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Abstract 
In recent years, data streams have become ubiquitous because of the large 

number of applications which generate huge volumes of data in an automated 
way. Many existing data mining methods cannot be applied directly on data 
streams because of the fact that the data needs to be mined in one pass. Fur- 
thermore, data streams show a considerable amount of temporal locality because 
of which a direct application of the existing methods may lead to misleading 
results. In this paper, we develop an efficient and effective approach for min- 
ing fast evolving data streams, which integrates the micro-clustering technique 
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with the high-level data mining process, and discovers data evolution regularities 
as well. Our analysis and experiments demonstrate two important data mining 
problems, namely stream clustering and stream classification, can be performed 
effectively using this approach, with high quality mining results. We discuss 
the use of micro-clustering as a general summarization technology to solve data 
mining problems on streams. Our discussion illustrates the importance of our 
approach for a variety of mining problems in the data stream domain. 

1. Introduction 
In recent years, advances in hardware technology have allowed us to auto- 

matically record transactions and other pieces of information of everyday life 
at a rapid rate. Such processes generate huge amounts of online data which 
grow at an unlimited rate. These kinds of online data are referred to as data 
streams. The issues on management and analysis of data streams have been 
researched extensively in recent years because of its emerging, imminent, and 
broad applications [l 1, 14, 17,231. 

Many important problems such as clustering and classification have been 
widely studied in the data mining community. However, a majority of such 
methods may not be working effectively on data streams. Data streams pose 
special challenges to a number of data mining algorithms, not only because 
of the huge volume of the online data streams, but also because of the fact 
that the data in the streams may show temporal correlations. Such temporal 
correlations may help disclose important data evolution characteristics, and they 
can also be used to develop efficient and effective mining algorithms. Moreover, 
data streams require online mining, in which we wish to mine the data in a 
continuous fashion. Furthermore, the system needs to have the capability to 
perform an ofline analysis as well based on the user interests. This is similar 
to an online analytical processing (OLAP) framework which uses the paradigm 
of pre-processing once, querying many times. 

Based on the above considerations, we propose a new stream mining frame- 
work, which adopts a tilted time window framework, takes micro-clustering 
as a preprocessing process, and integrates the preprocessing with the incre- 
mental, dynamic mining process. Micro-clustering preprocessing effectively 
compresses the data, preserves the general temporal locality of data, and facili- 
tates both online and offline analysis, as well as the analysis of current data and 
data evolution regularities. 

In this study, we primarily concentrate on the application of this technique 
to two problems: (1) stream clustering, and (2) stream classification. The heart 
of the approach is to use an online summarization approach which is efficient 
and also allows for effective processing of the data streams. We also discuss 
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Figure 2. I .  Micro-clustering Examples 
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Figure 2.2. Some Simple Time Windows 

a number of research directions, in which we show how the approach can be 
adapted to a variety of other problems. 

This paper is organized as follows. In the next section, we will present our 
micro-clustering based stream mining Eramework. In section 3, we discuss the 
stream clustering problem. The classification methods are developed in Section 
4. In section 5, we discuss a number of other problems which can be solved 
with the micro-clustering approach, and other possible research directions. In 
section 6, we will discuss some empirical results for the clustering and classi- 
fication problems. In Section 7 we discuss the issues related to our proposed 
stream mining methodology and compare it with other related work. Section 8 
concludes our study. 
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2. The Micro-clustering Based Stream Mining 
Framework 

In order to apply our technique to a variety of data mining algorithms, we 
utilize a micro-clustering based stream mining framework. This framework is 
designed by capturing summary information about the nature of the data stream. 
This summary information is defined by the following structures: 

Micro-clusters: We maintain statistical information about the data locality 
in terms of micro-clusters. These micro-clusters are defined as a temporal 
extension of the cluster feature vector [24]. The additivity property of the 
micro-clusters makes them a natural choice for the data stream problem. 

Pyramidal Time Frame: The micro-clusters are stored at snapshots in 
time which follow a pyramidal pattern. This pattern provides an effective trade- 
off between the storage requirements and the ability to recall summary statistics 
from different time horizons. 

The summary information in the micro-clusters is used by an offline com- 
ponent which is dependent upon a wide variety of user inputs such as the time 
horizon or the granularity of clustering. In order to define the micro-clusters, 
we will introduce a few concepts. It is assumed that the data stream consists - 
of a set of multi-dimensional records . . . Xk . . . arriving at time stamps 
TI . . . Tk . . .. Each is a multi-dimensional record containing d dimensions 
which are denoted by = (xi . . .x$. 

We will first begin by defining the concept of micro-clusters and pyramidal 
time frame more precisely. 

DEFINITION 2.1 A micro-cluster for a set of d-dimensionalpoints Xi, . . . Xi, -- 
with t imes tamps~,  . . . T,, is the (2-d+3) tuple (CF2", C F l X ,  CF2t, C F l t ,  n), 
wherein CF2" and C F l X  each correspond to a vector of d entries. The de$- 
nition of each of these entries is as follows: 

For each dimension, the sum of the squares of the data values is maintained 
in CF2". Thus, CF2" contains d values. The p-th entry of CF2" is equal to 
EY=l(< 12. 

For each dimension, the sum of the data values is maintained in C F l X .  
Thus, C F I X  contains d values. The p-th entry of C F I X  is equal to E7L=1 e;. 

The sum of the squares of the time stamps Ti, . . . Tin is maintained in 
CF2t. 

The sum of the time stamps Ti, . . . Tin is maintained in CFlt .  
The number of data points is maintained in n. 

We note that the above definition of micro-cluster maintains similar summary 
information as the cluster feature vector of [24], except for the additional in- 
formation about time stamps. We will refer to this temporal extension of the 
cluster feature vector for a set of points C by CFT(C). As in [24], this summary 
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information can be expressed in an additive way over the different data points. 
This makes it a natural choice for use in data stream algorithms. 

We note that the maintenance of a large number of micro-clusters is essential 
in the ability to maintain more detailed information about the micro-clustering 
process. For example, Figure 2.1 forms 3 clusters, which are denoted by a, b, c. 
At a later stage, evolution forms 3 different figures al ,  a2, bc, with a split into a1 
and a2, whereas b and c merged into bc. If we keep micro-clusters (each point 
represents a micro-cluster), such evolution can be easily captured. However, if 
we keep only 3 cluster centers a, by c, it is impossible to derive later a l ,  a2, bc 
clusters since the information of more detailed points are already lost. 

The data stream clustering algorithm discussed in this paper can generate 
approximate clusters in any user-specified length of history from the current 
instant. This is achieved by storing the micro-clusters at particular moments 
in the stream which are referred to as snapshots. At the same time, the current 
snapshot of micro-clusters is always maintained by the algorithm. The macro- 
clustering algorithm discussed at a later stage in this paper will use these h e r  
level micro-clusters in order to create higher level clusters which can be more 
easily understood by the user. Consider for example, the case when the current 
clock time is t, and the user wishes to find clusters in the stream based on 
a history of length h. Then, the macro-clustering algorithm discussed in this 
paper will use some of the additive properties of the micro-clusters stored at 
snapshots t ,  and (t, - h) in order to find the higher level clusters in a history 
or time horizon of length h. Of course, since it is not possible to store the 
snapshots at each and every moment in time, it is important to choose particular 
instants of time at which it is possible to store the state of the micro-clusters so 
that clusters in any user specified time horizon (t, - h, t,) can be approximated. 

We note that some examples of time frames used for the clustering process 
are the natural time frame (Figure 2.2(a) and (b)), and the logarithmic time 
frame (Figure 2.2(c)). In the natural time frame the snapshots are stored at 
regular intervals. We note that the scale of the natural time frame could be 
based on the application requirements. For example, we could choose days, 
months or years depending upon the level of granularity required in the analysis. 
A more flexible approach is to use the logarithmic time frame in which different 
variations of the time interval can be stored. As illustrated in Figure 2.2(c), we 
store snapshots at times of t ,  2 t, 4 t . . .. The danger of this is that we may 
jump too far between successive levels of granularity. We need an intermediate 
solution which provides a good balance between storage requirements and the 
level of approximation which a user specified horizon can be approximated. 

In order to achieve this, we will introduce the concept of a pyramidal time 
frame. In this technique, the snapshots are stored at differing levels of granular- 
ity depending upon the recency. Snapshots are classified into different orders 
which can vary from 1 to log(T), where T is the clock time elapsed since the 
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beginning of the stream. The order of a particular class of snapshots define 
the level of granularity in time at which the snapshots are maintained. The 
snapshots of different order are maintained as follows: 

0 Snapshots of the i-th order occur at time intervals of ai, where a is an 
integer and a 2 1. Specifically, each snapshot of the i-th order is taken at 
a moment in time when the clock value1 from the beginning of the stream is 
exactly divisible by a2. 

0 At any given moment in time, only the last a + 1 snapshots of order i are 
stored. 

We note that the above definition allows for considerable redundancy in 
storage of snapshots. For example, the clock time of 8 is divisible by 2', 2l, 
22, and 23 (where cr = 2). Therefore, the state of the micro-clusters at a clock 
time of 8 simultaneously corresponds to order 0, order 1, order 2 and order 
3 snapshots. From an implementation point of view, a snapshot needs to be 
maintained only once. We make the following observations: 

0 For a data stream, the maximum order of any snapshot stored at T time 
units since the beginning of the stream mining process is log, (T). 

For a data stream the maximum number of snapshots maintained at T time 
units since the beginning of the stream mining process is (a + 1) . log, (T). 

0 For any user specified time window of h, at least one stored snapshot can 
be found within 2 . h units of the current time. 

While the first two results are quite easy to see, the last one needs to be 
proven formally. 

LEMMA 2.2 Let h be a user-speciJied time window, t, be the current time, and 
t, be the time of the last stored snapshot of any orderjust before the time t, - h. 
Then t, - t, 5 2 . h. 

Proof: Let r be the smallest integer such that ar 2 h. Therefore, we know that 
ar-I < h. Since we know that there are a+ 1 snapshots of order (r - I), at least 
one snapshot of order r - 1 must always exist before t, - h. Lett, be the snapshot 
of order r - 1 which occurs just before t, - h. Then (t, - h) - t, 5 ar-l. 
Therefore, we have t, - t, 5 h + ar-l < 2 - h. 

Thus, in this case, it is possible to find a snapshot within a factor of 2 of 
any user-specified time window. Furthermore, the total number of snapshots 
which need to be maintained are relatively modest. For example, for a data 
stream running for 100 years with a clock time granularity of 1 second, the 
total number of snapshots which need to be maintained are given by (2 + 1) . 
log2(100 * 365 * 24 * 60 * 60) w 95. This is quite a modest requirement given 
the fact that a snapshot within a factor of 2 can always be found within any user 
specified time window. 

It is possible to improve the accuracy of time horizon approximation at a 
modest additional cost. In order to achieve this, we save the a1 + 1 snapshots 



On Clustering Massive Data Streams: A Summarization Paradigm 

Table 2.1. An example of snapshots stored for a = 2 and 1 = 2 

Order of 
Snapshots 
0 
1 
2 
3 
4 
5 

of order r for 1 > 1. In this case, the storage requirement of the technique 
corresponds to (az + 1) log, (T) snapshots. On the other hand, the accuracy of 
time horizon approximation also increases substantially. In this case, any time 
horizon can be approximated to a factor of (1 + l/az-l). We summarize this 
result as follows: 

Clock Times (Last 5 Snapshots) 

5554535251 
5452504846 
5248444036 
48403224 16 

48 32 16 
32 

LEMMA 2.3 Let h be a user specijied time horizon, t, be the current time, and 
t, be the time of the last stored snapshot of any orderjust before the time t, - h. 
Then t, - t, < (1 + l /az-l)  - h. 

Proof: Similar to previous case. 
For larger values of I ,  the time horizon can be approximated as closely as 

desired. For example, by choosing 1 = 10, it is possible to approximate any 
time horizon within 0.2%, while a total of only (2'' + 1) log2(100 * 365 * 
24 * 60 * 60) = 32343 snapshots are required for 100 years. Since historical 
snapshots can be stored on disk and only the current snapshot needs to be 
maintained in main memory, this requirement is quite feasible from a practical 
point of view. It is also possible to specify the pyramidal time window in 
accordance with user preferences corresponding to particular moments in time 
such as beginning of calendar years, months, and days. While the storage 
requirements and horizon estimation possibilities of such a scheme are different, 
all the algorithmic descriptions of this paper are directly applicable. 

In order to clarify the way in which snapshots are stored, let us consider the 
case when the stream has been running starting at a clock-time of 1, and a use 
of a = 2 and 1 = 2. Therefore 22 + 1 = 5 snapshots of each order are stored. 
Then, at a clock time of 55, snapshots at the clock times illustrated in Table 2.1 
are stored. 

We note that a large number of snapshots are common among different orders. 
From an implementation point of view, the states of the micro-clusters at times 
of 16,24,32,36,40,44,46,48,50,51,52,53,54, and 55 are stored. It is easy 
to see that for more recent clock times, there is less distance between succes- 
sive snapshots (better granularity). We also note that the storage requirements 



16 DATA STMAMS: MODELS AND ALGORITHMS 

estimated in this section do not take this redundancy into account. Therefore, 
the requirements which have been presented so far are actually worst-case re- 
quirements. 

These redundancies can be eliminated by using a systematic rule described 
in [6], or by using a more sophisticated geometric time frame. In this technique, 
snapshots are classified into different frame numbers which can vary from 0 to a 
value no larger than log2 (T), where T is the maximum length of the stream. The 
frame number of a particular class of snapshots defines the level of granularity 
in time at which the snapshots are maintained. Specifically, snapshots of frame 
number i are stored at clock times which are divisible by 2i, but not by 2i+1. 
Therefore, snapshots of frame number 0 are stored only at odd clock times. It 
is assumed that for each frame number, at most max-capacity snapshots are 
stored. 

We note that for a data stream, the maximum frame number of any snapshot 
stored at T time units since the beginning of the stream mining process is 
log2(T). Since at most max-capacity snapshots of any order are stored, this 
also means that the maximum number of snapshots maintained at T time units 
since the beginning of the stream mining process is (max-capacity) . log2 (T). 
One interesting characteristic of the geometric time window is that for any user- 
specified time window of h, at least one stored snapshot can be found within 
a factor of 2 of the specified horizon. This ensures that sufficient granularity 
is available for analyzing the behavior of the data stream over different time 
horizons. We will formalize this result in the lemma below. 

LEMMA 2.4 Let h be a user-specijied time window, and t, be the current time. 
Let us also assume that max-capacity > 2. Then a snapshot exists at time t,, 
such that h/2 5 t, - t, I: 2 . h. 

Proof: Let r be the smallest integer such that h < 2T+1. Since r is the smallest 
such integer, it also means that h > 2'. This means that for any interval 
(t, - h, t,) of length h, at least one integer t' E (t, - h, t,) must exist which 
satisfies the property that t' mod 2'-l = 0 and t' mod 2r # 0. Let t' be the time 
stamp of the last (most current) such snapshot. This also means the following: 

Then, if max-capacity is at least 2, the second last snapshot of order ( r  - 1) 
is also stored and has a time-stamp value of t' - 2'. Let us pick the time 
t, = t' - 2'. By substituting the value oft,, we get: 

t, - t, = (t, - t' + 
Since (t, - t') L 0 and 2' > h/2, it easily follows from Equation 2.2 that 
tc - t, > h/2. 
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Table 2.2. A geometric time window 

- Frame no. 
0 
1 

Since t' is the position of the latest snapshot of frame (r - 1) occurring before 
the current time t,, it follows that (t, - t') < 2r. Subsituting this inequality in 
Equation 2.2, we get t, - t, < 2' + 2r < h + h = 2 . h. Thus, we have: 

Snapshots (by clock time) I 
69 67 65 
70 66 62 I 

The above result ensures that every possible horizon can be closely approx- 
imated within a modest level of accuracy. While the geometric time frame 
shares a number of conceptual similarities with the pyramidal time frame [6], 
it is actually quite different and also much more efficient. This is because it 
eliminates the double counting of the snapshots over different frame numbers, 
as is the case with the pyramidal time frame [6]. In Table 2.2, we present 
an example of a frame table illustrating snapshots of different frame numbers. 
The rules for insertion of a snapshot t (at time t) into the snapshot frame table 
are defined as follows: (1) if (t mod 2i) = 0 but (t mod 2'+') # 0, t is in- 
serted into f rame-number i (2) each slot has a max-capacity (which is 3 in 
our example). At the insertion o f t  into f rame-number i, if the slot already 
reaches its max-capacity, the oldest snapshot in this frame is removed and 
the new snapshot inserted. For example, at time 70, since (70 mod 2') = 0 
but (70 mod 22) # 0, 70 is inserted into framenumber 1 which knocks out 
the oldest snapshot 58 if the slot capacity is 3. Following this rule, when slot 
capacity is 3, the following snapshots are stored in the geometric time window 
table: 16,24,32,40,48,52,56,60,62,64,65,66,67,68,69,70, as shown in 
Table 2.2. From the table, one can see that the closer to the current time, the 
denser are the snapshots stored. 

3. Clustering Evolving Data Streams: A Micro-clustering 
Approach 

The clustering problem is defined as follows: for a given set of data points, 
we wish to partition them into one or more groups of similar objects. The 
similarity of the objects with one another is typically defined with the use of 
some distance measure or objective function. The clustering problem has been 
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widely researched in the database, data mining and statistics communities [I 2, 
18,22,20,21,24] because of its use in a wide range of applications. Recently, 
the clustering problem has also been studied in the context of the data stream 
environment [17,23]. 

A previous algorithm called STREAM [23] assumes that the clusters are to be 
computed over the entire data stream. While such a task may be useful in many 
applications, a clustering problem may often be defined only over a portion of 
a data stream. This is because a data stream should be viewed as an infinite 
process consisting of data which continuously evolves with time. As a result, 
the underlying clusters may also change considerably with time. The nature of 
the clusters may vary with both the moment at which they are computed as well 
as the time horizon over which they are measured. For example, a data analyst 
may wish to examine clusters occurring in the last month, last year, or last 
decade. Such clusters may be considerably different. Therefore, we assume 
that one of the inputs to the clustering algorithm is a time horizon over which 
the clusters are found. Next, we will discuss CluStream, the online algorithm 
used for clustering data streams. 

3.1 Micro-clustering Challenges 
We note that since stream data naturally imposes a one-pass constraint on the 

design of the algorithms, it becomes more difficult to provide such a flexibility 
in computing clusters over different kinds of time horizons using conventional 
algorithms. For example, a direct extension of the stream based Ic-means algo- 
rithm in [23] to such a case would require a simultaneous maintenance of the 
intermediate results of clustering algorithms over all possible time horizons. 
Such a computational burden increases with progression of the data stream and 
can rapidly become a bottleneck for online implementation. Furthermore, in 
many cases, an analyst may wish to determine the clusters at a previous moment 
in time, and compare them to the current clusters. This requires even greater 
book-keeping and can rapidly become unwieldy for fast data streams. 

Since a data stream cannot be revisited over the course of the computation, 
the clustering algorithm needs to maintain a substantial amount of information 
so that important details are not lost. For example, the algorithm in [23] is 
implemented as a continuous version of k-means algorithm which continues 
to maintain a number of cluster centers which change or merge as necessary 
throughout the execution of the algorithm. Such an approach is especially risky 
when the characteristics of the stream change over time. This is because the 
amount of information maintained by a k-means type approach is too approxi- 
mate in granularity, and once two cluster centers are joined, there is no way to 
informatively split the clusters when required by the changes in the stream at a 
later stage. 
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Therefore a natural design to stream clustering would be separate out the pro- 
cess into an online micro-clustering component and an offline macro-clustering 
component. The online micro-clustering component requires a very efficient 
process for storage of appropriate summary statistics in a fast data stream. The 
offline component uses these summary statistics in conjunction with other user 
input in order to provide the user with a quick understanding of the clusters 
whenever required. Since the offline component requires only the summary 
statistics as input, it turns out to be very efficient in practice. This leads to 
several challenges: 

0 What is the nature of the summary information which can be stored ef- 
ficiently in a continuous data stream? The summary statistics should provide 
sufficient temporal and spatial information for a horizon specific offline clus- 
tering process, while being prone to an efficient (online) update process. 

At what moments in time should the summary information be stored away 
on disk? How can an effective trade-off be achieved between the storage re- 
quirements of such a periodic process and the ability to cluster for a specific 
time horizon to within a desired level of approximation? 

How can the periodic summary statistics be used to provide clustering and 
evolution insights over user-specified time horizons? 

3.2 Online Micro-cluster Maintenance: The CluStream 
Algorithm 

The micro-clustering phase is the online statistical data collection portion 
of the algorithm. This process is not dependent on any user input such as the 
time horizon or the required granularity of the clustering process. The aim 
is to maintain statistics at a sufficiently high level of (temporal and spatial) 
granularity so that it can be effectively used by the offline components such 
as horizon-specific macro-clustering as well as evolution analysis. The basic 
concept of the micro-cluster maintenance algorithm derives ideas from the k- 
means and nearest neighbor algorithms. The algorithm works in an iterative 
fashion, by always maintaining a current set of micro-clusters. It is assumed that 
a total of q micro-clusters are stored at any moment by the algorithm. We will 
denote these micro-clusters by M 1 . . . Mq.  Associated with each micro-cluster 
i, we create a unique id whenever it is first created. If two micro-clusters are 
merged (as will become evident from the details of our maintenance algorithm), 
a list of ids is created in order to identify the constituent micro-clusters. The 
value of q is determined by the amount of main memory available in order to 
store the micro-clusters. Therefore, typical values of q are significantly larger 
than the natural number of clusters in the data but are also significantly smaller 
than the number of data points arriving in a long period of time for a massive 
data stream. These micro-clusters represent the current snapshot of clusters 
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which change over the course of the stream as new points arrive. Their status is 
stored away on disk whenever the clock time is divisible by ai for any integer 
i. At the same time any micro-clusters of order r which were stored at a time 
in the past more remote than aZ+" units are deleted by the algorithm. 

We first need to create the initial q micro-clusters. This is done using an 
offline process at the very beginning of the data stream computation process. 
At the very beginning of the data stream, we store the first InitNumber points 
on disk and use a standard k-means clustering algorithm in order to create the 
q initial micro-clusters. The value of InitNumber is chosen to be as large as 
permitted by the computational complexity of a k-means algorithm creating q 
clusters. 

Once these initial micro-clusters have been established, the online process of 
updating the micro-clusters is initiated. Whenever a new data point arrives, 
the micro-clusters are updated in order to reflect the changes. Each data point 
either needs to be absorbed by a micro-cluster, or it needs to be put in a cluster of 
its own. The first preference is to absorb the data point into a currently existing 
micro-cluster. We first find the distance of each data point to the micro-cluster 
centroids M I  . . . M4. Let us denote this distance value of the data point Xi, 
to the centroid of the micro-cluster M by dist(M j, Xi,). Since the centroid 
of the micro-cluster is available in the cluster feature vector, this value can be 
computed relatively easily. 

We find the closest cluster M, to the data point z. We note that in many 
cases, the point Xi, does not naturally belong to the cluster Mp. These cases 
are as follows: 

0 The data point Xi, corresponds to an outlier. 
0 The data point Xi, corresponds to the beginning of a new cluster because 

of evolution of the data stream. 
While the two cases above cannot be distinguished until more data points 

arrive, the data point needs to be assigned a (new) micro-cluster of its own 
with a unique id. How do we decide whether a completely new cluster should 
be created? In order to make this decision, we use the cluster feature vector 
of M p  to decide if this data point falls within the maximum boundary of the 
micro-cluster M p .  If SO, then the data point Xi, is added to the micro-cluster 
M p  using the CF additivity property. The maximum boundary of the micro- 
cluster M p  is defined as a factor o f t  of the RMS deviation of the data points 
in M p  from the centroid. We define this as the maximal bounda ry factor. We 
note that the RMS deviation can only be defined for a cluster with more than 
1 point. For a cluster with only 1 previous point, the maximum boundary is 
defined in a heuristic way. Specifically, we choose it to be r times that of the 
next closest cluster. 

If the data point does not lie within the maximum boundary of the nearest 
micro-cluster, then a new micro-cluster must be created containing the data 
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point Xi,. This newly created micro-cluster is assigned a new id which can 
identify it uniquely at any future stage of the data steam process. However, 
in order to create this new micro-cluster, the number of other clusters must 
be reduced by one in order to create memory space. This can be achieved by 
either deleting an old cluster orjoining two of the old clusters. Our maintenance 
algorithm first determines if it is safe to delete any of the current micro-clusters 
as outliers. If not, then a merge of two micro-clusters is initiated. 

The first step is to identify if any of the old micro-clusters are possibly out- 
liers which can be safely deleted by the algorithm. While it might be tempting 
to simply pick the micro-cluster with the fewest number of points as the micro- 
cluster to be deleted, this may often lead to misleading results. In many cases, 
a given micro-cluster might correspond to a point of considerable cluster pres- 
ence in the past history of the stream, but may no longer be an active cluster 
in the recent stream activity. Such a micro-cluster can be considered an out- 
lier from the current point of view. An ideal goal would be to estimate the 
average timestamp of the last m arrivals in each micro-cluster 2, and delete 
the micro-cluster with the least recent timestamp. While the above estimation 
can be achieved by simply storing the last m points in each micro-cluster, this 
increases the memory requirements of a micro-cluster by a factor of m. Such 
a requirement reduces the number of micro-clusters that can be stored by the 
available memory and therefore reduces the effectiveness of the algorithm. 

We will find a way to approximate the average timestamp of the last m data 
points of the cluster M. This will be achieved by using the data about the 
timestamps stored in the micro-cluster M. We note that the timestamp data 
allows uito calculate the mean and standard deviation3 of the arrival times of 
points in a given micro-cluster M. Let these values be denoted by pM and 
OM respectively. Then, we find the time of arrival of the m/ (2 n)-th percentile 
of the points in M assuming that the timestamps are normally distributed. This 
timestamp is used as the approximate value of the recency. We shall call this 
value as the relevance stamp of cluster M. When the least relevance stamp of 
any micro-cluster is below a user-defined threshold 6, it can be eliminated and 
a new micro-cluster can be created with a unique id corresponding to the newly 
arrived data point Xi,. 

In some cases, none of the micro-clusters can be readily eliminated. This 
happens when all relevance stamps are sufficiently recent and lie above the 
user-defined threshold 6. In such a case, two of the micro-clusters need to be 
merged. We merge the two micro-clusters which are closest to one another. 
The new micro-cluster no longer corresponds to one id. Instead, an idlist is 
created which is a union of the the ids in the individual micro-clusters. Thus, 
any micro-cluster which is result of one or more merging operations can be 
identified in terms of the individual micro-clusters merged into it. 
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While the above process of updating is executed at the arrival of each data 
point, an additional process is executed at each clock time which is divisible 
by ai for any integer i. At each such time, we store away the current set of 
micro-clusters (possibly on disk) together with their id list, and indexed by their 
time of storage. We also delete the least recent snapshot of order i, if a' + 1 
snapshots of such order had already been stored on disk, and if the clock time for 
this snapshot is not divisible by ai+l. (In the latter case, the snapshot continues 
to be a viable snapshot of order (i  + I).) These micro-clusters can then be used 
to form higher level clusters or an evolution analysis of the data stream. 

3.3 High Dimensional Projected Stream Clustering 
The method can also be extended to the case of high dimensional projected 

stream clustering . The algorithms is referred to as HPSTREAM. The high- 
dimensional case presents a special challenge to clustering algorithms even in 
the traditional domain of static data sets. This is because of the sparsity of 
the data in the high-dimensional case. In high-dimensional space, all pairs 
of points tend to be almost equidistant from one another. As a result, it is 
often unrealistic to define distance-based clusters in a meaningful way. Some 
recent work on high-dimensional data uses techniques for projected clustering 
which can determine clusters for a specific subset of dimensions [I, 41. In these 
methods, the definitions of the clusters are such that each cluster is specific 
to a particular group of dimensions. This alleviates the sparsity problem in 
high-dimensional space to some extent. Even though a cluster may not be 
meaningfully defined on all the dimensions because of the sparsity of the data, 
some subset of the dimensions can always be found on which particular subsets 
of points form high quality and meaningful clusters. Of course, these subsets 
of dimensions may vary over the different clusters. Such clusters are referred 
to as projected clusters [I]. 

In [8], we have discussed methods for high dimensional projected clustering 
of data streams. The basic idea is to use an (incremental) algorithm in which 
we associate a set of dimensions with each cluster. The set of dimensions is 
represented as a d-dimensional bit vector B(Ci) for each cluster structure in 
FCS. This bit vector contains a 1 bit for each dimension which is included 
in cluster Ci. In addition, the maximum number of clusters k and the average 
cluster dimensionality 1 is used as an input parameter. The average cluster 
dimensionality 1 represents the average number of dimensions used in the cluster 
projection. An iterative approach is used in which the dimensions are used to 
update the clusters and vice-versa. The structure in FCS  uses a decay-based 
mechanism in order to adjust for evolution in the underlying data stream. Details 
are discussed in [8]. 
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Figure 2.3. Varying Horizons for the classification process 

Classification of Data Streams: A Micro-clustering 
Approach 

One important data mining problem which has been studied in the context of 
data streams is that of stream classification [15]. The main thrust on data stream 
mining in the context of classification has been that of one-pass mining [14,19]. 
In general, the use of one-pass mining does not recognize the changes which 
have occurred in the model since the beginning of the stream construction 
process [5]. While the work in [19] works on time changing data streams, 
the focus is on providing effective methods for incremental updating of the 
classification model. We note that the accuracy of such a model cannot be 
greater than the best sliding window model on a data stream. For example, in 
the case illustrated in Figure 2.3, we have illustrated two classes (labeled by 
'x' and '-') whose distribution changes over time. Correspondingly, the best 
horizon at times tl and t 2  will also be different. As our empirical results will 
show, the true behavior of the data stream is captured in a temporal model which 
is sensitive to the level of evolution of the data stream. 

The classification process may require simultaneous model construction and 
testing in an environment which constantly evolves over time. We assume that 
the testing process is performed concurrently with the training process. This 
is often the case in many practical applications, in which only a portion of 
the data is labeled, whereas the remaining is not. Therefore, such data can 
be separated out into the (labeled) training stream, and the (unlabeled) testing 
stream. The main difference in the construction of the micro-clusters is that 
the micro-clusters are associated with a class label; therefore an incoming data 
point in the training stream can only be added to a micro-cluster belonging to 
the same class. Therefore, we construct micro-clusters in almost the same way 
as the unsupervised algorithm, with an additional class-label restriction. 

From the testing perspective, the important point to be noted is that the most 
effective classification model does not stay constant over time, but varies with 
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progression of the data stream. If a static classification model were used for 
an evolving test stream, the accuracy of the underlying classification process 
is likely to drop suddenly when there is a sudden burst of records belonging to 
a particular class. In such a case, a classification model which is constructed 
using a smaller history of data is likely to provide better accuracy. In other 
cases, a longer history of training provides greater robustness. 

In the classification process of an evolving data stream, either the short 
term or long term behavior of the stream may be more important, and it often 
cannot be known a-priori as to which one is more important. How do we 
decide the window or horizon of the training data to use so as to obtain the best 
classification accuracy? While techniques such as decision trees are useful for 
one-pass mining of data streams [14, 191, these cannot be easily used in the 
context of an on-demand classijier in an evolving environment. This is because 
such a classifier requires rapid variation in the horizon selection process due 
to data stream evolution. Furthermore, it is too expensive to keep track of 
the entire history of the data in its original fine granularity. Therefore, the 
on-demand classification process still requires the appropriate machinery for 
efficient statistical data collection in order to perform the classification process. 

4.1 On-Demand Stream Classification 
We use the micro-clusters to perform an On Demand Stream Classijication 

Process. In order to perform effective classification of the stream, it is important 
to find the correct time-horizon which should be used for classification. How 
do we find the most effective horizon for classification at a given moment in 
time? In order to do so, a small portion of the training stream is not used 
for the creation of the micro-clusters. This portion of the training stream is 
referred to as the horizon fitting stream segment. The number of points in the 
stream used for horizon fitting is denoted by kf it. The remaining portion of the 
training stream is used for the creation and maintenance of the class-specific 
micro-clusters as discussed in the previous section. 

Since the micro-clusters are based on the entire history of the stream, they 
cannot directly be used to test the effectiveness of the classification process over 
different time horizons. This is essential, since we would like to find the time 
horizon which provides the greatest accuracy during the classification process. 
We will denote the set of micro-clusters at time t, and horizon h by N(t,, h). 
This set of micro-clusters is determined by subtracting out the micro-clusters 
at time t, - h from the micro-clusters at time t,. The subtraction operation 
is naturally defined for the micro-clustering approach. The essential idea is 
to match the micro-clusters at time t, to the micro-clusters at time t, - h, 
and subtract out the corresponding statistics. The additive property of micro- 
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clusters ensures that the resulting clusters correspond to the horizon (t, - h, t,). 
More details can be found in [6]. 

Once the micro-clusters for a particular time horizon have been determined, 
they are utilized to determine the classification accuracy of that particular hori- 
zon. This process is executed periodically in order to adjust for the changes 
which have occurred in the stream in recent time periods. For this purpose, 
we use the horizon fitting stream segment. The last kfi t  points which have 
arrived in the horizon fitting stream segment are utilized in order to test the 
classification accuracy of that particular horizon. The value of kfi t  is chosen 
while taking into consideration the computational complexity of the horizon 
accuracy estimation. In addition, the value of kfi t  should be small enough so 
that the points in it reflect the immediate locality oft,. Typically, the value of 
kf i t  should be chosen in such a way that the least recent point should be no 
larger than a pre-specified number of time units from the current time t,. Let us 
denote this set of points by Q it.  Note that since &fit is a part of the training 
stream, the class labels are known a-priori. 

In order to test the classification accuracy of the process, each point ;if E &fit  

is used in the following nearest neighbor classification procedure: 

0 We find the closest micro-cluster in N(tc, h) to x. 
We determine the class label of this micro-cluster and compare it to the true 

class label of X. The accuracy over all the points in Qfi t  is then determined. 
This provides the accuracy over that particular time horizon. 

The accuracy of all the time horizons which are tracked by the geometric 
time frame are determined. The p time horizons which provide the greatest 
dynamic classification accuracy (using the last kfi t  points) are selected for the 
classification of the stream. Let us denote the corresponding horizon values 
by 3-1 = {hl . . . h,). We note that since kf i t  represents only a small locality 
of the points within the current time period t,, it would seem at first sight 
that the system would always pick the smallest possible horizons in order to 
maximize the accuracy of classification. However, this is often not the case 
for evolving data streams. Consider for example, a data stream in which the 
records for a given class arrive for a period, and then subsequently start arriving 
again after a time interval in which the records for another class have arrived. 
In such a case, the horizon which includes previous occurrences of the same 
class is likely to provide higher accuracy than shorter horizons. Thus, such a 
system dynamically adapts to the most effective horizon for classification of 
data streams. In addition, for a stable stream the system is also likely to pick 
larger horizons because of the greater accuracy resulting from use of larger data 
sizes. 
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The classification of the test stream is a separate process which is executed 
continuously throughout the algorithm. For each given test instance x, the 
above described nearest neighbor classification process is applied using each 
hi E 'Ti. It is often possible that in the case of a rapidly evolving data stream, 
different horizons may report result in the determination of different class labels. 
The majority class among these p class labels is reported as the relevant class. 
More details on the technique may be found in [7]. 

5. Other Applications of Micro-clustering and Research 
Directions 

While this paper discusses two applications of micro-clustering, we note that 
a number of other problems can be handled with the micro-clustering approach. 
This is because the process of micro-clustering creates a summary of the data 
which can be leveraged in a variety of ways for other problems in data mining. 
Some examples of such problems are as follows: 

Privacy Preserving Data Mining: In the problem of privacy preserving 
data mining, we create condensed representations [3] of the data which 
show k-anonymity. These condensed representations are like micro- 
clusters, except that each cluster has a minimum cardinality threshold 
on the number of data points in it. Thus, each cluster contains at least 
k data-points, and we ensure that the each record in the data cannot be 
distinguished from at least k other records. For this purpose, we only 
maintain the summary statistics for the data points in the clusters as 
opposed to the individual data points themselves. In addition to the first 
and second order moments we also maintain the covariance matrix for 
the data in each cluster. We note that the covariance matrix provides 
a complete overview of the distribution of in the data. This covariance 
matrix can be used in order to generate the pseudo-points which match 
the distribution behavior of the data in each micro-cluster. For relatively 
small micro-clusters, it is possible to match the probabilistic distribution 
in the data fairly closely. The pseudo-points can be used as a surrogate for 
the actual data points in the clusters in order to generate the relevant data 
mining results. Since the pseudo-points match the original distribution 
quite closely, they can be used for the purpose of a variety of data mining 
algorithms. In [3], we have illustrated the use of the privacy-preserving 
technique in the context of the classification problem. Our results show 
that the classification accuracy is not significantly reduced because of the 
use of pseudo-points instead of the individual data points. 

Query Estimation: Since micro-clusters encode summary information 
about the data, they can also be used for query estimation . A typical 
example of such a technique is that of estimating the selectivity of queries. 
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In such cases, the summary statistics of micro-clusters can be used in 
order to estimate the number of data points which lie within a certain 
interval such as a range query. Such an approach can be very efficient 
in a variety of applications since voluminous data streams are difficult to 
use if they need to be utilized for query estimation. However, the micro- 
clustering approach can condense the data into summary statistics, so that 
it is possible to efficiently use it for various kinds of queries. We note 
that the technique is quite flexible as long as it can be used for different 
kinds of queries. An example of such a technique is illustrated in [9], in 
which we use the micro-clustering technique (with some modifications 
on the tracked statistics) for futuristic query processing in data streams. 

Statistical Forecasting: Since micro-clusters contain temporal and con- 
densed information, they can be used for methods such as statistical 
forecasting of streams . While it can be computationally intensive to 
use standard forecasting methods with large volumes of data points, the 
micro-clustering approach provides a methodology in which the con- 
densed data can be used as a surrogate for the original data points. For 
example, for a standard regression problem, it is possible to use the cen- 
troids of different micro-clusters over the various temporal time frames in 
order to estimate the values of the data points. These values can then be 
used for making aggregate statistical observations about the future. We 
note that this is a useful approach in many applications since it is often 
not possible to effectively make forecasts about the future using the large 
volume of the data in the stream. In [9], it has been shown how to use the 
technique for querying and analysis of future behavior of data streams. 

In addition, we believe that the micro-clustering approach is powefil enough 
to accomodate a wide variety of problems which require information about the 
summary distribution of the data. In general, since many new data mining 
problems require summary information about the data, it is conceivable that the 
micro-clustering approach can be used as a methodology to store condensed 
statistics for general data mining and exploration applications. 

6. Performance Study and Experimental Results 
All of our experiments are conducted on a PC with Intel Pentium I11 processor 

and 5 12 MB memory, which runs Windows XP professional operating system. 
For testing the accuracy and efficiency of the CluStream algorithm, we compare 
CluStream with the STREAM algorithm [17,23], the best algorithm reported 
so far for clustering data streams. CluStream is implemented according to the 
description in this paper, and the STREAM K-means is done strictly according 
to [23], which shows better accuracy than BIRCH [24]. To make the comparison 
fair, both CluStream and STREAM K-means use the same amount of memory. 
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Specifically, they use the same stream incoming speed, the same amount of 
memory to store intermediate clusters (called Micro-clusters in CluStream), and 
the same amount of memory to store the final clusters (called Macro-clusters 
in CluStream). 

Because the synthetic datasets can be generated by controlling the number 
of data points, the dimensionality, and the number of clusters, with different 
distribution or evolution characteristics, they are used to evaluate the scalability 
in our experiments. However, since synthetic datasets are usually rather dif- 
ferent from real ones, we will mainly use real datasets to test accuracy, cluster 
evolution, and outlier detection. 
Real datasets. First, we need to find some real datasets that evolve significantly 
over time in order to test the effectiveness of CluStream. A good candidate for 
such testing is the KDD-CUP'99 Network Intrusion Detection stream data set 
which has been used earlier [23] to evaluate STREAM accuracy with respect 
to BIRCH. This data set corresponds to the important problem of automatic 
and real-time detection of cyber attacks. This is also a challenging problem 
for dynamic stream clustering in its own right. The offline clustering algo- 
rithms cannot detect such intrusions in real time. Even the recently proposed 
stream clustering algorithms such as BIRCH and STREAM cannot be very ef- 
fective because the clusters reported by these algorithms are all generated from 
the entire history of data stream, whereas the current cases may have evolved 
significantly. 

The Network Intrusion Detection dataset consists of a series of TCP con- 
nection records from two weeks of LAN network traffic managed by MIT 
Lincoln Labs. Each n record can either correspond to a normal connection, or 
an intrusion or attack. The attacks fall into four main categories: DOS (i.e., 
denial-of-service), R2L (i.e., unauthorized access from a remote machine), U2R 
(i.e., unauthorized access to local superuser privileges), and PROBING (i.e., 
surveillance and other probing). As a result, the data contains a total of five 
clusters including the class for "normal connections". The attack-types are 
further classified into one of 24 types, such as buffer-overflow, guess-passwd, 
neptune, portsweep, rootkit, smurf, warezclient, spy, and so on. It is evident 
that each specific attack type can be treated as a sub-cluster. Most of the con- 
nections in this dataset are normal, but occasionally there could be a burst of 
attacks at certain times. Also, each connection record in this dataset contains 
42 attributes, such as duration of the connection, the number of data bytes trans- 
mitted from source to destination (and vice versa), percentile of connections 
that have "SYN" errors, the number of "root" accesses, etc. As in 1231, all 34 
continuous attributes will be used for clustering and one outlier point has been 
removed. 

Second, besides testing on the rapidly evolving network intrusion data stream, 
we also test our method over relatively stable streams. Since previously re- 
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ported stream clustering algorithms work on the entire history of stream data, 
we believe that they should perform effectively for some data sets with stable 
distribution over time. An example of such a data set is the KDD-CUP'98 
Charitable Donation data set. We will show that even for such datasets, the 
CluStream can consistently beat the STREAM algorithm. 

The KDD-CUP'98 Charitable Donation data set has also been used in eval- 
uating several one-scan clustering algorithms, such as [16]. This data set con- 
tains 95412 records of information about people who have made charitable 
donations in response to direct mailing requests, and clustering can be used to 
group donors showing similar donation behavior. As in [16], we will only use 
56 fields which can be extracted from the total 481 fields of each record. This 
data set is converted into a data stream by taking the data input order as the 
order of streaming and assuming that they flow-in with a uniform speed. 
Synthetic datasets. To test the scalability of CluStream, we generate some 
synthetic datasets by varying base size from 1 OOK to 1 OOOK points, the number 
of clusters from 4 to 64, and the dimensionality in the range of 10 to 100. 
Because we know the true cluster distribution a priori, we can compare the 
clusters found with the true clusters. The data points of each synthetic dataset 
will follow a series of Gaussian distributions, and to reflect the evolution of the 
stream data over time, we change the mean and variance of the current Gaussian 
distribution every 10K points in the synthetic data generation. 

The quality of clustering on the real data sets was measured using the sum 
of square distance (SSQ), defined as follows. Assume that there are a total of 
N points in the past horizon at current time Tc. For each point pi, we find the 
centroid Cpi of its closest macro-cluster, and compute d(pi, Cpi), the distance 
between pi and C,,. Then the SSQ at time Tc with horizon H (denoted as 
SSQ(Tc7 H)) is equal to the sum of d2(pi, Cpi) for all the N points within the 
previous horizon H. Unless otherwise mentioned, the algorithm parameters 
were set at a = 2,1 = 10, InitNumber = 2000, and t = 2. 

We compare the clustering quality of CluStream with that of STREAM for 
different horizons at different times using the Network Intrusion dataset and the 
Charitable donation data set. The results are illustrated in Figures 2.4 and 2.5. 
We run each algorithm 5 times and compute their average SSQs. The results 
show that CluStream is almost always better than STREAM. All experiments 
for these datasets have shown that CluStream has substantially higher quality 
than STREAM. However the Network Intrusion data set showed significantly 
better results than the charitable donation data set because of the fact the network 
intrusion data set was a highly evolving data set. For such cases, the evolution 
sensitive CluStream algorithm was much more effective than the STREAM 
algorithm. 

We also tested the accuracy of the On-Demand Stream ClassiJier. The first 
test was performed on the Network Intrusion Data Set. The first experiment 
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Figure 2.4. Quality comparison (Network Intrusion dataset, horizon=256, stream-speed=200) 
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Figure 2.5. Quality comparison (Charitable Donation dataset, horizon=4, streamspeed=200) 
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Figure 2.6. Accuracy comparison (Network Intrusion dataset, 
buffer-size=1600, kfit=80, init_number=400) 
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Figure 2.7. Distribution of the (smallest) best horizon (Network Intrusion dataset, Time 
units=2500, buffer-size=1600, kf $t=80, init-number=400) 
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Figure 2.8. Accuracy comparison (Synthetic dataset B300kC5D20, 
buffer_size=500, kfit=25, init-number=400) 
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Figure 2.9. Distribution of the (smallest) best horizon (Synthetic dataset B300kCSD20, Time 
units=2000, buffersize=500, lcfit=25, init-number400) 

was conducted with a stream speed at 80 connections per time unit (i.e., there 
are 40 training stream points and 40 test stream points per time unit). We 
set the buffersize at 1600 points, which means upon receiving 1600 points 
(including both training and test stream points) we'll use a small set of the 
training data points (In this case kfi t  =80) to choose the best horizon. We 
compared the accuracy of the On-Demand-Stream classifier with two simple 
one-pass stream classifiers over the entire data stream and the selected sliding 
window (i.e., sliding window H = 8). Figure 2.6 shows the accuracy comparison 
among the three algorithms. We can see the On-Demand-Stream classifier 
consistently beats the two simple one-pass classifiers. For example, at time unit 
2000, the On-Demand-Stream classijier's accuracy is about 4% higher than the 
classifier with fixed sliding window, and is about 2% higher than the classifier 
with the entire dataset. Because the class distribution of this dataset evolves 
significantly over time, either the entire dataset or a fixed sliding window may 
not always capture the underlying stream evolution nature. As a result, they 
always have a worse accuracy than the On-Demand-Stream classifier which 
always dynamically chooses the best horizon for classifying. 

Figure 2.7 shows the distribution of the best horizons (They are the smallest 
ones if there exist several best horizons at the same time). Although about 78.4% 
of the (smallest) best horizons have a value 114, there do exist about 21.6% best 
horizons ranging from 112 to 32 (e.g., about 6.4% of the best horizons have a 
value 32). This also illustrates that there is no fixed sliding window that can 
achieve the best accuracy and the reason why the On-Demand-Stream classifier 
can outperform the simple one-pass classifiers over either the entire dataset or 
a fixed sliding window. 

We have also generated one synthetic dataset B300kC5D20 to test the clas- 
sification accuracy of these algorithms. This dataset contains 5 class labels and 
300K data points with 20 dimensions. We first set the stream speed at 100 points 
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Figure 2.10. Stream Proc. Rate (Charit. Donation data, streamspeed=2000) 
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Figure 2.11. Stream Proc. Rate (Ntwk. Intrusion data, stream_speed=2000) 

per time unit. Figure 2.8 shows the accuracy comparison among the three al- 
gortihms: The On-Demand-Stream classijier always has much better accuracy 
than the other two classifiers. Figure 2.9 shows the distribution of the (small- 
est) best horizons which can explain very well why the On-Demand-Stream 
classiJier has better accuracy. 

We also tested the efficiency of the micro-cluster maintenance algorithm 
with respect to STREAM on the real data sets. We note that this maintenance 
process needs to be performed both for the clustering and classificiation algo- 
rithms with minor differences. Therefore, we present the results for the case 
of clustering. By setting the number of micro-clusters to 10 times the number 
of natural clusters, Figures 2.10 and 2.1 1 show the stream processing rate (i.e., 
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Figure 2.12. Scalability with Data Dimensionality (stream-speed=2000) 
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Figure 2.13. Scalability with Number of Clusters (stream-speed=2000) 
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the number of points processed per second) as opposed to the running time 
for two real data sets. Since CluStream requires some time to compute the 
initial set of micro-clusters, its precessing rate is lower than STREAM at the 
very beginning. However, once steady state is reached, CluStream becomes 
faster than STREAM in spite of the fact that it needs to store the snapshots 
to disk periodically. This is because STREAM takes a few iterations to make 
Ic-means clustering converge, whereas CluStream just needs to judge whether 
a set of points will be absorbed by the existing micro-clusters and insert into 
them appropriately. 

The key to the success of micro-cluster maintenance is high scalability. This 
is because this process is exposed to a potentially large volume of incoming 
data and needs to be implemented in an efficient and online fashion. The most 
time-consuming and frequent operation during micro-cluster maintenance is 
that of finding the closest micro-cluster for each newly arrived data point. It is 
clear that the complexity of this operation increases linearly with the number of 
micro-clusters. It is also evident that the number of micro-clusters maintained 
should be sufficiently larger than the number of input clusters in the data in 
order to obtain a high quality clustering. While the number of input clusters 
cannot be known a priori, it is instructive to examine the scalability behavior 
when the number of micro-clusters was fixed at a constant large factor of the 
number of input clusters. Therefore, for all the experiments in this section, we 
will fix the number of micro-clusters to 10 times the number of input clusters. 
We will present the scalability behavior of the CluStream algorithm with data 
dimensionality, and the number of natural clusters. 

The first series of data sets were generated by varying the dimensionality 
from 10 to 80, while fixing the number of points and input clusters. The first 
data set series B 100C5 indicates that it contains 1 OOK points and 5 clusters. The 
same notational convention is used for the second data set series B200C10 and 
the third one B400C20. Figure 2.12 shows the experimental results, from which 
one can see that CluStream has linear scalability with data dimensionality. For 
example, for dataset series B400C20, when the dimensionality increases from 
10 to 80, the running time increases less than 8 times from 55 seconds to 396 
seconds. 

Another three series of datasets were generated to test the scalability against 
the number of clusters by varying the number of input clusters from 5 to 40, 
while fixing the stream size and dimensionality. For example, the first data 
set series Bl OODlO indicates it contains lOOK points and 10 dimensions. The 
same convention is used for the other data sets. Figure 2.13 demonstrates that 
CluStream has linear scalability with the number of input clusters. 
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7. Discussion 
In this paper, we have discussed effective and efficient methods for clustering 

and classification of data streams. The techniques discussed in this paper utilize 
a micro-clustering approach in conjunction with a pyramidal time window. The 
technique can be used to cluster different kinds of data streams, as well as 
create a classifier for the data. The methods have clear advantages over recent 
techniques which try to cluster the whole stream at one time rather than viewing 
the stream as a changing process over time. The CluStream model provides a 
wide variety of functionality in characterizing data stream clusters over different 
time horizons in an evolving environment. 

This is achieved through a careful division of labor between the online sta- 
tistical data collection component and an offline analytical component. Thus, 
the process provides considerable flexibility to an analyst in a real-time and 
changing environment. In order to achieve these goals, we needed to the design 
the statistical storage process of the online component very carefully. The use 
of apyramidal time window assures that the essential statistics of evolving data 
streams can be captured without sacrificing the underlying space- and time- 
eficiency of the stream clustering process. 

The essential idea behind the CluStream model is to perform effective data 
summarization so that the underlying summary data can be used for a host of 
tasks such as clustering and classification. Therefore, the technique provides a 
framework upon which many other data mining tasks can be built. 

Notes 
1. Without loss of generality, we can assume that one unit of clock time is the smallest level of granularity. 

Thus, the 0-th order snapshots measure the time intervals at the smallest level of granularity. 
2. If the micro-cluster contains fewer than 2 . m points, then we simply find the average timestamp of 

all points in the cluster. 

3. The mean is equal to CFlt /n .  The standard deviation is equal to & ~ 2 t / n  - (CFlt/n)2. 

References 

[I] Aggarwal C., Procopiuc C., Wolf J., Yu P., Park J.-S. (1 999). Fast algorithms 
for projected clustering. ACM SIGMOD Conference. 

[2] Aggarwal C., Yu P. (2000). Finding Generalized Projected Clusters in High 
Dimensional Spaces, ACM SIGMOD Conference. 

[3] Aggarwal C., Yu P.. (2004). A Condensation Approach to Privacy Preserv- 
ing Data Mining. EDBT Conference. 

[4] Agrawal R., Gehrke J., Gunopulos D., Raghavan P (1998). Automatic Sub- 
space Clustering of High Dimensional Data for Data Mining Applications. 
ACM SIGMOD Conference. 



On Clustering Massive Data Streams: A Summarization Paradigm 37 

[5] Aggarwal C (2003). A Framework for Diagnosing Changes in Evolving 
Data Streams. ACM SIGMOD Conference. 

[6] Aggarwal C., Han J., Wang J., Yu P (2003). A Framework for Clustering 
Evolving Data Streams. VLDB Conference. 

[7] Aggarwal C, Han J., Wang J., Yu P. (2004). On-Demand Classification of 
Evolving Data Streams. ACM KDD Conference. 

[8] Aggarwal C., Han J., Wang J., Yu P. (2004). A Framework for Projected 
Clustering of High Dimensional Data Streams. VLDB Conference. 

[9] Aggarwal C. (2006) on Futuristic Query Processing in Data Streams. EDBT 
Conference. 

[lo] Ankerst M., Breunig M., Kriegel H.-P., Sander J. (1999). OPTICS: Order- 
ing Points To Identify the Clustering Structure. ACMSIGMOD Conference. 

[I 11 Babcock B., Babu S., Datar M., Motwani R., Widom J. (2002). Models 
and Issues in Data Stream Systems, ACM PODS Conference. 

[12] Bradley P., Fayyad U., Reina C. (1998) Scaling Clustering Algorithms to 
Large Databases. SIGKDD Conference. 

[13] Cortes C., Fisher K., Pregibon D., Rogers A., Smith F. (2000). Hancock: 
A Language for Extracting Signatures from Data Streams. ACM SIGKDD 
Conference. 

[14] Domingos P., Hulten G. (2000). Mining High-speed Data Streams. ACM 
SIGKDD Conference. 

[15] Duda R., Hart P (1 973). Pattern ClassiJication and Scene Analysis, Wiley, 
New York. 

[16] Farnstrom F,, Lewis J., Elkan C. (2000). Scalability for Clustering Algo- 
rithms Revisited. SIGKDD Explorations, 2(1):pp. 51-57. 

[17] Guha S., Mishra N., Motwani R., O'Callaghan L. (2000). Clustering Data 
Streams. IEEE FOCS Conference. 

[I81 Guha S., Rastogi R., Shim K. (1998). CURE: An Efficient Clustering 
Algorithm for Large Databases. ACM SIGMOD Conference. 

[19] Hulten G., Spencer L., Domingos P. (2001). Mining Time Changing Data 
Streams. ACMKDD Conference. 

[20] Jain A., Dubes R. (1998). Algorithms for Clustering Data, Prentice Hall, 
New Jersey. 

[21] Kaufman L., Rousseuw P. (1990). Finding Groups in Data- An Introduc- 
tion to Cluster Analysis. MIey Series in Probability and Math. Sciences. 

[22] Ng R., Han J (1 994). Efficient and Effective Clustering Methods for Spatial 
Data Mining. Very Large Data Bases Conference. 



3 8 DATA STREAMS: MODELS AND ALGORITHMS 

[23] O'Callaghan L., Mishra N., Meyerson A., Guha S., Motwani R (2002). 
Streaming-Data Algorithms For High-Quality Clustering. ICDE Confer- 
ence. 

[24] Zhang T., Ramakrishnan R., and Limy M (1996). BIRCH: An Efficient 
Data Clustering Method for Very Large Databases. ACM SIGMOD Con- 
jkrence. 




