
Chapter 2

BASIC CONCEPTS OF LINEAR
GENETIC PROGRAMMING

In this chapter linear genetic programming (LGP) will be explored in
further detail. The basis of the specific linear GP variant we want to
investigate in this book will be described, in particular the programming
language used for evolution, the representation of individuals, and the spe-
cific evolutionary algorithm employed. This will form the core of our LGP
system, while fundamental concepts of linear GP will also be discussed,
including various forms of program execution.

Linear GP operates with imperative programs. All discussions and ex-
periments in this book are conducted independently from a special type
of programming language or processor architecture. Even though genetic
programs are interpreted and partly noted in the high-level language C,
the applied programming concepts exist principally in or may be trans-
lated into most modern imperative programming languages, down to the
level of machine languages.

2.1 Representation of Programs

The imperative programming concept is closely related to the underlying
machine language, in contrast to the functional programming paradigm.
All modern CPUs are based on the principle of the von Neumann archi-
tecture, a computing machine composed of a set of registers and basic
instructions that operate and manipulate their content. A program of
such a register machine, accordingly, denotes a sequence of instructions
whose order has to be respected during execution.



14 Linear Genetic Programming

void gp(r)

double r[8];

{ ...

r[0] = r[5] + 71;

// r[7] = r[0] - 59;

if (r[1] > 0)

if (r[5] > 2)

r[4] = r[2] * r[1];

// r[2] = r[5] + r[4];

r[6] = r[4] * 13;

r[1] = r[3] / 2;

// if (r[0] > r[1])

// r[3] = r[5] * r[5];

r[7] = r[6] - 2;

// r[5] = r[7] + 15;

if (r[1] <= r[6])

r[0] = sin(r[7]);

}

Example 2.1. LGP program in C notation. Commented instructions (marked with //)
have no effect on program output stored in register r[0] (see Section 3.2.1).

Basically, an imperative instruction includes an operation on operand (or
source) registers and an assignment of the result of that operation to a
destination register. Instruction formats exist for zero,1 one, two or three
registers. Most modern machine languages are based on 2-register or 3-
register instructions. Three-register instructions operate on two arbitrary
registers (or constants) and assign the result to a third register, e.g., ri :=
rj+rk. In 2-register instructions, instead, either the implemented operator
requires only one operand, e.g., ri := sin(rj), or the destination register
acts as a second operand, e.g., ri := ri + rj . Due to a higher degree of
freedom, a program with 3-register instructions may be more compact in
size than a program consisting of 2-register instructions. Here we will
study 3-register instructions with a free choice of operands.

In general, at most one operation per instruction is permitted which usu-
ally has one or two operands. Note that a higher number of operators
or operands in instructions would not necessarily increase expressiveness
or variability of programs. Such instructions would assign the result of a
more complex expression to a register and would make genetic operations
more complicated.

In the LGP system described here and outlined in [21] a genetic program
is interpreted as a variable-length sequence of simple C instructions. In
order to apply a program solution directly to a problem domain without

10-register instructions operate on a stack.
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using a special interpreter, the internal representation is translated into C
code.2 An excerpt of a linear genetic program, as exported by the system,
is given in Example 2.1. In the following, the term genetic program always
refers to the internal LGP representation that we will discuss in more
detail now.

2.1.1 Coding of Instructions

In our implementation all registers hold floating-point values. Internally,
constants are stored in registers that are write-protected, i.e., may not be-
come destination registers. As a consequence, the set of possible constants
remains fixed. Constants are addressed by indices in the internal program
representation just like variable registers and operators. Constant regis-
ters are only initialized once at the beginning of a run with values from
a user-defined range. This has an advantage over encoding constants ex-
plicitly in program instructions because memory space is saved, especially
insofar as real-valued constants or larger integer constants are concerned.
A continuous variability of constants by the genetic operators is really
not needed and should be sufficiently counterbalanced by interpolation
in the genetic programs. Furthermore, a free manipulation of real-valued
constants in programs could result in solutions that may not be exported
accurately. Because floating-point values can be printed only to a certain
precision, rounding errors might be reinforced during program execution.

Each of the maximum of four instruction components, the instruction
identifier and a maximum of three register indices, can be encoded into
one byte of memory if we accept that the maximum number of variable
registers and constant registers is restricted to 256. For most problems
LGP is run on this will be absolutely sufficient.

So for instance, an instruction ri := rj + rk reduces to a vector of indices
< id(+), i, j, k >. Actually, an instruction is held as a single 32-bit inte-
ger value. Such a coding of instructions is similar to a representation as
machine code [90, 9] but can be chosen independently from the type of
processor to interpret the program. In particular, this coding allows an in-
struction component to be accessed efficiently by casting the integer value
which corresponds to the instruction into an array of 4 bytes. A program
is then represented by an array of integers. A compact representation

2For the program instructions applied throughout the book translation is straightforward. Rep-
resentation and translation of more advanced programming concepts will be discussed briefly
later in this chapter.
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like this is not only memory-efficient but allows efficient manipulation of
programs as well as efficient interpretation (see Section 2.2).

In the following we will refer to a register only as a variable register. A
constant register is identified with its constant value.

In linear GP a user-defined number of variable registers, the register set, is
made available to a genetic program. Besides the minimal number of input
registers required to hold the program inputs before execution, additional
registers can be provided in order to facilitate calculations. Normally
these so-called calculation registers are initialized with a constant value
(e.g., 1) each time a program is executed on a fitness case. Only for
special applications like time series predictions with a defined order on the
fitness cases it may be advantageous to change this. Should calculation
registers be initialized only once before fitness evaluation, an exchange of
information is enabled between successive executions of the same program
for different fitness cases.

A sufficient number of registers is important for the performance of linear
GP, especially if input dimension and number of input registers are low. In
general, the number of registers determines the number of program paths
(in the functional representation) that can be calculated in parallel. If an
insufficient number is supplied there will be too many conflicts between
registers and valuable information will be overwritten.

One or more input/calculation registers are defined as output register(s).
The standard output register is register r0. The imperative program struc-
ture also facilitates the use of multiple program outputs, whereas tree GP
can calculate only one output (see also Section 8.1).

2.1.2 Instruction Set

The instruction set defines the particular programming language that is
evolved. The LGP system is based on two fundamental instruction type –
operations3 and conditional branches. Table 2.1 lists the general notation
of all instructions used in experiments throughout the book.

Two-operand instructions may either possess two indexed variables (regis-
ters) ri as operands or one indexed variable and a constant. One-operand
instructions only use register operands. This way, assignments of constant
values, e.g., r0 := 1+2 or r0 := sin(1), are avoided automatically (see also
Section 7.3). If there cannot be more than one constant per instruction,
the percentage of instructions holding a constant is equal to the propor-

3Functions will be identified with operators in the following.
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Table 2.1. LGP instruction types.

Instruction type General notation Input range

Arithmetic operations ri := rj + rk ri, rj , rk ∈ IR

ri := rj − rk

ri := rj × rk

ri := rj / rk

Exponential functions ri := rj
(rk) ri, rj , rk ∈ IR

ri := erj

ri := ln(rj)

ri := rj
2

ri :=
√

rj

Trigonomic functions ri := sin(rj) ri, rj , rk ∈ IR

ri := cos(rj)

Boolean operations ri := rj ∧ rk ri, rj , rk ∈ IB

ri := rj ∨ rk

ri := ¬ rj

Conditional branches if (rj > rk) rj , rk ∈ IR

if (rj ≤ rk)

if (rj) rj ∈ IB

tion of constants pconst in programs. This is also the selection probability
of a constant operand during initialization of programs and during mu-
tations. The influence of this parameter will be analyzed in Section 7.3.
In most other experiments documented in this book pconst = 0.5 will be
used.

In genetic programming it must be guaranteed somehow that only valid
programs are created. The genetic operators – recombination and muta-
tion – have to maintain the syntactic correctness of newly created pro-
grams. In linear GP, for instance, crossover points may not be selected
inside an instruction and mutations may not exchange an instruction op-
erator for a register. To assure semantic correctness, partially defined
operators and functions may be protected by returning a high value for
undefined input, e.g., cundef := 106. Table 2.2 shows all instructions from
Table 2.1 that have to be protected from certain input ranges and pro-
vides their respective definition. The return of high values will act as
a penalty for programs that use these otherwise undefined operations. If
low values would be returned, i.e., cundef := 1, protected instructions may
be exploited more easily by evolution for the creation of semantic introns
(see Section 3.2.2).

In order to minimize the input range assigned to a semantically senseless
function value, undefined negative inputs have been mapped to defined
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Table 2.2. Definitions of protected instructions.

Instruction Protected definition

ri := rj / rk if (rk �= 0) ri := rj / rk else ri := rj + cundef

ri := rj
rk if (|rk| ≤ 10) ri := |rj |rk else ri := rj + rk + cundef

ri := erj if (|rj | ≤ 32) ri := erj else ri := rj + cundef

ri := ln(rj) if (rj �= 0) ri := ln(|rj |) else ri := rj + cundef

ri :=
√

rj ri :=
p|rj |

absolute inputs in Table 2.2. This permits evolution to integrate pro-
tected instructions into robust program semantics more easily. Keijzer
[58] recommends the use of interval arithmetic and linear scaling instead
of protecting mathematical operators for symbolic regression.

The ability of genetic programming to find a solution strongly depends
on the expressiveness of the instruction set. A complete instruction set
contains all elements that are necessary to build the optimal solution, pro-
vided that the number of variables registers and the range of constants are
sufficient. On the other hand, the dimension of the search space, which
contains all possible programs that can be built from these instructions,
increases exponentially with the number of instructions and registers. If
we take into account that the initial population usually represents a small
fraction of the complete search space, the probability of finding the op-
timal solution or a good approximation decreases significantly with too
many basic program elements that are useless. Moreover, the probability
by which a certain instruction is selected as well as its frequency in the
population influence the success rate of finding a solution. In order to
exert better control over the selection probabilities of instruction types,
the instruction set may contain multiple instances of an instruction.

We will not regard program functions with side effects to the problem en-
vironment, only those that return a single value in a strict mathematical
sense. Side effects may be used for solving control problems. For instance,
a linear program may represent a list of commands (plan) that direct a
robot agent in an environment. Fitness information may then be de-
rived from the agent’s interactions with its environment by reinforcement
learning. In such a case, genetic programs do not represent mathematical
functions.

2.1.3 Branching Concepts

Conditional branches are an important and powerful concept in genetic
programming. In general, programming concepts like branches or loops
allow the control flow given by the structure of the representation to
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be altered. The control flow in linear genetic programs is linear while
the data flow is organized as a directed graph (see Section 3.3). With
conditional branches the control flow (and hence the data flow) may be
different for different input situations, for instance, it may depend on
program semantics.

Classification problems are solved more successfully or even exclusively if
branches are provided. Branches, however, may increase the complexity of
solutions by promoting specialization and by producing semantic introns
(see Chapter 3). Both tendencies may lead to less robust and less general
solutions.

If the condition of a branch instruction, as defined in Table 2.1, is false only
one instruction is skipped (see also discussion in Section 3.3.2). Sequences
of branches are interpreted as nested branches in our system (similar to
interpretation in C). That is, the next non-branch instruction in the pro-
gram is executed only if all conditions are true and is skipped otherwise.
A combination of conditional branch(es) and operation is also referred to
as a conditional operation:

if (<cond1>)
if (<cond2>)
<oper>;

Nested branches allow more complex conditions to be evolved and are
equivalent to connecting single branch conditions by a logical AND. A
disjunction (OR connection) of branch conditions, instead, may be rep-
resented by a sequence of conditional instructions whose operations are
identical:

if (<cond1>)
<oper>;
if (<cond2>)
<oper>;

Alternatively, successive conditions may be interpreted as being connected
either by AND or by OR. This can be achieved in the following way: A
Boolean operator is encoded into each branch identifier. This requires the
information of a binary flag only, which determines how the condition of
a branch instruction is connected to a potentially preceeding or, alterna-
tively, succeeding one in the program (AND or OR). The status of these
flags may be changed during operator mutations. The transformation of
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this representation into a C program becomes slightly more complicated
because each sequence of branches has to be substituted by a single branch
with an equivalent condition of higher order.

2.1.4 Advanced Branching Concepts

A more general branching concept is to allow conditional forward jumps
over a variable number of instructions. The number of instructions
skipped may be either unlimited or it may be selected randomly from
a certain range. In the latter case the actual length of a jump may be de-
termined by a parameter that is encoded in the branch instruction itself,
e.g., using the identifier section or the unused section of the destination
register. It is also possible to do without this additional overhead by using
constant block sizes. Because some instructions of a skipped code block
are usually not effective, evolution may control the semantic effect of a
jump over the number of noneffective instructions within jump blocks.

A transformation of such branches from the internal program representa-
tion into working C code requires constructions like:

if (<cond>) goto <label X>;
<...>
<label X>;

where unique X labels have to be inserted at the end of each jump block.

If one wants to avoid branching into blocks of other branches, jumps
should not be longer than the position of the next branch in a program.
In this way, the number of skipped instructions is limited implicitly and
does not have to be administrated within the branches. Translation into C
is then achieved simply by setting {...} brackets around the jump block.

An interesting variant of the above scheme is to allow jumps to any suc-
ceeding branch instruction in the program. This can be realized by using
an additional pointer with each branch instruction to an arbitrary suc-
cessor branch (absolute jump). Relative jumps to the kth next branch in
program with 1 ≤ k ≤ kmax are also possible, even if such connections are
separated more easily by insertions/deletions of a new branch instruction.
A pointer to a branch that does not exist any more may be automatically
replaced by a valid pointer after variation. The last branch in a program
should always point to the end of the program (k := 0). Hence, control
flow in a linear genetic program may be interpreted as a directed acyclic
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branching graph (see Figure 2.1). The nodes of such a control flow graph
represent subsequences of (non-branch) instructions.

if

if

if

if

if

if

+2

+0
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+1
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+1

Figure 2.1. Branching graph: Each branch instruction points to a specified succeeding
branch instruction.

In [57] a more general concept of a branching graph is proposed for the
imperative representation. Each node contains an instruction block that
ends with a single if-else-branch. These branches point to two alternative
decision blocks which represent two independent successor nodes. Thus,
instructions may not only be skipped within an otherwise linear control
flow but real parallel subprograms may exist in programs. This form
of representation is called a linear graph since it defines a graph-based
control flow on linear genetic programs. Recall that the term linear genetic
program derives from the linear flow of control that is given by the linear
arrangement of instructions. In Section 3.3 we will see that the data flow
is graph-based already in simple linear genetic programs.

In general, a complex non-linear control flow requires either more so-
phisticated variation operators or repair mechanisms to be applied after
variation. For branching graphs a special crossover operator may be con-
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strained so that only complete nodes or subgraphs of nodes are exchanged
between programs with a certain probability. That is, crossover points
would fall upon branch instructions only. Unrestricted linear crossover
(see Section 2.3.4) may be applied between graph nodes (instruction
blocks) only.

A final branching concept whose capability is discussed here for linear
GP uses an additional endif instruction in the instruction set. Nested
constructions like:

if (<cond>)
<...>
endif

are interpreted such that an endif belongs to an if counterpart if no
branch or only closed branching blocks lie in between. An instruction
that cannot be assigned in this way may either be deleted from the in-
ternal representation or contribute to noneffective code. The strength of
such a concept is to permit an (almost) unconstrained and complex nest-
ing of branches while jumps into other branching blocks cannot occur. A
transformation into C code is achieved simply by setting {...} brackets
around valid branching blocks instead of endif and by not transform-
ing invalid branch instructions at all. In a similar way if-else-endif
constructions may be realized.

2.1.5 Iteration Concepts

Iteration of code by loops plays a rather unimportant role in genetic pro-
gramming. Most GP applications that require loops involve control prob-
lems with the combination of primitive actions of an agent being the
object of evolution. Data flow is usually not necessary in such programs.
Instead, each instruction performs actions with side effects on the prob-
lem environment and fitness is derived from a reinforcement signal. For
the problem classes we focus on here, supervised classification and ap-
proximation, iteration is of minor importance. That is not to say that a
reuse of code by iterations could not result in more compact and elegant
solutions.

In functional programming the concept of loops is unknown. The implicit
iteration concept in functional programs denotes recursions which are,
however, hard to control in tree-based genetic programming [142]. Other-
wise, iterated evaluations of a subtree can have an effect only if functions
produce side effects. In linear GP, assignments represent an implicit side
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effect on memory locations as part of the imperative representation. Nev-
ertheless, the iteration of an instruction segment may only be effective if it
includes at least one effective instruction and if at least one register acts as
both destination register and source register in the same or a combination
of (effective) instructions, e.g., r0 := r0 + 1.

In the following, possible iteration concepts for linear GP will be pre-
sented. These comprise conditional loops and loops with a limited number
of iterations.

One form of iteration in linear programs is a conditional backward jump
corresponding to a while loop in C. The problem with this concept is that
infinite loops can be easily formed by conditions that are always fulfilled.
In general, it is not possible to detect all infinite loops in programs, due
to the halting problem [36]. A solution to remedy this situation is to
terminate a genetic program after a maximal number of instructions. The
result of the program would then, however, depend on the execution time
allowed.

The more recommended option is a loop concept that limits the number
of iterations in each loop. This requires an additional control flow param-
eter which may either be constant or be varied within loop instructions.
Such a construct is usually expressed by a for loop in C. Because only
overlapping loops (not nested loops) need to be avoided, an appropriate
choice to limit the size of loop blocks may be the coevolution of endfor
instructions. Analogous to the interpretation of branches in Section 2.1.4,
a for instruction and a succeeding endfor define a loop block provided
that only closed loops lie in between. All other loop instructions are not
interpreted.

2.1.6 Modularization Concepts

For certain problems modularization may be advantageous in GP. By
using subroutines repeatedly within programs, solutions may become more
compact and the same limited program space can be used more efficiently.
A problem may also be decomposed into simpler subproblems that can be
solved more efficiently in local submodules. In this case, a combination of
subsolutions may result in a simpler and better overall solution.

The most popular modularization concept in tree-based genetic program-
ming is the so-called automatically defined function (ADF) [65]. Basically,
a genetic program is split up into a main program and a certain number
of subprograms (ADFs). The main program calculates its output by us-
ing the coevolved subprograms via function calls. Therefore, ADFs are
treated as part of the main instruction set. Each module type may be com-
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posed of different sets of program components. It is furthermore possible
to define a usage graph that defines which ADF type may call which other
ADF type. Recursions are avoided by prohibiting cycles. The crossover
operator has to be constrained in such a way that only modules of the
same type can be recombined between individuals.

ADFs are an explicit modularization concept since the submodules are
encapsulated with regard to the main program and may only be used
locally in the same individual. Each module is represented by a separate
tree expression [65] or a separate sequence of instructions [93]. To ensure
encapsulation of modules in linear programs, disjoint sets of registers have
to be used. Otherwise, unwanted state transitions between modules might
occur.

ADFs denote subsolutions that are combined by being used in a main
program. In Chapter 11 of this book another explicit form of modulariza-
tion, the evolution of program teams, is investigated. A team comprises
a fixed number of programs that are coevolved as one GP individual. In
principle, all members of a team are supposed to solve the same prob-
lem by receiving the same input data. These members act as modules
of an overall solution such that the member outputs are combined in a
predefined way. A better performance may result from collective decision
making and a specialization of relatively independent program modules.

A more implicit modularization concept that prepares code for reuse is
module acquisition [5]. Here substructures up to a certain maximum size
– not only including full subtrees – are chosen randomly from better pro-
grams. Such modules are replaced by respective function calls and moved
into a global library from where they may be referenced by other in-
dividuals of the population. In linear GP code replacements are more
complicated because subsequences of instructions are usually bound to a
complex register usage in the imperative program context.

A similar method for automatic modularization is subtree encapsulation
[115] where randomly selected subtrees are replaced by symbols that are
added to the terminal set as primitive atoms.

Complex module dependencies may hardly emerge during evolution if
modularization is not really needed for better solutions. In general, if
a programming concept is redundant, the larger search space will nega-
tively influence the ability to find a solution. Moreover, the efficiency of a
programming concept or a program representation in GP always depends
on the variation operators. Thus, even if the expressiveness or flexibility
of a programming concept is high, it may be more difficult for evolution
to take advantage of that strength.
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2.2 Execution of Programs

The processing speed of a learning method may seriously constrain the
complexity or time-dependence of an application. The most time-critical
steps in evolutionary algorithms are the fitness evaluation of individu-
als and/or the calculation of new search points (individuals) by variation
operators. In genetic programming, however, computation costs are dom-
inated by the fitness evaluation because it requires multiple executions of
a program, at least one execution per fitness case. Executing a genetic
program means that the internal program representation is interpreted
following the semantics of the programming language.

Execution

Machine Code

Execution

a)

Interpretation

Internal Representation Internal Representation

Interpretation

Execution

b) c)

Machine Code 

d)

Execution

Effective Program Effective Program

Figure 2.2. Different forms of program execution including (a) interpretation of pro-
grams in GP, (b) elimination of noneffective code in LGP, (c) direct execution of machine
code in AIMGP, and (d) combination of b) and c).

For instance, interpretation in tree GP systems works by traversing the
tree structure of programs in preorder or postorder. While doing so, oper-
ators are applied to operand values that result recursively from executing
all subtrees of the operator node first.

In a special variant of linear GP, called Automatic Induction of Machine
code by Genetic Programming (AIMGP) [90, 9], individuals are repre-
sented and manipulated as binary machine code. Because programs can
be executed directly without passing an interpreter, machine code GP
enjoys a significant speedup in execution compared to interpreting GP
systems. Due to its dependence on specific processor architectures, how-
ever, machine code GP is restricted in portability. Moreover, a machine
code system may be restricted in functionality due to, e.g., the number of
hardware registers resident in the processor.
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In this book we use a different method to accelerate execution (interpre-
tation) of linear genetic programs. The special type of noneffective code
which results from the imperative program structure can be detected effi-
ciently in linear runtime (see [21] and Section 3.2.1). In LGP this noneffec-
tive code is removed from a program before fitness calculation, i.e., before
the resulting effective program is executed over multiple fitness cases. By
doing so, the evaluation time of programs is reduced significantly, espe-
cially if a larger number of fitness cases is to be processed (see below and
Chapter 4). In the example program from Section 2.1 all commented in-
structions are noneffective under the assumption that program output is
stored in register r[0].

Since AIMGP is a special variant of linear GP, both acceleration tech-
niques may be combined such that a machine code representation is pre-
processed by a routine extracting effective parts of code. This results in
the four different ways of executing programs in genetic programming that
are illustrated in Figure 2.2.

An elimination of introns – as noneffective code is frequently called – will
be relevant only if a significant amount of this code is created by the
variation operators. In particular, this is the case for linear crossover (see
Section 2.3.4).

An additional acceleration of runtime in linear GP can be achieved if
the fitness of an individual is recalculated only after effective code has
undergone change (see Section 5.2). Instead of the evaluation time, this
approach reduces the number of evaluations (and program executions)
performed during a generation.

2.2.1 Runtime Comparison

The following experiment illustrates the difference in processing speed of
the four ways of program execution depicted in Figure 2.2. In order to
guarantee a fair comparison between machine code GP and interpreting
GP, an interpreting routine has been added to an AIMGP system. This
routine interprets the machine code programs in C so that they produce
exactly the same results as without interpretation. Both interpreting and
non-interpreting runs of the system are accelerated by a second routine
that removes the noneffective code. Table 2.3 reports general settings of
system parameters for a polynomial regression task.
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Table 2.3. Parameter settings

Parameter Setting

Problem type polynomial regression

Number of examples 200

Number of generations 200

Population size 1,000

Maximum program length 256

Maximum initial length 25

Crossover rate 90%

Mutation rate 10%

Number of registers 6

Instruction set {+,−,×}
Constants {0,..,99}

Table 2.4 compares the average absolute runtime4 for the four differ-
ent configurations with respect to interpretation and intron elimination.
Without interpretation, programs are executed directly as machine code.
Ten runs have been performed for each configuration while using the same
set of 10 different random seeds. Runs behave exactly the same for all
configurations apart from their processing speed. The average length of
programs in the population exceeds 200 instructions by about generation
100. The intron rate converges to about 80% on average.

Table 2.4. Absolute runtime in seconds (rounded) averaged over 10 independent runs.

Runtime (sec.) No Interpretation (I0) Interpretation (I1)

No Intron Elimination (E0) 500 6250

Intron Elimination (E1) 250 1375

The resulting relative acceleration factors are listed in Table 2.5. If both
the direct execution of machine code and the elimination of noneffective
code are applied in combination, runs become about 25 times faster for
the problem considered under the system configuration above. Note that
the influence of intron elimination on the interpreting runs (factor 4.5) is
more than two times stronger than on the non-interpreting runs (factor
2). This reduces the advantage of machine code GP over interpreting
LGP from a factor of 12.5 to a factor of 5.5. Standard machine code GP
without intron elimination, instead, seems to be around 3 times faster
than linear GP including this extension.

4Absolute runtime is measured in seconds on a Sun SPARC Station 10.
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Table 2.5. Relative runtime for the four configurations of Table 2.4.

E0I0 : E0I1 1 : 12.5

E1I0 : E1I1 1 : 5.5

E0I0 : E1I0 1 : 2

E0I1 : E1I1 1 : 4.5

E0I0 : E1I1 1 : 2.75

E1I0 : E0I1 1 : 25

Clearly, the performance gain by intron elimination will depend on the
proportion of (structurally) noneffective instructions in programs. In con-
trast to the size of effective code, this is less influenced by the problem
definition than by variation operators and system configuration (see Chap-
ters 5 and 7).

2.2.2 Translation

From an application point of view the best (generalizing) program solu-
tion is the only relevant result of a GP run. The internal representation
(coding) of this program could be exported as is and an interpreter would
be required to guarantee that the program will behave in an application
environment exactly as it did in the GP system. In order to avoid this,
LGP exports programs as equivalent C functions (see Example 2.1 and

a)

C Program

Translation

Effective Program

Internal Representation

Translation

Execution

b)

Machine Code 

Internal Representation

Effective Program

Figure 2.3. Translation of internal representation into (a) C program and (b) machine
code.
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Figure 2.3). As has been explained in Section 2.1.2, single programming
concepts are transformed into C by translating internal programs into an
existing (imperative) programming language. This way, solutions may be
integrated directly into an application context (software) without addi-
tional overhead.

Such a translation has the additional benefit to allow more freedom on
the internal representation. The representation may be chosen (almost)
freely, e.g., in favor of better evolvability and better variability in GP.
Because normally just a few (best) individuals are exported during a run,
even complex transformations may not be time-critical.

The same advantage – higher flexibility – together with a higher process-
ing speed motivates a translation from the evolved LGP language into a
binary machine language (compilation) just before the fitness of a program
is evaluated (see Figure 2.3). This allows a more efficient evaluation of
programs, especially if noneffective code is removed prior to translation.
Note that the direct variation of machine code programs in AIMGP sys-
tems is less important for runtime. Instead, the speed advantage almost
exclusively results from a direct execution of machine code. The disad-
vantage of this technique is the higher compiler overhead that needs to be
taken into account.

2.3 Evolution of Programs

Algorithm 2.1 constitutes the kernel of our LGP system. In a steady-state
evolutionary algorithm like this, generations are not fixed, in contrast
to a generational EA. For the latter variant, the current generation is
identified with a population of parent programs whose offspring migrate
to a separate population pool. After the offspring pool is fully populated
it replaces the parent population and the next generation begins. In the
steady-state model there is no such centralized control of generations.
Instead, offspring replace existing individuals in the same population. It
is common practice to define generation equivalents in steady-state EAs
as regular intervals of fitness evaluations. Only new individuals have to
be evaluated if the fitness is saved with each individual in the population.
A generation (equivalent) is complete if the number of new individuals
equals the population size.

Algorithm 2.1 (LGP algorithm)

1. Initialize the population with random programs (see Section 2.3.1) and
calculate their fitness values.
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2. Randomly select 2 × nts individuals from the population without re-
placement.

3. Perform two fitness tournaments of size nts (see Section 2.3.2).

4. Make temporary copies of the two tournament winners.

5. Modify the two winners by one or more variation operators with certain
probabilities (see Section 2.3.4).

6. Evaluate the fitness of the two offspring.

7. If the current best-fit individual is replaced by one of the offspring
validate the new best program using unknown data.

8. Reproduce the two tournament winners within the population with
a certain probability or under a certain condition by replacing the
two tournament losers with the temporary copies of the winners (see
Section 2.3.3).

9. Repeat steps 2 to 8 until the maximum number of generations is
reached.

10. Test the program with minimum validation error.

11. Both the best program during training and the best program during
validation define the output of the algorithm.

Fitness of an individual program is computed by an error function on a
set of input-output examples (�ik, ok). These so-called fitness cases define
the problem that should be solved or approximated by a program. A
popular error function for approximation problems is the sum of squared
errors (SSE), i.e., the squared difference between the predicted output
gp(�ik) and the desired output ok summed over all n training examples. A
squared error function penalizes larger errors more heavily than smaller
errors. Equation 2.1 defines a related measure, the mean square error
(MSE).

MSE(gp) =
1
n

n∑
k=1

(gp(�ik) − ok)2 (2.1)

For classification tasks the classification error (CE) calculates the num-
ber of examples wrongly classified. Function class in Equation 2.2 hides
the classification method that maps the continuous program outputs to
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discrete class identifiers. While a better fitness means a smaller error the
best fitness is 0 in both cases.

CE(gp) =
n∑

k=1

{1 | class(gp(�ik)) �= ok} (2.2)

The generalization ability of individual solutions is observed during train-
ing by calculating a validation error of the current best program. The
training error function is applied to an unknown validation data set which
is sampled differently from the training data, but from the same data
space. Finally, among all the best individuals emerging over a run the
one with minimum validation error (point of best generalization) is tested
on an unknown test data set, once after training. Note that validation
of the best solutions follows a fitness gradient. Validating all individuals
during a GP run is not reasonable, since one is not interested in solutions
that perform well on the validation data but have a comparatively bad
fitness on the training data set.

Whether an individual is selected for variation or ruled out depends on
relative fitness comparisons during selection. In order to not loose infor-
mation, a copy of the individual with minimum validation error has to be
kept outside of the population. The individual of minimum training error
(best individual) does not need protection since it cannot be overwritten
as long as the training data is fixed during evolution.

Training data may be resampled every mth generation or even each time
before an individual is evaluated. On the one hand, resampling intro-
duces noise into the fitness function (dynamic fitness). This is argued to
improve the generalization performance compared to keeping the train-
ing examples constant over a run because it reduces overtraining, i.e., an
overspecialization of solutions to the training data. On the other hand,
resampling may be beneficial if the database that constitutes the prob-
lem to be solved is large. A relatively small subset size may be used for
training purposes while all data points would be exposed to the genetic
programs over time. As a result, not only the fitness evaluation of pro-
grams is accelerated but the evolutionary process may converge faster.
This technique is called stochastic sampling [9].

2.3.1 Initialization

The initial population of a genetic programming run is normally generated
randomly. In linear GP an upper bound for the initial program length has
to be defined. The lower bound may be equal to the absolute minimum
length of a program – one instruction. A program is created so that
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its length is chosen randomly from this predefined range with a uniform
probability.

There is a trade-off to be addressed when choosing upper and lower bounds
of program length: On the one hand, it is not recommended to initialize
exceedingly long programs, as will be demonstrated in Section 7.6. This
may reduce their variability significantly in the course of the evolutionary
process. Besides, the smaller the initial programs are, the more thorough
an exploration of the search space can be performed at the beginning of a
run. On the other hand, the average initial length of programs should not
be too small, because a sufficient diversity of the initial genetic material
is necessary, especially in smaller populations or if crossover dominates
variation.

2.3.2 Selection

Algorithm 2.1 applies tournament selection. With this selection method
individuals are selected randomly from the population to participate in a
tournament where they compete for the best fitness. Normally selection
happens without replacement, i.e., all individuals of a tournament must
be different. The tournament size nts determines the selection pressure
that is imposed on the population individuals. If a tournament is held
between two individuals (and if there is only one tournament used for
selecting the winner) this corresponds to the minimum selection pressure.
A lower pressure is possible with this selection scheme only by performing
m > 1 tournaments and choosing the worst among the m winners.

In standard LGP two tournaments happen in parallel to provide two par-
ent individuals for crossover. For comparison purposes, this is practiced
here also in cases where only mutation is applied (see Chapter 6). Be-
fore the tournament winners undergo variation, a copy of each winner
replaces the corresponding loser. This reproduction scheme constitutes a
steady-state EA.

Tournament selection, together with a steady-state evolutionary algo-
rithm, is well suited for parallelization by using isolated subpopulations
of individuals, called demes (see also Section 4.3.2). Tournaments may be
performed independently of each other and do not require global informa-
tion about the population, like a global fitness ranking (ranking selection)
or the average fitness (fitness proportional selection) [17] would do. Local
selection schemes are arguably better to preserve diversity than global
selection schemes. Moreover, individuals may take part in a tournament
several times or not at all during one steady-state generation. This al-
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lows evolution to progress with different speeds in different regions of the
population.

2.3.3 Reproduction

A full reproduction of winners guarantees that better solutions always
survive in a steady-state population. However, during every replacement
of individuals a certain amount of genetic material gets lost. When using
tournament selection this situation can be influenced by the reproduction
rate prr. By using prr < 1 the EA may forget better solutions to a cer-
tain degree. Both reproduction rate and selection pressure (tournament
size) have a direct influence on the convergence speed of the evolutionary
algorithm as well as on the loss of (structural and semantic) diversity.

The reproduction rate could also be allowed to exceed the standard setting
1 (prr > 1). An individual would then be reproduced more than once
within the population. As a result, both the convergence speed and the
loss of diversity will be accelerated. Obviously, too many replications of
individuals lead to an unwanted premature convergence and subsequent
stagnation of the evolutionary process. Note that more reproductions are
performed than new individuals are created.

Instead of, or in addition to, an explicit reproduction probability, implicit
conditions can be used to determine when reproduction shall take place
(see Section 10.5).

2.3.4 Variation

Genetic operators change the contents and the size of genetic programs
in a population. Figure 2.4 illustrates two-point linear crossover as it is
used in linear GP for recombining two genetic programs [9]. A segment of
random position and arbitrary length is selected in each of the two parents
and exchanged. In our implementation (see also Section 5.7.1) crossover
exchanges equally sized segments if one of the two children would exceed
the maximum length otherwise [21].

Crossover is the standard macro operator applied to vary the length of
linear genetic programs on the level of instructions. In other words, in-
structions are the smallest units to be changed. Inside instructions micro
mutations randomly replace either the instruction identifier, a register or a
constant (if existent) by equivalents from predefined sets or valid ranges.
In Chapter 5 and Chapter 6 we will introduce more advanced genetic
operators for the linear program representation.
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Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 2.4. Crossover in linear GP. Continuous sequences of instructions are selected
and exchanged between parents.

In general, there are three different ways in which variation operators may
be selected and applied to a certain individual program before its fitness
is calculated:

� Only one variation is performed per individual.

� One variation operator is applied several times.

� More than one variation operator is applied.

The advantage of using only one genetic operation per individual is a lower
total variation strength. This allows artificial evolution to progress more
specifically and in smaller steps. By applying several genetic operations
concurrently, on the other hand, computation time is saved such that less
evaluations are necessary. For example, micro mutations are often applied
together with a macro operation.

Note that in all three cases, there is only one offspring created per parent
individual, i.e., only one offspring gets into the population and is evalu-
ated. However, similar to multiple reproduction of parents one may gen-
erate more than one offspring from a parent. Both options are, however,
not realized by Algorithm 2.1.




