m-1} \frac{(-1)^{i}(m+i-1)!}{i!(m-i-1)!}\left(\frac{\sigma^{2}}{2 r a}\right)^{i}\right. \\
& \left.+(-1)^{m} \exp \left(-\frac{r a}{\sigma^{2}}\right) \sum_{i=0}^{m-1} \frac{(m+i-1)!}{i!(m-i-1)!}\left(\frac{\sigma^{2}}{2 r a}\right)^{i}\right], r \geq 0 \tag{2.25}
\end{align*}
$$

$$
\begin{equation*}
P_{R}(r)=------ \tag{2.26}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
E\left\{R^{k}\right\}=\left(2 \sigma^{2}\right)^{k / 2} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right) \frac{\Gamma\left(m+\frac{k+1}{2}\right)}{\Gamma\left(m+\frac{1}{2}\right)}, F_{1}\left(m+\frac{k+1}{2} ; m+\frac{1}{2} ; \frac{a^{2}}{2 \sigma^{2}}\right) \tag{2.27}
\end{equation*}
$$

\]

D. Central Chi-Square

1. $n=1$

$$
\begin{gather*}
p_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2} y}} \exp \left(-\frac{y}{2 \sigma^{2}}\right), y \geq 0 \tag{2.28}\\
P_{Y}(y)=-\cdots \tag{2.29}\\
\Psi_{Y}(\omega)=\left(\frac{1}{1-2 j \omega \sigma^{2}}\right)^{1 / 2} \tag{2.30}\\
E\left\{Y^{k}\right\}=\left(2 \sigma^{2}\right)^{k} \frac{\Gamma(k+1 / 2)}{\sqrt{\pi}}, k \text { integer } \tag{2.31}
\end{gather*}
$$

2. $n=2 m$

$$
\begin{gather*}
p_{Y}(y)=\frac{1}{2 \sigma^{2} \Gamma(m)}\left(\frac{y}{2 \sigma^{2}}\right)^{m-1} \exp \left(-\frac{y}{2 \sigma^{2}}\right), y \geq 0 \tag{2.32}\\
P_{Y}(y)=1-\exp \left(-\frac{y}{2 \sigma^{2}}\right)_{i=0}^{m-1} \frac{1}{i!}\left(\frac{y}{2 \sigma^{2}}\right)^{i}, y \geq 0 \tag{2.33}\\
\Psi_{Y}(\omega)=\left(\frac{1}{1-2 j \omega \sigma^{2}}\right)^{m} \tag{2.34}
\end{gather*}
$$

Since the k th moment of a central chi-square RV with $2 m$ degrees of freedom is equal to the $2 k$ th moment of a Rayleigh RV of order $2 m$, then it is straight-forward to obtain the moments of Y from (2.10) as

14 PROBABILITY DISTRIBUTIONS INVOLVING GAUSSIAN RANDOM VARIABLES

$$
\begin{equation*}
E\left\{Y^{k}\right\}=\left(2 \sigma^{2}\right)^{k} \frac{\Gamma(m+k)}{(m-1)!}, k \text { integer } \tag{2.35}
\end{equation*}
$$

3. $n=2 m+1$

$$
\begin{gather*}
p_{Y}(y)=\frac{1}{2 \sigma^{2} \Gamma(m+1 / 2)}\left(\frac{y}{2 \sigma^{2}}\right)^{m-1 / 2} \exp \left(-\frac{y}{2 \sigma^{2}}\right), y \geq 0 \tag{2.36}\\
P_{Y}(y)=------ \tag{2.37}\\
\Psi_{Y}(s)=\left(\frac{1}{1-2 j s \sigma^{2}}\right)^{m+1 / 2} \tag{2.38}\\
E\left\{Y^{k}\right\}=\left(2 \sigma^{2}\right)^{k} \frac{\Gamma\left(m+k+\frac{1}{2}\right)}{\Gamma\left(m+\frac{1}{2}\right)}, k \text { integer } \tag{2.39}
\end{gather*}
$$

E. Noncentral Chi-Square

1. $n=1$

$$
\begin{gathered}
p_{r}(y)=\frac{1}{2 \sqrt{2 \pi \sigma^{2} y}} \exp \left(-\frac{y+a^{2}}{2 \sigma^{2}}\right)\left[\exp \left(\sqrt{\frac{a^{2} y}{\sigma^{4}}}\right)+\exp \left(-\sqrt{\frac{a^{2} y}{\sigma^{4}}}\right)\right], y \geq 0 \\
P_{Y}(y)=\cdots \\
\Psi_{Y}(\omega)=\left(\frac{1}{1-2 j \omega \sigma^{2}}\right)^{1 / 2} \exp \left(\frac{j \omega a^{2}}{1-2 j \omega \sigma^{2}}\right) \\
E\left\{Y^{k}\right\}=\left(2 \sigma^{2}\right)^{k} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right) \frac{\Gamma(k+1 / 2)}{\sqrt{\pi}}{ }_{1} F_{1}\left(k+\frac{1}{2} ; \frac{1}{2} ; \frac{a^{2}}{2 \sigma^{2}}\right), k \text { integer }
\end{gathered}
$$

2. $n=2 m$

$$
\begin{gather*}
p_{Y}(y)=\frac{1}{2 \sigma^{2}}\left(\frac{y}{a^{2}}\right)^{(m-1) / 2} \exp \left(-\frac{y+a^{2}}{2 \sigma^{2}}\right) I_{m-1}\left(\sqrt{\frac{a^{2} y}{\sigma^{4}}}\right), y \geq 0 \tag{2.44}\\
P_{Y}(y)=1-Q_{m}\left(\frac{a}{\sigma}, \frac{\sqrt{y}}{\sigma}\right), y \geq 0 \tag{2.45}\\
\Psi_{Y}(\omega)=\left(\frac{1}{1-2 j \omega \sigma^{2}}\right)^{m} \exp \left(\frac{j \omega a^{2}}{1-2 j \omega \sigma^{2}}\right) \tag{2.46}
\end{gather*}
$$

Since the k th moment of a noncentral chi-square RV with $2 m$ degrees of freedom is equal to the $2 k$ th moment of a Rician RV of order $2 m$, then it is straightforward to obtain the moments of Y from (2.23) as

$$
\begin{equation*}
E\left\{Y^{k}\right\}=\left(2 \sigma^{2}\right)^{k} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right) \frac{(m+k-1)!}{(m-1)!}, F_{1}\left(m+k ; m ; \frac{a^{2}}{2 \sigma^{2}}\right), k \text { integer } \tag{2.47}
\end{equation*}
$$

3. $n=2 m+1$

$$
\begin{gather*}
p_{r}(y)=\frac{1}{2 \sigma^{2}}\left(\frac{y}{a^{2}}\right)^{(m-1 / 2) / 2} \exp \left(-\frac{y+a^{2}}{2 \sigma^{2}}\right) I_{m-1 / 2}\left(\sqrt{\frac{a^{2} y}{\sigma^{4}}}\right), y \geq 0 \tag{2.48}\\
P_{r}(y)=\cdots \tag{2.49}\\
\Psi_{y}(\omega)=\left(\frac{1}{1-2 j \omega \sigma^{2}}\right)^{m+1 / 2} \exp \left(\frac{j \omega a^{2}}{1-2 j \omega \sigma^{2}}\right) \tag{2.50}\\
E\left\{Y^{k}\right\}=\left(2 \sigma^{2}\right)^{k} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right) \frac{\Gamma\left(m+k+\frac{1}{2}\right)}{\Gamma\left(m+\frac{1}{2}\right)} 1 F_{1}\left(m+k+\frac{1}{2} ; m+\frac{1}{2} ; \frac{a^{2}}{2 \sigma^{2}}\right), \tag{2.51}
\end{gather*}
$$

k integer

F. Log-Normal

Let $X \in N_{1}\left(\bar{X}, \sigma^{2}\right)$. Then the PDF of $\gamma=10^{X / 10}$ is given by

16 PROBABILITY DISTRIBUTIONS INVOLVING GAUSSIAN RANDOM VARIABLES

$$
\begin{gather*}
p_{\gamma}(\gamma)=\frac{\xi}{\sqrt{2 \pi} \sigma \gamma} \exp \left[-\frac{\left(10 \log _{10} \gamma-\bar{X}\right)^{2}}{2 \sigma^{2}}\right], \gamma \geq 0 \tag{2.52}\\
P_{\gamma}(\gamma)=1-Q\left(\frac{10 \log _{10} \gamma-\bar{X}}{\sigma}\right), \gamma \geq 0 \tag{2.53}
\end{gather*}
$$

where $\xi=10 / \ln 10$ and $\bar{X}(\mathrm{~dB})$ and $\sigma^{2}(\mathrm{~dB})$ correspond to the mean and variance of $10 \log _{10} \gamma$. The CF of γ is not obtainable in closed form but can be approximated by a Gauss-Hermite expansion as

$$
\begin{equation*}
\Psi_{\gamma}(\omega) \cong \frac{1}{\sqrt{\pi}} \sum_{n=1}^{N_{n}} H_{x_{n}} \exp \left(10^{\left(\sqrt{2} 2 \alpha_{n}+\bar{x}\right) / 10} j \omega\right) \tag{2.54}
\end{equation*}
$$

where x_{n} are the zeros and $H_{x_{n}}$ are the weight factors of the N_{p}-order Hermite polynomial and can be found in Table 25.10 of [2]. In addition, the moments of γ are given by

$$
\begin{equation*}
E\left\{\gamma^{k}\right\}=\exp \left[\frac{k}{\xi} \bar{X}+\frac{1}{2}\left(\frac{k}{\xi}\right)^{2} \sigma^{2}\right], k \text { integer } \tag{2.55}
\end{equation*}
$$

[^0]: ${ }^{2}$ More often than not in the literature, the subscript " 1 " identifying the order of the first-order Marcum Q-function is dropped from the notation. We shall maintain its identity in this text to avoid possible ambiguity with the two-dimensional Gaussian Q-function defined in Eq. (A.37) of Appendix A.

