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Truss: A Standard 
Verification Framework
C H A P T E R  6

Truss, and verify. 

Anon.

Have you ever watched a building being constructed? Early in the

project, when the frame of the building is just a skeleton, it’s not clear

what the finished building will look like. However, as construction

continues, from the windows down to the cubicles that are our workplaces,

the intent of the framework becomes clear. In fact, a large part of the

building’s presence depends on the fundamental structure.

This same basic process occurs when we build a verification system.

Early in the project, the application framework is built. The result of

years of best practices from both the verification and software fields,

Truss is an application framework for verification. It is an implementa-

tion, and therefore makes some decisions about how things should be

structured. With verification as with construction, the framework sets

the tone for the system.
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Truss is a layered architecture, so you can choose how to implement the

layers. Although it makes very minimal assumptions, Truss does provide

some base classes and conventions as a guide.

Overview

This chapter presents three main topics:

The roles and responsibilities of the various major Truss 
components

How these components work together

How you adapt this framework for your verification system

This chapter builds on the two previous chapters of the handbook. It

implements an open-source verification infrastructure based on the dis-

cussion in the Layered Approach chapter. It also uses the Teal library

described in the last chapter as a connection between C++ and the

simulation.

Teal provides the fundamental elements of a verification system and

supports a wide array of methodologies. Truss, on the other hand, pro-

vides the infrastructure layers above Teal, adding a set of classes, tem-

plates, idioms, and conventions to facilitate the construction of an

adaptable verification system.

One of the tricks in building a reasonable system is to find the key

algorithm. The rest of the algorithms can usually fit around that key

algorithm. For example, in a video editing program the key algorithm is

all about getting the pace of the edits right. When you watch a movie,

that happy, sad, or scared feeling you get comes from how well-timed

and precise the changes in scene are.1 The authors, having developed

software for video editing systems, know that in this domain the key

algorithm is implemented by adjusting the edit points of a few seconds

of video while the video is constantly looping around those edits. This

is not a trivial thing to do, because multiple streams of video and audio,

1. Okay, emotions also come from the music, but everything works together.
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possibly with software algorithms to implement effects, are changing as

the user is adjusting the edit points.

In the verification domain, the key algorithm is the sequencing of the

various components of the system. The authors refer to this as “the

dance,” as there are usually a few interacting components involved. As

we talked about in the Layered Approach chapter, the top-level dance

takes place between the test, the testbench, and the watchdog timer. Truss

implements this dance in the verification_top() function—but Truss

does not stop there. The authors believe that this dance is the key

algori thm in several  layers  of  the system, so we created a

verification_component abstract base class. Also, we created

test_component and irritator base classes to be the “top” at the

interface and feature layers of the system. Recognizing and reusing the

dance is a significant part of Truss.

This chapter explains the major components of Truss, providing code

examples where appropriate. Subsequent chapters provide more-detailed

examples.

General Considerations

The authors have worked on several different implementations of veri-

fication systems before Truss was available. While at a high level veri-

fication systems can be described uniformly, the language used to build

them has a lot to do with how a specific framework is constructed. 

Using a language other than C++

It is possible to build an OOP-based verification framework in languages

other than C++, but no other verification language on the market has the

OOP capabilities of C++. For example, when a language that does not

support operator overloading is used, the generic operator==() or copy

constructor cannot be used. To provide this basic required functionality,

a common generic base must then be used. Unfortunately, this warps the

framework and produces a fragile architecture—mostly because of the

unsafe type casting. As another example, with a language that has a
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compilation library (such as current HDLs), there is usually a failure to

make a distinction between interface and implementation. This leads to

a more-complicated framework, as test writers must separate the interface

from the implementation manually and repeatedly. C++ avoids these

problems.

Keeping it simple

A stated goal with both Teal and Truss is to avoid unnecessarily compli-

cated code. C++ has many powerful features, but many times they are

not appropriate. It is easy to get distracted with C++ techniques and

forget that the real goal is keeping the whole team productive. 

For example, implementing a generic interface for a verification com-

ponent, such as a transactor, as a template can be tricky. Sometimes using

the template can be more complicated than simply replicating code. 

Sometimes only a convention should be used. An example of this is the

generator concept. One could define an abstract base class, yet the

common methods come down to just start(), stop(), report(), and

a few others. It turns out that this concept of start(), stop(), and so

on is common to a large set of verification tasks, and is represented in

Truss as the abstract base class verification_component. However,

the concrete subclasses are inherited from verification_component

only if they use the bulk of the methods. Any smaller subset uses the

same named methods as a convention instead. 

In this way, the framework is not warped to fit a generic 
class. Even more important, your design is not warped to fit 
the generic class.

Truss implements a specific methodology for functional verification. As

in any endeavor to generalize, the terrain is fraught with peril. Never-

theless, as writing code entails making judgments about what is the

“right” decision, Truss attempts to generalize a style of verification.

Deciding on the right balance between generic and specific is a judgment

call for the team. The idea behind Truss is to foster a small, usable, and

adaptable methodology for beginners through experts. As such, Truss
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provides an example of the techniques presented in Part III of this

handbook.

Major Classes and Their Roles

Truss is an implementation of the layers talked about in the Layered

Approach chapter. Consequently, there are only a few top-level compo-

nents—the verification top, the testbench, the test, and the watchdog

timer. Each component has a specific role. These components and their

roles have been architected to allow a large amount of flexibility with a

relatively simple interface. These top-level components (and those the

next level down) are shown below:

The top-most C++ component is the verification_top() function,

whose role is to create and sequence the other components through a

standard test algorithm. (The algorithm is explained in detail in the next

section.) In addition, verification_top() initializes all global ser-

vices, such as logging, randomization, and the dictionary. 

Verification Component Hierachy

verification top

test watchdog 
timer

testbench

test 
component irritator

chip

C++
HDL
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The watchdog timer is a component created by verification_top().

This component’s role is to shut down a simulation after a certain amount

of time has elapsed, to make sure the simulation does not run forever. 

The testbench top-level component is the bridge between the C++ veri-

fication world and the HDL chip world. As such, the testbench’s role is

to isolate the tests (and test writers!) from having to know how C++

transactors, traffic generators, monitors, and so on interact with the chip.

Whether a bus functional model (BFM) writes to registers or forces wires

should not be of concern to the test writer. 

In addition, the testbench holds the configuration objects of the chip.

This is needed by the BFMs, transactors, and similar agents to be able

to configure the chip correctly. There is probably a configuration object

for each interface of the chip. For chips that contain internal functions,

such as dynamic memory allocation (DMA), there may be a configuration

object for each function.

The last, but certainly not the least, top-level component is the test itself,

whose role is to execute a specific functionality of the chip. It does this

by using the testbench-created BFMs, monitors, and generators. The test

is responsible for choosing among the testbench’s many configurations

and capabilities and exercising some subset of the chip’s functionality.

In general, the test contains very little code. This is because any code it

contains may need to be used in other tests as well. To support code that

is more adaptable, a test normally consists of several test components,

as will be discussed later. The exception is for directed tests, in which

case registers may be overwritten, specific traffic patters sent, or specific

corner cases exercised directly in the test component. 

Key test algorithm: The “dance”

The top-level components of the previous section have a complex, yet

necessary, set of interactions. This ensures the maximum flexibility for

a test, while providing a known set of interactions. This is one of the

tricky parts of a verification system. This section discusses this standard

algorithm, which we call the “dance.”

In general, the top-level components are created, randomized, and then

started. Then verification_top() waits for the test and testbench to

be completed. This is called the “polite” path. If the watchdog timer
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decides that a timeout has occurred, the “impolite” path is taken and the

simulation ends. 

The order of these calls can be better visualized on an event diagram, as

shown below. The four columns show the main components. Execution

starts at the top left line, and the arrows represent function calls to the

other components.

The first thing that verification_top() does is build the global logging

objects. These provide logging to a file and shut down the simulation

af ter  a  threshold number  of  errors  have been logged.  (See

truss_vout.h.)

new()

WatchdogTest Testbenchverification_top

randomize()

time_zero_setup()

out_of_reset()

start()

wait_for_completion()

report(“final”)

report(“timeout”)

Create
top
objects

Build and
configure

Main
test
run

Timeout
path

Test
results

The Dance

write_to_hardware()
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Then,  a f te r  the  g loba l  logging  objec ts  have  been  c rea ted ,

verification_top() allocates the top-level objects. The test is given

a pointer to the testbench, so that it can interact with the testbench. It is

also given a pointer to the watchdog timer, in case a part of the test wants

to force a shutdown or override the verification_top() default time-

outs. The watchdog is given a pointer to an object so that it can call the

final report method with a “watchdog timeout” string prefix.

At this point, all the top-level objects are constructed. As part of their

construction they are expected to have established default constraints.

Then verification_top() reads the dictionary file (if it exists). This

is to allow the test constraints file to override any default settings put

there during the construction of the test, the testbench, and their subor-

dinate components. 

After initializing the random-number generator, verification_top()

calls test->randomize(). Once the test is randomized, then 

testbench->randomize() is called.

At this point, it is expected that the test and testbench have built their

respective subcomponents and are ready to run the test. The first step is

the time_zero_setup() method, which is used to force wires and

initialize interfaces prior to bringing the chip out of reset.

As expected, the next step is out_of_reset(), which is used to bring

the chip out of its reset state and set it for initialization through the back-

door or register writes. 

The next step, write_to_hardware(), is where the BFMs are called to

initialize the chip. This can be done by either the test, the testbench, or

a combination of the two. What is appropriate depends on your situation,

as discussed in subsequent sections.

At this point the system is ready for traffic flow. The start() method

directs the testbench and test to start running. The testbench is started

first, to allow monitors and BFMs to start, followed by the watchdog

timer. Finally, the test is told to start(), which generates the actual

traffic.

Next, verification_top() calls wait_for_completion() on the test-

bench. If your design makes the testbench aware of what checkers are in

use, this call waits for the testbench checkers to complete. If not, this

method simply returns.
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Then verification_top() calls the test’s wait_for_completion().

If your design makes the test aware of what checkers are in use, this call

waits for them to complete. (This is the style used in the examples.)

At this point, the test is almost finished. The testbench and test are called

to report their final status.2

Then verification_top() checks to see if any errors were reported.

If none were reported, the test is considered to have passed. It may seem

weak to accept that the absence of errors is sufficient to consider a test

passing. In practice, however, there is no other choice. At the top level,

one must trust that the lower-level objects do their jobs. Note that this

usually means that in-flight data must be weeded out as the checker

proceeds.

Now if the watchdog timer triggers, a different path is taken. The watch-

dog immediately calls the report method on verification_top(). Note

that the watchdog itself uses an HDL-based timeout, so that if the report

method hangs, the simulation still ends.

The verification_component Abstract Base Class

While the test and the testbench are completely different classes as far

as their roles and responsibilities are concerned, their interface to

verification_top() is the same. For this reason a common class was

created. This common class, used as a base for both the test and testbench,

is called the verification_component.

The verification_component is an abstract base class. As such, it

provides pure virtual methods for the dance described in the previous

section. In addition, verification_component provides a constant

2. The authors have tried using the destructor as the final report mechanism. In 
practice, however, this becomes a difficult part of the design. This is because 
some destructors try to access deallocated memory or other objects that have 
already been destroyed. It then becomes tricky to “shut down” the simulation 
in the correct order, so as not to cause a crash or hang and still get errors print-
ed out. This is one area where verification is different from software, which 
generally does use destructors as part of the system design.
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name and a logger. The interface for verification_component is shown

below:

namespace truss {

class verification_component {

public: 

verification_component(const std::string& n);

virtual ~verification_component();

virtual void randomize() = 0;

virtual void time_zero_setup() = 0;

typedef enum {cold, warm} reset;

virtual void out_of_reset(reset) = 0;

virtual void write_to_hardware() = 0;

virtual void start() = 0;

virtual void stop() = 0;

virtual void wait_for_completion() = 0; 

virtual void report(const std::string prefix) = 0;

const std::string& name;

protected:

mutable teal::vout log_;

};

};

Although verification_component is a base for the test and the test-

bench, it is also useful as a base for other objects.

Detailed Responsibilities 
of the Major Components

The previous sections discussed the roles of the major components and

how they were sequenced to run a test scenario. This section dives down

a level, discussing in more detail the specifications of the major compo-

nents. (Because verification_top() was discussed in detail in the

previous section, it is not discussed further here.)
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The testbench class

The testbench class has two main responsibilities. One is to isolate the

test writers from the actual wire interfaces. The other is to provide “one-

stop shopping” for all the generators, checkers, monitors, configuration

objects, and BFMs/drivers in the system. The reason to put all of your

components into a single object is to facilitate the adaptation of compo-

nents into multiple tests. In this way, a test writer can see all of the

possible “building blocks” that are available.

The testbench class can be a passive collection point for all these

components, or it can play an active role in bringing the chip out of reset,

generating traffic, and knowing when the test is done. In theory, only the

global functionality should be handled by the testbench. For example,

the testbench probably should bring the entire chip out of reset, while

the test can bring separate functionality out of reset. In practice, the test

and the testbench share the work.

In general, it is better to let the test or test components control the

simulation. This is because a test or test component can then be adapted

for several different types of tests. 

A more active testbench may, as a counterpoint, simplify a large number

of tests in a way that a test base class cannot, because the testbench has

direct access to all the chip’s wires.

Understand that the more test knowledge a testbench has, the more all

tests must act the same or have control over that testbench’s functions.

This can be good or bad. The specific responsibilities for control and

functionality—test or testbench—are, of course, up to the verification

team.

As an implementation detail, Truss provides only a testbench_base

class. What verification_top() builds, however, is a testbench

object. You must provide a testbench.h, which declares a testbench

class. You will probably also have a testbench.cpp, which is inherited

from truss::testbench_base.
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Watchdog timer

The watchdog timer component is responsible for providing an “impo-

lite” shutdown if the test has executed for too long. The timer has two

timeout mechanisms: one triggers when the watchdog HDL timer trig-

gers, and the other triggers after the first trigger has occurred.3

The watchdog timer uses the dictionary to get its timeout values, which

are sent to the HDL on time_zero_setup(). The start() method starts

the timers. The HDL watchdog uses an internal timer. If it were to use a

passed-in clock, that clock may inadvertently be shut off.

Once either timer triggers, the watchdog HDL timer is notified and a

second timer is started. If this timer expires, $finish is called. This

might happen, for example, if there is some code in the report that is still

reading registers, but the chip is unable to respond.4

After the watchdog is notified of an HDL timeout, the report() method

in verification_top() is called. This allows the test to report which

checkers have completed and which have not, helping to provide a clue

as to why the simulation ran too long.

Test class

The test class is responsible for selecting, configuring, and running all

the appropriate generators, BFMs, monitors, and checkers. It is also

responsible for selecting the configuration of the chip to be used. 

While you could directly implement the above responsibilities in the test

class, Truss encourages another style. In Truss the test is intended to

consist of a number of independent, smaller components called test

components. These components are the ones that actually do the work;

the test’s role is to create, constrain, configure, and sequence the com-

3. The watchdog timer is simple in theory, but often hard to execute correctly. To 
be sure, it must have a clock and a countdown time, but even this basic level 
can be problematic. Should you use wall clock time, simulation time, or both? 
Should the HDL timer be internal or external? What resolution should it have? 
Should the test be able to extend or communicate the expected time of the run?

4. The authors worked on a project where the final report code read the status reg-
isters to make sure that functional area of the chip did not have any errors. 
However, when we added a power-down test irritator, the read hung the sys-
tem. It took us a while to find the offending code. 
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ponents, as appropriate for the test at hand. The reasoning behind having

multiple independent components is that this is close to the real operation

of the chip, where each feature is expected to operate simultaneously. In

reality, the chip has common resources that must sequence or arbitrate

the use of features. It is in these common resources where the more tricky

bugs lurk.

Using this method, the test’s direct responsibility is to map the features

of the chip (as presented by the testbench’s data members) to a set of

classes inherited from the test_component base class. The test would

then add constraints to adapt the test component to the test at hand, as

in the following example:

class ethernet_basic_packet : public test_base {

public:

ethernet_basic_packet(testbench* tb, watchdog* wd) :

ethernet_data_1(tb->e_generator_1, tb->e_bfm_1, 

tb->e_checker_1),

ethernet_data_2(tb->e_generator_2, tb->e_bfm_2, 

tb->e_checker_2),

pci_express_1(tb->pci_generator_1, tb->pci_bfm_1, 

tb->pci_checker_1) {}

void time_zero_setup(){
ethernet_data_1.time_zero_setup();

ethernet_data_2.time_zero_setup();

pci_express_1.time_zero_setup();

}

void out_of_reset(reset r) {
ethernet_data_1.out_of_reset(r);
ethernet_data_2.out_of_reset(r);
pci_express_1.out_of_reset(r);

}

void write_to_hardware() {
ethernet_data_1.write_to_hardware();
ethernet_data_2.write_to_hardware();
pci_express_1.write_to_hardware();

}

 void start(){
ethernet_data_1.start();
ethernet_data_2.start();
pci_express_1.start();

}
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 void wait_for_completion() { 
ethernet_data_1.wait_for_completion();
ethernet_data_2.wait_for_completion();
pci_express_1.wait_for_completion();

}

 void report(const std::string& prefix) {
ethernet_data_1.report(prefix);
ethernet_data_2.report(prefix);
pci_express_1.report(prefix);

}

private:

ethernet_test_component ethernet_data_1;

ethernet_test_component ethernet_data_2;

pci_irritator pci_express_1;

}

In the above example, the ethernet_basic_packet test uses three test

components, two of which are identical. It connects up the appropriate

testbench objects and forwards to every test component the following

test calls:

time_zero_setup() , out_of_reset() , start() ,

wait_for_completion(), and report()

So why do testing in this more complicated manner? In addition to the

previously mentioned idea of simulating close to real-world conditions,

an important reason is to maximize the adaptability of the test compo-

nents. In the example above, we used the same test component for both

Ethernet ports. Also, when the test components take in only the parts of

the testbench that they need, they (1) make explicit what they are using,

and (2) minimize the assumptions on the rest of the chip. This, as will

be highlighted in the single UART example in Part IV, allows a test

component to be reused for other chips that have only a subset of the

original chip’s functionality. 

Test components are critical to the adaptability of a verification system.

In general, the test components themselves do not know whether they

are running in parallel with other test components or are part of a series.

Thus, the most adaptable components are these test components, as will

be discussed further in the following sections.

As an implementation trick, verification_top() builds a test by using

a define called TEST. This trickery, set up by the makefile, allows the
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truss run script to compile in a different test, while leaving the rest of

the build image the same for all tests. This allows each test to be its own

class (inherited from test_base). This cleverness helps one avoid a bad

experience in the future. Assume that your team had written on the order

of 50 tests, and then a new test was created that required a new subphase

to be added to the dance. Although the other tests did not need this new

method, you cannot add the default method. This is because all the tests

are implemented as a test class. There is only one header test.h, and

50 different test.cpp files. By defining a base class, and then having

the actual test be an inherited class (with a different header file), one can

add methods to the base without affecting the existing tests.

There is one more part to a test that needs to be discussed. Often a test

is made better by the addition of random background traffic. This traffic,

be it register reads and writes, memory accesses, or just the use of other

interfaces, can uncover corner cases, such as bus contention, that would

not be found otherwise. 

These background-traffic test components are called irritators and inherit

from the test_component class. They differ from the standard test

component in that they continue their traffic generation until told to stop

by the test. Test components, by contrast, decide themselves when they

are done, as determined by specified metrics, such as a stop time or the

number of packets to send. (Irritators will be describe in more detail later

in this chapter.)

With background traffic irritators, the test is written essentially as before.

The exception is that the wait_for_completion() of the test calls the

primary test components’ wait_for_completion(). When the primary

component returns, the test calls stop_generation() on all the irritators

and waits for them by means of their wait_for_completion(). Then

the test returns control to user_main. (This is explained further in

subsequent sections and in the examples in the chapters that follow.)
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Test Component and Irritator Classes

As discussed in the previous section, test component-based design is

central to a Truss-based test system. The authors have found that sepa-

rating the test scenarios into test components has maximized the adapt-

ability of the system. By using test components and irritators, test writers

have been able to minimize their assumptions and distractions and con-

centrate on exercising the chip. Furthermore, other test writers can adapt

what was done in other functional areas and inherit irritators (if they are

not already present) for use as background traffic.

This section describes the responsibilities and interfaces of the

test_component and irritator abstract base classes.

The test component abstract base class

The test_component is an abstract base class whose role is to exercise

some interface of the chip. As discussed above, this functionality has

traditionally been included in the test. The test_component describes

the interface that all concrete implementations must follow.

In fact, you may have several types of test_component for a single

interface, for example, a register read/write one, a basic data path one,

and an error case one. The fact that these different exercises implement

the same interface simplifies reasoning about them.

In practice, most test components use a generator and a wire-level object.

Sometimes they may also be given a checker, depending on the designer’s

intent. 

The test_component class is not directly a verification_component,

but it has all the same phases.5 The test_component breaks down some

5. The primary reason for this is because verification_component repre-
sents a pattern, while test_component is an example of this pattern. The 
test_component has specific implementations of four of the 
verification_component methods. Also, test_component intro-
duces some of these same methods as nonvirtual. Finally, the sequencing of the 
methods is different from the test and testbench, the two top-level components 
that are verification components. These differences are critical for the integrity 
of the class.
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of the verification_component methods into finer detail, as one would

expect of a lower-level object. 

Below is the interface for the test_component base class.

namespace truss {

class test_component : 

protected virtual verification_component, 

protected thread {

public:

test_component(const std::string& n);

virtual void time_zero_setup() = 0;

virtual void out_of_reset(reset) = 0;

virtual void randomize() = 0;

virtual void write_to_hardware() = 0;

void start(); 

void stop();

void wait_for_completion();

void report(const std::string& prefix);

protected:

virtual void start_();

virtual void run_component_traffic_();

virtual void start_components_() = 0;

virtual void generate() = 0;

virtual void wait_for_completion_() = 0;

bool completed_;

};

}

The  me thods  time_zero_setup() , out_of_reset() ,  and

write_to_hardware() are provided to allow the test component to

interact with a BFM or driver. Note that a different, but equally valid,

architecture would keep the wire-layer components private in the test-

bench and sequence them by means of the top-level dance. This assumes

that the testbench knows what subset of the BFMs, drivers, and monitors,

to start up.

The start() method is used to start the test_component’s generator,

BFM, and so on. This method is implemented by a Truss utility class

called thread. A thread class runs another virtual method, start_(),

in a separate thread or execution. This allows a test class to do the obvious

thing and just call start() on all the test components the test uses.
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Let’s look at the start_() method, as it is the main starting point for

an interface of the chip. The start_() method runs two methods: a

start_components()  pu re  v i r t ua l  me thod ,  and  a  v i r t ua l

run_component_traffic_() with a default implementation. The idea

behind the start_components_() method is that you call start() on

your generators, BFMs, and so on, as appropriate. (The examples part

of this handbook contains examples of test_component.)

The default run_component_traffic_() method calls randomize()

(to randomize the test component and its components), and then calls

generate(). In your randomize() method, randomize the data members

that will be used by generate() to cause some traffic to be generated.

In your generate(), take these data members and make the appropriate

calls to the generators in the testbench.

An AHB example

An example might make the roles a little clearer. (Remember that there

are several fully implemented examples in Part IV.) Suppose you are

creating a test component to test an AHB6 arbiter. The test component

acts as a master, generating read and write requests to a number of slaves. 

The generator in the testbench can generate a burst of reads or writes to

a given slave, using a specific burst length. Assume that the generator

has a channel interface that can take in an AHB transaction object. The

randomize function of your ahb_test_component might look like this:

void ahb_test_component::randomize() {

burst_length_ = generate_burst_length(min,max);

is_read_ = generate_type(min_type, max_type);

slave_ = generate_slave(min_slave, max_slave);

}

The corresponding generate() might look like this:

void ahm_test_component::generate() {

//addresses are picked by the generator

generator_—>queue_burst

(new AHB_transaction (burst_length, is_read_,

6. AMBA (Advanced Microcontroller Bus Architecture) high-performance bus.
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 slave_));

done_.signal();  //Signals that test_component is done

}

Notice that by nature these calls are executed in a one-shot manner. That

is, together they perform a single transaction. This is useful to allow an

irritator to inherit from this test component later, to sequence this

pattern any number of times and possibly change the randomization

constraints as well. 

So why have two separate methods?

By separating the randomization from the generation phases, one can

inherit different classes that either (1) have different randomization

characteristics (for example, logarithmic distributions of the burst length,

or a pattern); or (2) send the data through a filter first, then to the generator.

So now that the transaction has been generated, what should the

wait_for_completion() method do? Because the generation is occur-

ring in another thread, there should be a condition variable to commu-

nicate when it is done.

So the code might look like this:

void AHB_test_component::wait_for_completion_() {

  done_.wait();

}

Test-component housekeeping functionality

The test_component class also provides a basic housekeeping boolean

that tracks when you return from the wait_for_completion_() method.

This allows the report() method to determine whether you have con-

sidered the work of the component to have been completed or not. This

can be very useful in a timeout situation, to see which components have

not completed.

What you decide to do in the wait_for_completion_() depends on

how you view your test_component. One view is that it is a traffic

generator only, which can complete when the generation of traffic has

been queued. It is then up to the testbench or test to determine when the

chip has processed all the data. This will most likely involve a checker

or monitor.
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Another view is that your test_component represents a generate and

check path through the chip. In this case, the completion of

test_component signifies the completion of the entire exercise. (The

examples in this handbook use this view.) 

As always, the team must decide which view is better for 
their project. 

The irritator abstract base class

As discussed above, the test_component is set up as a one-shot traffic

generator. This works for tests that are directed, and for tests where the

completion event is predetermined—that is, tests that know before the

start() call what the end conditions are. 

However, sometimes it is not good design to have the test_component

determine when completion is achieved. This is the case when, for

example, you want to achieve a certain metric, and the measurement is

not appropriate information for the test_component.

For example, you may want to send 100 bursts of some AHB traffic.

While this could be included in the ahb_test_component, you might

not want to measure completion by 100 bursts all the time. Instead, you

might want to write a test that looks at the number of hits each slave

device gets, and stop the test when all slave devices have been targeted.

As another alternative, you might want a test to run until some coverage

occurs, which could be any of the previous scenarios, or could involve

some internal state in the arbiter.

The irritator, inherited from test_component, is used for situations

such as these. The interface is shown below.

namespace truss {

class irritator : public virtual test_component {

  public:

  irritator(const std::string& n);

  virtual ~irritator() {}

  void stop_generation() {generate_ = false;}

 protected:

  virtual void start_();

  virtual void run_traffic_();
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  virtual bool continue_generation();

  virtual void inter_generate_gap() = 0;

  bool generate_;

 };

};

The i r r i ta tor  overr ides  the run_traffic_() method of  the

test_component base class. It sets up a loop, calling the one-shot

r a n d o m i z a t i o n  a n d  g e n e r a t i o n  i n  t h e  test_component ’s

run_traffic_() methods. The implementation is shown below.

virtual void truss::irritator::run_traffic_() {

while (continue_generation()) {

test_component::run_component_traffic_();

intergenerate_gap();

}

}

The method continue_generation() just looks at a boolean, which is

toggled to false by a call to the stop_generation() method. This

allows an external class to stop the continual loop of randomization and

generation.

Note that there is a new virtual method in the irritator class, called

intergenerate_gap(). Because the irritator is continually generating

traffic, you might need a delay mechanism to prevent the generator from

flooding the chip. 

There are many ways to get this delay. For example, in one solution the

generator and attached BFM/driver could execute the generate request

as soon as it is called and thus take simulation time. In another solution,

the way to get a delay would be to have a fixed-depth generator and BFM/

driver channel.7 This would put back-pressure on this generate loop. In

still another solution, the generator could have a delay in clock cycles

before returning. 

Any of the above solutions is acceptable, but there is yet another choice.

That option is to have the irritator itself provide the delay mechanism.

7. This method is supported in Truss’s channel class.
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The intergenerate_gap() is a virtual method allowing you to imple-

ment an irritator-based delay. This allows the irritator to decide on the

throttle mechanism. Different subclasses could implement different pol-

icies. For example, an irritator could wait for a variable number of clock

cycles. Another example would be to measure some parameter on the

checker (such as packets in flight). 

As always, the team must decide what is appropriate.

Using the irritator

T h e  i r r i t a t o r  c o n t i n u e s  t h i s  g e n e r a t e / w a i t  l o o p  u n t i l  a

stop_generation() is called. But how do you decide when to stop the

irritator? The answer, of course, is “When the test reaches its goal.” One

goal could be that the “main reason” for the test has been achieved. For

example, you can have the main goal be a test component, perhaps one

that generates a fixed, but randomized, number of packets through a

particular chip interface. The global goal in this case would be for the

test component to achieve completion. Here is how the test code might

look:

void noisy_packet_test::wait_for_completion() {

//assume the data members include 
base_packet_exerciser, 

//the test component of interest and some std 
container 

//class with a list of irritators. 

basic_packet_exerciser_—>wait_for_completion();

std::for_each(irritators_.begin(), irritators_.end(), 

stop_generation());

std::for_each(irritators_.begin(), irritators_.end(), 

wait_for_competion());

}

Ignoring the nontrivial constraining, selecting, and creating of the test

component and irritators, what is accomplished in a few lines of code is

a shutdown sequence that is powerful, while being a fairly simple idiom.

Note that a verification team could decide to use only irritators in their

implementation. In that way, when to stop the test can then be determined

by looking either at a checker or possibly at elapsed simulation time.
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The complex part of the test would then become the randomization and

selection of irritators. The authors have worked on a variant of this

methodology, and the resulting verified chip was a first silicon success. 

Summary

This chapter introduced Truss, an open-source application framework.

We revisited the benefits of an OOP language such as C++, but stressed

the need to keep things simple despite the power of this language, to

avoid writing code that is unnecessarily complicated.

We talked about the key algorithm of verification, which the authors

called the “dance.” We showed how the dance is used by the

verification_top() program to run a test. We discussed the roles and

responsibilities of the test, testbench, and watchdog timer, the main parts

of the top-level dance.

We discussed the verification_component abstract base class, which

provides pure virtual methods for the dance.

We then discussed the test_component and irritator classes, includ-

ing their responsibilities and interfaces.




