
Access Control Policies and Languages in Open
Environments

S. De Capitani di Vimercatil, S. Foresti', S. Jajodia2, and P. Samarati'

Universitit degli Studi di Milano
{decapita, foresti, samarati}@dti.unimi.it
Center of Secure Information Systems
George Mason University
jajodia@gmu.edu

1 Introduction

Access control is the process of mediating every request to resources and data main-
tained by a system and determining whether the request should be granted or denied.
Access control plays an important role in overall system security. The development
of an access control system requires the definition of the regulations (policies) ac-
cording to which access is to be controlled and their implementation as functions
executable by a computer system. The access control policies are usually formal-
ized through a security model, stated through an appropriate specification language,
and then enforced by the access control mechanism enforcing the access control ser-
vice. The separation between policies and mechanisms introduces an independence
between protection requirements to be enforced on the one side, and mechanisms
enforcing them on the other. It is then possible to: i) discuss protection requirements
independently of their implementation, ii) compare different access control policies
as well as different mechanisms that enforce the same policy, and iii) design mecha-
nisms able to enforce multiple policies. This latter aspect is particularly important: if
a mechanism is tied to a specific policy, a change in the policy would require chang-
ing the whole access control system; mechanisms able to enforce multiple policies
avoid this drawback. The formalization phase between the policy definition and its
implementation as a mechanism allows the definition of a formal model representing
the policy and its working, making it possible to define and prove security proper-
ties that systems enforcing the model will enjoy [30]. Therefore, by proving that the
model is "secure" and that the mechanism correctly implements the model, we can
argue that the system is "secure" (with respect to the dejnition of security consid-
ered [37]).

The definition of access control policies (and their corresponding models) is far
from being a trivial process. One of the major difficulty lies in the interpretation of,
often complex and sometimes ambiguous, real world security policies and in their
translation in well defined and unambiguous rules enforceable by a computer sys-

22 S. De Capitani di Vimercati, S . Foresti, S. Jajodia, and P. Samarati

tem. Many real world situations have complex policies, where access decisions de-
pend on the application of different rules coming, for example, from laws, practices,
and organizational regulations. A security policy must capture all the different regu-
lations to be enforced and, in addition, must also consider possible additional threats
due to the use of a computer system. Given the complexity of the scenario, there is a
need for flexible, powerful, and expressive access control services to accommodate
all the different requirements that may need to be expressed, while at the same time
be simple both in terms of use (so that specifications can be kept under control) and
implementation (so to allow for its verification).

An access control system should include support for the following con-
ceptslfeatures.

0 Expressibility. An access control service should be expressive enough so that the
policy can suit all the data owner's needs. To this purpose, several of the most
recent language designs rely on concepts and techniques from logic, specifically
from logic programming [16,28,32-34,481. Logic languages are particularly at-
tractive as policy specification languages (see Sect. 3). One obvious advantage
lies in their clean and unambiguous semantics, suitable for implementation val-
idation, as well as formal policy verification. Second, logic languages can be
expressive enough to formulate all the policies introduced in the literature. The
declarative nature of logic languages yields a good compromise between expres-
siveness and simplicity. Their high level of abstraction, very close to the natural
language formulation of the policies, makes them simpler to use than imperative
programming languages. However, security managers are not experts in formal
logics, either, so generality is sometimes traded for simplicity.

0 Ejjiciency. Access control efficiency is always a critical issue. Therefore, simple
and efficient mechanisms to allow or deny an access are key aspects (see Sect. 3).
Simplicity. One of the major challenges in the definition of a policy language is to
provide expressiveness and flexibility while at the same time ensuring easiness
of use and therefore applicability. An access control language should therefore
be based on a high level formulation of the access control rules, possibly close
to natural language formulation (see Sect. 4).

0 Anonymity support. In open environments, not all access control decisions are
identity -based. Resource/service requesters depend upon their attributes (usually
substantiated by certificates) to gain accesses to resources (see Sect. 5).

0 Policy combination and conyict-resolution. If multiple modules (e.g., for differ-
ent authorities or different domains) exist for the specification of access control
rules, the access control system should provide a means for users to specify how
the different modules should interact, for example, if their union (maximum
privilege) or their intersection (minimum privilege) should be considered (see
Sect. 6). Also, when both permissions and denials can be specified, the problem
naturally arises of how to deal with incompleteness (accesses for which no rule is
specified) and inconsistency (accesses for which both a denial and a permission
are specified). Dealing with incompleteness (requiring the authorizations to be
complete would be very impractical) requires support of a default policy either

Access Control Policies and Languages in Open Environments 23

Personal

// \
Purchase Sales Production

I \
Internal Exports RepA

/ \
RepB

I \ I
Alice Bob Carol David Elvis Frank George

Fig. 1. An example of user-group hierarchy

9"""'"" 1
Rs Orders

,Srt Received
/ \

/NatT-z International

I
IS01 IS02 IROl ON01 ON02 0101 0102 0103

I \

Fig. 2. An example of object hierarchy

supported by the system or specified by the users. Dealing with inconsistencies
require support for conflict resolution policies.

In this chapter, after a brief overview of the basic concepts on which access con-
trol systems are based, we illustrate recent proposals and ongoing work addressing
access control in emerging applications and new scenarios. The remainder of this
chapter is structured as follows. Section 2 introduces the basic concepts of access
control. Section 3 presents a logic-based framework for representing access control
policies. Section 4 briefly describes some XML-based access control languages and
illustrates the XACML policy model and language. XACML is a OASIS standard
that provides a means for expressing and interchanging access control policies in
XML. Section 5 introduces recent solutions basing the access control decisions on
the evaluation of users' attributes rather than on their explicit identity. Section 6 ad-
dresses the problem of combining authorization specifications that may be indepen-
dently stated. We describe the characteristics that a policy composition framework
should have and illustrate some current approaches. Finally, Sect. 7 concludes the
chapter.

2 Basic Concepts

A first step in the development of an access control system is the identification of
the objects to be protected, the subjects that execute activities and request access
to objects, and the actions that can be executed on the objects, and that must be
controlled. More precisely, an access control system should support the following
concepts.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

. -

/ \
Admin-Sta f f Operative-Sta f f

/ \ /
Secretary Manager

\
Local-Chie f

Fig. 3. An example of role hierarchy

Users (U) are entities requesting access to objects. Abstractions can be defined
within the domain of users. Intuitively, abstractions allow to define group of
users. Users together with their groups, denoted G, define a partial order that
introduces a hierarchy on the user domain. Figure 1 illustrates an example of
user-group hierarchy.
Data Items (Obj) are the objects of the system that have to be protected and on
which access rights can be specified. Objects can be organized in a hierarchi-
cal structure, defining sets of objects that can be referred together with a given
name. The definition of groups of objects (object types), denoted T, introduces a
hierarchy of objects and groups thereof. For instance, a file system can be seen
as an object hierarchy, where files are single objects and directories are groups
thereof. Figure 2 illustrates an example of object hierarchy.
Access Types (A) are the actions that can be executed on an object. The actions
may vary depending on the kind of objects considered.
Roles (R) are sets of privileges. A user playing a role has the ability to execute
the privileges associated with the role. Roles can be organized hierarchically.
Figure 3 illustrates an example of role hierarchy.
Administrative policies regulate who can grant and revoke authorizations in the
system.

Note that groups and roles are different concepts with two main differences:

a group is a named collection of users and possibly other groups, and a role is a
named collection of privileges, and possibly other roles;
while role can sometimes be activated and deactivated directly by users at their
discretion, the membership in a group cannot be deactivated.

These two concepts are not exclusive but complementary to each other. The hier-
archical structure of data items, users/groups, and roles can be formally represented
through a mathematical structure called hierarchy.

Definition 1 (Hierarchy). A hierarchy is a triple (X , Y , 5) where:

0 X and Yare disjoint sets;
0 5 is a partial order on (X U Y) such that each x E X is a minimal element of

(X U Y) ; an element x E X is said to be minimal iff there are no elements below
it in the hierarchy, that is, ifSVyE (X U Y) : y s x + y=x.

Access Control Policies and Languages in Open Environments 25

According to this definition, X represents primitive elements (e.g., a user or a
file), and Y represents aggregate entities (e.g., a set of users or objects).

Given a system composed of the elements listed above, an authorization speci-
fies which authorization subjects can execute which actions on which authorization
objects. An authorization can then be represented as a triple (s, o, a), indicating that
authorization subject s can execute action a over authorization object o.

In addition to positive authorizations, recent access control languages support
also negative authorizations, that is, authorizations indicating that an authorization
subject cannot execute a stated action on the specified authorization object. The com-
bined use of positive and negative authorizations has the great advantage of allowing
an easy management of exceptions in policy definition. For instance, if all users in
the system but Alice can access a resource and we use only positive authorizations,
it is necessary to specify for each subject but Alice a triple indicating that user u can
access resource r. By contrast, with negative authorizations, we can simply state that
Alice cannot access r, supposing, as a default policy, that everybody can access r.

To represent both positive and negative access rights, authorization triples be-
come of the form (s, o, f a) , where +a indicates a positive authorization and -a
indicates a negative authorization.

Given a set of authorizations explicitly specified over the elements in the sys-
tem, it is possible to obtain a set of derived authorizations obtained according to a
hierarchy-based derivation. Some of the most common propagation policies (which
include also some resolution policies for possible conflicts) are described below [26].

No propagation. Authorizations are not propagated. For instance, a triple speci-
fied for a node is not propagated to its descendants. No propagation is applicable
when non-leaf nodes can appear in an access request and therefore authorizations
that apply to them as subjectlobject must be considered (as it is, for example, the
case of roles).
No overriding. Authorizations of a node are propagated to its descendants.
Most spec$c overrides. Authorizations of a node are propagated to its descen-
dants if not overridden. An authorization associated with a node n overrides a
contradicting authorization3 associated with any supemodeof n for all the subn-
odes of n.
Path overrides. Authorizations of a node are propagated to its descendants if not
overridden. An authorization associated with a node n overrides a contradicting
authorization associated with a supemode n' for all the subnodes of n only for
the paths passing from n. The overriding has no effect on other paths.

The combined use of positive and negative authorizations brings now to the prob-
lem of how the two specifications should be treated when conflict authorizations are
associated with the same node in a hierarchy. In these cases, different decision crite-
ria could be adopted, each applicable in specific situations, corresponding to different
conjlict resolution policies that can be implemented. Examples of conflict resolution
policies are the following.

Authorizations (s, o, +a) and (st, o', -a1) are contradictory if s = sl , o = ol , and a = a'.

26 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

No conflict. The presence of a conflict is considered an error.
Denials take precedence. Negative authorizations take precedence.

a Permissions take precedence. Positive authorizations take precedence.
Nothing takes precedence. Neither positive nor negative authorizations take
precedence.

It may be possible that after the application of a propagation policy and a conflict
resolution policy, some accesses are neither authorized nor denied (i.e., no authoriza-
tion exists for them). A decision policy guarantees that for each subject there exists
a permission or a prohibition to execute a given access. Two well known decision
policies are the closed policy and the open policy. The closed policy allows an ac-
cess if there exists a positive authorization for it, and denies it otherwise. The open
policy denies an access if there exists a negative authorization for it, and allows it
otherwise.

3 Logic-Based Access Control Languages

Several authorization models and access control mechanisms have been imple-
mented. However, each model, and its corresponding enforcement mechanism, im-
plements a single specified policy, which is built into the mechanism. As a conse-
quence, although different policy choices are possible in theory, each access control
system is in practice bound to a specific policy. The major drawback of this approach
is that a single policy simply cannot capture all the protection requirements that may
arise over time. Recent proposals have worked towards languages and models able to
express, in a single framework, different access control policies, to the goal of pro-
viding a single mechanism able to enforce multiple policies. Logic-based languages,
for their expressive power and formal foundations, represent a good candidate. The
main advantages of using a logic-based language can be summarized as follows:

the semantic of a logic language is clear and unambiguous;
logic languages are very expressive and can be used to represent any kind of
policy;
logic languages are declarative and offer a better abstraction level than impera-
tive programming languages.

The first work investigating logic languages for the specification of authoriza-
tions is the work by Woo and Lam [48]. Their proposal makes the point for the
need of flexibility and extensibility in access specifications and illustrates how these
advantages can be achieved by abstracting from the low level authorization triples
and adopting a high level authorization language. Their language is essentially a
many-sorted first-order language with a rule construct, useful to express authoriza-
tion derivations and therefore model authorization implications and default decisions
(e.g., closed or open policy).

In [5] the authors propose a temporal authorization model that supports peri-
odic access authorizations and periodic rules. More precisely, deductive temporal

Access Control Policies and Languages in Open Environments 27

rules with periodicity and order constraints are provided to derive new authoriza-
tions based on the presence or absence of other authorizations in specific periods
of time. Another approach based on active rules, called role triggers, has been pre-
sented in [6]. The authors extend the RBAC model by adding temporal constraints
on the enablingldisabling of roles.

Other logic-based access control languages support inheritance mechanisms and
conflict resolution policies. The Hierarchical Temporal Authorization Model adopts
the denials-take-precedence principle and does not distinguish between original and
derived authorizations: an authorization can override another one independently from
the category to which they belong. The main problem of this logic language is that it
is not stratifiable. However, it supports a dynamic form of stratification that guaran-
tees a polynomial computation time. A framework based on the C-Datalog language
has also been presented. The framework is general enough to model a variety of
access control models.

Although these proposals allow the expression of different kinds of authoriza-
tion implications, constraints on authorizations, and access control policies, the au-
thorization specifications may result difficult to understand and manage. Also, the
trade-off between expressiveness and efficiency seems to be strongly unbalanced:
the lack of restrictions on the language results in the specification of models that
may not even be decidable and implementable in practice.

Starting from these observations, Jajodia et al. [26] worked on a proposal for
a logic-based language that attempted to balance flexibility and expressiveness on
the one side, and easy management and performance on the other. The language
allows the representation of different policies and protection requirements, while at
the same time providing understandable specifications, clear semantics (guaranteeing
therefore the behavior of the specifications), and bearable data complexity. In the
remainder of this section, we will describe this proposal in more details.

3.1 Flexible Authorization Framework

The Flexible Authorization Framework (FAF) [26] is a powerful and elegant logic-
based framework where authorizations are specified in terms of a locally stratified
rule base logic. FAF is based on an access control model that does not depend on
any policy but is capable of representing any policy through the syntax of the model.
In FAF, a data system to which protection must be ensured is formally defined as
follows.

Definition 2 (Data System). A data system (DS) is a 5-tuple
(OTH, UGH, RH, A, Rel) where:

OTH= (Obj, T , SOT) is an object hierarchy;
UGH= (U, G, 5 " ~) is a user-group hierarchy;
RH= (0, R, SR) is a role hierarchy;
A is a set of actions;
Rel is a set of relationships that can be dejned on the different elements of DS;

28 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Fig. 4. Functional authorization architecture [26]

0 OTH, UGH, and RH are disjoint.

Note that this definition of data system is very general as it may be used to represent
any system by appropriately instantiating the five components listed above. Also,
a system with no user-group, object, or role hierarchy can be represented by this
definition. For instance, a data system with no role hierarchy is represented by a data
system where x <R y iff x = y.

Given an authorization triple (s , o, f a) , the authorization subject s can be a user,
a group, or a role and the corresponding hierarchy, called authorization subject hier-
archy (ASH), is intuitively obtained placing the two hierarchies UGH and RH side
by side. The authorization object o can be an object, a type, or a role and the corre-
sponding hierarchy, called authorization object hierarchy (AOH), is obtained placing
the OTH and the inverse of RH side by side. The reason why the RH hierarchy is in-
verted, is to simplify the propagation rule for authorization objects: an authorization
over a set of objects propagates down in the object hierarchy, while an authorization
over a role propagates up in the role hierarchy. By inverting the RH hierarchy, we
can simply propagate authorizations down in the authorization object hierarchy.

As depicted in Fig. 4, FAF includes the following components.

A history table whose rows describe the accesses executed.
An authorization table whose rows are authorizations composed of the triples (s,
o, sign)^), where s is the subject, o the data item, a the action and (sign) may
be '+' if the action is allowed and '-' if it is denied. This is the set of explicitly
specified authorizations.
The propagation policy specifies how to obtain new derived authorizations from
those explicitly stored in the authorization table. Typically, derived authoriza-
tions are obtained according to hierarchy-based derivation policies. However,
derivation policies are not restricted to this particular form of derivation. It is im-
portant to note that different propagation policies can be adopted in different hi-
erarchies (ASH, AOH) and that, in the same structure, different sub-hierarchies
may follow different policies.
The conflict resolution policy describes how possible conflicts between the (ex-
plicit and/or derived) authorizations should be solved.

Access Control Policies and Languages in Open Environments 29

0 A decision policy defines the response that should be returned to each access
request. In case of conflicts or gaps (i.e., when an access is neither authorized nor
denied), the decision policy determines the answer. In many systems, decisions
assume either the open or the closed policy, where, by default, access is granted
or denied, respectively.
A set of integrity constraints that may impose restrictions on the content and out-
put of the other components. Integrity rules can be used to individuate errors in
the hierarchies or in the explicitly specified authorizations, or for implementing
duty separation.

When a subject s requires the execution of action a on object o, the system needs
to verify whether the authorization (s, o, +a) or (s, o, -a) can be derived using the
authorization table, propagation policy, history table, conflict resolution policy, and
decision policy that have been defined in the system. If a positive authorization is
derived, then the access is allowed. Otherwise, if a negative authorization is derived,
the access is denied.

As previously discussed, FAF allows the representation of different propagation
policies, conflict resolution policies, and decision policies that a security system of-
ficer (SSO) might want to use. However, these policies represent only some of the
possibilities and FAF is flexible enough to allow a SSO to express what she needs
for her applications. To address this issue, the functional authorization architecture
can be realized through the following approach:

0 the authorization table is viewed as a database;
policies are expressed by a restricted class of logic programs, called authoriza-
tion specification, which have certain properties;
the semantics of authorization specifications is given through the well known
stable model semantics and well founded model semantics of logic programs,
ensuring thus the existence of exactly one stable model;
accesses will be allowed or denied on the basis of the truth value of an atom
associated with the access in the unique stable model.

Accordingly, the authorization specijication logic language (ASL) is a logic lan-
guage used to encode the system security needs. ASL is created from the following
alphabet.

Constant symbols are members of the sets of users U, groups of users G, objects
Obj, types of objects T, roles R, and actions A.
Variable symbols are variables ranging over the sets U, G, Obj, T, R, and A.

0 Predicate symbols are partitioned into three categories. The first category con-
tains predicates needed to express the access control policy:
- cando(o, s , f a) explicitly represents the authorizations defined by the

SSO: it allows (or denies, depending on the sign) subject s to execute ac-
tion a on object o;

- dercando(o, s , h a) represents authorizations derived by the system;

30 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

- do(o, s , f a) represents the accesses that must be allowed or denied, and are
obtained after the application of the conflict resolution and decision policies;

- done(o, s , r , a , t) keeps the history of the accesses executed. A fact of the
form done(o, s, r , a , t) indicates that s operating in role r executed action
a on object o at time t.

- o v e r represents overriding policies in the authorization subject andlor au-
thorization object hierarchies;

- e r r o r signals errors in the specification or use of authorizations; it can be
used to enforce static and dynamic constraints on the specifications.

The second category of predicate symbols is the hie-predicates for the evalua-
tion of hierarchical relationships between the elements of the data system (e.g.,
user's membership in groups, inclusion relationships between objects). There are
two predicates:
- in(x, y, H) evaluates to true only if x < y in the structure represented by

hierarchy H , where H is ASH or AOH;
- d i r i n (x , y, H) evaluates to true only if x is a direct descendant of y in the

hierarchy H , where H is ASH or AOH.
The third category of predicates is the rel-predicates that are used to express
different relationships between elements in the data system. These predicates are
not fixed by the model and are application specific. Examples of such predicates
are the following:
- owner(o, s) specifies that subject s is the owner of object o in the system;
- i s u s e r (s) , i sg roup(g) , and i s r o l e (r) evaluate to true only if their

argument is a user, a group, or a role, respectively.

If p is one of the above-mentioned predicate symbols with arity n and t l , . . . , t ,
are terms appropriate for p, then p (t l , . . . , t,) is an atom. A literal is an atom or its
negation. All these predicates, atoms and literals can be exploited to express a policy.
We now illustrate how each component in Fig. 4 is represented by a set of rules.

History table. It contains only d o n e predicates to keep track of the past accesses
performed by the users. The instances of the d o n e predicate are stored in a rela-
tion table with schema (Obj e c t , Use r , Ro le , A c t i o n , Time). For instance,
done(lS01, David, Adrnin, read, 15/05/2005 15:30) denotes a read on object
IS01 executed by David playing role Adrnin at time 15/05/2005 15:30.

Authorization table. It contains a finite set of authorization rules of the form:

where o is an object or an object type, s is a user or a group, (sign) is either
'+' or '-', a is an action, and L1,. . . , L, are either done , hie- or rel- lit-
erals. If these literals are evaluated to true, the authorization on the left of the
rule is granted. For instance, rule cando(IS02, s , +r) t in(s , Sales, ASH) &
ldone(IS02,s, w, t) states that members of group Sales can read object IS02 if
they have not already modified object IS02 at time t.

Access Control Policies and Languages in Open Environments 3 1

Propagation Policy Rules

No propagation dercando(0, s , + a) t cando(o, s , +a) .
dercando(0, s , - a) t cando(o, s , -a).

No overriding dercando(0, s , + a) t cando(o, s', + a) & i n (s , s t , ASH).
dercando(0, s , - a) t cando(o, s ' , -a) & i n (s , s f , ASH).

Most specific overrides dercando(0, s , + a) 4- cando(o, s ' , + a) &
-overnS(s, o , st, + a) & i n (s , s t , ASH).

dercando(o, s , - a) t cando(o, s', - a) &
-overAs(s, o , st , - a) & i n (s , s ' , ASH).

overAs(s, o , s ' , + a) t cando(o, s", - a) & i n (s , s", ASH)&
in(s" , s ' , ASH)& s" # s'.

o v e r ~ s (s , o , s t , - a) c cando(o, s", + a) & i n (s , s", ASH)&
i n (s l ' , s' , ASH)& s" # 8'.

Path overrides dercando(o, s , + a) t cando(o, s , +a) .
dercando(0, s , - a) 4- cando(o, s , -a) .
dercando(0, s , + a) t dercando(0, s t , + a) &

-cando(o, s , - a) & d i r i n (s , st) .
dercando(0, s , - a) t dercando(o, s ' , - a) &

-.cando(o, s , + a) & d i r i n (s , s f) .

Fig. 5. Rules enforcing different propagation policies on ASH

Propagation policies. The propagation policy is composed of two sets of rules: over-
riding rules, stating when an authorization can override another one; and deriva-
tion rules, representing the set of authorizations that can be derived by the autho-
rizations explicitly defined. Overriding rules can be defined on the authorization
subject hierarchy (overAs) or on the authorization object hierarchy (o v e r A o)
and are rules of the form:

where o and o1 are objects or object types, s and s' are users or groups, (sign) is
either '+' or '-', a is an action, and L1,. . . , L, areeither c a n d o , d o n e , h i e - ,
or rel- literals. If these literals evaluate to true, the overriding rule is applied.
The derivation rules are of the form:

where o is an object or an object type, s is a user or a group, (sign) is ei-
ther '+' or '-', a is an action, and L1, . . . , L, are either c a n d o , o v e r ,
d e r c a n d o , d o n e , hie-, or rel- literals. If these literals evaluate to true, the
derivation rule is applied. For instance, rule dercando(Received , s, +r) t
dercando(Orders, s, +r) derives a permission for a subject to read object type
Received if there exists an (explicit or implicit) authorization for the subject to
read object type Orders.
The set of d e r c a n d o rules in the system is composed of all the authorizations
that can be derived through the propagation policy defined by the SSO. Figure 5
illustrates the set of rules enforcing the most common propagation policies on
the ASH hierarchy.

32 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Conflict resolution and decision policies. The conflict resolution and decision poli-
cies allow the SSO to specify how conflicts are to be solved. A decision rule is a
rule of the form:

where o is an object or an object type, s is a user or a group, a is an action,
and L1,. . . , L, are either cando, dercando , done, hie- or rel- literals. In
addition to these positive decision rules, there is also the rule: do(o, s, -a) t
~ d o (o , s, +a). This rule guarantees the completeness of the policy, that is, for
each triple (0, s, a), one of the two do(o, s, +a) or do(o, s, -a) holds. Intu-
itively, the set of atoms do(o, s, +a) specifies the set of all authorized accesses.
For instance, rule do(o, s, +r) t -.dercando(o, s, +r) & ~ d e r c a n d o (o , s,
-r) & in (o , Invoices, AOH) states that a subject s can read an object o if no
authorization has been derived for s on an object of type Invoices. Figure 6 illus-
trates possible rules enforcing the most common conflict resolution and decision
policies.

Integrity rules. Since there is a great potential for errors in the authorization spec-
ifications, it is possible to specify integrity rules defining constraints that must
hold on the authorization specifications. An integrity rule is a rule of the form:

e r r o r t Ll& . . . &L,

where L1,. . . , L, are either cando, dercando , done , do, hie- or rel-
literals. If these literals evaluate to true, an error occurs. Restrictions imposed
through integrity constraints can be both general or specific to an application.
For instance, rule e r r o r t cando(o, s, +a) & cando(o, s, -a) states that an
error occurs if there are two contradictory explicit cando predicates.
The integrity rules are evaluated after the access decision has been taken and
can block its execution if an error is derived. They are also checked whenever a
change occurs in some table used by the authorization framework: if the change
implies an error, the corresponding operation is denied.

Authorization specifications are stated as logic rules defined on the predicates
of the language. To ensure clean semantics and implementability, the format of the
rules is restricted to guarantee (local) stratification of the resulting program (see
Fig. 7)." The stratification also reflects the different semantics given to the predi-
cates: cando will be used to specify basic authorizations, dercando will be used to
enforce implication relationships and produce derived authorizations, and d o to take
the final access decision. Stratification ensures that the logic program corresponding
to the rules has a unique stable model, which coincides with the well founded se-
mantics [22]. Also, this model can be effectively computed in polynomial time. The
authors of FAF also present a materialization technique for producing and storing the
model corresponding to a set of logical rules. The model is computed on the initial
specifications and updated with incremental maintenance strategies.

A program is locally stratified if there is no recursion among predicates going through
negation.

Access Control Policies and Languages in Open Environments 33

Conflict Decision Rules

No conflict

No conflict

Denials take p.

Denials take p.

Permissions take p.

Permissions take p.

Nothing takes p.

Nothing takes p.

Additional closure rule

open

closed

open

closed

open

closed

open

closed

e r ro r t dercando(0, s, +a)&
dercando(o, s, -a).

do(0, s, +a) t -.dercando(o, s, -a).

e r r o r t dercando(o, s, +a)&
dercando(o, s, -a).

do(0, s, +a) 4- dercando(0, s, +a)&
ldercando(o, s, -a).

Fig. 6. Conflict resolution and decision policies rules

Stratum Predicate Rules defining predicates

0 hie-predicates Base relations.
r e 1 -predicates Base relations.
done Base relation.

1 cando Body may contain done, h i e - , and r e l - literals.

2 dercando Body may contain cando, dercando, done,
h ie- , and r e l - literals. Occurrences of
dercando literals must be positive.

3 do When head is of the form do(-, -, +a),
body may contain cando, dercando, done.
h i e - , and r e l - literals.

4 do When head is of the form do(o, 8 , -a),
body contains just one literal -do(o, s, +a).

5 e r r o r Body may contain do, cando, dercando,
done, h i e - , and rel- literals.

Fig. 7. Rule composition and stratification of FAF

An Example of FAF Application

A simplified scenario is constructed to describe the application of the FAF model and
language. Consider an online computer store where objects are organized according
to the hierarchy in Fig. 2, and users are grouped as illustrated in Fig. 1. Suppose also
that the system does not use roles.

34 S . De Capitani di Vimercati, S . Foresti, S. Jajodia, and P. Samarati

Purchase Production

Fig. 8. An example of labeled user-group hierarchy

(Receiud,+rj (Sent,+,)

The SSO defines the set of initial done , h i e - , and rel- literals. For simplicity,
we assume that the system has no d o n e predicates. The dirin-literals necessary
for the definition of the subject and object hierarchies follow the arcs in the graphs
in Fig. 1 and in Fig. 2, respectively.

From the d i r i n literals explicitly specified by the SSO, it is possible to verify
the validity of the i n literals. The following are examples of protection requirements,
where r is used to denote the read action.

/

Members of the Purchase group can read Received Invoices.
cando(o, s, +r) t i n (s , Purchase, ASH) & in (o , Received, AOH)
Members of the Sales group can read Sent Invoices.
cando(o, s, +r) t i n (s , Sales, ASH) & in (o , Senr, AOH).
Members of the Internal group can read National Orders.
cando(o, s, +r) t i n (s , Internal, ASH) & in (o , National, AOH).
Members of the Exports group can read International Orders.
cando(o, s, +r) t i n (s , Exports, ASH) & in (o , International, AOH).

I \
Internal z~zd+rj RepA
lNorional trj

Members of the Production group can read any kind of Orders.
cando(o, s, +r) t i n (s , Production, ASH) & in (o , Orders, AOH).
Members of the RepA group cannot read National Orders.
cando(o, s, -r) t i n (s , RepA, ASH) & in (o , National, AOH).

7+" \ RepB , , / " , " (Na110"of~4 I
Alice B o b Carol David Elvis Frank George

I \

Members of the Exports group cannot read National Orders.
cando(o, s, -r) t i n (s , Exports, ASH) & in (o , National, AOH).

After the definition of these explicit authorizations, the SSO needs to choose
a propagation policy. Suppose that the most spec@ overrides principle has been
chosen and that the propagation is performed on the authorization subject hierarchy
ASH. First, for each explicit authorization (s, o, fa), the propagation process asso-
ciates with subject s in the hierarchy a pair of the form (obj , f a). Figure 8 illustrates
the resulting labeled hierarchy.

The authorizations are then propagated along the hierarchy thus obtaining the
following set of d e r c a n d o literals.

dercando(Received, Purchase, +r)
dercando(Received, Alice, +r)
dercando(Received, Bob, +r)
dercando(Sent, Sales, +r)

Access Control Policies and Languages in Open Environments 35

dercando(Sent, Internal, +r); dercando(Nationa1, Internal, +r)
dercando(Sent, Exports, +) dercando(lnternationa1, Exports, +r);
dercando(Nationa1, Exports, -r)
dercando(Sent, David, r ; dercando(Internationa1, David, +r);
dercando(Nationa1, David, -r)
dercando(Sent, Carol, r) ; dercando(lnternationa1, Carol, +r);
dercando(Nationa1, Carol, +r); dercando(Nationa1, Carol, - T) ~

dercando(Orders, Production, +r)
dercando(Internationa1, RepA, +r); dercando(Nationa1, RepA, -r)
dercando(Internationa1, Elvis, +r); dercando(Nationa1, Elvis, -r)
dercando(Internationa1, Frank, +r); dercando(Nationa1, Frank, -r)
dercando(Orders, RepB, +r)

8 dercando(Orders, George, +r)

It is easy to see that there are some conflicts. The first conflict arises because
members of the RepA group can read the objects in Orders and cannot read objects
in the subset National. However, according to the most spec@ overrides principle,
members of the group RepA can read Orders that do not belong to the National
category and cannot read objects in the National category.

The second conflict involves user Carol who is a member of the group Internal
and group Exports and for which there is a positive and negative authorization on
National, respectively. In this case, the conflict can be solved by applying, for exam-
ple, the denials take precedence principle together with the closed policy. The result
of this last step is a set of do literals representing all the triples (s, o, &a) derivable
in the structure.

We now examine some examples of access requests and analyze whether these
requests will be granted or denied.

Request I . Alice requests to read object IS02.
Access denied. There is neither an explicit authorization nor an implicit autho-
rization and therefore, according to the default closed policy, the access is de-
nied.

Request 2. Carol requests to read object ONOl.
Access denied. Object ON01 is a member of class National and according to the
denials take precedence principle Carol cannot read national orders.

Request 3. Frank requests to read object ONOl.
Access denied. Frank is a member of group RepA, object ONOl is a member of
class National and, according to the most specific overrides principle, the RepA
group cannot read national orders.

Request 4. Frank requests to read object OIOl.
Access allowed. Frank is a member of group RepA and object OIOl is a member
of class Orders and is not a member of class National.

There is a conflict that cannot be solved at this point of the policy evaluation process.

36 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

4 XML-Based Access Control Languages

Although logic-based access control models and languages are powerful and expres-
sive, they are not immediately suited to the Internet context, where simplicity and
easy integration with existing technology must be ensured. Therefore, an interest-
ing aspect to be addressed concerns the definition of a language for expressing and
exchanging policies based on a high level formulation that, while powerful, can be
easily interchangeable and both human and machine readable. Insights in this re-
spect can be taken from recent proposals expressing access control policies as XML
documents. Indeed, the extensible Markup Language (XML) [49], a markup meta-
language standardized by the World Wide Web Consortium (W3C), is the standard
language for information exchange on the Internet and many XML-based access
control languages have been proposed. The first advantage of this class of access
control languages is their simplicity in policy definition. Another important advan-
tage of XML-based access control languages is the interoperability, that consists in
the possibility of exchanging policies through different systems using the same ac-
cess control language. This feature is particularly interesting in an open environment
like the Internet, where a single system, which has to be protected as a single entity,
may be distributed over the Net.

Initially, XML-based access control languages were thought only for the protec-
tion of resources that were themselves XML files [14,15,20,21]. In [14,15] autho-
rizations can be positive and negative and can be defined both at the document-level
or at the Document 5 p e Definition (DTD) level (in this case authorizations prop-
agate to all instances of the DTD). Authorizations are characterized by a type field
defining how the authorizations must be treated with respect to propagation at finer
granules and overriding (exception support). The model in [29] supports read and
write privileges. The authors define three types of propagation policies: no propa-
gation, propagation up (an authorization referring to an element is propagated to all
its parent elements) or propagation down (an authorization referring to an element is
propagated to all its sub-elements). The conflict resolution policy is either "denials
take precedence" or "permissions take precedence". The main contribution of this
paper is the definition of provisional authorizations that specify actions that a user
has to perform before obtaining a given privilege. The model in [21] supports the
read privilege only. The authors do not define any propagation policy. The conflict
resolution policy is based on the priority of the different rules. More recently, in [20]
has been proposed an approach that tries to address the wri te privilege based on the
non-standard XML update language XUpdate. The author separates the existence
of an XML value and its content adding a new position privilege that allows to know
the existence of a node but not its content. Nodes tagged with a position privilege are
shown with a restricted label.

These proposals have the common characteristic that they present a model for
securing XML documents. Recent proposals instead use XML to define languages
for expressing protection requirements on any kind of data/resources [2,13,17,39].
Two relevant XML-based access control languages are WS-Policy [13] and the
extensible Access Control Markup Language (XACML) [17]. Based on the WS-

Access Control Policies and Languages in Open Environments 37

Security [3], WS-Policy provides a grammar for expressing Web service policies.
The WS-Policy includes a set of general messaging related assertions defined in
WS-PolicyAssertions [11] and a set of security policy assertions related to support-
ing the WS-Security specification defined in WS-SecurityPolicy [44]. In addition,
WS-PolicyAttachment [12] defines how to attach these policies to Web services or
other subjects such as service locators. XACML is the result of a recent OASIS stan-
dardization effort proposing an XML-based language to express and interchange ac-
cess control policies. XACML is designed to express authorization policies in XML
against objects that can themselves be identified in XML. The XACML language
has the great advantage that it can be used to express a variety of different policies
and has the basic functionalities of most policy representation mechanisms. More-
over, XACML has standard extension points for defining new functions, data types,
combining logic, and so on. While XACML and WS-Policy share some common
characteristics, XACML has the advantage of enjoying an underlying policy model
as a basis, resulting in a clean and unambiguous semantics of the language [2]. For
this reason, XACML is the most common XML-based access control language used.
In the remainder of this Section, we illustrate XACML as our choice of language.

4.1 XACML Policy Definition

XACML relies on a model that provides a formal representation of the access control
security policy and its working. This modeling phase is essential to ensure a clear and
unambiguous language which could otherwise be subject to different interpretations
and uses. The main concepts of interest in the XACML policy language model are
rule, policy, and policy set.

An XACML policy has, as root element, either a P o l i c y or a P o l i c y s e t .
A P o l i c y S e t is a collection of P o l i c y or P o l i c y S e t . An XACML policy
consists of a set of rules, a target, an optional set of obligations, and a rule combining
algorithm. A R u l e specifies a permission (p e r m i t) or a denial (deny) for a subject
to perform an action on an object. A T a r g e t basically consists of a simplified set
of conditions for the subject, resource, and action that must be satisfied for a policy
to apply to a given request. If all the conditions of a T a r g e t are satisfied, then
its associated P o l i c y (or P o l i c y s e t) applies to the request. An O b l i g a t i o n
is an operation that has to be performed in conjunction with the enforcement of
an authorization decision. Each P o l i c y also defines a rule combining algorithm
used for reconciling the decisions each rule makes. The final decision value, called
authorization decision, is the value of the policy as defined by the rule combining
algorithm. An authorization decision can be p e r m i t , deny, n o t a p p l i c a b l e
(when no applicable policies or rules could be found), or i n d e t e r m i n a t e (when
some errors occurred during the access control process). XACML defines different
combining algorithms such as deny overrides (i.e., denials take precedence), permit
overrides (i.e., permissions take precedence),j?rst applicable (i.e., the first applicable
rule is considered), and only-one-applicable (i.e., a deny or permit result is obtained
only if exactly one rule is applicable).

38 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

The Policyset element is similar to the Policy element and consists of a
set of policies (instead of rules), a target, an optional set of obligations, and a policy
combining algorithm (instead of a rule combining algorithm).

The Rule element specifies the actual conditions under which access is to be
allowed or denied. The components of a rule are an optional target, an effect, and
a condition. The target defines the set of resources, subjects, and actions to which
the rule is intended to apply. The effect of the rule can be permit or deny. The
condition represents a boolean expression that may further refine the applicability of
the rule.

An important feature of XACML is that a rule is based on the definition
and evaluation of attributes corresponding to specific characteristics of a sub-
ject, resource, action, or environment. Any request is mainly composed of at-
tributes that will be compared to attribute values in a policy to make an access
decision. Attributes are identified by the Sub j ec tAt tributeDes ignator,
ResourceAttributeDesignator,ActionAttributeDesignator,and
EnvironmentAttributeDes ignator elements. These elements use the
Attributevalue element to define the value of a particular attribute. Alterna-
tively, the At tribut eSel ec t or element can be used to specify where to retrieve
a particular attribute. Note that both the attribute designator and attribute selector ele-
ments can return multiple values. To this reason, XACML provides an attribute type,
called bag, that is an unordered collection and can contain duplicate values for a par-
ticular attribute. To correctly handle the data type bag, XACML has a powerful set of
functions that can work on arbitrary collections of values and return any kind of at-
tribute value supported in the system. Functions can also be nested, that is, the output
of a function is the input of another. The XACML defines a set of basic functions that
can be enriched by adding application-specific functions. Since often resources are
represented in a hierarchical structure (e.g., file system), XACML v. 2.0 introduces
a method for handling hierarchical resources (see Sect. 2). More precisely, XACML
v. 2.0 provides a mechanism for:

representing the identity of a node;
requesting access to a node;
stating policies that apply to one or more nodes.

The hierarchy can be both a tree or a forest and cannot have cycles. It is impor-
tant to note that there are two different ways for representing a resource in a hierar-
chy [42]. In the first one, the hierarchy to which the node belongs is represented as a
XML document and the resource is represented as a node in the XML document. In
the second case, the hierarchy is not represented as a XML document and has no rep-
resentation. Analogously, subjects can be hierarchically represented (see Sect. 2) but
XACML does not offer any functionality for managing groups of subjects. This is
mainly due to the fact that XACML is used in distributed systems, consequently the
resource handler cannot know the whole user-group hierarchy. However, XACML
provides a way for checking at any time if a user belongs to a specific group: when a
request for a resource is submitted, the resource handler checks the requester's prop-
erties, as these are automatically inserted in the same request. Among these proper-

Access Control Policies and Languages in Open Environments 39

ties, there is the set of groups to which the user belongs. XACML also supports the
role-based access control [19].

As a simple example of policy, consider the example introduced in Sect. 3.1. Sup-
pose that the online computer store defines the following high level policy: "Mem-
bers of the Sales group can read invoice IS02".

Figure 9 shows the XACML policy corresponding to this
high level policy. The policy applies to requests on the
http://www.example,com/documents/invoices/sent/ISO2.ml
resource. It has one rule with a target that requires a read action and a condition that
evaluates to true only if the subject is a member of the group Sales.

4.2 XACML Request and Response

XACML defines also a standard format for expressing requests and responses. Each
request contains attributes for the subject, resource, action, and, optionally, for the
environment. More precisely, each request includes exactly one set of attributes for
the resource and action and at most one set of environment attributes. There may be
multiple sets of subject attributes each of which is identified by a category URI.

A response element contains one or more results each of which corresponds to
the result of an evaluation. Each result contains three elements, namely Decision,
Status, and Obligations. The Decision element specifies the authorization
decision, the Status element indicates if some error occurred during the evaluation
process, and the optional Obligations element states the obligations to fulfill.

As an example, suppose that Carol wants to read the
http://www.example.com/documents/invoices/sent/ISO2.ml
resource. Figure 10 illustrates the corresponding XACML request. This request is
compared with the XACML policy in Fig. 9. The result is that the user is allowed to
access the requested resource.

40 S . De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

<Policy PolicyId="SentInvoice" RuleCombiningAlgId="urn:oasis:names:tc:
xacml:1.O:rule-combining-algorithm:deny-overrides">

<Target>
<Subjects>
<Anysubject/>

</Subjects>
<Resources>
<Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:l.0:
function:anyURI-equal'>
<Attributevalue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
http://www.example.com/documents/invoices/sent/IS02.ml

</Attributevalue>
<ResourceAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names:tc:xacml:l.O:resource:resource-id"/>

< /ResourceMatch>
</Resource>

</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>
<Rule RuleId="ReadRule" Effect="Permit">
<Target>
<Subjects>

<Anysubject/>
</Subjects>
<Resources>

<AnyResource/>
</Resources>
<Actions >

<Action>
<ActionMatch MatchId="urn:oasis:narnes:tc:xacml:l.0:
function:string-equale'>
<Attributevalue
DataType="http://www.w3.org/2001/XMLSchema#string">

read
</Attributevalue>
<ActionAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:l.O:action:action-id"/>

</ActionMatch>
</Action>

</~ctions>
</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:l.0:
functi0n:string-equalt'>
<Apply FunctionId="urn:oasis:names:tc:xacml:l.0:
function:string-one-and-only">

<SubjectAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="group"/>

</Apply>
<Attributevalue DataType="http://www.w3.org/2001/XMLSchema#string">
Sales

</Attributevalue>
</Condition>

</Rule>
</Policy>

Fig. 9. An example of XACML policy

Access Control Policies and Languages in Open Environments 41

Fig. 10. An example of XACML request

4.3 XACML Architecture

Figure 1 1 illustrates the main entities involved in the XACML domain. The standard
gives a definition of these concepts that we summarize as follows.

The Policy Evaluation Point (PEP) module receives initially the access request in
a naive format and passes it to the Context Handler. Similarly, when a decision
has been taken by the decision point, PEP enforces the access decision that it
receives from the Context Handler.
The Policy Decision Point (PDP) module receives an access request and interacts
with the PAP that encapsulates the information needed to identify the applicable
policies. It then evaluates the request against the applicable policies and returns
the authorization decision to the Context Handler module.
The Policy Administration Point (PAP) module is an interface for searching poli-
cies. It retrieves the policies applicable to a given access request and returns them
to the PDP module.
The Policy Information Point (PIP) module provides attribute values about the
subject, resource, and action. It interacts directly with the Context Handler.
The Context Handler translates the access requests in a native format into a
canonical format. Basically, it acts as a bridge between PDP and PEP modules
and it is in charge for retrieving attribute values needed for policy evaluation.
The Environment provides a set of attributes that are relevant to take an autho-
rization decision and are independent from a particular subject, resource, and
action.

42 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

2.Access
Requester

"
J

Attributes

PIP

A 7b.Environment

7a.Subject
Attributes

I

Subjects L1 Environment L1
Fig. 11. XACML overview [17]

The Obligations Service module manages obligations, which are the operations
that should be performed by the PEP when enforcing the final authorization
decision.
The Access Requester module makes requests to the system in a naive form.
A Resource is a service or a data collection available for requests.
The Subjects are the actors of the system; they usually have attributes that can
be used in predicates.

The XACML data-flow (Fig. 11) is not limited to the phase of evaluating an
access request but involves also an initialization phase. More precisely, the data-flow
consists of the following steps.

1. The policies are made available by the PAP to the PDP to fulfill the resource
owner needs.

2. The access requester communicates her request to the PEP module in a naive
format.

Access Control Policies and Languages in Open Environments 43

3. The PEP transmits the original request to the Context Handler, possibly together
with attributes of the subject, resource, action and environment involved in the
request.

4. The Context Handler builds XACML request context, with the information pro-
vided by the PEP and sends it to the PDP.

5. In case of additional attributes of the subject, resource, action, or environment
are needed, the PDP asks for them to the Context Handler.

6. The Context Handler sends the attribute request coming from the PDP to the PIP
module.

7. The PIP module retrieves the attributes interacting directly with Subject, Re-
source, and Environment.

8. The PIP sends the attributes just obtained to the Context Handler.
9. The Context Handler inserts the resource in the context created at step 4.

10. The attributes obtained from the PIP and eventually the resource involved in the
access request are sent by the Context Handler to the PDP. The PDP can now
evaluate the policies and take a decision.

11. The PDP sends to the Context Handler the XACML response context that in-
cludes the final decision.

12. The Context Handler translates the XACML response context in the naive format
used by the PEP module and sends the final response to the PEP.

13. The PEP fulfills the obligations included in the response and, if the access is
permitted, the PEP grants access to the resource. Otherwise, the access is denied.

Although XACML is suitable for a variety of different applications, the PDP
module needs to receive standardized input and returns standardized output. There-
fore, any implementation of XACML has to be able to translate the attribute represen-
tation in the application environment (e.g., SAML or CORBA) in the corresponding
XACML context.

5 Credential-Based Access Control Languages

Open environments are characterized by a number of systems offering different ser-
vices. In such a scenario, interoperability is a very important issue and traditional
assumptions for establishing and enforcing access control regulations do not hold
anymore. A server may receive requests not just from the local community of users,
but also from remote, previously unknown users. The server may not be able to au-
thenticate these users or to specify authorizations for them (with respect to their iden-
tity). The traditional separation between authentication and access control cannot be
applied in this context, and alternative access control solutions should be devised. A
possible solution to this problem is represented by the use of digital certificates (or
credentials), representing statements certified by given entities (e.g., certification au-
thorities), which can be used to establish properties of their holder (such as identity,
accreditation, or authorizations) [18,231.

The development of access control systems based on credentials is not a simple
task and the following issues need to be investigated [lo].

44 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Ontologies. Due to the openness of the scenario and the richness and variety of
security requirements and attributes that may need to be considered, it is impor-
tant to provide parties with a means to understand each other with respect to the
properties they enjoy (or request the counterpart to enjoy). Therefore, common
languages, dictionaries, and ontologies must be developed.

0 Client-side and server-side restrictions. In an open scenario, mutual access con-
trol is an important security feature in which a client should be able to prove its
eligibility for a service, and the server communicates to the client the require-
ments it needs to satisfy to get access.
Credential-based access control rules. It is necessary to develop languages sup-
porting access control rules based on credentials and these languages have to
be flexible and expressive enough for users. The most important challenge in
defining a language is the trade off between expressiveness and simplicity: the
language should be expressive enough for defining different kinds of policies
and simple enough for the final user.
Access control evaluation and outcome. Users may be occasional and they may
not know under what conditions a service can be accessed. Therefore, to make a
service "usable", access control mechanisms cannot simply return "yes" or "no"
answers. It may be necessary to explain why accesses are denied, or - better -
how to obtain the desired permissions. Therefore, the system can return an un-
dejned response meaning that current information is insufficient to determine
whether the request can be granted or denied. For instance, suppose that a user
can access a service if she is at least eighteen and can provide a credit card num-
ber. Two cases can occur: i) the system knows that the user is not yet eighteen
and therefore retums a negative response; ii) the user has proved that she is eigh-
teen and the system returns an undefined response together with the request to
provide the number of a credit card.
Privacy-enhancedpolicy communication. Since the server does not return a sim-
ple yeslno answer to access requests, but retums the set of credentials that clients
have to submit for obtaining access, there is a need for correctly and concisely
representing them. The naive way to formulate a credential request, that is, giv-
ing the client a list with all the possible sets of credentials that would enable the
service, is not feasible, due to the large number of possible alternatives. Also, the
communication process should not disclose "too much" of the underlying secu-
rity policy, which might also be regarded as sensitive information. Analogously,
the client should be able to select in private a minimal set of credentials whose
submission will authorize the desired service.

Blaze et al. [8] presented an approach for accessing services on the Web. This
work is therefore limited to the Web scenario and is based on identity certificates
only. The first proposals investigating the application of credential-based access con-
trol regulating access to a server were made by Winslett et al. [38,47]. Here, access
control rules are expressed in a logic language and rules applicable to an access can
be communicated by the server to clients. In [46,50] the authors investigate trust
negotiation issues and strategies that a party can apply to select credentials to submit

Access Control Policies and Languages in Open Environments 45

to the opponent party in a negotiation. More recently, in [S O] the PRUdent NEgoti-
ation Strategy (PRUNES) has been presented. This strategy ensures that the client
communicates its credentials to the server only if the access will be granted and the
set of certificates communicated to the server is the minimal necessary for granting
it. Each party defines a set of credential policies that regulates how and under what
conditions the party releases its credentials. The negotiation consists of a series of
requests for credentials and counter-requests on the basis of the parties' credential
policies. The credential policies established can be graphically represented through
a tree, called negotiation search tree, composed of two kinds of nodes: credential
nodes, representing the need for a specific credential, and disjunctive nodes, repre-
senting the logic operators connecting the conditions for credential release. The root
of a tree node is a service (i.e., the resource the client wants to access). The negotia-
tion can therefore be seen as a backtracking operation on the tree. The backtracking
can be executed according to different strategies. For instance, a brute-force back-
tracking is complete and correct, but is too expensive to be used in a real scenario.
The authors therefore propose the PRUNES method that prunes the search tree with-
out compromising completeness or correctness of the negotiation process. The basic
idea is that if a credential C has just been evaluated and the state of the system is
not changed too much, than it is useless to evaluate again the same credential, as the
result will be exactly as the result previously computed.

It has been demonstrated that the PRUNES method is correct and that the com-
munication time is O(n2) and the computational time is O(n . m) , where n is the
number of credentials involved in the trust establishment process, and m is the total
size of the credential disclosure policies related to the same credentials.

The same research group proposed also a method for allowing parties adopting
different negotiation strategies to interoperate through the definition of a Disclosure
Tree Strategy (DTS) family [52]. The authors show that if two parties use different
strategies from the DST family, they are able to establish a negotiation process. The
DTS family is a closed set, that is, if a negotiation strategy can interoperate with any
DST strategy, it must also be a member of the DST family.

In [5 11 a Unified Schema for Resource Protection (UniPro) has been proposed.
This mechanism is used to protect the information in policies. UniPro gives (opaque)
names to policies and allows any named policy PI to has its own policy P2 mean-
ing that the contents of PI can only be disclosed to parties who have shown that
they satisfy P2. Another approach for implementing access control based on cre-
dentials is the Adaptive Trust Negotiation and Access Control (ATNAC) [36]. This
method grants or denies access to a resource on the basis of a suspicion level associ-
ated with subjects. The suspicion level is not fixed but may vary on the basis of the
probability that the user has malicious intents. In [43] the authors propose to apply
the automated trust negotiation technology for enabling secure transactions between
portable devices that have no pre-existing relationship.

In [53] the same research group proposed a negotiation architecture, called Trust-
Builder, that is independent from the language used for policy definition and from
the strategies adopted by the two parties for policy enforcement.

46 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Other logic-based access control languages based on credentials have been intro-
duced. For instance, DlLP and RT [32-341, the SD3 language [28], and Binder [16].
In [27,48] logic languages are adopted to specify access restrictions in a certificate-
based access control model.

5.1 A Credential-Based Access Control Language

A first attempt to provide a uniform framework for attribute-based access control
specification and enforcement was presented by Bonatti and Samarati in [lo]. Like
in previous proposals, access regulations are specified as logical rules, where some
predicates are explicitly identified. Each party has a portfolio, that is, a collection of
credentials and declarations (unsigned statements), and has associated a set of ser-
vices that can provide. Credentials are essentially digital certificates, and must be
unforgeable and verifiable through the issuing certificate authority's public key; dec-
larations are instead statements made by the user herself, that autonomously issues
a declaration. Abstractions can be defined on services, grouping them in sets, called
classes. The main advantage of this proposal is that it allows to exchange the mini-
mal set of certificates, that is, client communicates the minimal set of certificates to
the server, and the server releases the minimal set of conditions required for grant-
ing access. To this purpose, the server defines a set of service accessibility rules,
expressing the necessary and sufficient conditions for granting access to a resource.
On the other hand, both clients and severs can specify a set of portfolio disclosure
rules, used to establish the conditions under which credentials and declarations may
be released.

The rules both in the service accessibility and portfolio disclosure sets are defined
through a logic language. The language includes a set of predicates whose meaning is
expressed on the basis of the current state. The state indicates the parties' character-
istics and the status of the current negotiation process, that is, the certificates already
exchanged, the requests made by the two parties, and so on. The basic predicates of
the language are the following.

credential (c, K) evaluates to true if the current state contains certificate
c verifiable using key K.
declaration (d) evaluates to true if the current state contains declaration d,
where d is of the form attribute-name=value-term.
cert -authori ty (CA, Kc*) evaluates to true if the party using it in her
policy trusts certificates issued by certificate authority CA, whose public key is
&A.
A set of non predefined predicates necessary for evaluating the current state
values; these predicates can evaluate both the persistent and the negotiation state.
The persistent state contains information that is stored on the site and is not
related to a single negotiation but to the party itself. The negotiation state is
related to the information on a single negotiation and is removed at the end of
the same.

Access Control Policies and Languages in Open Environments 47

oredenlialsl
declarations

prsisrenl!
ncgotialion

infomaion
release

Client

S",Ye requa1 -
requesl for prcrrquisiter P

prenquiailrs P

requirpmenls R requesl

requiremenls R' counter-req.

R'
4

credentials/
declarations

L
Server

Fig. 12. Client-server negotiation

A set of non predefined abbreviation predicates that are used to abbreviate re-
quirements in the negotiation phase.
A standard set of mathematical built-in predicates, such as =, #, and <.
The rules for service accessibility and portfolio disclosure have, in their body, a

composition of the above-mentioned predicates, and in their head the specification
of the services accessible or the certificates releasable according to the same rule.
Figure 12 illustrates the clientlserver interaction that can be summarized as follows.

1. The client sends a request for a service to the server.
2. The server asks to the client a set of prerequisites, that is, a set of necessary

conditions for granting access.
3. The client sends back the required prerequisites.
4. If the prerequisites are sufficient, than the server individuates the credentials and

declarations needed to grant access to the resource.
5. The client evaluates the requests against its portfolio release rules and makes,

eventually, some counter-requests.
6. The server sends back to the client the required certificates and declarations.
7. The client fulfills the server's requests.
8. The service is then granted to the client.

Since there may exist different policy combinations that may bring the access
request to satisfaction, the communication of credentials and/or declarations could
be an expensive task. To overcome this issue, the abbreviation predicates are used
to abbreviate requests. Besides the necessity of abbreviations, it is also necessary for
the server, before releasing rules to the client, to evaluate state predicates that involve
private information. For instance, the client is not expected to be asked many times
the same information during the same session and if the server has to evaluate if the
client is considered or not trusted, it cannot communicate this request to the client
itself.

48 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Communication of requisites to be satisfied by the requester is then based on a
filtering and renaming process applied on the server's policy, which exploits partial
evaluation techniques in logic programs. The authors formally prove that the set
of requirements that enable a service under the original policy coincides with the
requirements specified by the filtering rules.

6 Policy Composition

In many real world situations, access control needs to combine restrictions indepen-
dently stated that should be enforced as one, while retaining their independence and
administrative autonomy. For instance, the global policy of a large organization can
be the combination of the policies of its different departments and divisions as well
as of externally imposed constraints (e.g., privacy regulations); each of these poli-
cies should be taken into account while remaining independent and autonomously
managed. Policy composition is an orthogonal aspect with respect to the ones de-
scribed in the previous sections, as policy composition should be independent from
the languages adopted by each single entity.

In [9], the authors presented the following criteria that a composition framework
for access control policies should satisfy.

0 Heterogeneous policy support. The framework should support policies expressed
in different languages and enforced by different mechanisms.
Support of unknownpolicies. The framework should support policies that are not
known a priori or that are only partially defined. Policies are therefore treated as
black-boxes that can be queried at access control time and return a correct and
complete response.

0 Controlled interference. Policies cannot simply be merged as this may cause
interferences and side effects. For instance, the accesses grantedldenied might
not correctly reflect the specifications anymore.

0 Expressiveness. The language should support different methods for combining
policies, without changing the input specifications and without ad-hoc exten-
sions to authorizations.
Support of difSerent abstraction levels. The composition should highlight the
different components and their interplay at different levels of abstraction.
Formal semantics. The composition language should be declarative, implemen-
tation independent, and based on a solid framework to avoid ambiguity.

Various models have been proposed to reason about security policies [I , 24,25,
351. In [I , 251 the authors focused on the secure behavior of program modules.
McLean [35] proposed a formal approach including combination operators: he in-
troduced the algebra of security, that is a Boolean algebra that enables to reason
about the problem of policy conflict, arising when different policies are combined.
However, even though this approach permits to detect conflicts between policies, it
did not propose a method to resolve the conflicts and to construct a security policy
from inconsistent sub-policies. Hosmer [24] introduced the notion of meta-policies

Access Control Policies and Languages in Open Environments 49

(i.e., policies about policies), an informal framework for combining security poli-
cies. Subsequently, Bell [4] formalized the combination of two policies with a func-
tion, called policy combiner, and introduced the notion of policy attenuation to al-
low the composition of conflicting security policies. Other approaches are targeted
to the development of a uniform framework to express possibly heterogeneous poli-
cies [7,26,27,3 1,481. A different approach has been illustrated in [9] where the
authors proposed an algebra for combining security policies together with its formal
semantics. Following this work, Jajodia et al. [45] presented a propositional algebra
for policies with a syntax consisting of abstract symbols for atomic policy expres-
sions and composition operators. This framework has two classes of operators: in-
ternal and external. In the following, we will explain more in details the algebra for
policy composition presented in [9].

6.1 An Algebra for Composing Access Control Policies

The need for a policy composition framework by which different component policies
can be integrated while retaining their independence was first identified in [9]. Here,
the authors propose an algebra of security policies together with its formal semantics
and illustrate how complex policies can be formulated as expressions of the algebra.
A policy is defined as a set of triples of the form (s,o,a), where s is a constant in (or
a variable over) the set of subjects S, o is a constant in (or a variable over) the set
of objects Obj, and a is a constant in (or a variable over) the set of actions A. Here,
complex policies can then be obtained by combining policy identifiers, denoted Pi,
through the algebra operators. The proposed algebra is parametric with respect to
two languages: the authorization constraint language, used to specify the conditions
under which a ground authorization is valid; and the rule language, used to state how
a set of ground authorizations can be closed by deriving new authorizations from the
ground set.

Algebra Syntax and Semantics

We are now ready to define the syntax and semantics of the algebra. Formally, the
syntax is given by the following BNF grammar:

E ::=idlE + EIE&EIE - EJEAClo(E , E , E) J E * RIT(E)I(E)
T ::= rid.E

where id is a unique policy identifier, E is a policy expression, T is a construct, called
template, C is a construct describing constraints, and R is a construct describing
rules. The order of evaluation of operators is determined by the precedence which is
(from higher to lower) T, ., + and & and -, * and A.

The semantics is a function mapping each policy expression in a set of ground
authorizations and each template is a function over policies. Each policy identifier is
mapped to sets of triples by environments.

50 S. De Capitani di Vimercati, S. Foresti, S . Jajodia, and P. Samarati

Definition 3 (Environment). An environment e is a partial mapping from policy
identifiers to sets of authorization triples. By e [X /S] we denote a modification of
environment e such that

s i f Y = X
e (Y) otherwise

The semantic of an identifier X in the environment e can be denoted as [XI , =
e (X) . The operators of the algebra are defined as follows.

0 Addition (+). It merges two policies by returning their union.

Intuitively, additions can be applied in any situation where accesses can be au-
thorized if allowed by any of the component policies (maximum privilege strat-
egy).
Conjunction (&). It merges two policies by returning their intersection.

U P I & P ~ ~] , = pine n p2~,
This operator enforces the minimum privilege strategy.
Subtraction (-). It deletes from a policy all the accesses in a second policy.

UP1 - ' 2 1 , = UPlle \ UP21e

Intuitively, subtraction specifies exceptions to statements made by a policy, and
has the same functionalities of negative authorizations in existing approaches
without introducing conflicts.
Closure (*). It closes a policy under a set of derivation rules.

UP * R], =closure(R, [P],)

The closure of policy P under derivation rules R produces a new policy that
contains all the authorizations in P and those that can be derived evaluating R
on P, according to a given semantics. The derivation rules in R can enforce,
for example, an authorization propagation along a predefined subject or object
hierarchy.
Scoping Restriction ("). It restricts the applicability of a policy to a given subset
of subjects, objects, and actions of the system.

[P:c], = { t E [[PI, I t satisfy c)

where c is a condition. It is useful to enforce authority confinement (e.g., autho-
rizations specified in a given component can be referred only to specific subjects
and objects).

0 Overriding (0). It overrides a portion of policy PI with the specifications in
policy P2 and the fragment that is to be substituted is specified by a third policy
p3.

Uo(P1, p2, &)I, = [[(PI - P3) + (P2&P3)IIe

Access Control Policies and Languages in Open Environments 51

Operator Semantics (I]I, Graphical representation

PC { t 6 UP], I t satisfy c)

Fig. 13. Operators of the algebra and their graphical representation

0 Template(r). It defines a partially specified (i.e., parametric) policy that can be
completed by supplying the parameters.

u,x.pn, (S) = upn,[S,x]

where S is the set of all policies, and X is a parameter. Templates are useful for
representing policies where some components are to be specified at a later stage.
For instance, the components might be the result of further policy refinement, or
might be specified by a different authority.

The algebraic operators just described have also a graphical representation summa-
rized in Fig. 13.

The formal semantics on which the algebra is based allows us to reason about
policy specifications and proves properties on them.

Evaluating Policy Expressions

Enforcement of compound policies is based on a translation from policy expressions
into logic programs, which provide executable specifications compatible with differ-
ent evaluation strategies. In particular, the following strategies can be applied:

52 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

P {authp(s, o, a) I (s, o, a) E e (P)) if e (P) is defined,
0 otherwise.

F +i G {authi(z , y, z) t mainp,(x, y, z) , authi(z, y, z) t mainpG(z, y, z))
UTR(F, e) U TR(G, e) .

F&;G {auth;(z , y, z) t mainp. (x , y, z) A mainp&, y, 2))

U TR(F, e) U TR(G, e) .

F -i G {authi(x, y , z) t mainp,(z, y , z) A -mainpG(z, y, z))
U TR(F, e) U TR(G, e) .

Pi c {authi(z , y, z) t m a i n p ~ (x , y, z) A c) UTR(F, e) .

oi(F, G I R) {authi(z , y, z) t mainp,(z, y, z) A -mainpR(z, y, z) ,
authi (2 , y, z) t mainpG (z , y, z) A mainpR(z, y, z))
U TR(F, e) U TR(G, e) U TR(R , e) .

F *; R {authi (s , o, a) t authi(sl,ol, a l) A .. A authi(sn, on, an)l
((s ,o ,a) t (s l , o l , a ~) A . . . A (sn,on,a,)) E R)
U {authi(z , y, z) t mainp,(z, y, z)) U TR(F, e) .

(T ~ X . F) (G) {authx (z , y , z) t mainpG (z , y, z)) UTR(F, e) U TR(G, e) .

Fig. 14. Translation TR: from policy expressions to logic programs

Materialization. The policy expressions are evaluated thus determining the set of
ground authorization terms corresponding to the accesses allowed by the policy.
This strategy can be applied when all the individual policies are known and
reasonably static.
Partial materialization. Partial materialization can be considered mainly for two
reasons. First, some of the component policies may be unknown at material-
ization time (black-box policies); clearly, such policies cannot be materialized.
Second, some policies may be too dynamic to be materialized (as the cost of
updating the materialization may exceed that of run-time evaluation).
Run-time evaluation. This strategy enforces a run-time evaluation of each re-
quest (access triple) against the policy expression to determine whether the triple
belongs to the result.

The authors propose a strategy, called pe2lp, for translating algebraic expres-
sions into an equivalent logic program that is compatible with the different evalua-
tion strategies above-mentioned. The logic program is then used for access control
enforcement. Basically, the translation process creates a distinct predicate symbol
for each policy identifier and for each algebraic operator in the expression. Since

Access Control Policies and Languages in Open Environments 53

operators are not distinguishable, each of them is associated with a label, that is, an
integer number associated from left to right and starting form 0. The result of this
labeling process is a canonical labeling of the initial policy expression. Note that
the main label of an expression is the integer associated with the outermost operator
of the expression. Translation pe2lp takes a labeled policy expression and an envi-
ronment as input and produces a logic program equivalent to the given expression.
The translation process defines a predicate authp, for each policy identifier P, and
a predicate authi, for each operator opt. These predicates have three arguments:
a subject, a resource, and an action. Figure 14 shows the translation of each opera-
tor. The pe2lp translation is semantic preserving, provided that the resulting program
is interpreted according to the stable model semantics [22] or any other semantics
equivalent to the stable model semantics on stratified programs. The logic program-
ming formulation of algebra expressions can be used to enforce access control. First,
for each foreign policy (i.e., policies expressed in different languages or stored at an-
other site) a wrapper is needed that should be queried by the logic program [41]. The
access control enforcement is then obtained by applying a materialization strategy,
a partial materialization strategy, or a run-time strategy. In particular, partial mate-
rialization is obtained by applying standard partial evaluation techniques [40] to the
logic program obtained by the translation process. It is important to highlight that
partial evaluation preserves the meaning of the original logic program.

An interesting feature of the proposed algebra is that it can also be used to spec-
ify different elementary policies, such as the open or closed policies, or propagation
rules along a hierarchy. To evaluate the expressiveness of the algebra, it can be useful
a comparison with the First Order Logic (FOL). The composition algebra captures
only a strict subset of the FOL because policy expressions refer to a well known fixed
relation schema, corresponding to the authorization triple. In this way, the contain-
ment decision problem (PI is contained in Pz) and the checking strong equivalence
(PI and P2 are exactly equivalent) are decidable for policy expressions. As a result
of the comparison between FOL and the algebra we have that:

closure-free policy expressions capture exactly the quantifier-free 0- 1 fragment6
of monadic first-order logic;
quantifiers can be captured with the closure operator and one simple rule.

The first-order language is induced by predicates {Pan, PI, Pz . . .), representing
policy identifiers (Pan denotes the set of all authorization triples), and {CI, Cz . . .),
representing constraints.

It is important to note that, from the basic domains S, Obj, and A, from the
interpretation of constraint predicates, satisfy, and from an environment e, the inter-
pretation structures for the monadic first-order logic just introduced are of the form:
(S x Obj x A, e, satisfy), denoting that triple (s, o, a) is or not an authorization for
environment e.

As an example of policy composition, consider the scenario introduced in
Sect. 3.1 and suppose that the computer on-line store is composed of three depart-

= A 0-1 formula F is a formula where each sub-formula of F has at most one free variable.

54 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Sales Polic ,(f~l
Fig. 15. An example of policy composition

ments, named Purchase, Sales, and Production. The manager of each department is
responsible for granting access to data under his responsibility. Let PPurchaser Psares
and PPrd be the policies of the three departments. Suppose now that an access is
authorized if any of the department policies state so and that authorizations in policy
Ps,leS are propagated to individual users and documents by classical hierarchy-based
derivation rules, denoted RH. Also, suppose that to access the on-line store, non-
registered users need also the Personal manager consent, stated by policy Pkrsonal.
In terms of the algebra, the computer store policy can be represented as:

Figure 15 reports the graphical representation of the computer on-line store policy.
While this algebra is expressive and powerful, it leaves space for further work.

Future work to be carried out includes investigation of administration policies for
regulating the specification of the different component policies by different author-
ities; the analysis of incremental approaches to enforce changes to component poli-
cies; the analysis of mobile policies, that is, policies associated with objects and that
follow the objects when they are passed to another site. Because different and possi-
bly independent authorities can define different parts of the mobile policy in different
time instants, the policy can be expressed as a policy expression. In such a context,
there is the problem on how to ensure the obedience of policies when the associated
objects move around.

Access Control Policies and Languages in Open Environments 55

7 Conclusions

An important requirement of any system is to protect its data and resources against
unauthorized disclosure andlor improper modifications, while at the same time en-
suring their availability to legitimate users. A fundamental component in enforcing
protection is represented by the access control service whose task is to control every
access to a system and its resources and ensure that all and only authorized accesses
can take place. Throughout the chapter we presented the basic concepts of access
control and investigated different issues concerning the development of an access
control system, discussing recent proposals in the area of access control models and
languages.

8 Acknowledgments

This work was supported in part by the European Union within the PRIME Project in
the FP6/IST Programme under contract IST-2002-507591 and by the Italian MIUR
within the KIWI and MAPS projects.

References

1. Abadi M, Lamport L (1992). Composing specifications. ACM Transactions on Program-
ming Languages, 14(4): 1-60.

2. Ardagna CA, Damiani E, De Capitani di Vimercati S, Samarati P (2004). XML-based
access control languages. Information Security Technical Report.

3. Atkinson B, Della Libera GD, et al. (2002). Web services security (WS-Security).
http://msdn.microsoft.com/library/en-usldnglobspec/htm~s-security.asp.

4. Bell D (1994). Modeling the multipolicy machine. In Proc. of the New Security Paradigm
Workshop, Little Compton, Rhode Island, USA.

5. Bertino E, Bettini C, Ferrari E, Samarati P (1998). An access control model supporting
periodicity constraints and temporal reasoning. ACM Transactions on Database Systems,
23(3):23 1-285.

6. Bertino E, Bonatti P, Ferrari E (2001). TRBAC: a temporal role-based access control
method. ACM Transactions on Information and System Security, 4(3): 191-223.

7. Bertino E, Jajodia S, Samarati P (1999). A flexible authorization mechanism for
relational data management systems. ACM Transactions on Information Systems,
17(2):101-140.

8. Blaze M, Feigenbaum J, Lacy J (1996). Decentralized trust management. In Proc. of the
1996 IEEE Symposiumon Security and Privacy, Oakland, CA, USA.

9. Bonatti P, De Capitani di Vimercati S, Samarati P (2002). An algebra for composing
access control policies. ACM Transactions on Information and System Security, 5(1):1-
35.

10. Bonatti P, Samarati P (2002). A unified framework for regulating access and information
release on the web. Journal of Computer Security, 10(3):241-272.

11. Box D, et al. (2003). Web services policy assertions language (WS-PolicyAssertions)
version 1.1. http://msdn.microsoft.com/library/en-us/dnglobspectmI/ws-
po1icyassertions.asp.

56 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

12. Box D, et al. (2003). Web Services Policy Attachment (WS-PolicyAttachment) version
1.1. http://msdn.microsoft.com/library/en-us/dnglobspec~tml/ws-policyattachment.asp.

13. Box D, et al. (2003). Web services policy framework (WS-Policy) version 1.1.
http://msdn.microsoft.com/library/en-us/dnglobspeclhtmws-policy.asp.

14. Damiani E, De Capitani di Vimercati S, Paraboschi S, Samarati P (2000). Securing XML
documents. In Proc. of the 2000 International Conference on Extending Database Tech-
nology (EDBT2000), Konstanz, Germany.

15. Damiani E, De Capitani di Vimercati S, Paraboschi S, Samarati P (2002). A fine-grained
access control system for XML documents. ACM Transactions on Information and Sys-
tem Security, 5(2): 169-202.

16. DeTreville J (2002). Binder, a logic-based security language. In Proc. of the 2001 IEEE
Symposium on Security and Privacy, Oakland, CA, USA.

17. extensible Access Control Markup Language (XACML) Version 2.0 (2004). extensi-
ble Access Control Markup Language (XACML) Version 2.0. OASIS. http://www.oasis-
open.org/committees/xacml.

18. Farrell S, Housley R (2002). An internet attribute certificate profile for authorization.
RFC 3281.

19. Ferraiolo D, Kuhn R (1992). Role-based access controls. In Proc. of the 15th NIST-NSA
National Computer Security Conference, Baltimore, Maryland.

20. Gabillon A (2004). An authorization model for XML databases. In Proc. of the ACM
Workshop Secure Web Services, George Mason University, Fairfax, VA, USA.

21. Gabillon A, Bruno E (2001). Regulating access to XML documents. In Proc. of the Fif-
teenth Annual IFIP WG 11.3 Working Conference on Database Security, Niagara on the
Lake, Ontario, Canada.

22. Gelfond M, Lifschitz V (1988). The stable model semantics for logic programming. In
Proc, of the 5th International Conference and Symposium on Logic Programming, Cam-
bridge, Massachusetts.

23. Gladman B, Ellison C , Bohm N (1999). Digital signatures, certificates and electronic
commerce. http://jya.cornlbgldigsig.pdf.

24. Hosmer H (1992). Metapolicies 11. In Proc. of the 15th National Computer Security Con-
ference, Baltimore, MD.

25. Jaeger T (2001). Access control in configurable systems. Lecture Notes in Computer
Science, 1603:289-3 16.

26. Jajodia S, Samarati P, Sapino ML, Subrahmanian VS (2001). Flexible support for multi-
ple access control policies. ACM Transactions on Database Systems, 26(2):214-260.

27. Jajodia S, Samarati P, Subrahmanian VS, Bertino E (1997). A unified framework for
enforcing multiple access control policies. In Proc, of the 1997 ACM International SIG-
MOD Conference on Management of Data, Tucson, AZ.

28. Jim T (2001). Sd3: A trust management system with certified evaluation. In Proc. of the
2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA.

29. Kudoh M, Hirayama Y, Hada S, Vollschwitz A (2000). Access control specification based
on policy evaluation and enforcement model and specification language. In Symposium
on Cryptograpy and Information Security (SCIS'2000), Japan.

30. Landwehr CF (1981). Formal models for computer security. ACM Computing Surveys,
13(3):247-278.

31. Li N, Feigenbaum J, Grosof B (1999). A logic-based knowledge representation for au-
thorization with delegation. In Proc. of the 12th IEEE Computer Security Foundations
Workshop, Washington, DC, USA.

Access Control Policies and Languages in Open Environments 57

32. Li N, Grosof B, Feigenbaum J (2003). Delegation logic: A logic-based approach to dis-
tributed authorization. ACM Transactions on Information and System Security, 6(1): 128-
171.

33. Li N, Mitchell JC (2003). Datalog with constraints: A foundation for trust-management
languages. In Proc. of the Fifth International Symposium on Practical Aspects of Declar-
ative Languages (PADL 2003), New Orleans, LA, USA.

34. Li N, Mitchell JC, Winsborough WH (2002). Design of a role-based trust-management
framework. In Proc. of the IEEE Symposium on Security and Privacy, Oakland, CA,
USA.

35. McLean J (1988). The algebra of security. In Proc. of the 1988 IEEE Computer Society
Symposium on Security and Privacy, Oakland, CA, USA.

36. Ryutov T, Zhou L, Neuman C, Leithead T, Seamons KE (2005). Adaptive trust negotia-
tion and access control. In Proc. of the 10th ACM Symposium on Access Control Models
and Technologies, Stockholm, Sweden.

37. Samarati P, De Capitani di Vimercati S (2001). Access control: Policies, models, and
mechanisms. In Focardi R, Gorrieri R, editors, Foundations of Security Analysis and
Design, LNCS 2171. Springer-Verlag.

38. Seamons KE, Winsborough W, Winslett M (1997). Internet credential acceptance poli-
cies. In Proc. of the Workshop on Logic Programming for Internet Applications, Leuven,
Belgium.

39. Security Assertion Markup Language (SAML) V1.l (2003). Security Assertion Markup
Language (SAMLJ V1 .l . OASIS. http://www.oasis-open.org/committees/security/.

40. Sterling L, Shapiro E (1997). The art of Prolog. MIT Press, Cambridge, MA.
41. Subrahmanian V, Adali S, Brink A, Lu J, Rajput A, Rogers T, Ross R, Ward C. Hermes:

heterogeneous reasoning and mediator system. http:Nwww.cs.umd.eduIprojects/hermes.
42. The XACML Profile for Hierarchical Resources (2004). The XACML Profile for Hierar-

chical Resources. OASIS. http:Nwww.oasis-38930pen.org/committees/xacml.
43. van der Horst TW, Sundelin T, Seamons KE, Knutson CD (2004). Mobile trust nego-

tiation: Authentication and authorization in dynamic mobile networks. In Proc. of the
Eighth IFIP Conference on Communications and Multimedia Security, Lake Winder-
mere, England.

44. Web services security policy (WS-SecurityPolicy) (2002). Web services security policy
(WS-SecurityPolicy). http:Nwww-106.ibm.com/developerworks/library/ws-secpo~.

45. Wijesekera D, Jajodia S (2003). A propositional policy algebra for access control. ACM
Transactions on Information and System Security, 6(2):286-325.

46. Winsborough W, Seamons KE, Jones V (2000). Automated trust negotiation. In Proc.
of the DARPA Information Survivability Conf. & Exposition, Hilton Head Island, SC,
USA.

47. Winslett M, Ching N, Jones V, Slepchin I(1997). Assuring security and privacy for digital
library transactions on the web: Client and server security policies. In Proc. of the ADL
'97 -Forum on Research and Tech. Advances in Digital Libraries, Washington, DC.

48. Woo TYC, Lam SS (1993). Authorizations indistributed systems: A new approach. Jour-
nal of Computer Security, 2(2,3):107-136.

49. World Wide Web Consortium (W3C) (2004). extensible Markup Language (XML) 1.0
(Third Edition). World Wide Web Consortium (W3C). http://www.w3.org/TR/REC-xml.

50. Yu T, Ma X, Winslett M (2000). An efficient complete strategy for automated trust negoti-
ation over the Internet. In Proc. of the 7th ACM Computer and Communication Security,
Athens, Greece.

58 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

51. Yu T, Winslett M (2003). A unified scheme for resource protection in automated trust
negotiation. In Proc, of the IEEE Symposium on Security and Privacy, Berkeley, Califor-
nia.

52. Yu T, Winslett M, Seamons KE (2001). Interoperable strategies in automated trust nego-
tiation. In Proc. of the 8th ACM Conference on Computer and Communications Security,
Philadelphia, Pennsylvania.

53. Yu T, Winslett M, Seamons KE (2003). Supporting structured credentials and sensitive
policies trough interoperable strategies for automated trust. ACM Transactions on Infor-
mation and System Security, 6(1):1-42.

