Chapter 2

MATHEMATICAL BACKGROUND

This chapter presents the important mathematical definitions and
concepts required in this monograph. They arc prescnted in a logical
order, with each definition building on earlier concepts. However, the
broad goals of the analysis presented in this monograph should be rea-
sonably clear with only a passing acquaintance of the mathematics in
this chapter. For more background and context to this mathematical
material, we recommend the following references [23, 33, 57-59, 74, 97].

1.  Groups, Rings, and Fields

Groups, rings, and ficlds constitute the basic structures of abstract
algebra. They arc also the basic algebraic structures required for the
definition and the algebraic analysis of the AES.

Groups

DEFINITION 2.1 Let G be a non-cempty sct with a binary operation
o:G x G — G. We say that (G, o) is a group if the following conditions
hold.

m The operation o is associative, that is (g1 0 g2) 0 g3 = g1 0 (g2 0g3) for
all g1,92,93 € G.

w There cxists an element ¢ € G such that eog = goe = ¢ for all
g € G. This clement e is unique and is called the identity element.

m For cvery g € G, there exists a unique clement g7! € G such that
gog ' =g log=-e This clement g~! is called the inverse of g.

The order of a group (G, o) is the cardinality of the set G and is often
denoted by |G). If the order of (G, o) is finite, we say that G is a finite
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group. Similarly, we say that an clement ¢ € G has finite order if there
exists a positive integer m such that go... o g = g™ = e. In this casc,
the least such integer m is called the order of g and is denoted by o(g),
and so the inverse element g1 = ¢°(~1, For a finitc group G, the order
of any element divides the order of the group G.

DEFINITION 2.2 The group (G, o) is said to be an abelian or commuta-
tive group if gog = g’ og for all g, ¢’ € G.

The group operation o is usually clear from the context. When this is
the case, the symbol o is omitted and the group (G, o) denoted by G.

ExaMPLE 2.3 The set of integers Z under the operation of addition
forms an abelian group. Similarly, if n is a positive integer, the set of
integers Z, = {0,...,n — 1} under the operation of addition modulo n
forms an abcelian group of order n. a

EXAMPLE 2.4 The set of integers Zy, = {1,...,p — 1} under the opcra-
tion of multiplication modulo p forms an abelian group if p is prime. O

EXAMPLE 2.5 Suppose that G and Ga are groups, then G = Gy x Gy
is a group with operation defined as (g1, g2) © (¢, 95) = (914}, g295). The
group G is known as the direct product of G1 and Gy. a

A non-empty subset H C G is called a subgroup of G if H is itself a
group under the same operation. For a finite group, Lagrange’s Theorem
states that the order of any subgroup divides the order of the group. A
subgroup H of G is called a normal subgroup of G if g~*hg € H for
all g € G and h € H. The notation H < G and H < G is used to
denote that A is a subgroup of G and that H is a normal subgroup of G
respectively. A group that has no non-trivial normal subgroups is called
a simple group.

If H is a subgroup of G, then the right coset of H in G defined by
g € G is the st Hg = {hglh € H}. The set of right cosets, {Hglg € G},
forms a partition of the elements of G. We can also define left cosets of
H in G in a similar manner. The set of right coscts of H in G and the
set of left coscts of H in G have the same cardinality. This cardinality
is known as the indez of H in G and is denoted by [G : H). If H is
a normal subgroup of G, then the right coset and left coset defined by
any g € G are identical, and Hg = gH is simply called the coset of H
in G defined by g € G. In this case, the sct of all cosets of H in G
forms a group with binary operation (Hg, Hg') — Hgg' for all g,¢' € G.
This group is called the quotient group of G by I . This group has order
[G : H] and is denoted by G/H.
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DEFINITION 2.6 Let S be a non-cmpty subsct of G. Then the group
generated by S is defined as the set of all finite products of form gjo.. .ogx,
where either g; € S or g;l es.

The group gencrated by S is denoted by (S) and is the smallest subgroup
of G which contains S. If S = {g}, then the group (S) = (g) gencrated
by a single clement g € G is called the cyclic group generated by g. If g
has finite order, then (g) = {g,9°,... , g1 e},

A permutation of a non-empty set X is a bijective mapping X — X.
The set of permutations of X', under the operation of composition, forms
a group known as the symmetric group of X. We denote this group by
Sy. If X is finite with cardinality n, this group is also known as the
symmetric group on n elements and is denoted by S,. The order of the
group S, is n!. An element of the group 5, that permutes two clements
of X and leaves the remaining clements fixed is called a transposition. An
element g € Sy, is said to be an even permutation if it can be expressed as
a product of an even number of transpositions, otherwise g is said to be
an odd permutation. The subset of S, consisting of all cven permutations
is a normal subgroup of S,,, known as the alternating group on n clements
and is denoted by A,,. For n > 1, the order of A, is %n!‘ Furthermore,
Ay, is a simple group for n # 4.

DEFINITION 2.7 Let X be a non cmpty sct and G a group. A group
action of G on X is a mapping G X X — X, denoted by (g,2) = g -z,
such that the following two conditions hold.

m If e is the identity of G, then e - x = z for cvery z € &,

w g (¢ x)=(9¢) zforall g,¢ € Gandforallz e X.

If therc is a group action of a group G on a set X', we say that the
group G acts on the set X. An examplc of a group action is the action
of the symmetric group Sy on the set X defined by (g,z) + g(z) for all
permutations g of Sy and z € &

If G is a group acting on the set X, then the orbit of x € X is defined
tobe {g-z | g € G} C X. The orbits of X form a partition of X. The
stabilizer of an element z € X is defined to be G, = {9 € Glg -z = =z}
and is a subgroup of G. The number of elements in the orbit of z € X
is the index [G : G]. Furthermore, if Fiz(g) denotes the number of
elements of X' that are fixed by g € G, then the number of orbits of G

on X is .
— Fq .
@ > Fix(g)
g9€G
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If the action of G on X has only one orbit, then for any pair of clements
z,%' € X there exists ¢ € G such that g -z = /. In this casc the
action of G on X is said to be transitive. Furthermore, if for any pair of
m-tuples (x1,...,2Zm), (2},...,2},) € X™ with distinct entries (z; # x;
and @ # x}) there exists g € G such that g - z; = a;, then the action is
said to be m-transitive. The action is said to be sharply m-transitive if
such an clement g € G is unique.

If G acts on a sct X, then Y C X is called a block of G if for cvery
g € G, we have either g(¥) = Y or g(¥)NY = @. The group G is said to
be primitive if it has no non-trivial blocks, and imprimitive otherwisc.

ExXAMPLE 2.8 The symmetric group S,, acting on a sct of n clements
is a primitive and sharply n-transitive group. The alternating group A,
acting on a sct of n clements is a primitive and sharply (n— 2)-transitive
(n > 2) group. O

DEFINITION 2.9 Let (G, 0) and (H, ) be groups. A mapping ¢:G — H
is a (group) homomorphism if, for all g,¢’ € G,

dlgog’) = ¢lg) - d(g).

An injective homomorphism is called a monomorphism and a surjec-
tive homomorphism is called an epimorphism. A bijective homomor-
phism ¢: G — H is called an isomorphism, and the groups G and H are
saild to be isomorphic, denoted by G = H. An isomorphism from G to
itself is called an automorphism of G.

DEFINITION 2.10 If ¢: G — H is a homomorphism and ey is the iden-
tity clement of H, then the subset

ker ¢ = {g € Gl¢(g) = en}
of G is called the kernel of the homomorphism ¢.

We note that ker ¢ is a normal subgroup of G and the First Isomor-
phism Theorem states that the quotient group G/ ker ¢ is isomorphic to
the image of ¢. Furthermore, any normal subgroup H < G is the kernel
of the “natural” epimorphism G — G/H defined by g — Hg.

ExaMPLE 2.11 Let H be the group ({—1,1}, x), where x denotes the
usual opcration of integer multiplication. There exists a homomorphism
from the symmetric group S, onto H that maps every even permutation
to 1 and every odd permutation to —1. The kernel of this homomorphism
consists of all even permutations and so is the alternating group A,.
Thus the quotient group Sy, /A, is isomorphic to H. O
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Isomorphic groups have identical algebraic structure and can be re-
garded as cssentially the same algebraic object. Isomorphisms arc often
useful for solving problems that would otherwise be intractable. Thus
obtaining alternative representations using isomorphisms is a common
technique for the study and analysis of algebraic structures. We note
however that constructing isomorphisms between two algebraic struc-
turcs, and cven constructing the inverse isomorphism of a known iso-
morphism, can often be a very difficult problem.

EXAMPLE 2.12 Let p be a prime number, and Z;, 1 and Zj, denotc the
groups defined in Examples 2.3 and 2.4 respectively. The group Zy,_1 is
generated additively by the element 1 € Z,, 1, and the group Zj is gen-
erated multiplicatively by some g € Zj. Thesc groups are isomorphic,
and an isomorphism between them can be defined by m — ¢™, that is
the exponcutiation in Z*. The inversc isomorphism is known as the dis-
crete logarithm, and the calculation of the discrete logarithm is generally
believed to be a hard problem. The difficulty of computing this inverse
isomorphism is the foundation of the security of many asymmetric cryp-
tosystems, for example the Digital Signature Standard [93]. O

Rings

DEFINITION 2.13 Let R be a non-empty set with two associative binary
operations 4+, R x R — R. We say that (R, +,") is a ring (with unit)
if the following conditions hold.

w (R,+) is an abelian group.

u The operation - is distributive over +, that is for all r, 7/, 7" € R,
re(+r")y=r-r"+r- " and (' +0") v =0 v 0"

®m There is an clement 1 € Rsuch that 1-r=7r-1=rforall r € R.

The identity element of the group (R, +) is usually denoted by 0 and is
called the zero of the ring (R, +,-). The element 1 is called the identity
element of the ring (R, +, ).

DEFINITION 2.14 Thering (R, +, ) is a commutative ring if r-v' =1'-r
for all r,7’ € R, that is the operation - is commutative.

All rings considered in this monograph are commutative rings with
unit. As with groups, we often assume that the operations + and - are
clear, and we denote the ring (R, +, -) simply by R. We also often denote
r -7’ simply by 77’ for r,7’ € R.
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A commutative ring R is called an integral domain if it contains no
zero--divisors, that is v’ # 0 for all r,7' € R\ {0}. A nonzcro clement
r of a ring R is said to be invertible (or a unit) if there exists r™1 € R
such that - 771 = r~1 .9 = 1. The sct of all invertible elements of R
is denoted by R* and forms a group under multiplication known as the
group of units of R. If all nonzero clements of a ring R are invertible,
then R is called a division ring and R* = R\ {0}.

ExXAMPLE 2.15 The set of integers Z under the operations of integer
addition and multiplication forms a commutative ring. Similarly, the
set of integers Z,, = {0,...,n — 1} under the operations of addition and
multiplication modulo n forms a commutative ring. We note that Z, is
a division ring if and only if n is prime. a

DEFINITION 2.16 Let (R,+,-) be a ring and I a non cmpty subsct of
R. We say that [ is an ideal of R, denoted by I < R, if the following
conditions hold.

s (I,+) is a subgroup of (R, +).
m Forallzelandre R, z-r&€landr -z €l.

The coset of an ideal I in R defined by r € R is denoted by I +r and
defined to be the st {s + r|s € I}. The cosets of an ideal I < R form
a partition of the ring R. The set of all cosets of I forms a ring with
addition and multiplication defined by (I +r)+ (I +7) =1+ (r + ')
and (I +r)(I +7') = I+ 7' respectively. This ring is denoted by R/
and is called the quotient ring or the residue class ring modulo I.

If S is a non-empty subset of R, then the ideal generated by S is
denoted by (S) and consists of all finite sums of the form Y r;s;, wherc
r; € R and s; € S An idcal is said to be a principal ideal if it can be
generated by one clement r € R. An integral domain in which every
ideal is a principal ideal is called a principal ideal domain.

DEFINITION 2.17 If R and R’ are rings, then ¢: B — R’ is a (ring)
homomorphism if the following conditions hold.

w ¢(r+7')=¢(r) + ¢(r') for all r,7’ € R.
w G(r-r)=o(r) ¢(r) for all ;7' € R.

Different types of ring homomorphism arc defined in a similar manncr
to group homomorphisms. The kernel ker ¢ = {r € R|¢(r) = 0} of aring
homomorphism ¢: R — R’ is an ideal of R. Furthermore, the quotient
ring R/ ker ¢ is isomorphic to the image of R, and every ideal I < R is
the kernel of the “natural” epimorphism R — R/I defined by 7 +» [ 47,
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Fields
DEFINITION 2.18 A commutative division ring F is called a field.

Thus a field F is a ring (IF, 4, -) such that both (F, +) and (F\ {0}, ) are
commutative groups.

ExAMPLE 2.19 The sets Q of rational numbers, R of rcal numbers, and
C of complex numbers form fields under the usual operations of addition
and multiplication. O

EXAMPLE 2.20 The set Z, = {0,...n — 1} under addition and multi-
plication modulo an integer n is a ficld if and only if n is prime (Exam-
ples 2.3 and 2.4). O

If F is a ficld, we say that F has positive characteristic if there exists
a positive integer m such that the m-fold sum 1 +... 4+ 1 = 0. In this
casc, the least such integer m is called the characteristic of F. If there
is no such m, we say that F has characteristic zero. The infinite fields
Q, R, and € all have characteristic zero, whilst the finite field Z, has
characteristic p. In fact, all finite fields have characteristic p for some
prime p. We discuss further aspects of finite fields in Scction 2.4.

2. Polynomial Rings

Polynomial rings arc a special example of commutative ring that play
an important role in the theory of finite fields. The algebraic analysis of
the AES makes extensive use of polynomial rings.

Univariate polynomial rings

A monomial in the single variable or indeterminate x is the formal cx-
pression z* for some 7 € N, that is some non- negative power of . The
degree of the monomial z* is ¢.

DEFINITION 2.21 A univariate polynomial in the variable z over a ficld
F is a finitc lincar combination over F of monomials in z, that is a formal
expression of the form

cda:d + cd,lxd_l + ..+ 02552 + c1z + co,

where d is a non—negative integer and cy,...,co € F, with ¢4 # 0 if
d>0.

DEFINITION 2.22 The set of all univariate polynomials in the variable
over a ficld F forms a ring under the standard operations of polynomial
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addition and multiplication. This ring is a principal ideal domain called
the univariate polynomial ring over F and is denoted by Flz].

Let f(z) € F[z] be a univariate polynomial. The degree of f(z) is the
maximum integer d such that ¢z # 0, and is denoted by deg(f(z)). If

f(z) = cqrd + ..+ 1z + o,

then the summands c;z* (¢; # 0) arc called the terms of f(z), and ¢; is
called the coefficient of the monomial z*. Furthermore, we can define
the leading monomial, leading coefficient, and leading term of f(x) as
z%, cq and cgz? respectively. A polynomial f(z) is a monic polynomial
if its leading cocflicient is 1.

The evaluation of the polynomial f(z) at @ € F is defined as the
element Ef:() ciat € F and is denoted by f(a). We say that a is a root
of f(z) if f(a) = 0. A polynomial of degree d has at most d roots in F.

THEOREM 2.23 Univariate Division Algorithm. Given f(z) and g(z) €
Fz], then there exists ¢(z), r(z) € Flz] with deg(r(z)) < deg(g(z)) such
that f(z) = g(z)g(x) + r(z). The univariate polynomial r(z) is known
as the remainder of the division of f(x) by g(z).

The well-known Euclidecan algorithm to find the greatest common divisor
of two polynomials is just the repeated application of Theorem 2.23.

EXAMPLE 2.24 Suppose that
f@)=a8+2°+ 23+’ +z+1and g(x) =2 + 23 + 1
arc polynomials in the univariate polynomial ring Zs[x]. We then have
Pttt e +1=22@ 4 D)+ @ e+ 1),
so f(z) = q(z)f(z) + r(x), where g(z) = 22 and r(z) =2+ 2+ 1. O

A polynomial f(z) € Flz] of positive degree is said to be irreducible in
F[z] if there is no factorisation of the form f(z) = p(z)q(z), where p(z)
and g(z) are polynomials of positive degree in F[z]. Every polynomial
in Flz] can be written as the product of monic irreducible polynomials
and some constant in F, and this product is unique up to the order of
the factors.

EXAMPLE 2.25 Let f(z) be a polynomial in F[z] of degree d, and (f(z))
be the ideal generated by f(z). The clements of the quotient ring Z%[%?
can be written as polynomials

ag12 . aiz +ag
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in Flz] of degree less than d. In this representation of the quotient ring,
addition is simply polynomial addition. However, multiplication in the
quotient ring is defined by applying Theorem 2.23. For two polynomials
g1(z), g2(z) € Flz], we know that there exists ¢(z), r(z) € Flz] such that

91(z)ga(2) = q(2) f(z) + (),

where deg(r(z)) < deg(f(x)) = d. In this representation of the quotient
ring -{%%;, the product of gi(z) and go{x) is r(z). O

EXAMPLE 2.26 Let f(z) = 2% +2%+1 be a polynomial in the univariate
polynomial ring Zs[z]. The product of the polynomials (z*+ 23 +2%+1)
and (2% 4+ 23 + x + 1) satisfics

i

DBt +at+r+1
= (@ +2?+z+1)f(z)+0.

(zt+ 23+ 22+ Dt + 23+ 2+ 1)

Thus in the quoticnt ring R = (%f;)] , the product of these two nonzero
clements is 0, and R is not an integral domain. O

THEOREM 2.27 The quotient ring (jf([i]» is a ficld if and only if f(x) is
irreducible in Fz].

The Lagrange Interpolation Formula is a well--known method for con-
structing a polynomial based on given values for cvaluation of a function.

THEOREM 2.28 Lagrange Interpolation Formula. Given n + 1 pairs
(a:,b;) € F x F, with a; # a;, there exists a unique polynomial f(z) €
F|z] of degree at most n with f{a;) = b;. This polynomial is given by

o) =S (222).
=

Multivariate polynomial rings

Let N* = {(a1,...,a,) | @; € N} denote the set of multi-indices of size
n. A monomial in the variables 21, ..., 2, is a product of the form
aftey? . ayr,

which we denote by X, o € N*. The degree of X% is do = Y1 1 4.
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DEFINITION 2.29 A polynomial in n variables xq, ..., 2, over the field
F is a finite linear combination over F of monomials in zy, ..., z,, that
is a formal expression of the form

Z ca X,

a€EN

where ¢, € F and N is a finitc subsct of N,

DEFINITION 2.30 The sct of all polynomials in n variables over a field
F forms a ring under the standard opcrations of polynomial addition
and multiplication. This ring is called a polynomial ring over F, and for
variables z1,. .., ¢, is denoted by Flzy, ..., zy].

Let f =3 caX® € Flzy,...,z,] be a multivariatc polynomial over .
The summands ¢, X% (co # 0) are called the terms of f, and ¢, is said
to be the coefficient of X. The total degree of f is the maximum of
the degrees of all monomials of f. If all monomials of f have the same
degree d, we say that f is homogeneous of degree d.

DEFINITION 2.31 Let f € F[z;,...,z,] be a polynomial of total degree
d. The polynomial f" defined as

h d T In
fL::EO'f<_7"')_>
T To

is a homogencous polynomial of degrec d in Flzg, 1, ..., z,], called the
homogenisation of f.

DEFINITION 2.32 A total ordering < on the set of monomials X* (where
a € N") that is compatible with multiplication is called a monomial
ordering in Flzy,...,2,]. An ordering is compatible with multiplication
if X < X# implies X*X7 < X#X" for all multi-indices o, 3,v € N”.

We now define three common examples of monomial orderings.

DEFINITION 2.33 The lez (lexicographic) monomial ordering is defined
by X% < X8 if the left-most nonzero entry in the vector 8 — o € Z" is
positive.

DEFINITION 2.34 The glez (graded lexicographic) monomial ordering is
defined by X < X7 if, firstly the degree of X# is larger than the degree
of X* (dg > dy), and sccondly if dg = d then the left-most nonzero
entry in the vector § — « € Z" is positive.
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DEFINITION 2.35 The grevler (graded reverse loxicographic) monomial
ordering is defined by X« < X7 if, firstly the degrec of X7 is larger than
the degree of X* (dg > dq), and secondly if dg = d,, then the right-most
nonzero entry in the vector § — o € Z™ is negative.

EXAMPLE 2.36 Some monomial orderings in Flx,y, z] are shown below.
ler ordering:  z%y%2% < 22y%z and zy’z < 2?y2?
glex ordering:  z%y*z < 22y%2% and 29z < 2%y2?
grevlez ordering:  2%y*z < 2%y%2% and 2%y2? < 29°2

We can scc that the pair of monomials z?y?z and 2%y32% and the pair
of monomials 2%y2? and zy3z arc ordered differently under the various

monomial orderings. a
Supposc the polynomial ring F(zy, . .., z,] has a monomial ordering <
and f € Flzy,...,z,] is a polynomial. The leading monomial of f is the

maximal monomial of f with respect to the ordering < and is denoted
by LM(f). The leading coefficient of f is the coefficient of the leading
monomial of f and is denoted by LC(f). The leading term of f is the
term associated with the leading monomial and is denoted by LT(f), so
LT(f) = LC(f)LM(f). The multidegree of f is the degree of the leading
monomial of f and is denoted by multideg(f).

These concepts enable us to give a multivariate generalisation of the
division algorithm for univariate polynomials (Thecorem 2.23).

THEOREM 2.37 Polynomial Division Algorithm. Suppose that the poly-

nomial ring Flz1, ..., z,] has a monomial ordering < and that (g1,...,9s)
is an ordered subset of Flzy,...,z,]. For any f € Flzy,...,x,], there
exist a;,r € Flz1,...,2y] such that

f=aig1+...+asg9s +7,

where either 7 = 0, or r # 0 and no leading monomial of the polynomials
¢; divides any of the monomials of ». Such a polynomial r is called a
remainder of the division of f by the set {¢1,...,9s}. Furthermore, if
a;g; # 0, then multideg(a;g;) < multideg(f).

3. Linear Algebra

Linear algcbra is at the heart of both the design and the analysis
of the AES. Diffusion in the AES sp-nctwork is achicved by a lincar
transformation. It is therefore not surprising to find linear algebra being
uscd as a tool in the analysis of the cipher.
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Vector spaces

DEeFINITION 2.38 Let (V,+) be an abclian group, F a ficld and - an
operation F x V. — V. We say that V is a vector space over F if the
following conditions hold.

m g - (v+v)=a-v+a-v foralv,v eV andael.

s (a+ad) v=a-v+a -viorallveV anda,d €F.

m (ad) - v=0a (a'v)forallveV and a,d’ €F.

m 1.v=uwforallv eV, wherc 1 is the identity clement of F.

In a vector space, an element of the set V is called a vector and an
element of the field F is called a scalar. The operation + is known as
vector addition and the operation - as scalar multiplication. The identity
element of the abelian group (V, +) is called the zero vector and is usually
denoted by 0. Furthermore, the symbol - is usually omitted if there is
no danger of confusion.

EXAMPLE 2.39 The sct " = {(a1,...,a,) | a; € F} forms a vector
space over F with vector addition and scalar multiplication defined by

(ai,...,an) + (d},...,al) = (a1+al,...,an +al), and
a-(ay,...,an) = (aa,...,a0,). O

A subsct U of a vector space V over a field F is a subspace of V if U
is itself a vector space over F. The notation U < V is used to denote
that U is a subspace of V. The intersection U NU’ of any two subspaces
U and U’ of V is a subspacc of V. The sum of subspaces U, U’ < V,
defined by

U+U ={u+v |ueUnu cU},

is also a subspace of V. This definition extends in the obvious way to
any finite sum of subspaces. If a vector space V = Uy +...+ U,, and the
subspaces U, ..., Uy, have trivial pairwise intersections (U; N U; = {0}
for i # j), then V is said to be the direct sum of these subspaces and we
write V =U; ®...6 Up,. In this casce, for any v € V, there exist unique
u; € U; such that v = ug + ... + upm.

The sct of all finite linear combinations of the vectors vi,...,vm € V,

<’U1,...,’Um> = {alvl + o AU | a; €F,v; € V},

is a subspace of V and is called the subspace generated by the sct
{v1,.. s Um}. A sct of vectors {v1,..., v} is sald to span or to be a
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spanning set of a subspace U < V if for all w € U there exists a; € F
such that v = Y7, a;v;.

A basis for a vector space V is a minimal spanning set for V.. Every
vector in a vector space can be expressed as a unique linear combination
over IF of the elements of a basis. Any basis for a vector spacc V always
has the same cardinality, which is called the dimension of the vector
space V and is denoted by dim(V).

EXAMPLE 2.40 The multivariate polynomial ring Flzi, ..., z,) forms an
infinite dimensional vector space over F. The subset of F[zy, ..., zy] of
all polynomials of degree at most 1 is a subspace of dimension n+ 1 with
basis {1,21,..., 2z} a

A set of vectors {v1, ..., vy} is said to be linearly independent if the
expression " a;v; = 0 implies that a; = ... = a,, = 0. If {e1,..., €.}
is a basis B for a vector spacc V of dimension n, then B is lincarly
independent and for any v € V there exist unique a; € F such that
v =aie;+...+ae,. Thus we can represent v with respect to the basis
B by the n-tuple (a1, ...,a,) € F*.

We can define cosets of subspaces in a similar manner to coscts of
subgroups. In particular, the set of all cosets of U in V forms a vector

space called a quotient vector space and is denoted by V/U.

Linear transformations

DEFINITION 2.41 A linear transformation or vector space homomor-
phism from a vector space V over a ficld F to a vector space U over F is
a mapping ¥ V — U that satisfics the following two conditions.

w Y(v+ ") =9 () + ) for all v,0’ € V.
m Plav) =a-9Y) =ayp(v) forallve V and a € F.

A vector space isomorphism is a bijective lincar transformation, and we
use V =2 U to denote that the vector spaces V and U are isomorphic.

EXAMPLE 2.42 Let V be a vector space over the field F of dimension n,
and let {e1,...,e,} be a basis for V. Given v € V, there exists a unique
(a1,...,ay) € F" such that v = a1e1 + ...+ ane,. The mapping V — F*
defined by v +> (a1, ..., a,) is a vector spacce isomorphism. Thus any two
finite—dimensional vector spaces over the same ficld are isomorphic. O

ExXAMPLE 2.43 Let V be a vector space of dimension n over the field
F, and ay,...,a, be elements of F. Then every mapping V — F of the
form aje; + ...+ aney, — ara1 + ... + apa, is a linear transformation
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from V into F, where F is considered as a one-dimensional vector space
over F. Furthermore, every linear transformation from V - [ is of this
form. Such a transformation is known as a linear functional on V. O

Let :V — V' be a linear transformation. Then the kernel of ¢ is
defined by ker ) = {v € V|¢(v) = 0} and is a subspace of V. The nullity
of ¥ is the dimension of ker+. The image of the linear transformation
1 is a subspace of V', and the rank of ¥ is the dimension of ¥(V'). The
Rank-Nullity Theorem states that

dim(V) = dim(ker ¢) + dim(¢)(V)).

The quotient vector space V/ker®y is isomorphic to the image of V,
so Y(V) = V/kery. If V! = V| then the subspace U < V is called
a -invariant subspace if ¥(U) < U. If ¥ satisfies ¢ o 9 = 9% = ¥,
then 1 is called a projection and ¢ (U) is a ¥-invariant subspacc for any
subspace U < V.

If 4:V — V is a linear transformation, then Zfzo a;p* is also a linear
transformation on V. Furthermore, the set

d d
I:{Zaiz’i Zai’)i:()}
1=0

i=0

is an ideal of the polynomial ring Flz]. The minimal polynomial of
the linear transformation 1 is defined as the unique monic polynomial
miny(x) that generates the principal ideal I. The minimal polynomial of
1 gives much information about both ¥ and the v-invariant subspaces.
For example, if miny(x) = my(x)...my(z) is the factorisation of the
minimal polynomial of ¢ into monic polynomials, then m;(¢) has a
natural intcrpretation as a linear transformation and the #-invariant
subspaces are given by ker m; ().

DEFINITION 2.44 Suppose that V and V' arc vector spaces over the
ficld I and that ¢: V — V' is a linear transformation. If b is a vector in
V', then the transformation V — V' defined by v + 9(v) + b is termed
an affine transformation.

DEFINITION 2.45 Consider a mapping 3:V x V — V’, where V and
V' arc vector spaces over the ficld F. For u € V, we can define the
mappings G, 8V - V' by v — B(u,v) and v — B(v,u) respectively.
The mapping 3 is called a bilinear transformation on V if 8!, and 8] arc
lincar transformations for all u € V.
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Matrices
DEFINITION 2.46 An m X n matriz over a field F is a rectangular array

a1l cee Qlp

ml .- Omn
with a;; € F. The clements a;; are called the entries of the matrix.

If A is an m x n matrix, the sequences (a;; ... a;,) are called the rows
of A, and the sequences (ai1j...an;) arc called the columns of A. Thus
A has m rows and n columns. If m = n, then A is called a square matriz
of order n. A submatriz of A is an m’ x n/ matrix (m’ < m and n’ < n)
obtained by taking a block of entrics of M with m’ rows and n’ columns.
The transpose of A is denoted by AT and is the n x m matrix whosc
(4, 7)-centry is given by aj;.

ExampLE 2.47 Let M, xn(F) denote the sct of all m x n matrices over
F. We can define the operation of addition of clements of M, xy, (IF)
in the obvious way by adding the corrcsponding entries of the ma-
trices. Similarly, we can define the scalar multiplication of a matrix
A € My« (F) by an element ¢ € F to be the matrix obtained by simply
multiplying every entry of A by ¢. Thus the set M ,xn(F) forms a vector
space over F of dimension mn. a

Let A be an m X n matrix and B be an r x s matrix over F defined as

all .o Q1n b11 e bls
aml .. Gmn b ... by

If n = r, we can define a multiplication of A by B. The product AB is
the m x s matrix C whosc cntrics are ¢;; = Y . airbgj.

DEFINITION 2.48 Suppose A is an m X n matrix over F and that A;.
denotes the i row of A. An elementary row operation on the matrix A
is one of the following three types of operation.

m The replacement of A;. by cA;. where ¢ € F with ¢ # 0.
m The replacement of A;. by A;. + cA;. where ¢ € F and ¢ # j.
s The interchange of two rows of A.

An elementary row opceration on the matrix A is equivalent to a map-
ping A ~ PA, where P is a m X m elementary row operation matrix.
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Any m x n matrix that can bec obtained from A by a serics of elcmentary
row operations is said to be row-equivalent to A. In particular, there
is a special set of matrices called the row reduced echelon matrices, and
any matrix is row-equivalent to a unique row reduced cchelon matrix.

The rank of an m x n matrix A is the number of lincarly independent
rows or columns (considered as vectors) of A. In particular, if A is a
row--reduced echelon matrix, then the rank of A is the number of nonzero
rows. We note that row—equivalent matrices have the same rank.

Let M, (IF) denote the set of all square matrices over F of order n. A
matrix A € M, (F) with entries a;; is a symmetric matriz if AT = A,
that is a;; = a5, and A is a diagonal matriz if a;; = 0 whenever @ # J.
The identity matriz is a diagonal matrix in which a;; =1 (¢ =1,...,n)
and is usually denoted by I. The identity matrix has the property that
Al = JA = A for any matrix A € M, (F). The square matrix A is an
invertible or non-singular matrix if there exists an n x n matrix A~}
such that AA™! = A71A = I. A matrix is invertible if and only if it is
row--equivalent to the identity matrix.

The determinant is a function det: M, (F) — F on square matrices
with special properties, and this function is widely used in the analysis
of squarc matrices [59]. In particular, we have det(AB) = det(A) det(B),
and a matrix A is invertible if and only if det(A) # 0.

The set of n X n invertible matrices forms a group under the operation
of matrix multiplication. This group is called the general linear group
and is denoted by GL(n,F). The subset of all matrices that have deter-
minant 1 forms a normal subgroup of GL(n,F). This subgroup is called
the special linear group and is denoted by SL(n,F). Thus we have

CL(n,F) = { A& Mu(F) | det(A)#0 }, and
SL(n,F) = {AeM,(F)| det(A)=1}.

Matrices are often used to represent lincar transformations betwecn
vector spaces and can be particularly useful for performing calculations
with such mappings. For cxample, matrices provide an easy way of
calculating the image of vectors under linear transformations or of cal-
culating the composition of linear transformations. Furthermorc, many
properties of a linear transformation, such as its rank, minimal polyno-
mial, invariant subspaces, can be casily obtained by analysing a matrix
corrcsponding to that linear transformation.

Suppose that ¥ : V — V' is a lincar transformation between two
vector spaces V and V7 over a ficld F of dimensions n and m respectively.
Suppose further that V' has a basis B = {e1,...,e,} and V' has a
basis B' = {€},...,€/,}. Then there exist a;; € F such that ¢(e;) =

>y aigel (1 < i < m), and the matrix of the linear transformation ¢
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with respecet to the bases B and B’ is defined as the m X n matrix A
whosc entries are a;;. Any v € V is given by v = Z?:l v;e; for some
v; € F. In this monograph, we represent vectors as column vectors or

U1
n X 1 matrices. Thus the vector v is given by the column vector

v”
with respect to the basis B, which we write as (v, .. ., vn)T. The cffect

of the linear transformation v on the vector v is given by

n 7 7 T T
G(u) =Y vle) =D i <Z aije; | =Y | Y aiv; | ¢,
j=1 =1 i=1

i=1 \j=1
which is expressed in terms of matrices by the matrix multiplication

air ... Qlp U1 a11v1r + ...+ a1l
Av=| | = .
Gm1 ... Gmnp Un Am1V1L + ..« + GmntUpn

The composition of lincar transformations can also be easily com-
puted using matrices. If ¢ : V — V' and ¢ : V! — V" arc lincar
transformations, and A and A’ are the matrices associated with 1) and
' respectively, then P = A’A is the matrix associated with the linear
transformation 1’ o ¢ : V' — V”. Thus the matrix of a composition of
linear transformations is the product of the respective matrices.

We note that the matrix corresponding to a linear transformation
is not unique as it depends on the basis chosen for the vector spaces.
Suppose, as above, that we have a linear transformation ¢ : V — V/
between two vector spaces V and V’ of dimension m and n respectively.
If the linear transformation + is represented by an m x n matrix A with
respect to one pair of bases and by another m x n matrix A with respect
to another pair of bascs, then there exist an invertible n x n matrix P
and an invertible m x m matrix P’ such that A = P’AP. We say that
the matrix A is obtained from A by a change of basis.

DEFINITION 2.49 Let A be an n x n matrix over the field F. The
minimal polynomial of the matrix A is the unique monic polynomial
ming(z) € Flz] of minimal degree such that mina(A4) = 0. The charac-
teristic polynomial of A is the polynomial c4(z) € F[z] defined by

ca(z) = det(zl — A).

We note that the minimal polynomial of a lincar transformation is the
same as the minimal polynomial of any of its associated matrices.
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THEOREM 2.50 Cayley -Hamilton Theorem. The minimal polynomial
of a matrix divides the characteristic polynomial.

ExaMPLE 2.51 Consider the matrix

0100
1 001
A= 0 01 1
1100

over the ficld Zq. It can be shown that the minimal polynomial of A is
mina(z) = 23 + 1 and the characteristic polynomial of A is

cal) =a* + 23+ 2+ 1.

We note that the minimal polynomial ming(z) divides cq(x). Further-
more, ming(z) = (z + 1)(x? + = + 1) as a product of irreducible poly-
nomials. Thus, if ¥ : V — V' is a lincar transformation associated with
A, then the invariant subspaces of ¢ arc given by ker(vn) and ker(1z),
where 1 and 3 arc the linear transformations V — V' associated with
the matrices (A + I) and (42 + A 4 I) respectively. O

Matrices are also widely used in coding theory, and most properties of
linear codes can obtained by studying their generator and parity check
matrices. Of special interest in the design and analysis of the AES arc the
matrices that arise from mazimal distance separable (MDS) codes [76].

DEFINITION 2.52 An m X n matrix A is called an MDS matrix if and
only if every square submatrix of A is invertible.

Linear systems and matrix complexity

Matrices can be used to represent systems of lincar equations. Supposc

we have such a system of m cquations in n variables zy, ..., z, given by
a11r1 + ...+ amer, = by
Am1T1 + ...+ QuaZn = by,

where a;; and b; are elements of a ficld F. This equation system can be
represented by the matrix equation

aiy ... Qin Tl b1

Aml .. Gmn Tn bm
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or equivalently Az = b. The standard process of solving this equation
system is to transform the matrix A to a row- reduced echelon matrix us-
ing clementary row operations. This corresponds to finding an invertible
m X m matrix P such that PA is a row reduced cchelon matrix. This
allows us to obtain an equivalent matrix cquation PAx = Pb, which
gives us an immediate full solution for x1,...,x,.

The simplest method of transforming the matrix A to a row reduced
echelon matrix is known as Gaussian reduction. Pcrforming Gaussian
reduction on a squarc n X n matrix takes of the order of n3 field op-
crations. However, more sophisticated techniques for row-reducing a
matrix can reducc this to less than cubic complexity.

DEFINITION 2.53 An n X n square matrix can be transformed to a row-
reduced echelon matrix with complexity of the order of n* ficld oper-
ations. We call w the exponent of matriz reduction. Thus w = 3 for
Gaussian reduction. The smallest values of w occur for row-reduction
techniques for a sparse matriz, that is a matrix whose almost all entries
are zero. The cxponent of matrix reduction w satisfies 2 < w < 3.

Algebras

DEFINITION 2.54 Supposc A is a vector space over a field F with a
multiplication operation A x A — A. If this multiplication operation is
associative and a bilincar mapping on the vector space A, then A is an
(associative) F-algebra, or more simply an algebra.

Informally, we can regard an algebra as a vector space that is also a ring.
The dimension of the algebra A is the dimension of A as a vector space.
The subset A" C A is a subalgebra of A if A’ is an algebra in its own
right, and A’ is an ideal subalgebra if it is also an ideal of the ring A. We
can also classify mappings between two algebras in the usual way, so an
algebra homomorphism is a mapping that is both a ring homomorphism
and a vector space homomorphism.

ExaMPLE 2.55 The ring of polynomials Flzq,...,z,] is a vector space
over F (Example 2.40). Thus Flzy,...,2,] forms an F-algebra, known
as a polynomial algebra. (W]

ExAMPLE 2.56 The set M,,(F) of n x n matrices over F forms a vector
spacc over F of dimension n? (Example 2.47). Matrix multiplication
is an associative bilincar mapping on M, (F). Thus M, (F) forms an
F-algebra of dimension n?. The set D,(F) of n x n diagonal matrices
over F forms a subalgebra of M,,(F) of dimension n. Such algebras arc
known as matriz algebras. 0
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4. Finite Fields

The design of the AES is based around finite fields. All the operations
used by the AES arc described by algebraic operations on a finite field
of even characteristic. In this section, we discuss the properties of finite
fields relevant to the specification and algebraic analysis of the AES.

Finite fields and subfields

The set Zp = {0,...,p — 1} with addition and multiplication operations
defined modulo p forms a finite ficld if and only if p is prime (Exam-
ple 2.20). This field is called the Galois field of order p and is denoted
by GF(p). The Galois ficld GF(p) plays a fundamental role in the theory
of finite fields.

DEFINITION 2.57 Suppose that F and K are two fields. If F ¢ K, then F
is said to be a subfield of K, or equivalently K is said to be an extension
field of F.

THEOREM 2.58 A finite ficld of characteristic p (prime) has a unique
minimal subficld isomorphic to GF(p).

If K is a extension ficld of the ficld F, then K is also a vector space
over F. The dimension of this vector space is the degree of the extension.
If F has order ¢ and K is an extension field of F of degree d, then K has
order ¢%. As every finite field has prime characteristic p, it follows from
Theorem 2.58 that cvery finite field has order p™ for some prime p and
some positive integer n.

THEOREM 2.59 For every prime number p and cvery positive integer n,
there exists a finite field of order p™. Furthermore, any two finite ficlds
of order p™ are isomorphic.

Thus finite fields of order p™ arc unique up to isomorphism. This field
is called the Galois field of order p” and denoted by GF(p™). A subfield
of GF(p™) has order p¢, where d is a divisor of n. Furthermore, there is
exactly onc subficld of order p? for every divisor d of n. For cxample, the
finite field GF(2%) has GF(2%), GF(2?), and GF(2) as proper subficlds.

THEOREM 2.60 The multiplicative group GF(g)* is a cyclic group of
order ¢ — 1.

A gencrator of the multiplicative group GF(q)* is called a primitive
element of the field GF(g). The number of primitive clements in GF(g)
is (¢ — 1), wherc ¢(m) is Euler’s totient function, which gives the
number of positive integers less than or equal to m and coprime to m.
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Explicit construction of finite fields

Theorem 2.27 provides a mcthod of constructing a finite field as a quo-
tient ring. Suppose F is a finitc ficld of order ¢ = p™ and f(z) € Fla] is
an irreducible polynomial of degree d. The quotient ring K = (—];(%)7 isa
field of order ¢¢ = p™?, which is an cxtension field of degree d of F. In
the manner given in Example 2.25, its elements can be represented as

ad¥1$d71 + ...+ CL2.732 + a1z + ag,
where a; € F. Addition and multiplication are then as described in
Example 2.25. Theorem 2.59 states that any finite field of order p"¢ is
isomorphic to K.

We can also construct GF(p™?) dircctly as an eztension field of F.
Let 8 denote a root of the irreducible polynomial f(z) of degree d. The
set F(0) of all quoticnts (with nonzero denominator) of polynomials in 6
with cocflicients in F is the smallest ficld containing both 6 and F. Fur-
thermore, F(8) is the extension field obtained by adjoining § to F. This
extension field F(0) has p™¢ clements and so is isomorphic to GF(p™?).
The clements of F(8) are given by

ad_led“ + ..o+ a26’2 + a1 + ag,

where a; € . If the clement 0 is a generator of the multiplicative group
of F(6), then the polynomial f(x) is called a primitive polynomial.

EXAMPLE 2.61 The polynomial m(z) = 28 + 2%+ 2%+ z+1 € GF(2)[2]
is irreducible. If 8 is a root of m(z), then

GF(2)(0) = %%:;’j =~ GF(2%).

The clements of the quotient ring sz(?)p arc given, for a; € F, by

a7x7 + ...+ a2x2 + a1z + ag;

whereas the elements of extension field F(9) are given, for b; € F, by
b0 .. baB% + 516 + by.

We note that m(z) is not primitive, since the order of 8 € F(6) is 51. O

Irreducible polynomials over a field F of order ¢ arc the basic tools
for the construction of all finite extensions of F. If K is an cxtension
of F of order ¢", then Theorcm 2.60 shows that a¢"~* —1 = 0 for all
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nonzero a € K. Thus the polynomial 27" — z has all ¢" clements of K
as a root. The field K & GF(¢") is known as the splitting field of the
polynomial #7" —z. This polynomial can be used to obtain all irreducible
polynomials over F with the required degree.

THEOREM 2.62 Let F be a finite ficld of order g. Then the polynomial
x9" —z € F[z] is the product of all monic irreducible polynomials in F[z]
whose degree divides n.

The number of irreducible polynomials in F[z] of degree n is given by

% > nldgi

dn

where p is the Mébius function, defined by p(1) = 1, u(n) = (=1)* if
n is the product of & distinct primes, and 0 otherwise. The number
of primitive polynomials of degree n is %cp(q” — 1), where ¢ is Euler’s
totient function.

EXAMPLE 2.63 There are § (1(1)2% + 1(2)2% + 12(4)2% + p(8)2') = 60
irreducible polynomials of degree 8 in GF(2)[z], of which %@(28 —-1) =16
arc primitive polynomials. W]

DEFINITION 2.64 A ficld F is said to be algebraically closed if cvery
polynomial in F[z] has a root in F. The algebraic closure of a ficld F is
the smallest extension ficld K of F such that K is algebraically closed.

Representations of a finite field

Let F be a field and K = F(#) be an cxtension field of F of degree d.
The most common way to describe the elements of K is to regard all
clements as vectors in the vector space K of dimension d over the F.
Every element in K can be written uniquely as

ag1047 4 ag0? 4 a0 + ag,

where a; € F. Thus the sct {0971,...,6%,0,1} forms a basis of K as
a d-dimensional vector space over F. This basis is called a polynomial

basis for the ficld K.

EXAMPLE 2.65 Supposc 6 is a root of 2% + 2* + 23 + 2+ 1 € GF(2)[],
and let K be the ficld GF(2)(8) (Example 2.61). Any multiplication
mapping K — K is a linear transformation of K as a vector space over
GF(2). The squaring mapping in K is also a lincar transformation. If
we let 7y and S denote the matrices that correspond to multiplication
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by 6 and squaring with respect to the polynomial basis {07,...,62%,0,1},
then we have

01 000000 11000000
00100000 0010100 0
00010000 01 100000

T L 0001000 g | 10010100

=11 0000100 =1 11110000
00 000O0T10 001 00O0T10
100000 0 1 11010000
10000000 010100 01

0

There arc other bases which arc used for the field K when considered as
a vector space over I, such as the normal basis {3, 84, ﬂq2, e ,ﬂqdfl} for
suitable # € K. This representation is particularly useful when perform-
ing the exponentiation of clements in K and may offer implementation
advantages in some situations.

There are also methods of describing an clement of the finite field
K of order ¢™ which depend on logarithmic functions of K rather than
the vector space aspect of K. Suppose 8 is a primitive clement of K
and @ = §° (0 < i < ¢"* —1). The discrete logarithm is a function
logg : K* — Zg¢n_1 defined by logga = log g8* = i. We can thus
represent the nonzero elements a € K by logga € Zgn—1. If we adopt
the convention that the discrete logarithm of 0 is denoted by oo, then we
can represent an element of K by an element of Zgn_1 = Zgn_1 U {oo}.

The Zech or Jacobi logarithm offers another logarithmic method for
describing a finite ficld element. The Zcch logarithm is based on the

function Z:Zgn_1 — Zgn—1 given by

Z(n) = logg(8" + 1),

so 8% = g 4+ 1 with the convention that 8% = 0. The definition
can be extended to all integers by working modulo ¢" — 1. The Zech
logarithm of 5" can now be defined to be Z(n). We have the following
identitics concerning this function Z:

Z(Z(n)) = n,
Z(2n) = 2Z(n),
Z(-n) = Z(n)—n.

This function is of interest since it can be used to calculate the sum of
two powers of 3, since

ﬂm + ﬁn — ﬁn(ﬁmfn + 1) — /@n/@Z(m*n) — /BTL+Z(m~n).



28 ALGEBRAIC ASPECTS OF THE AES

Functions in a finite field
DEFINITION 2.66 Let I be a finite field of order ¢ and K be an extension

field of F of degree d. The clements a, a9, aqz, B a?"" are the conjugates
of a € K with respect to F.

THEOREM 2.67 Supposc K is an extcnsion of a ficld F of degree d.
Any element a € K is a root of an irreducible polynomial f(z) € Flz] of
degree n dividing d. The roots of f(x) arc the conjugates of a.

‘We now consider some functions of interest on finite ficlds.

DEFINITION 2.68 Let I be a finite field of order ¢ and K be an extension
field of F of degree d. The {trace function on K with respect to F is the
function Tr: K — F defined by
Tr(a) =a+a?+a? +... +a? "
Thus the trace of an element a € K is the sum of all conjugates of
a. The trace function is a linear functional on K, considercd as a vector

space over F (Example 2.43). In fact, any lincar functional on K is of
the form a — Tr(Ba) for some 3 € K.

DEFINITION 2.69 Let F be a finite field of order ¢ and K be an cxtcension
field of F of degree d. The norm function on K with respect to F is the
function N: K — F defined by

d
2 d—1 g_—1
N{a)=aa?a? ... a7 =g T.

Thus the norm of an clement a € K is the product of all conjugates
of a. The norm function is a group homomorphism K* — F* between
the multiplicative groups of the fields K and F.

DEFINITION 2.70 A linearised polynomial f(z) € Kz] is a polynomial
given by

f(z) = apz + a127 + asz” + ..+ ag_gz?
where a; € K. Thus a lineariscd polynomial f(z) is a polynomial whosc
evaluation f(a) for any a € K gives a linear combination of the d conju-
gates of a.

Linearised polynomials are linear transformations on K, when considered
as a vector space over F. Conversely, any linear transformation of K over
F can be expressed as a lincarised polynomial.
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EXAMPLE 2.71 Any lincar transformation of GF(2®) as a vector space
over GF(2) can be represented by a (linearised) polynomial of the form
flz) = a0x20 + a1m21 + a2x22 + .k a7m27, where a; € GF(28). O

We now consider the field GF(p?) as an extension field of GF(p), where
p is prime. The mapping 7: GF(p?) — GF(p?) defined by a + aP maps
a to one of its conjugates with respect to GF(p). This mapping satisfies

T(a+d')=7(a)+7(a) and 7(ad") = 7(a)7(a’).

Thus 7 is a field automorphism of GF(p?), known as the Frobenius auto-
morphism. The sct of all automorphisms of GF(p?) under the operation
of composition is the cyclic group of order d generated by 7. We note
that 7 fixes all elements of the subfield GF(p) of GF(p%). Thus the
automorphisms of GF(p?) arc also lincar transformations over GF (p).

5.  Varieties and Grobner Bases

A large part of this monograph is concerncd with expressing an AES
encryption as a system of polynomial equations and considering methods
of solution for such cquations. In this section, we give a brief overview
of the basic concepts uscd to analysc such equation systems.

Varieties

An affine subset of a vector space V is a cosct or translate U + u of
some subspacc U < V. The affine space based on V is the geometrical
space given by considering certain geometrical propertics of the affine
subsets of V' [58]. Thus we can usually identify the n-dimensional affine
space over a field F with F*. The projective space PG(n,F) is the
geometrical space given by considering the one-dimensional subspaces of
the (n + 1)-dimensional vector space F**1. Thus we can represent an

clement of PG(n,F) by a nonzero vector (ag, ai, . .., a,) € F**1 where
all nonzero scalar multiples of (ag, ag, . . . , @n) represent the same element
of PG(n,TF).

DEFINITION 2.72 Let F be a field and F™ denote the n-dimensional
affine spacc over F, and suppose that fi,...,f;, arc polynomials in
Fizi,...,z,). The affine variety defined by fi,..., fm is the subset of
F™ given by

{(a1,...,a,) €F*| fiay,...,an) =0 fori=1,...,m}.

This variety is denoted by V(f1,..., fm)-



30 ALGEBRAIC ASPECTS OF THE AES

Thus the affinc varicty of Definition 2.72 describes the set of solutions
in F of the polynomial equation system

filzr, o zn) =0, oo fi(zy, .o 2n) =00

ExaMpLE 2.73 Consider the polynomial ring Rlz,y] in two variables,
and let f(z,y) = 2% + y? — 1 and g(x,y) = = — 1 be two polynomials
in R[z,y]. The affine varicty V(f) consists of the points in the circle
of radius 1 in R? and is the solution set of the equation z% 4 y? = 1.
The affine variety V(f,g9) = {(1,0)} € R? is the sct of solutions to

flz,y) =g(z,y) =0. a
DEFINITION 2.74 Let PG(n,F) denote the projective space of dimen-
sion m. Suppose that fi,..., f, are homogencous polynomials in the

polynomial ring F[zg, z1,...,2z,]. The projective variety defined by the
polynomials fi, ..., fm is the subset of PG(n, F) given by

{ (ag,ai,...,a,) € PG(n,F) | filao,a1,...,a,) =0fori=1,...,m }.

The projective space PG(n,F) can be partitioned into two subsets U
and H, where

U = {(ap,a1,..-.,a,) € PG(n,F) | ag #0 }, and
H = {(0,a1,...,a,) € PG(n,F) }.

The subset U can be identified with the affine space F™ by using the

mapping
a1 Gy,
(ap,a1,...,an) — <—,...,—) .
agp ag

Furthermore, the subset H can be identified with the projective spacc
PG(n — 1,F) by using the mapping (0,a1,...,a,) — (a1,...,a,). Thus
the projective space PG(n,F) can be partitioned into an affinc space U
and a projective space H of smaller dimension. The projective part H
is known as the hyperplane at infinity of PG(n,F).

Given a projective variety W € PG(n,F), the set V = W N U can
be considered as an affine varicty of F™ and is called the affine portion
of W. Thus cvery projective varicty W can be seen as consisting of an
affine variety V together with its points at infinity WN H. Theorem 2.75
summarises the relationship between an affine and a projective variety.

THEOREM 2.75 Let V C F" be the affine variety defined by the poly-
nomials fi,..., fm € Flay,...,z,). If fih denotes the homogenisation
of the polynomial f;, then the varicty W defined by the polynomials

P ft € Flzo,z1,...,2,] is a projective variety of PG(n,F), of
which the affine portion is WNU = V.
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The above definitions of affine and projective varietics are given in
terms of a finite set of polynomials. However, Theorcm 2.76 shows that
varicties are in fact defined by polynomial ideals.

THEOREM 2.76 Let I be an idcal of Flzq,...,z,]. If V(I) denotes the
sct
{(a1,...,a,) €F" | f(a1,...,ap) =0for f €},

then V(I) is an affine variety. Furthermore, if I = (f1,..., fin), then
V(I) = V(fl: o ~)fm>»

Similarly, a projective varicty can be defined by a homogeneous ideal
of Flzg, x1, ..., zy), that is an ideal which is generated by homogeneous
polynomials.

Grobner bases

Theorem 2.76 means that the problem of finding the solutions of a poly-
nomial cquation system over a field F is often studied in the context
of commutative algebra and polynomial ideals. The solution set of a
particular system

fl(wla"'ax’n) :Oa af'rn(xla-“axn) =0

can be found by computing the variety V(I}, where I = (f1,..., fm). In
particular, any gencrating set of I can be used to compute V(I). The
Hilbert Basis Theorem statcs that any idcal I < Flzy,...,x,] is finitely
generated. A Groébner basis of the polynomial ideal [ is a particular
type of generating set of I and can be particularly useful in obtaining
various properties of /, including the variety V(I).

DEFINITION 2.77 Supposc that Flzy,...,2,] is a polynomial ring over
a field F with a monomial ordering and that I < F[z,...,2,) is a non--
trivial ideal. We let LT(I) denote the set of all leading terms of clements
of I and (LT(I)) denote the ideal generated by the monomials in LT (7).
A finite set G = {g1,...,9:} C I is said to be a Grébner basis of I if

(LT(g1),...,LT(gs) ) = ( LT(I) ).

Thus G is a Grobner basis of I if and only if the leading term of
any polynomial in [ is divisible by at least one of the leading terms
{LT(g1),...,LT(gs)}.

Every non trivial ideal I < Flzy,...,z,] has a Grobner basis, which
is a generating sct or basis for the idcal I. If G is a Grobner basis of T
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and f € I, then the set G U {f} satisfies Definition 2.77 and is also a
Grobner basis of I. Thus an idcal does not have a unique Grobner basis.

DEFINITION 2.78 A reduced Gréobner basis for I is a Grobner basis G
such that the leading coeflicient of every polynomial in G is 1 and none
of the monomials of any f € G is divisible by the leading term of any
other polynomial in G. Thus in a reduced Grobuer basis (G, no monomial
of f € @ belongs to the ideal { LT(G\ {f}) ).

Every non-trivial ideal I of Fz1,...,®,] has a unique reduced Grébner
basis (with respect to a specific monomial ordering). We can obtain the
reduced Grobner basis for I from a Grébner basis G for I by dividing
or reducing each f € G by the set G\ {f}.

EXAMPLE 2.79 We consider the ring of rcal polynomials in three vari-
ables Rz, y, 2] with the grevlez ordering. The set

{26 — azgy, yz4 + x, acy2 + z2}

is a (reduced) Grobner basis for the ideal of R[z, y, 2] gencrated by thesc
three polynomials. By contrast, consider the set

G = {zy® + 2z, v’z + 2% —y}
and the ideal I gencerated by these two polynomials. We have
oy = z(ey® + 22) —2(y’z + 2% - y),

so zy € I. However, zy is not divisible by the leading term of cither
polynomial in G (zy? or y?7). Thus G is not a Grébner basis for the
ideal I. g

Theorem 2.80 gives a sufficient condition in terms of the greatest com-
mon divisor of pairs of leading monomials for identifying whether a set
is a Grobner basis of a polynomial idcal.

THEOREM 2.80 Supposc G C Fly, ..., 2y is a sct of polynomials such
that ged(LM(f),LM(g)) = 1 for all distinct f,g € G. Then G is a
Grobner basis for the ideal (G).

Thus, if the leading monomials of all polynomials in a set G are pair-
wise coprime, then G is a Grobner basis for the ideal generated by the
polynomials of G. However, Example 2.79 shows that the condition of
Theorem 2.80 is not necessary for a set G to be a Grdbner basis of (G).

Grobner bases arc an extremely powerful concept, with many appli-
cations in commutative algebra, algebraic geometry, and computational
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algebra. For example, Grobner bases can be used to solve the ideal
membership problem, that is to decide whether a polynomial f is in an
ideal I <« Flzy,...,z,]. A polynomial f is in I if and only if f reduces
to zero with respect to a Grébner basis of 1, that is the division of f by
a Grobner basis of T has remainder zero (Theorem 2.37).

The main relevance of Grébner bases to cryptology is the problem of
solving polynomial cquation systems. If we have such a system

iz, yzn) =0,..., fm(z1, ..., 30) =0,

then we can find its solution set by computing the Grébner basis for the
ideal I = (f1,..., fm) and computing the associated varicty V(I). The
Grébner basis of I provides implicit solutions to the equation system
over the algebraic closure of the field F. A particularly useful monomial
ordering for finding solutions to this polynomial equation system in F is
the lex ordering, which is an example of an elimination ordering.

It is worth noting that cquation systems arising in cryptography of-
ten display many propertics. Cryptographic cquation systcms arc often
defined over a small finite field GF(q) and the solutions of cryptographic
interest lie in this field. In this case, we could add the field relations
x} — x; to the original equation system. In this way the solutions of
the cxtended equation system are restricted to the basc ficld GF(g).
Furthermore, cryptographic cquation systems often have a unique so-
lution (ai,...,an) € GF(g)". In this case, the reduced Grdbner basis
of the ideal corresponding to the extended cquation system would be
{z1—a1,...,onp —an}

We discuss some methods and algorithms for computing a Grébner
basis of an idcal I QF[zq,...,zy] in Scction 6.1.





