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1. Introduction

Consider the following scenario: a physician examining a patient for breast
cancer feels a hard area during an initial examination; she subsequently sends
the patient to obtain a mammogram of the area, and sends the mammogram
to a pathologist. The pathologist notes the presence of two local areas with
potentially cancerous growths, but is unable to localize the areas accurately;
he sends the patient to another imaging center, where a full 3-D Computed To-
mography (CT) image is obtained and returned to the pathologist. The new CT
image identifies accurately the location of the potential areas, but does not pro-
vide enough information to identify the nature of the growth. The pathologist
performs two biopsies to extract sample cells from the two areas and examine
them under a microscope to complete the diagnosis.

In a different setting, consider a player at a blackjack table in Las Vegas,
playing two simultaneous games against a dealer. The player sees all the cards
in his hands for both games, but only sees one of the dealer’s two cards. The
player asks for an extra card in his first game; after seeing the card, he asks for
a second one. He sees this card and decides to stop and switch to the second
game. After examining his cards, he chooses to stop asking for cards and let
the dealer draw.
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In a third setting, a phased-array radar is searching for new aircraft, while
trying to maintain accurate track and classification information on known air-
craft in its field of regard. The radar schedules a sequence of short pulses
aimed at areas where new objects may appear, interleaved with short pulses
aimed at positions where known objects are moving to update their position
and velocity information using recursive estimation. Occasionally, the radar
also introduces longer high range resolution (HRR) imaging waveforms into
the mix and focuses these on known objects to collect HRR images of scat-
terers on the moving platforms, thereby providing information for estimating
the object type. The interested reader is referred to Chapters 4, 5, 7 and 10
for radar applications and to Chapter 11 for some history and perspectives on
defense applications of sensor management.

The above examples share a common theme: in each example, decisions
are made sequentially over time. Each decision generates observations that
provide additional information. In each example, the outcome of selecting a
decision is uncertain; each subsequent decision is selected based on the pre-
vious observations, toward the purpose of achieving an objective that depends
on the sequence of decisions. In each example, uncertainty is present, and
the ultimate outcome of the decisions is unknown. In sum, these are sequen-
tial decision problems under uncertainty, where the choice of decisions can be
adapted to the information collected.

Sequential decision problems under uncertainty constitute an active area of
research in fields such as control theory [19–21, 23–25, 154, 251], statistics
[243, 55, 34, 35], operations research [111, 70, 192, 157, 198], computer sci-
ence [41, 227, 121, 16] and economics [17, 202], with broad applications to
problems in military surveillance, mathematical finance, robotics, and manu-
facturing, among others. This chapter presents an overview of mathematical
framework and techniques for representation and solution of sequential deci-
sion problems under uncertainty, with a focus on their application for prob-
lems of dynamic sensor management, where actions are explicitly selected to
acquire information about an underlying unknown process.

The classical model for dynamic decisions under uncertainty is illustrated
in the control loop in Figure 2.1(a). In such systems, information collected
by sensors is used to design activities that change how the underlying system
evolves in time. The problems of interest in this chapter differ from this model
in a substantial manner, as illustrated in Figure 2.1(b). In sensor management,
actions are not selected to change the evolution of a dynamical system; instead,
they are selected to improve the available information concerning the system
state. Thus, the focus is on controlling the evolution of information rather than
state dynamics.
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Figure 2.1. a) Feedback control loop b) Sensor management control

The foundation of sequential decision theory under uncertainty is a math-
ematical framework for representing the relationship between the underlying
unknown quantities that may evolve in time, the relationship of observables to
these unknowns, the objectives that measure the goals of the problem, and the
effects that actions have on observables, the underlying unknown quantities,
and the problem objectives. In this chapter, this representation is based on a
formal probabilistic framework, with the following characteristics:

Unknown quantities of interest are modeled as states of a dynamical
system, modeled as a Markov process. A quick overview of Markov
processes is included in Section 2 of the Appendix. At any time, the
current state summarizes the statistical information needed to predict the
evolution of future states.

Observed quantities will also be modeled statistically, in terms of their
relationship with the underlying state at the time observations are ac-
quired.

Actions may affect either the evolution of the state of the dynamical
system, or the nature of the observation acquired. The latter will be more
typical for sensor management. The choice of action may be constrained
by the available information collected.

Objectives will depend on the choice of actions and the specific dynamic
trajectories of the state, with an additive structure over stages.

In the rest of this chapter, we differentiate between two classes of prob-
lems: Markov Decision Problems [193, 25, 198], where the observations pro-
vide enough information to determine exactly the current state of the system,
and Partially Observed Markov Decision Problems [219, 218, 173, 248, 162],
where the history of observations leaves residual uncertainty concerning the
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current state. We will overview the formulation for these classes of problems,
selected key theoretical results, discuss algorithms for obtaining solutions. The
chapter concludes with an example application to illustrate the methodology.

2. Markov Decision Problems

We restrict our discussion to decision problems that evolve using a discrete
index, which we refer to as stages.

Definition 2.1 A Markov Decision Process (MDP) consists of

A discrete stage index k ∈ {0, 1, . . . , N}, N ≤ ∞

A set of possible states Sk for each stage index k

An initial value for the state s0 ∈ S0

A set of possible actions Ak

A family of action constraints {Ak(s) ⊂ Ak}, for s ∈ Sk.

A state transition probability kernel Tk(ds′|s, a), where Tk(ds′|s, a) ≡
P(sk+1 ∈ ds′|sk = s, ak = a),

A real-valued single stage reward function Rk(s, a)

The spaces Sk and Ak are assumed to be metric spaces. The reward func-
tions Rk(s, a) and the transition kernels Tk(ds′|s, a) are assumed continuous
functions of s, a. This is trivially satisfied when the spaces Sk,Ak are discrete.
Furthermore, we assume that, for each state, the admissible actions Ak(s) form
a compact subset of Ak. The resulting state evolves according to a Markov pro-
cess given the actions ak, k = 0, . . . , N − 1, so that the effects of an action ak

taken in state sk depend only on the current value of that state and not on the
prior history of the state.1

Observations of past decisions, plus past and current values of the state, are
available to select the choice of next decision. Let Ik denote the information
available at stage k, defined as:

Ik = {s0, a0, . . . , sk−1, ak−1, sk} (2.1)

1The reader is cautioned that this chapter does not adopt the upper/lower case notation to distinguish be-
tween random variables and their realizations, e.g., as in Sk and sk , respectively. In this book, the up-
per/lower case convention is only used when its omission would risk confusing the reader.
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A policy at stage k is a mapping γk(Ik), from the set of all possible infor-
mation states {Ik} to Ak. In this chapter, we define policies as deterministic
mappings from available information into admissible actions. One can also
define stochastic policies that map available information into probability ker-
nels on Ak, but such policies offer no better performance than deterministic
policies for the MDP models discussed here. A policy is said to be Markov if
the mapping γk depends only on the most recent value of the state, sk. That is,

γk : Sk −→ Ak (2.2)

An admissible policy is a sequence γ ≡ {γ0, . . . , γN−1} with the property
that γk(Ik) ∈ Ak(sk), so that the selected decisions given past information
satisfy the constraints imposed by the current state value. An admissible policy
generates a random state trajectory sk, k = 0, . . . , sN and an action trajectory
ak, k = 0, . . . , N − 1. Associated with each trajectory is a total reward R
which is assumed additive across stages:

R ≡ RN (sN ) +
N−1∑

k=0

Rk(sk, ak) (2.3)

This additive structure can be exploited to develop efficient algorithms for solv-
ing MDPs, as discussed later. Under appropriate conditions on the sets Sk,Ak,
the transition kernels Tk(ds′|s, a) and the reward functions Rk(s, a), the pol-
icy γ will generate sequences of well-defined random variables corresponding
to state, action and reward trajectories. These conditions involve measurability
assumptions, and are satisfied in most applications of interest. As discussed in
[25], these conditions will be satisfied whenever the sets Sk,Ak are countable
and the reward functions Rk(s, a) are bounded. Conditions for more general
spaces are beyond the scope of this chapter; see [27, 24] for additional details.

Given an admissible policy Γ, the total reward R becomes a well-defined
random variable with expectation EΓ[R]. The objective of the problem is to
select the admissible policy that maximizes the expected total reward

maxEγ

[
RN (sN ) +

N−1∑

k=0

Rk(sk, ak)

]
(2.4)

An important result in Markov Decision Processes is that, whenever an op-
timal admissible policy γ exists, there exist admissible Markov policies that
achieve the same expected reward, and hence are also optimal. In the remain-
der of this section, we restrict our discussion to Markov policies γk(sk).
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2.1 Dynamic Programming

The above formulation of a Markov decision problem has several important
properties. First, the overall reward can be represented as an additive decom-
position of individual rewards over stages. Second, the choice of admissible
actions at each stage is not constrained by the states and actions that were gen-
erated at previous stages. Under these assumptions, Bellman’s Principle of
Optimality [19, 18, 25] applies:

Definition 2.2 Bellman’s Principle of Optimality:

Let γ∗ be an optimal policy in a Markov Decision Problem. Assume that,
when using γ∗, the state sk is reached with positive probability, where k < N .
Consider the subproblem starting from state sk at stage K, with the expected
reward

max
γk,...,γN−1

E

[
RN (sN ) +

N−1∑

i=k

Ri(si, ai)|sk

]
(2.5)

The policy {γ∗
k , . . . , γ∗

N−1} is an optimal policy for this subproblem.

Bellman’s Principle of Optimality leads to the dynamic programming algo-
rithm, defined as follows. Consider the subproblem starting from a particular
state sk at stage k, and consider an admissible policy γ. Define the value of
policy Γ starting at state sk, stage k as

Vγ(sk, k) = Eγ

[
RN (sN ) +

N−1∑

i=k

Ri(si, γi(si))|sk

]
(2.6)

Define the optimal reward for the subproblem starting at stage K, state sK as

V ∗(sk, k) = max
γ admissible

Eγ

[
RN (sN ) +

N−1∑

i=k

Ri(si, ai)|sk

]
(2.7)

The difficulty with (2.7) is that it represents a functional minimization over
policies. The main result in dynamic programming is the Bellman equation,
which provides a recursive solution for (2.7):

Theorem 2.3 For every initial state s0, the optimal value V ∗(s0, 0) is given
by the backward recursion

V ∗(s, N) = RN (s) (2.8)
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V ∗(s, k) = max
a∈Ak(s)

Rk(s, a) +
∫

s′∈Sk+1

V ∗(s′, k + 1)Tk(ds′|a, s),

k = 0, . . . , N − 1 (2.9)

If there exist policies γk(s) such that

γk(s) ∈ argmax
a∈Ak(s)

R(s, a)+
∫

s′∈Sk+1

V ∗(s′, k+1)Tk(ds′|a, s), k = 0, . . . , N−1

(2.10)
then the policy γ∗ = {γ∗

0 , . . . , γ∗
N−1} is an optimal policy.

Bellman’s equation decomposes the functional optimization problem over
sequences of admissible policies to a sequence of optimizations over admissi-
ble actions for each state at each stage.

2.2 Stationary Problems

In many problems of interest, the Markov Decision Problem (MDP) de-
scription is stage invariant: The sets Ak(s),Sk, the reward functions Rk(s, a)
and the transition probability kernels Tk(ds′|s, a) are independent of the stage
index. These problems are known as stationary MDPs; the number of stages
N may be infinite, or may be a decision variable corresponding to choosing to
stop the measurement process.

For stationary MDPs, define a stationary Markov policy Γ = {γ, γ, . . .},
where the policy at any stage does not depend on the particular stage. We refer
to stationary policy sequences in terms of the single stage policy γ, the policy
that is used at every stage. Stationary MDP formulations often lead to optimal
Markov policies which are also stationary, which allows for a simpler, time-
invariant implementation of the optimal policy. There are three commonly
used MDP formulations that lead to stationary policies with infinite horizon:
discounted reward MDPs, total reward MDPs and average reward MDPs. The
first two are commonly used models in sensor management; average reward
models are seldom used because sensor management problems do not have
statistics that are stage invariant over large numbers of stages. By choosing
the discount factor or by rewarding stopping, one can approximately limit the
horizon of the MDP problem to intervals where the statistics are stage invariant.

2.2.1 Infinite Horizon Discounted Problems. Consider the
case where the number of stages N is infinite. In order to keep the total reward
finite, the reward R includes a nonnegative discount factor β < 1 for future
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rewards, as

R =
∞∑

k=0

βkR(sk, ak) (2.11)

Assume that the rewards R(s, a) are bounded, so that the total discounted cost
R is finite. For these problems, Bellman’s equation becomes

V ∗(s) = max
a∈A(s)

R(s, a) + β

∫

s′∈S
V ∗(s′)T (ds′|a, s) (2.12)

Note that (2.12) does not involve a recursion over stages, unlike (2.9). The con-
nection is given by the following relationship. Define V 0(s) to be a bounded,
measurable function of s ∈ S. Define the sequence of functions V n(s) as

V n(s) = max
a∈A(s)

R(s, a) + β

∫

s′∈S
V n−1(s′)T (ds′|a, s) (2.13)

Then, the sequence V n(s) converges to V ∗(s), the solution of Bellman’s equa-
tion (2.12). Formally, let S, A be complete metric spaces, and let B(S) denote
the space of bounded, real-valued functions f : S −→ R with the (essen-
tial) supremum norm ‖ · ‖∞. Define the dynamic programming operator
T : B(S) −→ B(S) as

Tf(s) = max
a∈A(s)

R(s, a) + β

∫

s′∈S
f(s′)T (ds′|a, s) (2.14)

and the fixed policy operator

Tγf(s) = R(s, γ(s)) + β

∫

s′∈S
f(s′)T (ds′|γ(s), s) (2.15)

The following result characterizes the important property of the dynamic
programming operator:

Theorem 2.4 Assume that R(s, a) is bounded and β < 1. Then, the oper-
ator T is a contraction mapping with contraction coefficient β; i.e., for any
functions V, W ∈ B(S),

‖ TV − TW ‖∞ ≤ β ‖ V − W ‖∞ (2.16)

The contraction mapping theorem [35] guarantees that the sequence V n(s)
converges to a unique fixed point V = T(V ) in B(S) as n → ∞, where the
existence is guaranteed by the completeness of the space B(S) from any initial
estimate of V . This limit satisfies Bellman’s equation (2.12). The main results
in discounted dynamic programming are summarized below:
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Theorem 2.5 Assume R(s, a) is bounded and β < 1. Then,

1 For any bounded function V ∈ B(S),

V ∗(s) = lim
n→∞

(TnV )(s) (2.17)

2 The optimal value function V ∗ satisfies Bellman’s equation (2.12). Fur-
thermore, the solution to the Bellman equation is unique in B(S).

3 For every stationary policy γ and for any V ∈ B(S), denote by Tγ the
dynamic programming operator when policy γ is the only admissible
policy. The expected value achieved by policy γ for each state s, denoted
as Vγ(s), is the unique solution in B(S) of the equation.

Vγ(s) = (TγVγ)(s) = lim
n→∞

(Tn
γV )(s) (2.18)

4 A stationary policy γ is optimal if and only if it achieves the maximum
reward in the Bellman equation (2.12) for each s ∈ S; i.e.,

TγV ∗ = TV ∗ (2.19)

The last property in Proposition 2.5 provides a verification theorem for es-
tablishing the optimality of a strategy given the optimal value function.

Although most sensor management applications will not have an infinite
horizon, a discounted infinite horizon model is often used as an approximation
to generate stationary policies. The choice of discount factor in these problems
sets an “effective” horizon that can be controlled to reflect the number of stages
in the problem of interest.

2.2.2 Undiscounted Total Reward Problems. Many sensor
management applications are best formulated as total reward problems where
the number of stages N can be infinite and no future discounting of value is
used. For instance, consider a search problem where there is a finite number of
areas to be searched, each of which may have an object present with a known
probability in each area. When there is a cost associated with searching an area
and a reward for finding objects in areas, an optimal strategy will search only
the subset of areas where the expected reward of searching an area exceeds the
expected cost of the search. In this problem, an admissible decision is to stop
searching; however, the number of stages before the search is stopped depends
on the stage evolution of the probabilities of areas containing objects, and is
not specified a priori.
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In undiscounted total reward problems, the accumulated reward may be-
come unbounded. Hence, additional structure is needed in the rewards to guar-
antee that optimal strategies exist, and that the optimal value function remains
finite. Following the exposition in [25], we specify two alternative assumptions
for the undiscounted problems.

Definition 2.6 Assumption P: The rewards per stage satisfy:

R(s, a) ≤ 0, for all s ∈ S, a ∈ A(s) (2.20)

Definition 2.7 Assumption N: The rewards per stage satisfy:

R(s, a) ≥ 0, for all s ∈ S, a ∈ A(s) (2.21)

In discounted reward problems, the presence of a discount factor limits the
effect of future rewards on the current choice of actions to a limited inter-
val. In contrast, undiscounted problems must consider effects of long-term re-
wards. Thus, under Assumption P, the goal must be to bring the state quickly
to a region where one can either terminate the problem or where the rewards
approach 0. Under assumption N, the objective may be to avoid reaching a
termination state for as long as possible.

As before, define the dynamic programming operator T : B(S) −→ B(S)
as

Tf(s) = max
a∈A(s)

R(s, a) +
∫

s′∈S
f(s′)T (ds′|a, s) (2.22)

and the iteration operator for a stationary policy γ as Tγ as

Tγf(s) = R(s, γ(a)) +
∫

s′∈S
f(s′)T (ds′|γ(a), s) (2.23)

A key difference with the discounted rewards problem is that the operators
T, Tγ are no longer contractions. This raises issues as to the existence and
uniqueness of optimal value functions and characterization of optimal strate-
gies. The principal results for these problems are summarized below.

Under Assumption P or N, Bellman’s equation holds, and becomes

V ∗(s) = max
a∈A(s)

R(s, a) +
∫

s′∈S
V ∗(s′)T (ds′|a, s) (2.24)

Similarly, for any stationary policy γ, one has the property that

Vγ(s) = TγVγ(s) (2.25)
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Although Bellman’s equation (2.24) holds, the solution may not be unique.
However, the optimal value is either the largest solution (under Assumption P)
or the smallest solution (under Assumption N). Specifically, under Assump-
tion P, if V satisfies V ≤ 0 and V ≤ TV , then V ≤ V ∗. Similarly, under
Assumption N, if V satisfies V ≥ 0 and V ≥ TV , then V ≥ V ∗.

Characterization of optimal strategies differs for the two cases P and N.
Under Assumption P, a stationary policy γ is optimal if and only if it achieves
the maximum reward in Bellman’s equation (2.24):

TγV ∗(s) = TV ∗(s) for all s ∈ S (2.26)

However, the sufficiency clause is not true under Assumption N. A different
characterization of optimality is needed: under Assumption N, a stationary
policy is optimal if and only if

TγVγ(s) = TVγ(s) for all s ∈ S (2.27)

Another important consequence of losing the contraction property is that
there may be no iterative algorithms for computing the optimal value func-
tion from arbitrary initial estimates. Fortunately, when the iteration is started
with the right initial condition, one can still get convergence. Specifically, let
V 0(s) = 0 for all s ∈ S, and define the iteration

V n = TV n−1, n = 1, 2, . . . (2.28)

Under Assumption P, the operator T generates a monotone sequence

V 0 ≥ V 1 ≥ . . . ≥ V n ≥ · · · , (2.29)

which has a limit (with values possibly −∞) V ∞. Similarly, under Assump-
tion N, the sequence generated by (2.28) yields

V 0 ≤ V 1 ≤ . . . ≤ V n ≤ · · · (2.30)

These limits become the optimal values under simple conditions, as indicated
below:

Theorem 2.8 Under Assumption P, if V ∞ = TV ∞ for all s ∈ S, and
V 0 ≥ V ≥ V ∗, then

lim
n→∞

TnV 0 = V ∗ (2.31)

Under Assumption N, if V 0 ≤ V ≤ V ∗,

lim
n→∞

TnV = V ∗ (2.32)
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Conditions that guarantee that V ∞ = TV ∞ under Assumption N are com-
pactness of the action sets A(s) for each s [25].

Important classes of sensor management problems that satisfy the assump-
tions in this subsection are optimal stopping problems, which are described in
the Appendix, Section 3. In these problems, one must choose between a finite
number of sensing actions, each of which has a cost that depends on the ac-
tion and state c(a, s), or stopping the sensing problem and receive a cost s(a).
For instance, the dynamic classification problems using multimodal sensing
considered in [47, 48] fit this structure: there is a cost for using sensing time
for each mode, and when the decision to stop sensing is made, the system un-
dergoes a cost related to the probability of misclassification of each target. A
similar formulation was used in [119] for underwater target classification using
multiple views. This example is discussed in Section 5.

One can formulate these optimal stopping problems as maximization prob-
lems, redefining rewards R(a, s) = −c(a, s), plus adding an additional termi-
nation state t to the state space S, corresponding to the action of termination.
Once the problem reaches a termination state, the only possible action is to
continue in this state, incurring no further rewards. The resulting problem fits
the model of Assumption P above.

2.3 Algorithms for MDPs

Bellman’s equation (2.9) provides a recursive algorithm for computation
of the optimal value function in finite horizon MDPs. For infinite horizon
problems, Bellman’s equation represents a functional equation for the optimal
value function V ∗(s). The most common algorithm for computing V ∗(s) is
known as value iteration. It consists of starting from a guess at the value func-
tion V 0(s) and generating a sequence V n(s) using the iteration (2.19). For
discounted reward problems, Theorem 2.5 establishes that this sequence con-
verges to V ∗(s) from any initial condition. For total reward problems, the value
iteration algorithm converges to V ∗(s) provided the initial condition V 0(s) is
chosen appropriately, as in Theorem 2.8.

In discounted reward problems, an optimal policy γ∗ can be generated using
(2.19) as

γ∗(s) ∈ arg max
a∈A

R(s, a) + β

∫

s′∈S
V ∗(s′)T (ds′|a, s). (2.33)

For total reward problems under Assumption P, a similar characterization fol-
lows from (2.26). Assumption P is the most appropriate model for sensor
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management with stopping criteria, as illustrated in the example later in this
chapter.

Another approach for the solution of discounted reward problems is policy
iteration. In policy iteration, the algorithm starts with a stationary policy γ0.
Given a policy γn, Bellman’s equation for a single policy is then solved to
obtain the optimal value function Vγn(s), as

Vγn(s) = R(s, γn(s)) + β

∫

s′∈S
Vγn(s′)T (ds′|γn(s), s) (2.34)

A new policy γn+1 is then generated as

γn+1(s) ∈ arg max
a∈A

R(s, a) + β

∫

s′∈S
Vγn(s′)T (ds′|a, s) (2.35)

The policy iteration algorithm requires many fewer iterations than value itera-
tion to converge. However, each iteration is more complex, as it requires the
solution of a functional equation to obtain the value of a single policy. An
approximate form of policy iteration is often used, where (2.34) is solved ap-
proximately using a few value iterations.

3. Partially Observed Markov Decision
Problems

The primary assumption underlying the MDP theory discussed in the previ-
ous section is that the state of the system, sk, is observed perfectly at each stage
k. In many sensor management applications, the full state is not observed at
each stage; instead, some statistics related to the underlying state are observed,
which yield uncertain information about the state. These problems are known
as Partially Observed Markov Decision Problems (POMDPs) as the observa-
tions yield only partial knowledge of the true state. POMDPs are also known
as partially observable Markov decision processes.

Definition 2.9 A Partially Observed Markov Decision Process (POMDP)
consists of

A discrete stage index k ∈ {0, 1, . . . , N}, N ≤ ∞

A finite set of possible states Sk for each stage index k, with cardinality
|Sk|

An initial probability distribution π0(s) over the finite set S0, where
π0(s) ≡ P(s0 = s).
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A finite set of possible actions Ak for each stage index k

State transition probability matrices Tk(s′|s, a), where Tk(s′|s, a) ≡
P(sk+1 = s′|sk = s, ak = a),

A real-valued single stage reward function Rk(s, a) and an overall ob-
jective J which is additive across stages

A finite set of possible observations Yk for each stage k

An observation probability likelihood Qk(y|s, a), where

Qk(y|s, a) ≡ P(yk = y|sk = s, ak = a)

Unlike the MDP model, the sets Sk, Ak and the observation sets Yk are as-
sume to be finite. The initial distribution π0(s) and the transition probability
distributions T (s′|s, a) define a controlled Markov chain given a sequence of
decisions a0, a1, . . .. The observations yk are assumed to be conditionally in-
dependent for different k, with distribution depending only on the current state
sk and the current action ak. Note that the choice of action ak affects the gener-
ation of observations; this model represents the sensor management problem,
where choice of sensing actions determine what information is collected.

We assume that past decisions, plus past values of the observations, are
available to select the choice of next decision. Let Ik denote the information
available at stage k for selecting action ak, defined as:

Ik = {a0, y0, . . . , ak−1, yk−1} (2.36)

Note that this information does not include any observations of past states. Due
to the finite assumption on the action and observation spaces, the number of
possible information sets Ik is also finite. As in MDPs, a policy at stage k is
a deterministic mapping γk(Ik), from the set of all possible information states
{Ik} to Ak. Such policies are causal, in that they select current actions based
on past information only. Similarly, an admissible policy for POMDPs is a
sequence Γ ≡ {γ0, . . . , γN−1} with the property that γk(Ik) ∈ Ak.

An admissible policy generates a random state trajectory sk, k = 0, . . . , sN ,
an observation trajectory yk, k = 0, . . . , N−1 and an action trajectory ak, k =
0, . . . , N − 1. The causal sequence corresponds to the following: Given infor-
mation Ik, the policy generates an action ak = γk(Ik). Given this action ak, a
new observation yk is collected, and the state transitions from sk to sk+1. The
action ak and the observation yk are added to the information set Ik to generate
Ik+1. This causal chain is illustrated in figure 2.2. The policy γ will generate
sequences of well-defined random variables corresponding to the state, action
and reward trajectories.
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Figure 2.2. Illustration of sequential actions and measurements

Similar to the MDP formulation, there is a total reward R associated with
these trajectories that is additive across stages:

R ≡ RN (sN ) +
N−1∑

k=0

Rk(sk, ak) (2.37)

Given an admissible policy Γ, the total reward R becomes a well-defined
random variable with expectation EΓ[R]. The objective of POMDP problem
is to select an admissible policy that maximizes the expected total reward

maxEγ

[
RN (sN ) +

N−1∑

k=0

Rk(sk, ak)

]
(2.38)

3.1 MDP Representation of POMDPs

The POMDP problem can be converted to a standard MDP problem, where
the underlying state corresponds to the information sets Ik. Note that these
sets take values in discrete sets, and evolve according to the simple evolution

Ik+1 = Ik ∪ {ak, yk} (2.39)

To show the equivalent MDP problem, consider the objective of maximizing
the expected reward. For any policy Γ, the smoothing property of conditional
expectations yields

Eγ

[
RN (sN ) +

N−1∑

k=0

Rk(sk, ak)

]
(2.40)

= Eγ

[
Eγ [RN (sN )|IN ] +

N−1∑

k=0

Eγ [Rk(sk, ak)|Ik, ak]

]
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Define the equivalent reward function R̂(Ik, ak) as

R̂(Ik, ak) = Eγ [Rk(sk, ak)|Ik, ak] (2.41)

Note that the conditional expectation in (2.41) does not depend on the specific
strategies γ, since all the past action values and past observation values are part
of Ik. To show equivalence to an MDP, we have to establish that (2.39) gener-
ates a Markov transition probability kernel that describes the random evolution
of Ik+1 given Ik. This requires that

P(Ik+1|Ik, ak, Ik−1, . . . , I0) = P(Ik+1|Ik, ak) (2.42)

To show this is true, note that the only conditionally random component of
Ik+1 given Ik, ak is the observation yk. Thus, one has to show that

P(yk|ak, Ik, Ik−1, . . . , I0) = P(yk|ak, Ik), (2.43)

which follows because Ij ⊂ Ik, j < k.

The above argument establishes that a POMDP is equivalent to an MDP
with states corresponding to the information sets Ik, and Markov dynamics
corresponding to (2.39), and Markov transition probabilities given by (2.42).
Hence, all of the results discussed in the previous section can be applied to
this problem. In particular, for N finite, there exists an optimal value function
V ∗(Ik, k) that satisfies Bellman’s equation

V ∗(Ik, k) = max
a∈Ak

R̂(Ik, a) + Eyk
[V ∗(Ik ∪ {yk, a}, k + 1)] (2.44)

and the optimal strategies satisfy

γ∗
k(Ik) ∈ argmax

a∈Ak

R̂(Ik, a) + Eyk
[V ∗(Ik ∪ {yk, a}, k + 1)] (2.45)

However, it is difficult to extend this characterization to infinite horizon
problems because the set of possible information sets Ik grows larger as k
increases. An alternative parameterization is possible using the concept of
sufficient statistics for control [225, 24, 25]. A sufficient statistic is a function
hk(Ik) such that the maximization in (2.45) is achieved by a function of hk(Ik)
instead of all of Ik. To show that a statistic is sufficient for control, it is enough
to show that the right hand side of (2.40) depends on Ik only through hk(Ik).
A sufficient statistic for stochastic control problems such as POMDPs is the
posterior distribution πk(s) = P(sk = s|Ik), the conditional probability that
the state sk takes the value s given past information Ik.
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Given a bounded function g : Sk → R, we use the notation

< g, πk >= E [g(sk)|Ik] =
∑

s∈Sk

g(s)πk(s). (2.46)

Since Sk is a finite set, these bounded functions are real-valued |Sk| dimen-
sional vectors, and < · > is an inner product. Define the function rk(ak)(sk) ≡
R(sk, ak). Then, (2.40) becomes

Eγ

[
RN (sN ) +

N−1∑

k=0

Rk(sk, ak)

]
= Eγ

[
< RN , πN > +

N−1∑

k=0

< r(ak), πk >

]
,

which establishes that the sequence πk, k = 0, . . . , N is a sufficient statistic
for POMDPs.

Given the independence assumptions of the POMDP model, one can com-
pute a controlled Markov evolution for the sufficient statistic πk as follows:

πk(sk) = P(sk|Ik) = P(sk|Ik−1, ak−1, yk−1)

=
∑

sk−1

P(sk, sk−1|Ik−1, ak−1, yk−1)

=
∑

sk−1

P(sk|sk−1, Ik−1, ak−1, yk−1) P(sk−1|Ik−1, ak−1, yk−1)

=
∑

sk−1

T (sk|sk−1, ak−1) P(sk−1|Ik−1, ak−1, yk−1), (2.47)

where the last equality follows from the Markov evolution of sk given the
actions ak. We can further simplify the right hand side using Bayes’ rule as

P(sk−1|Ik−1,ak−1, yk−1) =
P(sk−1, yk−1|Ik−1, ak−1)

P(yk−1|Ik−1, ak−1)

=
P(yk−1|sk−1, ak−1) P(sk−1|Ik−1)

P(yk−1|Ik−1, ak−1)

=
Qk−1(yk−1|sk−1, ak−1)πk−1(sk−1)∑
σ∈Sk−1

Qk−1(yk−1|σ, ak−1)πk−1(σ)
(2.48)

The resulting evolution is given by

πk(s) =
∑

sk−1∈Sk−1

Tk−1(s|sk−1, ak−1)
Qk−1(yk−1|sk−1, ak−1)πk−1(sk−1)∑
σ∈Sk−1

Qk−1(yk−1|σ, ak−1)πk−1(σ)

≡ T̂k−1(πk−1, yk−1, ak−1) (2.49)
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This evolution is a function of the causal dependencies depicted in Figure 2.2.
A different order can be used (e.g. [173, 248, 162]) where the information set
Ik includes the observation yk, which is generated as depending on the states
sk and action ak−1. The reason for the difference is that, in sensor manage-
ment problems, decisions are chosen primarily to control the measurements
obtained, and not the underlying state sk. In contrast, standard POMDP for-
mulations focus on using decisions to control the underlying state evolution.

Using sufficient statistics allows us to define an equivalent MDP with state
πk at stage k, and objectives (2.44). In the POMDP literature, these states are
referred to as information states or belief states (See Appendix, Section 2). In
terms of these information states, Bellman’s equation (2.44) becomes

V ∗(π, k) = max
a∈Ak

< rk(a), π > +
∑

y∈Y
V ∗(T̂k(π, y, a), k + 1) P(y|Ik, a),

(2.50)
where

P(y|Ik, a) ≡ Pk(y|πk, a) =
∑

s′∈Sk

Qk(y|s′, a)πk(s′) (2.51)

3.2 Dynamic Programming for POMDPs

The use of sufficient statistics allows for a constant-dimension representa-
tion of the underlying MDP state as the horizon increases. The information
state now takes values in π|Sk|, the simplex of probability distributions on Sk.
When Sk ≡ S and Ak ≡ A are constant in k, and the transition probabilities
Tk, measurement probabilities Qk and rewards R(s, a) do not depend on k,
one can define stationary problems as in MDPs with infinite horizons, with or
without discounting, and apply the MDP theory to the POMDP problem with
the information state representation. The resulting discounted cost Bellman
equation with discount factor β is

V ∗(π) = max
a∈A

< r(a), π > +β
∑

y∈Y
V ∗(T̂k(π, y, a)) P(y|π, a) (2.52)

The equivalent MDP using information states has a special structure where
the immediate reward associated with an action is a linear function of the state.
Sondik [219, 218, 220] exploited this property to obtain a unique characteriza-
tion for the solution of Bellman’s equation (2.50). Sondik observed that

V ∗(π,N) =< rN , π > (2.53)

is a linear function of π. Analyzing the recursion, this leads to the conjecture
that, for k < N , there exists a set of real-valued vectors Hk, of dimension |Sk|,
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such that
V ∗(π, k) = max

h∈Hk

< h, π >, (2.54)

which implies that V ∗(π, k) is a piecewise linear, convex function of π. This
can be established by induction, as it is true for k = N . Assuming the inductive
hypothesis that such a representation is valid at k + 1, and Hk+1 is known,
Bellman’s equation yields

V ∗(π, k) = max
a∈Ak

< rk(a), π > +
∑

y∈Yk

V ∗(T̂k(π, y, a), k + 1)Pk(y|π, a)

= max
a∈Ak

< rk(a), π > +
∑

y∈Yk

max
h∈Hk+1

< h, T̂k(π, y, a) > Pk(y|π, a)

= max
a∈Ak

< rk(a), π > +
∑

y∈Yk

max
h∈Hk+1

< h,
∑

s′∈Sk

Tk(·|s, a)Qk(y|s, a)π(s) >

where the denominator in T̂ cancels the multiplication by Pk(y|π, a). This can
further be simplified as

V ∗(π, k)=max
a∈Ak

∑

y∈Yk

max
h∈Hk+1

<
rk(a)
|Yk|

+
∑

σ∈Sk

h(σ)Tk(σ|·, a)Qk(y|·, a), π >,

(2.55)

where |Yk| is the number of possible observation values. Note that the sum
of a finite number of piecewise linear, convex functions of π is also a piece-
wise linear convex function, and the maximum of a finite number of piecewise
linear convex functions is again a piecewise linear, convex function, which
establishes the induction. Furthermore, a new set Hk containing the needed
linear support functions can be computed as

Hk = {h ∈ B(Sk) : h(s) = Rk(a, s) +
∑

y∈Yk

∑

σ∈Sk+1

hy
k+1(σ)·

Tk(σ|s, a)Qk(y|s, a) for some hy
k+1 ∈ Hk+1, a ∈ Ak} (2.56)

The set Hk defined above contains far more linear support functions than are
necessary to define V ∗(π, k) in (2.54); specifically, there are many functions
h ∈ Hk for which there is no information state π such that V ∗(π, k) =
< h, π >. Thus, efficient algorithms for solution of POMDP problems focus
on finding small subsets of Hk which are sufficient for defining V ∗(π, k). The
details of these algorithms are beyond the scope of this overview chapter, and
can be found in review articles such as [162, 45, 46, 159, 189, 173]. The key
in all of these algorithms is that, given a specific information state π at stage k
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and the set Hk+1 of support functions, one can use (2.55) to construct the linear
support function h for which V ∗(π, k) =< h, π >. By judiciously choosing
the information states π for which this is done, one can generate a minimal set
of support functions for defining V ∗(π, k) recursively. In general, the number
of linear support pieces still grows exponentially with the number of stages,
limiting the application of numerical techniques to small horizon problems or
problems with special structure.

4. Approximate Dynamic Programming

The dynamic programming algorithms described above often require exten-
sive computation to obtain an optimal policy. For MDPs, one has to compute
a value function indexed by the number of states, which could be uncountable.
For POMDPs with finite state spaces, the value functions depend on the infor-
mation states, which are probability vectors of dimension equal to the number
of states. This has led to a number of Approximate Dynamic Programming
(ADP) techniques [16, 28, 26] that are used to reduce the required computa-
tions. Such approximations form the basis for the results in Chapters 7 and 5.
We discuss the nature of these approximations briefly for the case of discounted
infinite horizon MDPs.

The foundation for most ADP techniques is the characterization of optimal
strategies in (2.33)

γ∗(s) ∈ arg max
a∈A

R(s, a) + β

∫

s′∈A
V ∗(s′)T (ds′|a, s) (2.57)

If the optimal value function V ∗(s) were available, one can compute the opti-
mal action at the current state s by performing the above maximization. ADP
techniques compute an approximation Ṽ ∗(s) to the optimal value function
V ∗(s) and use (2.57) to generate decisions for each state.

There are three classes of ADP techniques commonly used in the literature.
Offline learning techniques [16, 230] use simulation and exploratory strategies
such as temporal difference learning to learn functional approximations Ṽ ∗(s)
to the optimal value function. These are typically used for problems where the
dynamical model is well-understood; a powerful application was demonstrated
by Tesauro [230] in the context of backgammon. Rollout techniques [26, 207]
use real-time simulation of suboptimal policies to evaluate an approximation to
the future expected reward in (2.57); these are typically used when the problem
instance is not known a priori, so that simulations are not readily implemented.
Problem Approximation techniques [49, 48, 245, 205] use the exact value func-
tion computed for an approximate problem with special structure as surrogates
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for the optimal value function. These techniques exploit special classes of
stochastic control problems that have simple solutions, such as the multi-armed
bandit problems of Chapter 6 or one-step lookahead problems.

The effectiveness of ADP depends on the choice of technique and the prob-
lem structure. Specific ADP techniques tailored to sensor management prob-
lems are discussed in greater detail in Chapters 5 and 7.

5. Example

We conclude this chapter with an example consisting of selecting measure-
ments to classify underwater elastic targets at unknown orientations using ac-
tive acoustic sensors, described in greater detail in [119]. The scattered fields
from each target depend on target type and the target-sensor orientation [200].
Typically, there are contiguous ranges of orientations for which the scattering
physics is relatively stationary for each target type. Assuming that the targets
of interest are rotationally symmetric, and the scattered fields are observed in
a plane bisecting the axis of symmetry, the scattered fields at a fixed radial
distance are characterized by a single orientation angle φ and the target type.

We model this problem as a POMDP. The underlying discrete states Sk con-
sist of five target types and five discrete orientation bins from 0 to 90o. Actions
correspond to taking a measurement of the object from a given angular posi-
tion in a fixed coordinate system. Assuming that the objects are moving, there
is a Markov model for transitions from one relative orientation bin to another
given measurements, since moving the sensor to a different angular location
will change the relative orientation. Furthermore, there will be some random
relative angular changes created by target motion. This is captured by a finite
state Markov chain model that depends on the chosen action (measurement
position).

A sensing action a at stage k corresponds to selecting a change in relative
measurement angle ΔΦ for movement of the sensor position from its previous
position. As discussed above, there is a state transition probability Tk(s′|s, a)
associated with this action. Furthermore, this action generates an observation
yk which is related to the underlying state: the true object type and the quan-
tized relative observation angle. To continue the development of the POMDP
formulation, one must describe the finite set of possible values Y , and the ob-
servation probability likelihoods Qk(y|s, a). For this application, we collected
measured scattered fields for each target as a function of relative angle, with
data sampled in 1◦ increments. Figure 2.3 shows a plot of the magnitude of the
discrete Fourier transform of the measured scattered fields, for two of the five
targets, as a function of relative sensing angle φ. The time-domain scattered
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fields from each target were processed using matching pursuits [200, 201, 169]
to extract a set of feature vectors. The feature vectors were collected across all
target-sensor orientations and target types, and vector quantization (VQ) was
performed [96], leading to a finite number of possible observation values Y .
The error statistics of the vector quantization algorithm were used to generate
the observation likelihoods Q(y|s, a), which were assumed to be stationary.
For these experiments, the number of VQ codes (possible observations) was
25. The number of possible observation directions was discretized to 11 direc-
tions, at increments of 5◦, with a maximum displacement of 50◦.

Figure 2.3. Scattered fields (magnitude) as a function of sensing angle.

After performing k observation actions, starting at stage 0, the information
state πk can be computed as in (2.49). To complete the POMDP description,
one needs a description of the objective. Let Cuv denote the cost of declaring
the object under interrogation to be target u, when in reality it is target v,
where u and v are members of the five targets of interest. Given the collected
information, one can choose to make a classification decision based on the
current information, or to continue collecting information. If one chooses to
make a classification decision, the selected label will be the one that minimizes
the Bayes cost given the available information:

Target class = arg min
u

5∑

v=1

Cuv

∑

s∈Sv

πk(s), (2.58)

where Sv is the set of discrete states associated with target v. In terms of
the maximization formulation discussed previously, a classification decision
incurs a negative reward, corresponding to the expected Bayes cost. Note that
this increases the set of potential control actions at any stage Ak, as one can
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choose to either select a new measurement, or make one of 5 classification
decisions. Making a classification decision places the state into an absorbing
state, from which there are no further transitions or rewards associated with the
state.

In addition to the classification costs, there are costs associated with any
sensing action, which may depend on the cost of moving the relative angle
displacement Δφ. This cost will be independent of the underlying state sk

of the system, and is set to the value 1 in the results below, independent of
the angle displacement. Using negative costs as rewards, this implies that, for
sensing actions a, Rk(s, a) ≡ −1 for all s ∈ S. For classification actions
a = u, Rk(s, a) ≡ −Cu,v if s ∈ Sv. The classification costs Cuv have a
uniform penalty for errors as Cuv = Cc for all u �= v, and Cuu = −10 (a
reward of 10 is obtained upon correct classification); the error penalty will be
varied in the experiments. In terms of overall reward R, the goal is to maximize
the discounted infinite horizon reward

R = E

[ ∞∑

k=0

βkR(sk, ak)

]
, (2.59)

where the discount factor β is chosen to be 0.99.

Denote by s0 the special state in S which results from making a final classi-
fication decision. Note that πk(s0) = 0 until a classification decision is made,
and πk(s0) = 1 for all k after a classification decision is made. Let Am ⊂ A
be the admissible decisions to collect further measurements, and Ac ⊂ A be
the admissible decisions to make a classification.

Bellman’s equation for this POMDP is given by (2.50), for all π such that
π(s0) = 0, as

V ∗(π) = max[ max
a∈Am

< R(s, a), π >,−1 + β max
a∈Ac

∑

y∈Y
V ∗(T̂ (π, y, a)) P(y|π, a)]

This can be solved using the value iteration algorithm, starting from the
piecewise linear approximation V (π) = maxa∈Am < R(s, a), π >. After a
finite number of iterations, the value function will be a piecewise linear, convex
function (cf. (2.55)).

In the results below, the optimal value function was computed approxi-
mately using the point-based value iteration (PBVI) algorithm [189], which
limits the number of linear support functions to those which support the value
function at a given finite set of information states π ∈ π|S|. This yields a lower
bound on the optimal value function, which converges to the optimal value
function as the discrete set of information states increases to fill the space of
information states [162].
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The POMDP formulation discussed above yields a non-myopic multi-stage
sensor management policy, mapping belief states into actions that trade off im-
mediate rewards for acquiring information to make better decisions. It is an
adaptive stopping policy, in that the decision to make a final classification de-
pends on the information state. However, its computational complexity can be
significant unless the number of discrete linear support functions is restricted.

Alternative sensor management policies with reduced computation require-
ments can be developed using different POMDP formulations. For instance,
one can consider an alternative adaptive policy, generated by a one-step looka-
head POMDP: at each stage k, given an information state πk that has not yet
reached the classification state, select action ak as

ak(πk) = arg max[ max
a∈Am

< R(s, a), πk >,−1+

β max
a∈Ac

∑

y∈Y
max
a∈Am

< R(s, a), T̂ (πk, y, a)) > P(y|π, a)]

That is, decide the current choice of action by evaluating the benefit of making
a classification decision at k, or taking one additional measurement and mak-
ing a classification decision afterward. At every new stage k, this problem is
solved to determine the current action ak; this approach is known in control
theory as receding horizon control or model-predictive control, and yields a
low-complexity approximation to the longer horizon control problems.

Another approach to generating a sensor management policy is to use a
finite horizon POMDP formulation that takes a fixed number of observations
T before making a classification decision. The resulting policy does not stop
adaptively, but instead performs a classification decision at stage T .

Figure 2.4(a) shows the classification accuracy achieved versus expected
number of measurements taken for three algorithms: The POMDP algorithm
with adaptive stopping, the one-step lookahead adaptive stopping algorithm,
and the non-adaptive stopping algorithm with fixed number of views. Each
point in the graph for the adaptive algorithms was generated by varying the
cost of an erroneous classification Cc from 15 to 150. For the non-adaptive
stopping algorithm, the number of measurement actions was varied. The re-
sults represent the average performance of the strategies using Monte Carlo
simulations, averaging over possible initial conditions of the target type and
orientation and measurement values.

Figure 2.4(a) highlights the advantages of adaptive stopping policies over
the fixed stopping policy. Adaptive stopping exploits the availability of good
measurements in determining whether additional measurements would be valu-
able. The results also highlight a small increase in performance when using the
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Figure 2.4. a) Classification performance of the different sensor scheduling algorithms as a
function of the average number of actions. b) Classification performance versus classification
error cost for adaptive stopping policies.
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full POMDP adaptive policy versus the one-step lookahead (single stage) pol-
icy, as expected.

Figure 2.4(b) presents classification performance for the two adaptive stop-
ping algorithms versus the misclassification cost Cc. Note that the one-step
lookahead algorithm underperforms the full horizon algorithm, as it underes-
timates the amount of information that can be acquired in the future (because
it is one-step lookahead). As a consequence, the one-step lookahead algorithm
tends to make classification decisions earlier, resulting in a loss of classifica-
tion performance.

6. Conclusion

This chapter presented an overview of the models and algorithms used for
sequential decision making under uncertainty, with a focus on sensor man-
agement models. Accumulated information is modeled as a Markov state that
evolves in response to selection of sensor actions. Using a reward structure
that is additive over time, we discussed the application of stochastic dynamic
programming to characterize both the optimal rewards and optimal strategies
in these classes of problems. We also presented alternative formulations of
rewards, from finite horizon rewards to infinite horizon discounted and undis-
counted rewards.

The models presented in this chapter form the foundation for sensor man-
agement applications that plan over temporal sequences of sensor actions and
adapt to the information observed. Such models are exploited in Chapters 5,
6, 7, 9 and 10 for addressing specific sensor management applications. The
next chapter develops information theoretic reward functions that are combined
with the joint particle filtering methods of Chapter 4 to implement approximate
POMDP sensor management algorithms discussed in Chapter 5.


