
static Disassembly and Code Analysis

Giovanni Vigna

Reliable Software Group, University of California, Santa Barbara
vigna@cs.ucsb.edu

Summary. The classification of an unknown binary program as malicious or benign requires
two steps. In the first step, the stream of bytes that constitutes the program has to be trans
formed (or disassembled) into the corresponding sequence of machine instructions. In the
second step, based on this machine code representation, static or dynamic code analysis tech
niques can be applied to determine the properties and function of the program.

Both the disassembly and code analysis steps can be foiled by techniques that obfuscate
the binary representation of a program. Thus, robust techniques are required that deliver re
liable results under such adverse circumstances. In this chapter, we introduce a disassemble
technique that can deal with obfuscated binaries. Also, we introduce a static code analysis
approach that can identify high-level semantic properties of code that are difficult to conceal.

2.1 Introduction

Code analysis takes as input a program and attempts to determine certain character
istics of this program. In particular, the goal of security analysis is to identify either
malicious behavior or the presence of security flaws, which might be exploited to
compromise the security of a system. In this chapter, we focus particularly on the
security analysis of binary programs that use the Intel x86 instruction set. However,
many of the concepts can also be applied to analyze code that exists in a different
representation.

In the first step of the analysis, the code has to be disassembled. That is, we want
to recover a symbolic representation of a program's machine code instructions from
its binary representation. While disassembly is straightforward for regular binaries,
the situation is different for malicious code. In particular, a number of techniques
have been proposed that are effective in preventing a substantial fraction of a binary
program from being disassembled correctly. This could allow an attacker to hide ma
licious code from the subsequent static program analysis. In Section 2.2, we present
binary analysis techniques that substantially improve the success of the disassembly
process when confronted with obfuscated binaries. Using control flow graph infor
mation and statistical methods, a large fraction of the program's instructions can be
correctly identified.

20 Giovanni Vigna

Based on the program's machine code, the next step is to identify code sequences
that are known to be malicious (or code sequences that violate a given specification of
permitted behavior). Often, malicious code is defined at a very low level of abstrac
tion. That is, a specification, or signature, of malicious code is expressed in terms of
byte sequences or instruction sequences. While it is efficient and easy to search a pro
gram for the occurrence of specific byte strings, such syntax-based signatures can be
trivially evaded. Therefore, specifications at a higher level are needed that can char
acterize the intrinsic properties of a program that are more difficult to disguise. Of
course, suitable analysis techniques are required that can identify such higher-level
properties. Moreover, these techniques have to be robust against deliberate efforts of
an attacker to thwart analysis.

Code analysis techniques can be categorized into two main classes: dynamic
techniques and static techniques. Approaches that belong to the first category rely
on monitoring execution traces of an application to identify the executed instructions
and their actions, or behavior. Approaches that belong to the second category analyze
the binary structure statically, parsing the instructions as they are found in the binary
image and attempting to determine a (possibly over-approximated) set of all possible
behaviors.

Both static and dynamic approaches have advantages and disadvantages. Static
analysis takes into account the complete program, while dynamic analysis can only
operate on the instructions that were executed in a particular set of runs. Therefore,
it is impossible to guarantee that the whole executable with all possible actions was
covered when using dynamic analysis. On the other hand, dynamic analysis assures
that only actual program behavior is considered. This eliminates possible incorrect
results due to overly conservative approximations that are often necessary when per
forming static analysis.

In Section 2.3, we introduce our static analysis approach to find pieces of code
that perform actions (i.e., behave) in a way that we have specified as malicious. More
precisely, we describe our application of symbolic execution to the static analysis of
binaries.

2.2 Robust Disassembly of Obfuscated Binaries

In this section, we introduce our approach to robust disassembly when facing ob
fuscated, malicious binaries. The term obfuscation refers to techniques that preserve
the program's semantics and functionality while, at the same time, making it more
difficult for the analyst to extract and comprehend the program's structures. In the
context of disassembly, obfuscation refers to transformations of the binary such that
the parsing of instructions becomes difficult.

In [13], Linn and Debray introduced novel obfuscation techniques that exploit
the fact that the Intel x86 instruction set architecture contains variable length in
structions that can start at arbitrary memory address. By inserting padding bytes at
locations that cannot be reached during run-time, disassemblers can be confused to
misinterpret large parts of the binary. Although their approach is limited to Intel x86

2 Static Disassembly and Code Analysis 21

binaries, the obfuscation results against current state-of-the-art disassemblers are re
markable.

In general, disassemblers follow one of two approaches. The first approach,
called linear sweep, starts at the first byte of the binary's text segment and proceeds
from there, decoding one instruction after another. It is used, for example, by GNU's
objdump [8]. The drawback of linear sweep disassemblers is that they are prone to
errors that result from data embedded in the instruction stream. The second approach,
called recursive traversal, fixes this problem by following the control flow of the pro
gram [4, 15]. This allows recursive disassemblers such as IDA Pro [7] to circumvent
data that is interleaved with the program instructions. The problem with the second
approach is that the control flow cannot always be reconstructed precisely. When the
target of a control transfer instruction such as a jump or a call cannot be determined
statically (e.g., in case of an indirect jump), the recursive disassembler fails to an
alyze parts of the program's code. This problem is usually solved with a technique
called speculative disassembly [3], which uses a linear sweep algorithm to analyze
unreachable code regions.

Linn and Debray's approach [13] to confuse disassemblers are based on two main
techniques. First, junk bytes are inserted at locations that are not reachable at run
time. These locations can be found after control transfer instructions such as jumps
where control flow does not continue. Inserting junk bytes at unreachable locations
should not affect recursive disassemblers, but has a profound impact on linear sweep
implementations.

The second technique relies on a branch function to change the way regular pro
cedure calls work. This creates more opportunities to insert junk bytes and misleads
both types of disassemblers. A normal call to a subroutine is replaced with a call to
the branch function. This branch function uses an indirect jump to transfer control to
the original subroutine. In addition, an offset value is added to the return address of
the subroutine, which has been saved on the stack as part of the subroutine invoca
tion. Therefore, when the subroutine is done, control is not transfered to the address
directly after the call instruction. Instead, an instruction that is a certain number of
bytes after the call instruction is executed. Because calls are redirected to the branch
function, large parts of the binary become unreachable for the recursive traversal
algorithm. As a result, recursive traversal disassemblers perform even worse on ob
fuscated binaries than linear sweep disassemblers.

When analyzing an obfuscated binary, one cannot assume that the code be gen
erated by a well-behaved compiler. In fact, the obfuscation techniques introduced by
Linn and Debray [13] precisely exploit the fact that standard disassemblers assume
certain properties of compiler-generated code that can be violated without chang
ing the program's functionality. However, in general, certain properties are easier to
change than others and it is not straightforward to transform a binary into a func
tionally equivalent representation in which all the compiler-related properties of the
original code are lost. When disassembling obfuscated binaries, we require that cer
tain assumptions are valid.

First of all, we assume that valid instructions must not overlap. An instruction is
denoted as valid if it belongs to the program, that is, it is reached (and executed) at

22 Giovanni Vigna

run-time as part of some legal program execution trace. Two instructions overlap if
one or more bytes in the executable are shared by both instructions. In other words,
the start of one instruction is located at an address that is already used by another
instruction. Overlapping instructions have been suggested to complicate disassembly
in [5]. However, suitable candidate instructions for this type of transformation are
difficult to find in real executables and the reported obfuscation effects were minimal
[13].

The second assumption is that conditional jumps can be either taken or not taken.
This means that control flow can continue at the branch target or at the instruction
after the conditional branch. In particular, it is not possible to insert junk bytes at the
branch target or at the address following the branch instruction. Linn and Debray [13]
discuss the possibility to transform unconditional jumps into conditional branches
using opaque predicates. Opaque predicates are predicates that always evaluate to
either true or false, independent of the input. This would allow the obfuscator to
insert junk bytes either at the jump target or in place of the fall-through instruction.
However, it is not obvious how to generate opaque predicates that are not easily
recognizable for the disassembler. Also, the obfuscator presented in [13] does not
implement this transformation.

In addition to the assumptions above, we also assume that the code is not nec
essarily the output of a well-behaved compiler. That is, we assume that an arbitrary
amount of junk bytes can be inserted at unreachable locations. Unreachable locations
denote locations that are not reachable at run-time. These locations can be found af
ter instructions that change the normal control flow. For example, most compilers
arrange code such that the address following an unconditional jump contains a valid
instruction. However, we assume that an arbitrary number of junk bytes can be in
serted there. Also, the control flow does not have to continue immediately after a
call instruction. Thus, an arbitrary number of padding bytes can be added after each
call. This is different from the standard behavior where it is expected that the callee
returns to the instruction following a call using the corresponding return instruction.
More specifically, in the x86 instruction set, the c a l l operation performs a jump
to the call target and, in addition, pushes the address following the call instruction
on the stack. This address is then used by the corresponding r e t instruction, which
performs a jump to the address currently on top of the stack. However, by redirecting
calls to a branch function, it is trivial to change the return address.

Given the assumptions above, we have developed two classes of techniques: gen
eral techniques and tool-specific techniques. General techniques are techniques that
do not rely upon any knowledge on how a particular obfuscator transforms the bi
nary. It is only required that the transformations respect our assumptions. Our general
techniques are based on the program's control flow, similar to a recursive traversal
disassembler. However, we use a different approach to construct the control flow
graph, which is more resilient to obfuscation attempts. Program regions that are not
covered by the control flow graph are analyzed using statistical techniques.

An instance of an obfuscator that respects our assumptions is presented by Linn
and Debray in [13]. By tailoring the static analysis process against a particular tool,
it is often possible to reverse some of the performed transformations and improve the

2 Static Disassembly and Code Analysis 23

analysis results. For more information on how we can take advantage of tool-specific
knowledge when disassembling binaries transformed with Linn and Debray's ob-
fuscator, please refer to [11]. In the following, we only concentrate on the general
disassembly techniques.

2.2.1 Function Identification

The first step when disassembling obfuscated programs is to divide the binary into
functions that can then be analyzed independently. The main reason for doing so is
run-time performance; it is necessary that the disassembler scale well enough such
that the analysis of large real-world binaries is possible.

An important part of our analysis is the reconstruction of the program's control
flow. When operating on the complete binary, the analysis does not scale well for
large programs. Therefore, the binary is broken into smaller regions (i.e., functions)
that can be analyzed consecutively. This results in a run-time overhead of the disas
sembly process that is linear in the number of instructions (roughly, the size of the
code segment).

A straightforward approach to obtain a function's start addresses is to extract the
targets of call instructions. When a Unker generates an ordinary executable, the tar
gets of calls to functions located in the binary's text segment are bound to the actual
addresses of these functions. Given the call targets and assuming that most func
tions are actually referenced from others within the binary, one can obtain a fairly
complete set of function start addresses. Unfortunately, this approach has two draw
backs. One problem is that this method requires that the call instructions are already
identified. As the objective of our disassembler is precisely to provide that kind of
information, the call instructions are not available at this point. Another problem is
that an obfuscator can redirect all calls to a single branching function that transfers
control to the appropriate targets. This technique changes all call targets to a single
address, thus removing information necessary to identify functions.

We use a heuristic to locate function start addresses. More precisely, function
start addresses are located by identifying byte sequences that implement typical func
tion prologs. When a function is called, the first few instructions usually set up a new
stack frame. This frame is required to make room for local variables and to be able
restore the stack to its initial state when the function returns. In the current imple
mentation, we scan the binary for byte sequences that represent instructions that
push the frame pointer onto the stack and instructions that increase the size of the
stack by decreasing the value of the stack pointer. The technique works very well for
regular binaries and also for the obfuscated binaries used in our experiments. The
reason is that the used obfuscation tool [13] does not attempt to hide function pro
logs. It is certainly possible to extend the obfuscator to conceal the function prolog.
In this case, our function identification technique might require changes, possibly
using tool-specific knowledge.

Note that the partitioning of the binary into functions is mainly done for perfor
mance reasons, and it is not crucial for the quality of the results that all functions
are correctiy identified. When the start point of a function is missed, later analysis

24 Giovanni Vigna

simply has to deal with one larger region of code instead of two separate smaller
parts. When a sequence of instructions within a function is misinterpreted as a func
tion prolog, two parts of a single function are analyzed individually. This could lead
to less accurate results when some intra-procedural jumps are interpreted as inter-
procedural, making it harder to reconstruct the intra-procedural control flow graph
as discussed in the following section.

2.2.2 Intra-Procedural Control Flow Graph

To find the valid instructions of a function (i.e., the instructions that belong to the pro
gram), we attempt to reconstruct the function's intra-procedural control flow graph.
A control flow graph (CFG) is defined as a directed graph G = (V, E) in which
vertices u,v E V represent basic blocks and an edge e E E : u —> v represents a
possible flow of control from utov. A basic block describes a sequence of instruc
tions without any jumps or jump targets in the middle. More formally, a basic block
is defined as a sequence of instructions where the instruction in each position domi
nates, or always executes before, all those in later positions, and no other instruction
executes between two instructions in the sequence. Directed edges between blocks
represent jumps in the control flow, which are caused by control transfer instructions
(CTIs) such as calls, conditional and unconditional jumps, or return instructions.

The traditional approach to reconstructing the control flow graph of a function
works similar to a recursive disassembler. The analysis commences at the function's
start address and instructions are disassembled until a control transfer instruction
is encountered. The process is then continued, recursively, at all jump targets that
are local to the procedure and, in case of a call instruction or a conditional jump,
at the address following the instruction. In case of an obfuscated binary, however,
the disassembler cannot continue directly after a call instruction. In addition, many
local jumps are converted into non-local jumps to addresses outside the function to
blur local control flow. In most cases, the traditional approach leads to a control flow
graph that covers only a small fraction of the valid instructions of the function under
analysis.

We developed an alternative technique to extract a more complete control flow
graph. The technique is composed of two phases: in the first phase, an initial control
flow graph is determined. In the following phase, conflicts and ambiguities in the
initial CFG are resolved. The two phases are presented in detail in the following two
sections.

2.2.3 Initial Control Flow Graph

To determine the initial control flow graph for a function, we first decode all possible
instructions between the function's start and end addresses. This is done by treating
each address in this address range as the beginning of a new instruction. Thus, one
potential instruction is decoded and assigned to each address of the function. The
reason for considering every address as a possible instruction start stems from the fact
that x86 instructions have a variable length from one to fifteen bytes and do not have

2 Static Disassembly and Code Analysis 25

L1

L2

8048000
8048001

8048003
8048008

804800a
804800c
8048006
8048010
8048012
8048014

8048019
804801b
8048010
804801d

55
89 eS

68 00 00 74 11
OaOS

3c 00
75 06
bOOO
eb07
OaOS
a1 00 00 74 01

89 60
5d
03

90

push
mov

call
(junk)

cmp
Jne
mov
jmp
(junk)
mov

mov
pop
rat
nop

%ebp
%esp, %ebp

19788008 <branch fnct>

0, %6ax
8048014 <L1>
0, %eax
8048019 <L2>

(1740000), %eax

%6bp, %6Sp
%ebp

function func(int arg) {
int locaLvar, ret_val;

local = oth6r_tunc(arg);

if (locaLvar == 0)

r6t_val = 0;
else

r6t_val = globaLvar;

return ret_val;

Disassembly of Obfuscated Function C Function

Fig. 2.1. Example function.

to be aligned in memory (i.e., an instruction can start at an arbitrary address). Note
that most instructions take up multiple bytes and such instructions overlap with other
instructions that start at subsequent bytes. Therefore, only a subset of the instructions
decoded in this first step can be valid. Figure 2.2 provides a partial listing of all
instructions in the address range of the sample function (both in source and assembler
format) that is shown in Figure 2.1. For the reader's reference, valid instructions are
marked by an x in the "Valid" column. Of course, this information is not available to
our disassembler. An example for the overlap between valid and invalid instructions
can be seen between the second and the third instruction. The valid instruction at
address 0x8048001 requires two bytes and thus interferes with the next (invalid)
instruction at 0x8048002.

8048000
8048001
8048002
8048003
8048004
8048005
8048006

804800c

8048010

8048017
8048018
8048019
804801a
804801 b

55
89 e5
65 68
68 00 00 74 11
00 00
00 74
74 11

75 06

6b 07

74 01
01 89 60 5d c3 90
89 60
eo
5d

push
mov
in
call
add
add
je

jne

jmp

ie
add
mov
in
pop

%6bp
%esp, %6bp
68,%6ax
19788008 <obfuscator>
%al, %eax

8048019

8048014

8048019

804801a
%dh,ffffff89(%eox,%6ax, 1)
%6bp, %6sp
(%dx), %al
%ebp

Valid
X

X

X

X

X

X

X

Candidate

X

X

X

X

Fig. 2.2. Partial instruction listing.

26 Giovanni Vigna

The next step is to identify all intra-procedural control transfer instructions. For
our purposes, an intra-procedural control transfer instruction is defined as a CTI with
at least one known successor basic block in the same function. Remember that we
assume that control flow only continues after conditional branches but not necessarily
after call or unconditional branch instnictions. Therefore, an instruction is an intra-
procedural control transfer instruction if either (i) its target address can be determined
and this address is in the range between the function's start and end addresses or (ii)
it is a conditional jump. In the latter case, the address that immediately follows the
conditional jump instruction is the start of a successor block.

Note that we assume that a function is represented by a contiguous sequence of
instructions, with possible junk instructions added in between. This means that, it is
not possible that the basic blocks of two different functions are intertwined. There
fore, each function has one start address and one end address (i.e., the last instruction
of the last basic block that belongs to this function). However, it is possible that a
function has multiple exit points.

To find all intra-procedural CTIs, the instructions decoded in the previous step are
scanned for any control transfer instructions. For each CTI found in this way, we at
tempt to extract its target address. In the current implementation, only direct address
modes are supported and no data flow analysis is performed to compute address val
ues used by indirect jumps. However, such analysis could be later added to further
improve the performance of our static analyzer. When the instruction is determined
to be an intra-procedural control transfer operation, it is included in the set of jump
candidates. The jump candidates of the sample function are marked in Figure 2.2 by
an X in the "Candidate" column. In this example, the call at address 0x8048003
is not included into the set of jump candidates because the target address is located
outside the function.

Given the set of jump candidates, an initial control flow graph is constructed.
This is done with the help of a recursive disassembler. Starting with an initial empty
CFG, the disassembler is successively invoked for all the elements in the set of jump
candidates. In addition, it is also invoked for the instruction at the start address of the
function.

The key idea for taking into account all possible control transfer instructions
is the fact that the valid CTIs determine the skeleton of the analyzed function. By
using all control flow instructions to create the initial CFG, we make sure that the
real CFG is a subgraph of this initial graph. Because the set of jump candidates can
contain both valid and invalid instructions, it is possible (and also frequent) that the
initial CFG contains a superset of the nodes of the real CFG. These nodes are in
troduced as a result of argument bytes of valid instructions being misinterpreted as
control transfer instructions. The Intel x86 instruction set contains 26 single-byte
opcodes that map to control transfer instructions (out of 219 single-byte instruction
opcodes). Therefore, the probability that a random argument byte is decoded as CTI
is not negligible. In our experiments [11], we found that about one tenth of all de
coded instructions are CTIs. Of those instructions, only two thirds were part of the
real control flow graph. As a result, the initial CFG contains nodes and edges that
represent invalid instructions. Most of the time, these nodes contain instructions that

2 Static Disassembly and Code Analysis 27

overlap with valid instructions of nodes that belong to the real CFG. The follow
ing section discusses mechanisms to remove these spurious nodes from the initial
control flow graph. It is possible to distinguish spurious from valid nodes because
invalid CTIs represent random jumps within the function while valid CTIs constitute
a well-structured CFG with nodes that have no overlapping instructions.

Creating an initial CFG that includes nodes that are not part of the real control
flow graph can been seen as the opposite to the operation of a recursive disassembler.
A standard recursive disassembler starts from a known valid block and builds up
the CFG by adding nodes as it follows the targets of control transfer instructions
that are encountered. This technique seems favorable at a first glance, because it
makes sure that no invalid instructions are incorporated into the CFG. However, most
control flow graphs are partitioned into several unconnected subgraphs. This happens
because there are control flow instructions such as indirect branches whose targets
often cannot be determined statically. This leads to missing edges in the CFG and
to the problem that only a fraction of the real control flow graph is reachable from
a certain node. The situation is exacerbated when dealing with obfuscated binaries,
as inter-procedural calls and jumps are redirected to a branching function that uses
indirect jumps. This significantly reduces the parts of the control flow graph that are
directly accessible to a recursive disassembler, leading to unsatisfactory results.

Although the standard recursive disassembler produces suboptimal results, we
use a similar algorithm to extract the basic blocks to create the initial CFG. As men
tioned before, however, the recursive disassembler is not only invoked for the start
address of the function alone, but also for all jump candidates that have been identi
fied. An initial control flow graph is then constructed.

There are two differences between a standard recursive disassembler and our
prototype tool. First, we assume that the address after a call or an unconditional
jump instruction does not have to contain a valid instruction. Therefore, our recursive
disassembler cannot continue at the address foUowing a call or an unconditional
jump. Note, however, that we do continue to disassemble after a conditional jump
(i.e., branch).

The second difference is due to the fact that it is possible to have instructions in
the initial call graph that overlap. In this case, two different basic blocks in the call
graph can contain overlapping instructions starting at slightly different addresses.
When following a sequence of instructions, the disassembler can arrive at an instruc
tion that is already part of a previously found basic block. Normally, this instruction
is the first instruction of the existing block. The disassembler can then "close" the
instruction sequence of the current block and create a link to the existing basic block
in the control flow graph.

When instructions can overlap, it is possible that the current instruction sequence
overlaps with another sequence in an existing basic block for some instructions be
fore the two sequences eventually become identical. In this case, the existing basic
block is split into two new blocks. One block refers to the overlapping sequence up
to the instruction where the two sequences merge, the other refers to the instruction
sequence that both have in common. All edges in the control flow graph that point
to the original basic block are changed to point to the first block, while all outgoing

28 Giovanni Vigna

edges of the original block are assigned to the second. In addition, the first block is
connected to the second one.

The reason for splitting the existing block is the fact that a basic block is de
fined as a continuous sequence of instructions without a jump or jump target in the
middle. When two different overlapping sequences merge at a certain instruction,
this instruction has two predecessor instructions (one in each of the two overlapping
sequences). Therefore, it becomes the first instruction of a new basic block. As an
additional desirable side effect, each instruction appears at most once in a basic block
of the call graph.

The fact that instruction sequences eventually "merge" is a common phenomenon
when disassembling x86 binaries. The reason is called self-repairing disassembly
and relates to the fact that two instruction sequences that start at slightly different
addresses (that is, shifted by a few bytes) synchronize quickly, often after a few
instructions. Therefore, when the disassembler starts at an address that does not cor
respond to a valid instruction, it can be expected to re-synchronize with the sequence
of valid instructions after a few steps [13].

J K

Fig. 2.3. Initial control flow graph.

The initial control flow graph generated for for our example function is shown
in Figure 2.3. In this example, the algorithm is invoked for the function start at
address 0x8048000 and the four jump candidates (0x8048006, 0x804800c ,
0x8048010, and 0x8048017) . The nodes in this figure represent basic blocks
and are labeled with the start address of the first instruction and the end address of
the last instruction in the corresponding instruction sequence. Note that the end ad
dress denotes the first byte after the last instruction and is not part of the basic block
itself. Solid, directed edges between nodes represent the targets of control transfer
instructions. A dashed line between two nodes signifies a conflict between the two
corresponding blocks.

Two basic blocks are in conflict when they contain at least one pair of instruc
tions that overlap. As discussed previously, our algorithm guarantees that a certain
instruction is assigned to at most one basic block (otherwise, blocks are split appro-

2 Static Disassembly and Code Analysis 29

priately). Therefore, whenever the address ranges of two blocks overlap, they must
also contain different, overlapping instructions. Otherwise, both blocks would con
tain the same instruction, which is not possible. This is apparent in Figure 2.3, where
the address ranges of all pairs of conflicting basic blocks overlap. To .simplify the
following discussion of the techniques used to resolve conflicts, nodes that belong
to the real control flow graph are shaded. In addition, each node is denoted with an
uppercase letter.

2.2.4 Block Conflict Resolution

The task of the block conflict resolution phase is to remove basic blocks from the
initial CFG until no conflicts are present anymore. Conflict resolution proceeds in
five steps. The first two steps remove blocks that are definitely invalid, given our
assumptions. The last three steps are heuristics that choose likely invalid blocks. The
conflict resolution phase terminates immediately after the last conflicting block is
removed; it is not necessary to carry out all steps. The final step brings about a
decision for any basic block conflict and the control flow graph is guaranteed to be
free of any conflicts when the conflict resolution phase completes.

The five steps are detailed in the following paragraphs.
Step 1: We assume that the start address of the analyzed function contains a valid
instruction. Therefore, the basic block that contains this instruction is valid. In addi
tion, whenever a basic block is known to be valid, all blocks that are reachable from
this block are also valid.

A basic block v is reachable from basic block u if there exists a path p from
M to «. A path p from M to t; is defined as a sequence of edges that begins at u
and terminates at v. An edge is inserted into the control flow graph only when its
target can be statically determined and a possible program execution trace exists that
transfers control over this edge. Therefore, whenever a control transfer instruction is
valid, its targets have to be valid as well.

We tag the node that contains the instruction at the function's start address and
all nodes that are reachable from this node as valid. Note that this set of valid nodes
contains exactly the nodes that a traditional recursive disassembler would identify
when invoked with the function's start address. When the valid nodes are identified,
any node that is in conflict with at least one of the valid nodes can be removed.

In the initial control flow graph for the example function in Figure 2.3, only
node A (0x8048000) is marked as vahd. That node is drawn with a stronger bor
der in Figure 2.3. The reason is that the corresponding basic block ends with a call
instruction at 0x8048003 whose target is not local. In addition, we do not assume
that control flow resumes at the address after a call and thus the analysis cannot di
rectly continue after the call instruction. In Figure 2.3, node B (the basic block at
0x8048006) is in conflict with the valid node and can be removed.
Step 2: Because of the assumption that valid instructions do not overlap, it is not
possible to start from a valid block and reach two different nodes in the control flow
graph that are in conflict. That is, whenever two conflicting nodes are both reachable
from a third node, this third node cannot be valid and is removed from the CFG. The

30 Giovanni Vigna

situation can be restated using the notion of a common ancestor node. A common
ancestor node of two nodes u and v is defined as a node n such that both u and v are
reachable from n.

In Step 2, all common ancestor nodes of conflicting nodes are removed from the
control flow graph. In our example in Figure 2.3, it can be seen that the conflicting
node F and node K share a common ancestor, namely node J. This node is removed
Irom the CFG, resolving a conflict with node I. The resulting control flow graph after
the first two steps is shown in Figure 2.4.

The situation of having a common ancestor node of two conflicting blocks is
frequent when dealing with invalid conditional branches. In such cases, the branch
target and the continuation after the branch instruction are often directly in conflict,
allowing one to remove the invalid basic block from the control flow graph.

K

Fig. 2.4. CFG after two steps of conflict resolution.

Step 3: When two basic blocks are in conflict, it is reasonable to expect that a valid
block is more tightly integrated into the control flow graph than a block that was
created because of a misinterpreted argument value of a program instruction. That
means that a valid block is often reachable from a substantial number of other blocks
throughout the function, while an invalid block usually has only a few ancestors.

The degree of integration of a certain basic block into the control flow graph
is approximated by the number of its predecessor nodes. A node u is defined as a
predecessor node of v when v is reachable from u. In Step 3, the predecessor nodes
for pairs of conflicting nodes are determined and the node with the smaller number
is removed from the CFG.

In Figure 2.4, node K has no predecessor nodes while node F has five. Note
that the algorithm cannot distinguish between real and spurious nodes and, thus, it
includes node C in the set of predecessor nodes for node F. As a result, node K is
removed. The number of predecessor nodes for node C and node H are both zero and
no decision is made in the current step.
Step 4: In this step, the number of direct successor nodes of two conflicting nodes
are compared. A node v is a direct successor node of node u when v can be directly

2 Static Disassembly and Code Analysis 31

reached through an outgoing edge from u. The node with less direct successor nodes
is then removed. The rationale behind preferring the node with more outgoing edges
is the fact that each edge represents a jump target within the function and it is more
likely that a valid control transfer instruction has a target within the function than
any random CTI.

In Figure 2.4, node C has only one direct successor node while node H has two.
Therefore, node C is removed from the control flow graph. In our example, all con
flicts are resolved at this point.
Step 5: In this step, all conflicts between basic blocks must be resolved. For each
pair of conflicting blocks, one is chosen at random and then removed from the graph.
No human intervention is required at this step, but it would be possible to create
different alternative disassembly outputs (one output for each block that needs to be
removed) that can be all presented to a human analyst.

It might also be possible to use statistical methods during Step 5 to improve the
chances that the "correct" block is selected. However, this technique is not imple
mented and is left for future work.

The result of the conflict resolution step is a control flow graph that contains no
overlapping basic blocks. The instructions in these blocks are considered valid and
could serve as the output of the static analysis process. However, most control flow
graphs do not cover the function's complete address range and gaps exist between
some basic blocks.

2.2.5 Gap Completion

The task of the gap completion phase is to improve the results of our analysis by
filling the gaps between basic blocks in the control flow graph with instructions that
are likely to be valid. A gap from basic block &i to basic block 62 is the sequence of
addresses that starts at the first address after the end of basic block &i and ends at the
last address before the start of block 62, given that there is no other basic block in the
control flow graph that covers any of these addresses. In other words, a gap contains
bytes that are not used by any instruction in blocks the control flow graph.

Gaps are often the result of junk bytes that are inserted by the obfuscator. Be
cause junk bytes are not reachable at run-time, the control flow graph does not cover
such bytes. It is apparent that the attempt to disassemble gaps filled with junk bytes
does not improve the results of the analysis. However, there are also gaps that do
contain valid instructions. These gaps can be the result of an incomplete control flow
graph, for example, stemming from a region of code that is only reachable through an
indirect jump whose target cannot be determined statically. Another frequent cause
for gaps that contain valid instructions are call instructions. Because the disassem
bler cannot continue after a call instruction, the following valid instructions are not
immediately reachable. Some of these instructions might be included into the control
flow graph because they are the target of other control transfer instructions. Those
regions that are not reachable, however, cause gaps that must be analyzed in the gap
completion phase.

32 Giovanni Vigna

The algorithm to identify the most probable instruction sequence in a gap from
basic block 61 to basic block &2 works as follows. First, all possibly valid sequences
in the gap are identified. A necessary condition for a valid instruction sequence is that
its last instruction either (i) ends with the last byte of the gap or (ii) its last instruction
is a non intra-procedural control transfer instruction. The first condition states that the
last instruction of a valid sequence has to be directly adjacent to the first instruction of
block 62. This becomes evident when considering a valid instruction sequence in the
gap that is executed at run-time. After the last instruction of the sequence is executed,
the control flow has to continue at the first instruction of basic block 62- The second
condition states that a sequence does not need to end directly adjacent to block &2 if
the last instruction is a non intra-procedural control transfer. The restriction to non
intra-procedural CTIs is necessary because all intra-procedural CTIs are included
into the initial control flow graph. When an intra-procedural instruction appears in a
gap, it must have been removed during the conflict resolution phase and should not
be included again.

Instruction sequences are found by considering each byte between the start and
the end of the gap as a potential start of a valid instruction sequence. Subsequent
instructions are then decoded until the instruction sequence either meets or violates
one of the necessary conditions defined above. When an instruction sequence meets a
necessary condition, it is considered possibly valid and a sequence score is calculated
for it. The sequence score is a measure of the likelihood that this instruction sequence
appears in an executable. It is calculated as the sum of the instruction scores of all
instructions in the sequence. The instruction score is similar to the sequence score
and reflects the likelihood of an individual instruction. Instruction scores are always
greater or equal than zero. Therefore, the score of a sequence cannot decrease when
more instructions are added. We calculate instruction scores using statistical tech
niques and heuristics to identify improbable instructions.

The statistical techniques are based on instruction probabilities and digraphs.
Our approach utilizes tables that denote both the likelihood of individual instruc
tions appearing in a binary as well as the likelihood of two instructions occurring
as a consecutive pair. The tables were built by disassembling a large set of common
executables and tabulating counts for the occurrence of each individual instruction
as well as counts for each occurrence of a pair of instructions. These counts were
subsequently stored for later use during the disassembly of an obfuscated binary. It
is important to note that only instruction opcodes are taken into account with this
technique; operands are not considered. The basic score for a particular instruction
is calculated as the sum of the probability of occurrence of this instruction and the
probability of occurrence of this instruction followed by the next instruction in the
sequence.

In addition to the statistical technique, a set of heuristics is used to identify im
probable instructions. This analysis focuses on instruction arguments and observed
notions of the validity of certain combinations of operations, registers, and accessing
modes. Each heuristic is applied to an individual instruction and can modify the basic
score calculated by the statistical technique. In our current implementation, the score

2 Static Disassembly and Code Analysis 33

of the corresponding instruction is set to zero whenever a rule matches. Examples of
these rules include the following:

• operand size mismatches;
• certain arithmetic on special-purpose registers;
• unexpected register-to-register moves (e.g., moving from a register other than

%ebp into %esp);
• moves of a register value into memory referenced by the same register.

When all possible instruction sequences are determined, the one with the highest
sequence score is selected as the valid instruction sequence between &i and &2-

a.
aj

CD

Q.
CO

a

8048000
8048001
8048003

8048008
8048009
804800a
804800b

804800c|

804800e|

8048010|

8048012
8048013

8048014|

80480191

804801b
8048010
804801d

55
89 e5
e8 00 00 74 11

Oa
05
30
00

75 06

bOOO

e b 0 7

Oa
05

a1 00 00 74 01

89 ec

5d
C3

90

SOa
05
30
00
75
06

SOa
05
a1
00
00
74

§ 0 5
" 3 c

00
75
06

1 0 5
* a 1

00
00
74

| 3 c
" 0 0 T3

• 1

G a p Sequences

00
75
06

55
89 e5
68 00 0 0 7 4 11

3c 00

75 06

bOOO

e b 0 7

a1 00 00 74 01

89 eo

Sd
c3
90

push
mov
call

cmp

jne

mov

jmp

mov

mov

pop
ret
nop

D isassemble

%ebp
%esp, %ebp
19788008

0, %eax

8048014

0, %eax

8048019

(1740000),°/

%ebp. %esp

%ebp

Output

Fig. 2.5. Gap completion and disassembler output.

The instructions that make up the control flow graph of our example liinction
and the intermediate gaps are shown in the left part of Figure 2.5. It can be seen that
only a single instruction sequence is valid in the first gap, while there is none in the
second gap. The right part of Figure 2.5 shows the output of our disassembler. All
valid instructions of the example function have been correctly identified.

Based on the list of valid instructions, the subsequent code analysis phase can
attempt to detect maUcious code. In the following Section 2.3, we present symbolic
execution as one possible static analysis approach to identify higher-level properties
of code.

34 Giovanni Vigna

2.3 Code Analysis

This section describes the use of symbolic execution [10], a static analysis technique
to identify code sequences that exhibit certain properties. In particular, we aim at
characterizing a code piece by its semantics, or, in other words, by its effect on the
environment. The goal is to construct models that characterize malicious behavior,
regardless of the particular sequence of instructions (and therefore, of bytes) used in
the code. This allows one to specify more general and robust descriptions of mali
cious code that cannot be evaded by simple changes to the syntactic representation
or layout of the code (e.g., by renaming registers or modify the execution order of
instructions).

Symbolic execution is a technique that interpretatively executes a program, using
symbolic expressions instead of real values as input. This also includes the execution
environment of the program (data, stack, and heap regions) for which no initial value
is known at the time of the analysis. Of course, for all variables for which concrete
values are known (e.g., initialized data segments), these values are used. When the
execution starts from the entry point in the program, say address s, a symbolic execu
tion engine interprets the sequence of machine instructions as they are encountered
in the program.

To perform symbolic execution of machine instructions (in our case, Intel x86 op
erations), it is necessary to extend the semantics of these instructions so that operands
are not limited to real data objects but can also be symbolic expressions. The nor
mal execution semantics of Intel x86 assembly code describes how data objects are
represented, how statements and operations manipulate these data objects, and how
control flows through the statements of a program. For symbolic execution, the defi
nitions for the basic operators of the language have to be extended to accept symbolic
operands and produce symbolic formulas as output.

2.3.1 Execution State

We define the execution state S of program p as a snapshot of the content of the
processor registers (except the program counter) and all valid memory locations at
a particular instruction of p, which is denoted by the program counter. Although it
would be possible to treat the program counter like any other register, it is more
intuitive to handle the program counter separately and to require that it contain a
concrete value (i.e., it points to a certain instruction). The content of all other registers
and memory locations can be described by symbolic expressions.

Before symbolic execution starts from address s, the execution state S is initial
ized by assigning symbolic variables to all processor registers (except the program
counter) and memory locations for which no concrete value is known initially. Thus,
whenever a processor register or a memory location is read for the first time, without
any previous assignment to it, a new symbol is supplied from the list of variables
{vi, V2, V3,... } . Note that this is the only time when symbolic data objects are in
troduced.

2 Static Disassembly and Code Analysis 35

In our current system, we do not support floating-point data objects and opera
tions. Therefore, all symbols (variables) represent integer values. Symbolic expres
sions are linear combinations of these symbols (i.e., integer polynomials over the
symbols). A symbolic expression can be written as c„ * w„ -I- c„_i * w„_i + • • • -f
Ci*Vi + Co where the Ci are constants. In addition, there is a special symbol ± that
denotes that no information is known about the content of a register or a memory
location. Note that this is very different from a symbolic expression. Although there
is no concrete value known for a symbolic expression, its value can be evaluated
when concrete values are supplied for the initial execution state. For the symbol ± ,
nothing can be asserted, even when the initial state is completely defined.

By allowing program variables to assume integer polynomials over the symbols
Vi, the symbolic execution of assignment statements follows naturally. The expres
sion on the right-hand side of the statement is evaluated, substituting symbolic ex
pressions for source registers or memory locations. The result is another symbolic
expression (an integer is the trivial case) that represents the new value of the left-hand
side of the assignment statement. Because symbolic expressions are integer polyno
mials, it is possible to evaluate addition and subtraction of two arbitrary expressions.
Also, it is possible to multiply or shift a symbolic expression by a constant value.
Other instructions, such as the multiplication of two symbolic variables or a logic
operation (e.g., and, o r) , result in the assignment of the symbol _L to the destina
tion. This is because the result of these operations cannot (always) be represented as
integer polynomial. The reason for limiting symbolic formulas to linear expressions
will become clear in Section 2.3.3.

Whenever an instruction is executed, the execution state is changed. As men
tioned previously, in case of an assignment, the content of the destination operand is
replaced with the right-hand side of the statement. In addition, the program counter
is advanced. In the case of an instruction that does not change the control flow of a
program (i.e., an instruction that is not a jump or a conditional branch), the program
counter is simply advanced to the next instruction. Also, an unconditional jump to a
certain label (instruction) is performed exactly as in normal execution by transferring
control from the current statement to the statement associated with the corresponding
label.

Figure 2.6 shows the symbolic execution of a sequence of instructions. In addi
tion to the x86 machine instructions, a corresponding fragment of C source code is
shown. For each step of the symbolic execution, the relevant parts of the execution
state are presented. Changes between execution states are shown in bold face. Note
that the compiler (gcc 3 .3) converted the multiplication in the C program into an
equivalent series of add machine instructions.

2.3.2 Conditional Branches and Loops

To handle conditional branches, the execution state has to be extended to include a
set of constraints, called the path constraints. In principle, a path constraint relates a
symbolic expression L to a constant. This can be used, for example, to specify that
the content of a register has to be equal to 0. More formally, a path constraint is a

36 Giovanni Vigna

int i, j, k;

void f()
{
i = 3'j + k;

}

8048364
B04836a
804836c
8048366
8048370
8048376
804837b

mov
mov
add
add
add
mov

0x8049588,%edx
%Bdx,%eax
%eax,%eax
'*/oedx,%eax
0x804958c,%eax
%eax, 0x8049590

eax: vO
edx: VI

8049588 (j) : V2
804958c (k): V3
8049590 (i) : V4

PC: 8048364

1 eax: vO
1 edx: v2

1 8049588: Q) : v2
; 804958c: (k): V3
; 8049590: (i) : V4

< PC: 804836a

Step1 Step 2

eax: v2
edx: v2

8049588 (j) : v2
804958c (k): v3
8049590 (i) : v4

P C L 8 0 4 8 3 6 0

1 eax: 2*v2
] edx: v2

1 8049588 (j) : v2
; 804958c (k): v3
; 8049590 (i) : V4

I^PCL 80483_6e_

; eax: 3*v2
1 edx: v2

I 8049588 (j) : v2
; 804958c (k): V3
1 8049590 (i) : V4

L P C L 8P483_70_

' eax: 3*v2+v3 •
i edx: v2 !

; 8049588 (i) : V2 j
; 804958c (k): v3
; 8049590 (i): v4 ;

1_PCL 8048376, _ J

eax: 3*v2+v3
edx: v2

8049588 (j) : V2
804958c (k): v3
8049590 (i) : 3«v2+v3

P C L 804837_b _

Step 3 Step 4 Steps Step 6 Step 7

Fig. 2.6. Symbolic execution.

boolean expression of the form L > 0 or L = 0, in which L is an integer polynomial
over the symbols Uj. The set of path constraints forms a linear constraint system.

The symbolic execution of a conditional branch statement starts by evaluating the
associated Boolean expression. The evaluation is done by replacing the instruction's
operands with their corresponding symbolic expressions. Then, the inequality (or
equality) is transformed and converted into the standard form introduced above. Let
the resulting path constraint be called q.

To continue symbolic execution, both branches of the control path need to be
explored. The symbolic execution forks into two "parallel" execution threads: one
thread follows the then alternative, while the other one follows the else alternative.
Both execution threads assume the execution state that existed immediately before
the conditional statement, but proceed independently thereafter. Because the then
alternative is only chosen if the conditional branch is taken, the corresponding path
constraint q must be true. Therefore, we add q to the set of path constraints of this
execution thread. The situation is reversed for the else alternative. In this case, the
branch is not taken and q must be false. Thus, -ig is added to the path constraints of
this execution.

After q (or -^q) is added to a set of path constraints, the corresponding linear
constraint system is immediately checked for satisfiability. When the set of path con
straints has no solution, this impUes that, independent of the choice of values for
the initial configuration C, this path of execution can never occur. This allows us to
immediately terminate impossible execution threads.

Each fork of execution at a conditional statement contributes a condition over the
variables w, that must hold for this particular execution thread. Thus, the set of path
constraints determines which conditions the initial execution state must satisfy in or
der for an execution to follow the particular associated path. Each symbolic execution
begins with an empty set of path constraints. As assumptions about the variables are
made (in order to choose between alternative paths through the program as presented
by conditional statements), those assumptions are added to the set. An example of

2 Static Disassembly and Code Analysis 37

int i, j :

void f()

< if(i>42)
i = i ;

else
i = 0;

>

8048364
804836b
804836d
8048377
8048379
8048383

cmpi $0x2a,0x804958c
jle 8048379
movl $0x1,0x8049588
imp 8048383
movl $0x0,0x8049588

I eax:
1 edx;

! 8049588 (i): V2
; 804958c (i); V3

; PC: 804836b

' Path Condition;

then continuation

Fig. 2.7. Handling conditional branches during symbolic execution.

a fork into two symbolic execution threads as the result of an i f-statement and the
corresponding path constraints are shown in Figure 2.7. Note that the if-statement
was translated into two machine instructions. Thus, special code is required to extract
the condition on which a branch statement depends.

Because a symbolic execution thread forks into two threads at each conditional
branch statement, loops represent a problem. In particular, we have to make sure that
execution threads "make progress." The problem is addressed by requiring that a
thread passes through the same loop at most three times. Before an execution thread
enters a loop for the forth time, its execution is halted. Then, the effect of an arbi
trary number of iterations of this loop on the execution state is approximated. This
approximation is a standard static analysis technique [6, 14] that aims at determining
value ranges for the variables that are modified in the loop body. Since the problem
of finding exact ranges and relationships between variables is undecidable in the gen
eral case, the approximation naturally involves a certain loss of precision. After the
effect of the loop on the execution thread is approximated, the thread can continue
with the modified state after the loop. To determine loops in the control flow graph,
we use the algorithm by Lengauer-Tarjan [12], which is based on dominator trees.

To approximate the effect of the loop body on an execution state, afixpoint for
this loop is constructed. For our purposes, a fixpoint is an execution state F that,
when used as the initial state before entering the loop, is equivalent to the execution
state after the loop termination. In other words, after the operations of the loop body
are applied to the fixpoint state F, the resulting execution state is again F. Clearly,
if there are multiple paths through the loop, the resulting execution states at each
loop exit must be the same (and identical to F). Thus, whenever the effect of a loop
on an execution state must be determined, we transform this state into a fixpoint for

38 Giovanni Vigna

this loop. This transformation is often called widening. Then, the thread can continue
after the loop using the fixpoint as its new execution state.

The fixpoint for a loop is constructed in an iterative fashion. Given the execution
state Si after the first execution of the loop body, we calculate the execution state 52
after a second iteration. Then, ^ i and 5*2 are compared. For each register and each
memory location that hold different values (i.e., different symbolic expressions), we
assign _L as the new value. The resulting state is used as the new state and another
iteration of the loop is performed. This is repeated until Si and 5(1+1) are identical.
In case of multiple paths through the loop, the algorithm is extended by collecting
one exit state Si for each path and then comparing all pairs of states. Whenever a
difference between a register value or a memory location is found, this location is
set to ± . The iterative algorithm is guaranteed to terminate, because at each step, it
is only possible to convert the content of a memory location or a register to _L. Thus,
after each iteration, the states are either identical or the content of some locations is
made unknown. This process can only be repeated until all values are converted to
unknown and no information is left.

intj, k;

void t()

{
int i = 0;
j = k = 0;

while (i< 100) {
k = 1 ;
i f (i ==10)

j = 2;
I++;

>
}

: i = 1; :
: J = 0; :
; k = 1; ;

S i

i = 2; ;
; J = 0:.
;k = i ; ;

S2

: i = l ; :
: J = 0 ; i
: k = 1;

S3

: i=±;:
i i = 0; :

k = 1; :

S4

: j = 2 ; :
k = 1; •

S5

: i = l ; ' :
ii=±;

k = 1;

Se

\\=±;\
;i=±;;

k = 1 ;

S7

: i= i ; :

|< = 1 ;

Ss

Fig. 2.8. Fixpoint calculation.

An example for a fixpoint calculation (using C code instead of x86 assembly)
is presented in Figure 2.8. In this case, the execution state includes the values of
the three variables i, j , and k. After the first loop iteration, the execution state ^ i
is reached. Here, i has been incremented once, k has been assigned the constant 1,
and j has not been modified. After a second iteration, S2 is reached. Because i has
changed between ^ i and ^2, its value is set to ± in S'3. Note that the execution has
not modified j , because the value of i was known to be different from 10 at the if-
statement. Using S3 as the new execution state, two paths are taken through the loop.
In one case (^4), j is set to 2, in the other case {S5), the variable j remains 0. The
reason for the two different execution paths is the fact that i is no longer known at
the i f-statement and, thus, both paths have to be followed. Comparing 53 with 54
and S5, the difference between the values of variable j leads to the new state Se in
which j is set to _L. As before, the new state 5*6 is used for the next loop iteration.

2 Static Disassembly and Code Analysis 39

Finally, the resulting states 5*7 and Ss are identical to SQ, indicating that a fixpoint is
reached.

In the example above, we quickly reach a fixpoint. In general, by considering
all modified values as unknown (setting them to _L), the termination of the fixpoint
algorithm is achieved very quickly. However, the approximation might be unneces
sarily imprecise. For our current prototype, we use this simple approximation tech
nique [14]. However, we plan to investigate more sophisticated fixpoint algorithms
in the future.

2.3.3 Analyzing Effects of Code Sequences

As mentioned previously, the aim of the symboUc execution is to characterize the
behavior of a piece of code. For example, symbolic execution could be used to deter
mine if a system call is invoked with a particular argument. Another example is the
assignment of a value to a certain memory address.

Consider a specification that defines a piece of code as malicious when it writes
to an area in memory that should not be modified. Such a specification can be used to
characterize kernel-level rootkits, which modify parts of the operating system mem
ory (such as the system call table) that benign modules do not touch. To determine
whether a piece of code can assign a value to a certain memory address t, the des
tination addresses of data transfer instructions (e.g., x86 mov) must be determined.
Thus, whenever the symbolic execution engine encounters such an instruction, it
checks whether this instruction can possibly access (or write to) address t. To this
end, the symbolic expression that represents the destination of the data transfer in
struction is analyzed. The reason is that if it were possible to force this symbolic
expression to evaluate to t, then the attacker could achieve her goal.

Let the symbolic expression of the destination of the data transfer instruction
be called St- To check whether it is possible to force the destination address of this
instruction to t, the constraint st = t is generated (this constraint simply expresses
the fact that st should evaluate to the target address t). Now, we have to determine
whether this constraint can be satisfied, given the current path constraints. To this
end, the constraint St = t is added to the path constraints, and the resulting linear
inequality system is solved.

If the linear inequality system has a solution, then the sequence of code instruc
tions that were symbolically executed so far can possibly write to t. Note that, since
the symbolic expressions are integer polynomials over variables that describe the ini
tial state of the system, the solution to the linear inequality system directly provides
concrete values for the initial configuration that will eventually lead to a value being
written to t. For example, in the case of kernel-level rootkit detection, a kernel mod
ule would be classified as malicious if a data transfer instruction (in its initialization
routine) can be used to modify the address t of an entry in the system call table.

To solve the linear constraint systems, we use the Parma Polyhedral Library
(PPL) [1]. In general, solving a linear constraint system is exponential in the number
of inequalities. However, the number of inequalities is usually small, and PPL uses a
number of optimizations to reduce the resources required at run time.

40 Giovanni Vigna

2.3.4 Memory Aliasing and Unknown Stores

In the previous discussion, two problems were ignored that considerably complicate
the analysis for real programs: memory aliasing and store operations to unknown
destination addresses.

Memory aliasing refers to the problem that two different symbolic expressions si
and S2 might point to the same address. That is, although si and S2 contain different
variables, both expressions evaluate to the same value. In this case, the assignment of
a value to an address that is specified by Si has unexpected side effects. In particular,
such an assignment simultaneously changes the content of the location pointed to by

Memory aliasing is a typical problem in the static analysis of high-level lan
guages with pointers (such as C). Unfortunately, the problem is exacerbated at the
machine code level. The reason is that, in a high-level language, only a certain subset
of variables can be accessed via pointers. Also, it is often possible to perform alias
analysis that further reduces the set of variables that might be subject to aliasing.
Thus, one can often guarantee that certain variables are not modified by write oper
ations through pointers. At machine level, the address space is uniformly treated as
an array of storage locations. Thus, a write operation could potentially modify any
other variable.

In our prototype, we take an optimistic approach and assume that different sym
bolic expressions refer to different memory locations. This approach is motivated
by the fact that most C compilers address local and global variables so that a dis
tinct expression is used for each access to a different variable. In the case of global
variables, the address of the variable is directly encoded in the instruction, making
the identification of the variable particularly easy. For each local variable, the access
is performed by calculating a different offset with respect to the value of the base
pointer register (%ebp).

A store operation to an unknown address is related to the aliasing problem as such
an operation could potentially modify any memory location. Here, one can choose
one of two options. A conservative and safe approach must assume that any vari
able could have been overwritten and no information remains. The other approach
assumes that such a store operation does not interfere with any variable that is part
of the solution of the linear inequality system. While this leads to the possibihty of
false negatives, it significantly reduces the number of false positives.

2.4 Conclusions

The analysis of an unknown program requires that the binary is first disassembled
into its corresponding assembly code representation. Based on the code instructions,
static or dynamic code analysis techniques can then be used to classify the program
as malicious or benign.

In this chapter, we have introduced a robust disassembler that produces good re
sults even when the malicious code employs tricks to resists analysis. This is crucial

2 Static Disassembly and Code Analysis 41

for many security tools, including virus scanners [2] and intrusion detection sys
tems [9].

We also introduced symbolic execution as one possible static analysis technique
to infer semantic properties of code. This allows us to determine the effects of the
execution of a piece of code. Based on this knowledge, we can construct general and
robust models of malicious code. These models do not describe particular instances
of malware, but capture the properties of a whole class of malicious code. Thus, it is
more difficult for an attacker to evade detection by applying simple changes to the
syntactic representation of the code.

References

1. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra
and the Parma Polyhedra Library. In 9th International Symposium on Static Analysis,
2002.

2. M. Christodorescu and S. Jha. Static Analysis of Executables to Detect Malicious Pat
terns. In Proceedings of the 12th USENIX Security Symposium, 2003.

3. C. Cifuentes and M. V. Emmerik. UQBT: Adaptable binary translation at low cost. IEEE
Computer, 40(2-3), 2000.

4. C. Cifuentes and K. Gough. Decompilation of Binary Programs. Software Practice &
Experience, 25(7):811-829, July 1995.

5. F. B. Cohen. Operating System Protection through Program Evolution, h t t p : / / a l l .
n e t / b o o k s / I P / e v o l v e . h t m l .

6. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Anal
ysis of Programs by Construction or Approximation of Fixpoints. In 4th ACM Symposium
on Principles of Programming Languages (POPL), 1977.

7. Data Rescure. IDA Pro: Disassembler and Debugger, h t t p : / / w w w . d a t a r e s c u e .
c o m / i d a b a s e / , 2004.

8. Free Software Foundation. GNU Binary Utilities, Mar 2002. h t t p : / /www. g n u . o r g /
s o f t w a r e / b i n u t l i s / m a n u a l / .

9. J. Giffln, S. Jha, and B. Miller. Detecting manipulated remote call streams. In In Pro
ceedings of 11th USENIX Security Symposium, 2002.

10. J.King. Symbolic Execution and Program Testing. Communications of the ACM, 19(7),
1976.

11. C. Kruegel, F. Valeur, W. Robertson, and G. Vigna. Static Analysis of Obfuscated Bina
ries. In Usenix Security Symposium, 2004.

12. T. Lengauer and R. Tarjan. A Fast Algorithm for Finding Dominators in a Flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1), 1979.

13. C. Linn and S. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In Proceedings of the 10th ACM Conference on Computer and Communi
cations Security (CCS), pages 290-299, Washington, DC, October 2003.

14. F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer Verlag,
1999.

15. R. Sites, A. Chemoff, M. Kirk, M. Marks, and S. Robinson. Binary Translation. Digital
TechnicalJoumal, 4(4), 1992.

