
Definitions 

Any good research needs a strong foundation. This chapter lays these foun
dations for the book. One characteristic of original research is the lack of a 
standardized vocabulary. Therefore, we will first explain the terminology of 
ontology and alignment. Then the concept of similarity and its meaning for 
ontologies will be described, on both an abstract and a concrete level with 
examples. Only with a thorough understanding of the main expressions, it is 
possible to follow the ideas of the succeeding chapters. 

2.1 Ontology 

In the last years, ontologies have increasingly been used in computer science, 
but also in biology and medicine, or knowledge management. Accompanying 
this development, the definitions of ontology have varied considerably. As 
ontology is one of the key terms, this section will define its further usage here. 

2.1.1 Ontology Definition 

In philosophy, ontology is the theory of "the nature of being or the kinds 
of existents" (mer, 2006). The Greek philosophers Socrates and Aristotle 
were the first developing the foundations of ontology. Socrates introduced the 
notion of abstract ideas, a hierarchy among them, and class-instance relations. 
Aristotle added logical associations. The result is a well-structured model, 
which is capable of describing the real world. Still, it is not trivial to include all 
the extensive and complex relations of our environment. Looking at ontology 
from a different point of view, from mathematics, we perceive a complex 
directed graph, which represents knowledge about the world. This model is 
extended with logical axioms to allow for inferencing. In modern history, first 
papers resuming the philosophical discipline ontology were published around 
1960 (Strawson and Bubner, 1975). 
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Artificial Intelligence and web researchers have adopted the term "onto
logy" for their own needs. Currently there are different definitions in the 
literature of what an ontology should be. Some of them are discussed in 
Guarino (1997), the most prominent, focused on here, being "An ontology 
is an explicit specification of a conceptualization." (Gruber, 1995). A con
ceptualization refers to an abstract model of some phenomenon in the world 
by identifying the relevant concept of that phenomenon (Studer et al., 1998). 
Explicit means that the types of concepts used and the constraints on their 
use are explicitly defined. This definition is often extended by three additional 
conditions: "An ontology is an explicit, formal specification of a shared con
ceptualization of a domain of interest." where formal refers to the fact that 
the ontology should be machine-readable (which excludes, for instance, natu
ral language). Shared reflects the notion that an ontology captures consensual 
knowledge, i.e., it is not private to an individual. Shared does not necessarily 
mean globally shared, but accepted by a group. Thus, the integration problem 
addressed in this work therefore stays unsolved by this definition. Ontology 
alignment remains necessary. Finally, the reference to a domain of interest in
dicates that for domain ontologies one is not interested in modeling the whole 
world, but rather in modeling just those parts of a certain domain relevant to 
the task. 

Common to all these definitions is their high level of generalization, which 
is far from a precise mathematical definition. The reason for this is that the 
definition should cover all different kinds of ontologies, and should not be 
related to a particular method of knowledge representation (van Heijst et al., 
1997). However, to study structural aspects, we have to commit ourselves to 
one specific ontology model and to a precise, detailed definition. This section 
presents the definition of this key term ontology that has been developed in 
the knowledge management group at the Institute AIFB at the University 
of Karlsruhe. The definition adheres to the Karlsruhe Ontology Model as 
expressed in Stumme et al. (2003). 

Definition 2.1 (Core Ontology). A core ontology is a structure 

S:={C,<c,R,a,<R) 

consisting of 

• two disjoint sets C and R whose elements are called concept identifiers 
and relation identifiers (or concepts and relations for short), 

• a partial order <c on C, called concept hierarchy or taxonomy, 
• a function a: R -^ C xC called signature,^ where a{r) — {dom{r),ran{r)) 

with r e R, domain dom{r), and range ran{r), 
• a partial order <n on R, called relation hierarchy, where ri <R r2 iff 

dom{ri) <c dom{r2) and ran{r\) <c ran{r2)-

^ In contrast to some other definitions, we here actually restrict the model to binary 
relations. 
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For simplification, datatypes such as integers or strings are treated as special 
kinds of concepts, D C C. Further, we say, if ci <c C2, for ci,C2 G C, then 
ci is a subconcept of C2, and C2 is a superconcept of ci. If ci <c C2 and there 
is no C3 G C with ci <c C3 <c 02, then Ci is a direct subconcept of C2, and 
C2 is a direct superconcept of Ci. We denote this by Ci -< C2. Super- and 
subrelations as well as their direct counterparts are defined analogously. The 
core ontology is often also referenced to as schema. 

Relationships between concepts and/or relations as well as constraints can 
be expressed within a logical language such as first-order logic or Horn-logic. 
We here provide a generic definition, which allows the use of different lan
guages and logics. 

Definition 2.2 (Axioms). Let L be a logical language. An L-axiom system 
for a core ontology is a pair 

A:={AI,a) 

where 

• AI is a set whose elements are called axiom identifiers and 
• a: AI —^ L is a mapping. 

The elements of A := a{AI) are called axioms. S is considered to be part of 
the language L. 

The core ontologies formalize the intentional aspects of a domain. The 
extensional aspects are provided by knowledge bases, which contain assertions 
about instances of the concepts and relations. 

Definition 2.3 (Knowledge Base). A knowledge base is a structure 

KB:={C,R,I,Lc,tR) 

consisting of 

• 

two disjoint sets C and R as defined before, 
a set I whose elements are called instance identifiers (or instances for 
short), 
a function LC'- C —> ^ ( / ) called concept instantiation, 

• a function LR: R ^> ̂ {P) with iR{r) C ic{dom{r)) x Lc{ran{r)), for all 
r € R. The function in is called relation instantiation. 

With datatypes being concepts as stated for core ontologies, concrete values 
are analogously treated as instances, V d I. 

We provide names for the concepts (and relations). Instead of name, we 
call them sign to allow for more generality. 

Definition 2.4 (Lexicon). A lexicon for an ontology is a structure 

Lex := {Gc, GR, Gi,Refc, Refn, Refj) 

consisting of 
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• three sets Gc, GR and Gi whose elements are called signs for concepts, 
relations, and instances, resp., 

• a relation Ref^ C Gc x C called lexical reference for concepts, Refj^ and 
Refj analogously. 

In this work, an ontology consists of a core ontology, axioms, instantiating 
data in the knowledge base, as well as a corresponding lexicon. 

Definition 2.5 (Ontology). An ontology O is therefore defined through the 
following tuple: 

0:={S,A,KB,Lex) 

consisting of 

• the core ontology S, 
• the L-axiom system A, 

• the knowledge base KB, and 
• the lexicon Lex. 

In this book we wih often refer to a set of entities E. An entity e G E 
interpreted in an ontology O is either a concept, a relation, or an instance, 
i.e., e|o s C L)RU I. We usually write e instead of e^o when the ontology O 
is clear from the context of the writing. 

By enhancing these definitions with an actual ontology language, such 
as OWL in the next section, ontologies are given a well-defined semantics. 
Through axioms, it is possible to formalize a wide range of correlations. Es
pecially the expressive semantics distinguishes ontologies from other schema 
such as topic maps,^ XML trees (Bray et al., 2004),^ database schemas, or 
classification schemas, e.g., modeled through UML."* The semantics of ontolo
gies allows inferring additional knowledge. In our case, we will extensively use 
the defined semantics to derive alignments. 

2.1.2 Semantic Web and Web Ontology Language (OWL) 

The internet is a large platform for information. After its impressive develop
ment in the past decade, an incredible amount of data is now available. World 
knowledge seems easily reachable. Still, we are far away from the point where 
we can access knowledge just as easily as browsing through the web. Unfortu
nately, most of the information provided is meant to be human-readable only. 
It is in a non-standardized form and unstructured in the relation it uses. The 
main problem of sharing knowledge with people via computer rises from the 
missing capabilities of the machine to recognize the meaning of the processed 
information. Solving this dilemma will be a goal for the next years. 

^ http://www.topicmaps.org/xtm/1.0/ 

^ http://www.w3.org/XML/ 
4 http://www.uml.org/ 
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The vision of a Semantic Web was iirst brought up by Berners-Lee et al. 
(2001). "The Semantic Web will bring structure to the meaningful content 
of Web pages, creating an environment where software agents roaming from 
page to page can readily carry out sophisticated tasks for users." The web 
will become machine-readable and processable based on ontologies improving 
its effectiveness by magnitudes. In a more recent interview (Berners-Lee, 
2005), he added: "The Semantic Web is designed to smoothly interconnect 
personal information management, enterprise application integration, and the 
global sharing of commercial, scientific, and cultural data. We are talking 
about data here, not human documents." As the prospective killer application 
he sees company intranets where sharing with semantics begins in a smaller 
controlled environment. Just as the internet started in closed environments, 
the Semantic Web is also expected to take this path. 

An approach to overcome the barrier of machines not recognizing meaning 
is the application of ontologies to formalize knowledge in a machine and human 
readable form. This enables the user to search for information based on mean
ing rather than syntax. A key issue is therefore the definition of standards 
to represent the underlying structures, the ontologies. Each language offers 
different modeling primitives. RDF-Schema (Brickley and Guha, 2004),^ a 
schema language built on top of the Resource Description Framework (RDF), 
allows to define taxonomies and relations between concepts. The Web Onto
logy Language (OWL) (Smith et al., 2004; Patel-Schneider et al., 2004)^ is 
more expressive. OWL was developed keeping the primitives of description 
logics (Baader et al., 2003) in mind. As in this work ontology alignment 
is supposed to make use of expressive semantics, it will rely on OWL. Apart 
from RDF(S) and OWL, one should mention F-Logic as a logic-based ontology 
representation (Kifer et al., 1995). 

OWL is currently recommended by the World Wide Web Consortium 
(W3C) as language for modeling ontologies for the Semantic Web. Histor
ically, it evolved from the DAML+OIL'' language, which was developed by 
joining the European standard OIL (Ontology Inference Layer) with its Amer
ican counterpart DAML (DARPA Agent Markup Language) into a unified 
framework. OWL is an expressive language, allowing many ontology-modeling 
paradigms, such as specifying hierarchical relationships between classes and 
restrictions and for modeling attributes and associations under a well-defined 
semantics. The latter allows inferring information that is not explicitly present 
in the ontology. Furthermore, OWL provides for the description of the state 
of the world by asserting information about individuals and relationships be
tween them. There exist three sublanguages of OWL, here arranged according 
to their complexity: OWL Lite presents a subset that allows for easy infer-
encing; OWL DL includes many constructs from description logics; OWL Full 

http://www.w3.org/RDF/ 

http://www.w3.org/TR/ow 

http://www.w3.org/TR/daml+oil-reference/ 

'' http: //www.w3. org/TR/owl-features/ 
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finally allows any use of RDF statements, thus problems with inferencing may 
arise. In specific, we will focus on OWL DL. It has the following predefined 
constructs on concepts, relations, and instances: 

• subsumption of concepts and relations; 
• domains and ranges of relations; 
• (in)equality definitions; 
• symmetry, transitivity, refiexivity of relations; 
• restrictions on relations; 
• cardinality constraints; 
• boolean combinations of concept expressions: union, intersection, comple

ment; 
• enumeration of instances to define a concept; 
• inverse relations; 
• lexical annotations such as labels or comments; 
• and ontology information such as version numbers or import requests for 

other ontologies. 

Whereas some constructs are directly reflected in the ontology definition of the 
previous section, others correspond to additional axioms. Currently, efforts 
are made to extend the ontology model with a rule language. SWRL, the 
Semantic Web Rule Language (Horrocks and Patel-Schneider, 2004),* offers 
possibilities for representing complex axioms and first implementations have 
been provided. 

2.1.3 Ontology Example 

To clarify the term ontology as used here, this section contains an ontology 
example. We will repeatedly refer to this example throughout the work to 
illustrate the approaches for ontology alignment. The ontology describes the 
domain of automobiles as a car dealer who has modeled his stock and customer 
relations might have. It is a simple example, but noticeably helps to explain 
the basic ontology constructs. 

The ontology is graphically shown in Figure 2.1. Concepts are depicted 
as rectangular boxes, relations as hexagons, and instances as rounded boxes. 
Subsumption relations are drawn as solid arrows. A relation has an incoming 
arrow from its domain and an outgoing arrow to its range. The instantiations 
of concepts and relations are depicted as dotted, arrowed lines. The example 
contains the six concepts object, vehicle, owner, boat, car, and speed, the two 
relations of belonging to somebody and speed, and the three instances Marc, 
Porsche KA-123, and 300 km/h. There is a subsumption relation between 
object, vehicle, and boat, resp. car; a vehicle is an object, a boat is a vehicle, 
etc. Each vehicle belongs to an owner and each car has a specific speed. On 
instance level, the Porsche KA-123 belongs to Marc and has the speed 300 

* http://www.daml.org/rules/proposal/ 
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Fig. 2 .1 . Ontology Example 

k m / h . Further, the axiom tha t every car needs to have at least one owner is 
defined. Axioms are not depicted in the graph, but represented in the next 
paragraphs. The example is fictitious and any concurrences with the real 
world are purely by chance. 

Formally, this ontology is defined according to O := {S, A, KB, Lex). To 
keep the representation as short and illustrating as possible, it does not contain 
all constructs of the above example. 

• schema 5 = (C, <c, R, c, <R) = {{object, vehicle, owner,...}, 
{{vehicle, object), {boat, vehicle),...}, {belongsTo, hasSpeed}, 
{belongsTo —>• {vehicle, owner), hasSpeed —> {car, speed)}, {}) 

• axioms^ A — {Va; car{x) =^ 3y belongsTo{x,y)} 

• knowledge base KB = {CKB,RKB,I, i-c, <•«) = 

{{object, vehicle, owner,...}, {belongsTo, hasSpeed}, 
{Marc, PorscheKAl23,300km/h}, 
{owner —> {Marc}, car —y {PorscheKAl23}, speed —» {3Q0km/h}}, 
{belongsTo -> {{PorscheKA123,Marc)}, 
hasSpeed -^ {{PorscheKAl23,300km/h)}) 

• In the example the lexicon only contains the identifiers as lexical 
entries, i.e., Lex = {{"object", "vehicle",...},...,{{"object", object), 
{ "vehicle", vehicle),...},...). 

Finally, this ontology is expressed in OWL (Example 2.1), or more pre
cisely the R D F / X M L representation of OWL. Again each construct is only 

The notation here is according to first-order logic. 
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mentioned once, thus the OWL representation does not include the whole ex

ample ontology. As common in XML, a namespace auto is added in the OWL 

representation. For readability, the namespaces of RDF resources are also 

abbreviated. After the namespace declaration a class (in our terms: concept) 

auto#vehicle is defined. This concept has the English label "vehicle". It is 

defined to be a subconcept of auto#object before the class-tag is closed again. 

The other entities have some more tags, but are built-up accordingly. The 

axiom is represented as owhRestriction. 

Example 2.1 (Example Ontology) . 

<rdf:RDF 

xmlns:auto="http://www.aifb.uni-karlsruhe.de/WBS/meh/autol.owl"> 

<owl:Class rdf:about='auto#vehicle'> 

<rdfs:label xml:lang='en'>vehicle</rdfs:label> 

<rdfs:subClassOf rdf:resource='auto#object'/> 

</owl:Class> 

<owl:Class rdf:about='auto#car'> 

<rdfs:label xml:lang='en'>car</rdfs:label> 

<rdfs:subClassOl rdf:resource='auto#vehicle'/> 

<rdfs:subClassOf> 

<owl:Restriction> 

<owl:onProperty rdf:resource='auto#belongsTo'/> 

<owl:minCardinality>l</owl:minCardinality> 

</owl:Restriction> 

</rdfs:subClassOf> 

</owl:Class> 

<owl:ObjectProperty rdf:about='auto#belongsTo'> 

<rdfs: l abe l xml:laiig='en'>belongs to</ rdfs : l abe l> 

<rdfs:domain rdf:resource ='auto#vehicle'/> 

<rdfs:range rdf:resource='auto#owner'/> 

</owl:Obj ectProp6rty> 

<auto:Owner rdf:about='auto#Marc'/> 

<auto:Car rdf:about='auto#Porsche KA-123'> 
<rdfs : l abe l xml:lang='en'>Porsche KA-123</rdfs:label> 
<auto:belongsTo rdf:resource='auto#Marc ' /> 
<auto:hasSpeed rdf :resource='auto#300 km/hV> 
</auto:Car> 

</rdf:RDF> 
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This example concludes the definition of ontologies, our basic semantically 
rich structures. They will ease the task of alignment by allowing exploiting 
their semantics. 

2.2 Ontology Alignment 

The considered research field of ontology alignment and integration features 
a big number of terms such as alignment, mapping, mediation, merging, etc. 
Unfortunately, the definitions from different authors are confusing, partially 
inconsistent, and at times even contradicting. The goal of this section is 
therefore to adhere to one definition for each term. Especially alignment, the 
second key term in the title of this work, will be explained. 

2.2.1 Ontology Alignment Definition 

The dictionary (mer, 2006) again gives a general comprehensible sense for 
alignment. To align something means, "to bring into line". This very brief 
definition already emphasizes that aligning is an activity after which the in
volved objects are in some mutual relation. 

We here define our use of the term ontology alignment similarly to Klein 
(2001). Given two ontologies, aligning one ontology with another one means 
that for each entity (concept, relation, or instance) in the first ontology, we 
try to find a corresponding entity, which has the same intended meaning, in 
the second ontology. An alignment therefore is a one-to-one equality relation. 
Obviously, for some entities no corresponding entity might exist. 

Definition 2.6 (Ontology Alignment). An ontology alignment function, 
align, based on the set E of all entities e E E and based on the set of possible 
ontologies O is a partial function 

align : E x O x O -^ E 

We write a/t^noi,02(e) for align{e,0\,02)- We leave out 0^,02 when 
they are evident from the context and write align{e) instead. Once a (partial) 
alignment, align, between two ontologies Oi and O2 is established, we say 
entity e is aligned with entity / when align{e) = / . A pair of entities (e , / ) 
that is not yet in align and for which appropriate alignment criteria still need 
to be tested is called a candidate alignment. In this work, if not explicitly 
mentioned otherwise, alignment is an equality alignment. 

Apart from one-to-one equality alignments, as mainly investigated here 
and most of the related existing work, in real world one entity often has to 
be aligned not only to equal entities, but based on another relation (e.g., sub-
sumption). Further, there are complex composites such as a concatenation of 
terms (e.g., name equals first plus last name) or an entity with restrictions 
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(e.g., a sports car is a car going faster than 250 km/h). Do and Rahm (2002) 
and Dhamankar et al. (2004) propose approaches for identifying such ahgn-
ments. As many complex ahgnments consist of elementary alignments, our 
work may be seen as basis for this. Our elementary alignments are not re
stricted to equality relations. We therefore extend the above basic definition 
of alignment by introducing a set of alignment relations M. M includes but 
is not restricted to identity, subsumption, instantiation, and orthogonality. A 
set of alignments based on taxonomical relations is presented in Giunchiglia 
et al. (2004). In fact, towards the end of this book in Section 10.2, we will 
show how our approach also fits this problem of general ontology alignment. 

Definition 2.7 (General Ontology Alignment). A general ontology align
ment function, genalign, based on the vocabulary, E, of all terms e € E, based 
on the set of possible ontologies, O, and based on possible alignment relations, 
M, is a partial function 

genalign : ExOxO-^ExM 

This last understanding is part of the alignment definition researchers have 
agreed on in the context of Knowledge Web (Euzenat et al., 2004),̂ "^ a Eu
ropean network of excellence of leading institutions on semantic technologies. 
Supporting the transition process of ontology technology from academia to 
industry is the major goal of Knowledge Web. This will be achieved through 
standardization, education, and integrating research. Responding to the in
tegration task, the partners defined an alignment as a set of correspondences 
(i.e., quadruples): (e, / , r, I) with e and / being the two aligned entities, r rep
resenting the relation holding between them, and I (additionally) expressing 
the level of confidence [0,1] in the alignment statement. 

2.2.2 Ontology Alignment Representation 

Currently there is no generally agreed standardized format for saving ontology 
alignments. In this section we therefore propose the two possible representa
tion formats that are most accepted and used in the alignment community. 

The first possibility is to adhere to existing constructs, e.g., in OWL. 
OWL provides equality axioms for concepts, relations, and instances: 
owl:equivalentClass, owhequivalentProperty, and owhsameAs. It is also pos
sible to express inequality through owhdifferentFrom. The advantage of this 
representation is that OWL inference engines will automatically interpret the 
alignment and reason across several ontologies. The downside is the very 
strict equality. A confidence value cannot be interpreted accordingly. Com
plex alignments as mentioned before are not possible. 

The second possibility is based on work of Euzenat (2004). The represen
tation uses RDF/XML to formalize ontology alignments. After the general 

http://knowledgeweb.semanticweb.org/ 
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definition of the involved ontologies, the individual alignments are represented 
in cells with each cell having the attributes entity 1, entity 2, measure (the 
confidence), and the relation (normally '= ' ) . This representation corresponds 
to the Knowledge Web definition of alignment (Definition 2.7). Due to its 
different parameters, it can easily be used for many alignment applications. 
Unfortunately, it is not directly in an ontology format. Therefore, an explicit 
import is required to transform the alignments into a suitable format for in-
ferencing. For this importer one also needs to define how to handle confidence 
values of an alignment. 

Alternative representations are the MAFRA semantic bridging ontology 
(SBO), Contextualized OWL, the rule language SWRL, the OMWG mapping 
language (OML), and SKOS. An overview thereof is found in Euzenat et al. 
(2006). 

In the later chapters of this work we will not provide alignments in either of 
the just introduced formats to keep the representation of alignments simple. 
Alignments are presented in tables with each row containing the tuple of 
entities and confidence (e, / , I). This tuple can be easily translated into either 
of the two previous formats. 

2.2.3 Ontology Alignment Example 
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Fig. 2.2. Ontology Alignment Example 
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Table 2.1. Alignment Table 

Ontology Oi 
object 
vehicle 

car 
speed 

hasSpeed 
Porsche KA-123 

300 kni/h 

Ontology O2 
thing 

vehicle 
automobile 

speed 
hasProperty 

Marc's Porsche 
fast 

Confidence 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
0.9 

The following example illustrates alignments. The example consists of 
two simple ontologies that are to be aligned. The two ontologies Oi and O2 
describing the domain of cars are given in Figure 2.2. The meanings of shapes, 
colors, and lines are the same as in the previous ontology example of Section 
2.1.3. The first ontology has already been described in the ontology section; 
it is our running example. The second ontology covers the same domain 
but is modeled slightly differently. Beneath an overall thing concept, there 
exists a vehicle, which in turn has the subclasses automobile, Volkswagen, and 
Porsche. Further, there is a motor and speed. The automobile has a Motor 
which in turn has a property speed. A specific Porsche, Marc's Porsche, with 
the fast Motorl23456 is also represented. 

Reasonable alignments between the two ontologies is given in Table 2.1. 
Each line contains the two corresponding entities from ontology 1 and ontology 
2. In Figure 2.2, alignments are represented by the shaded channels each 
linking two corresponding entities. Obviously, things and objects, the two 
vehicles, cars and automobiles, as well as the two speeds are the same. The 
relations of having a speed and property correspond to each other, as they 
both refer to speed. In addition, the two instances Porsche KA-123 and 
Marc's Porsche are the same, which are both fast. Whereas the alignments 
might seem obvious to the reader in this case, the common agreement on 
alignments is not easy in general and will be discussed more in the evaluation 
Section 5.4. 

Returning to the formal definition of alignment, the set of result alignments 
is given as follows. To distinguish between the two ontologies, ontology 1 is 
given the namespace ol and ontology 2 the namespace o2. 

align = {ol:object —> o2:thing, ol:vehicle -^ o2:vehicle,...} 

An excerpt of the alignments is shown in the RDF-based representation 
of Euzenat (2004) in Example 2.2. First the two ontologies and their URIs 
are defined. In the following cells the actual alignments are shown. The first 
one aligns ol:object with o2:thing. The confidence measure is very high with 
a value of 1.0, and the semantic relation between the two entities is equality 
(in contrast to subsumption or part of). 
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Example 2.2 (Example Alignment Representation in RDF(S)). 

<rdf:RDF> 

<Alignment> 

<xml>yes</xml> 

<level>0</level> 

<type>ll</type> 

<ontol>ontologyl.owl</ontol> 

<onto2>ontology2.owl</onto2> 

<uril>http://aifb.uni-karlsruhe.de/ontology1.owl</uril> 

<uri2>http: //aif b. uni-karlsruhe. de/ontology2. owK/ur i2> 

<map> 

<Cell> 

<ent ity1 rdf:resource='ontologyl.owl#obj ect'/> 

<ent ity2 rdf:resource='ontology2.owl#thing'/> 

<measure rdf:datatype='XMLSchema#float'>1.0</measure> 

<relation>=</relation> 

</Cell> 

<Cell> 

<entityl rdf:resource='ontologyl.owl#vehicle'/> 

<entity2 rdf:resource='ontology2.owl#vehicle'/> 

<measure rdf:datatype='XMLSchema#float'>1.0</measure> 

<relation>=</relation> 

</Cell> 

</map> 

</Aligninent> 

</rdf:RDF> 

2.3 Related Terms 

The focus of this work will be alignment of ontologies. Apart from alignment, 
there are many related terms, which will be defined and differentiated. The 
definitions are taken from Klein (2001), Ding et al. (2002), as well as de Bruijn 
et al. (2005). Unfortunately, the usage of the terms differs considerably. 

Combining: 

Two or more different ontologies are used for a task in which their mutual 
relation is relevant. The combining relation may be of any kind, not only 
identity. Therefore, no information on how the relation is established can be 
given at this point. 

Integration: 

For integration, one or more ontologies are reused for a new ontology. The 
original concepts are adopted unchanged, possibly, they are extended, but 
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their origin stays clear, e.g., through the namespace. The ontologies are 
merely integrated rather than completely merged. This approach is especially 
interesting, if given ontologies differ in their domain. Through integration, the 
new ontology can cover a bigger domain in the end. Ontology alignment may 
be seen as a prestep for detecting where the involved ontologies overlap and 
can be connect with each other. The most prominent integration approaches 
are union and intersection (Wiederhold, 1994), where either all entities of 
both ontologies are taken or only those which have correspondences in both 
ontologies. 

Matching: 

For matching, one tries to find two corresponding entities. These do not 
necessarily have to be the same. A correspondence can also be, e.g., in terms 
of a lock and the fitting key. A certain degree of similarity along some specific 
dimension is sufficient, e.g., the pattern of the lock/key. Whereas combining 
allows many different relations at the same time, matching implies one specific 
kind of relation. A typical scenario for matching is web service composition, 
where the output of one service has to match the corresponding input of 
the next service. Any schema matching or ontology matching algorithm may 
be used to implement the Match operator. Matching corresponds to our 
definition of general alignment, however, where a fixed relation between the 
aligned entities expresses the kind of match. 

Mapping: 

Ontology mapping is used for querying of different ontologies. An ontology 
mapping represents a function between ontologies. The original ontologies 
are not changed, but the additional mapping axioms describe how to express 
concepts, relations, or instances in terms of the second ontology. They are 
stored separately from the ontologies themselves. Often mappings can only 
be applied in one direction, e.g., the instances of a concept in ontology 1 may 
all be instances of a concept in ontology 2, but not vice versa. This is the 
case, if the mappings have only restricted expressiveness and the complete 
theoretical mapping relation cannot be found for the actual representation. 
A typical use case for mapping is a query in one ontology representation, 
which is then rewritten and handed on to another ontology. The answers are 
then mapped back again. Whereas alignment merely identifies the relation 
between ontologies, mappings focus on the representation and the execution 
of the relations for a certain task. 

Mediation: 

Ontology mediation is the upper-level process of reconciling differences be
tween heterogeneous ontologies in order to achieve interoperation between 
data sources annotated with and applications using these ontologies. This 
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includes the discovery and specification of ontology alignments, as well as 
the actual usage of these alignments for certain tasks, such as mapping for 
query rewriting and instance transformation. Furthermore, the term ontology 
mediation also subsumes merging of ontologies. 

Merging: 

For merging, one new ontology is created from two or more ontologies. In this 
case, the new ontology will unify and replace the original ontologies. This 
often requires considerable adaptation and extension. Individual elements 
of the original ontologies are present within the new ontology, but cannot be 
traced back to their source. Alignment again is a prestep to detect the overlap 
of entities. 

Transformation: 

When transforming ontologies, their semantics is changed (possibly also 
changing the representation) to make them suitable for purposes other than 
the original one. This definition is so general that it is difficult to relate 
alignment to it. 

Translation: 

We here define translation as an operation restricted to data translation (Popa 
et al., 2002), which may also include the syntax, e.g., translating an ontology 
from RDF(S) to OWL. The representation format of an ontology is changed 
while the semantics is preserved. As we are talking about semantic alignments, 
translation is an underlying requirement when the formats differ, but we do 
not address translation itself. 

This list consolidated common definitions, as they are used in this work. 

2.4 Ontology Similarity 

Similarity plays a central role for ontology alignment in this work. Here, the 
meaning of similarity needs to be explained. Thereafter, similarity for on
tologies is given a general framework (Ehrig et al., 2005a) followed by specific 
assigned similarities. 

2.4.1 Ontology Similarity Definition 

Ontology similarity, as used in this work, refers to the comparison of whole 
ontologies or subelements thereof. This comparison returns a numerical value 
indicating whether the two elements have a high or low degree of similarity. 
This can be formally laid down through the following definition. 
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Definition 2.8 (Ontology Similarity). A similarity function 

Sim : fp(E) X ^{E) x O x O ^ [0,1] 

is a function that maps a pair of entity sets (expressed through the power 
set ^(E) of entities) and their corresponding ontologies O to a real number 
expressing the similarity between two sets such that 

• Ve,/ €^{E),0i,02 e 0,sim{e,f,0i,02) > 0 (positiveness) 
• \/e,f,g G ̂ {E),0i,02 G 0,sim{e,e,0i,02) > sim{f^g) (maximality) 
• Ve,/ e ^{E),0i,02 G 0,sim{e,f,0i,02) = sim{f,e,02,0i) (symme

try) 
• Ve, / G ViE), Oi, O2 G O, sim{e, / , d , O2) = 1 <^ e = / ; Two entity sets 

are identical. 
• Ve, / G *P(E),0i ,02 G 0 ,0 < sim{e,f, 01,02) < I: Two entity sets are 

similar/different to a certain degree. 
• yej e^{E),Oi,O2eO,simie,f,Oi,O2) = 0<^eT^ f: Two entity sets 

are different and have no common characteristics. 

Different similarity measures simk{e,f,0i,02) are indexed tfirougli a la
bel fc. As before, we leave out Oi, O2 when they are evident from the context 
and write sirukie, f) instead, e and / may be sets of concepts, relation, or 
instances. This includes subtrees or even whole ontologies. A set may also 
consist of only one entity, thus in the extreme case reducing the similarity to 
a similarity between two individual elements. 

As our goal alignment relation is equality, and equality is a symmetric 
relation, we adhere to a symmetric similarity, although we are aware that it is 
controversially discussed (Mitra and Wiederhold, 2001). Humans tend not to 
follow the symmetry rule when they decide on similarity between two objects 
(Bernstein et al., 2005a). Normally, the similarity between object 1 and object 
2 is rated in the context of object 1, whereas for similarity between object 2 
and object 1 the context is object 2. 

2.4.2 Similarity Layers 

Since an ontology represents a conceptualization of a domain, comparing two 
ontology entities goes far beyond the representation of these entities only (syn
tax level). Rather, it should take into account their relation to the real world 
entities they are referencing, i.e., their meaning, as well as their purpose in 
the real world, i.e., their usage. In order to achieve such a comprehensive 
comparison, we use a semiotic view (theory of signs) on ontologies and define 
our framework for similarity in three layers, as shown in Figure 2.3: Data-, 
Ontology-, and Context Layer (Ehrig et al., 2005a). The arrangement of these 
layers already indicates that they build upon each other. We enhance these 
by an additional orthogonal dimension representing specific domain knowl
edge. Initial blueprints for such a division in layers are found in the semiotics 
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(theory of signs) for example in Maedche and Staab (2002), where they are 
called symbolic, semantic, and pragmatic layer, respectively. Other classifica
tions focused on matching, but clearly related to the notion of similarity, are 
presented in Rahm and Bernstein (2001) and Shvaiko and Euzenat (2005). 

Context Layer 

=ii.le3 

Ontology Layer-;^———— 

[Data Layer 

Fig. 2.3. Similarity Layers 

!D-)\ 

- ^ 
... £ c 

i=irj i::t;N!ils :•• O L! 
Q 1^ 

Data Layer: 

On this first layer, we compare entities by only considering data values of 
simple or complex datatypes, such as integers and strings. To compare data 
values, we may use generic similarity functions such as the edit distance for 
strings. For integers, we determine a relative distance between them. Complex 
datatypes made up of simple datatypes also require more complex measures, 
but which are effectively compiled of simple measures. 

Ontology Layer: 

For the second layer, the ontology layer, we consider semantic relations be
tween the entities. In fact, one may split this layer again along the semantic 
complexity, which is derived from the layer cake of Berners-Lee (2000). On 
the lowest level, we just treat the ontology as a graph with concepts and re
lations. These Semantic Nets were introduced by Quillan (1967). This level 
is enhanced by description logics like semantics (Baader et al., 2003), e.g., a 
taxonomy is created over concepts, in which a concept inherits all the relations 
of its superconcepts. For example, if certain edges are interpreted as a sub-
sumption hierarchy, it is possible to determine the taxonomic similarity based 
on the number of is-a edges separating two concepts. Besides intensional fea
tures, we also rely on the extensional dimension, i.e., assess concepts to be 
the same, if their instances are similar. For restrictions, e.g., in the ontology 
language OWL, we again use different heuristics. Higher levels of the ontology 
layer cake also become interesting for similarity considerations. Especially if 
similar rules between entities exist, these entities will be regarded as similar. 
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For this type of similarity, one has to process higher order relationships. Un
fortunately, there has not been sufficient research and practical support for 
the rule layer in the Semantic Web in general, even less for similarity consid
erations. However, first work has been done in this direction through Fiirst 
and Trichet (2005). The similarity functions of the ontology layer fall back 
on similarity functions of the data layer. 

Context Layer: 

On this layer, we consider how the entities of the ontologies are used in an 
external context. This implies that we use information external to the ontolo
gies. We consider contexts as local models that encode a party's subjective 
view of a domain. Although there are many contexts in which an ontology 
can be considered (for example the context in which an ontology is developed, 
or in which it has been changed), from the point of view of determining the 
similarity, the most important one is the application context, e.g., how a spe
cific entity of an ontology has been used in the context of a given application. 
An example for this is the Amazon portal^ ̂  in which, given information about 
which people buy which books, one may decide if two books are similar or 
not. Therefore, the similarity between two ontology entities is easily deter
mined by comparing their usage in an ontology-based application. A naive 
explanation is such that similar entities have similar patterns of usage. The 
main problem remains how to define these usage patterns (Stojanovic, 2005) 
in order to discover the similarity in the most efficient way. To generalize the 
description of such patterns, we reuse the similarity principle in the terms of 
usage: Similar entities are used in similar context. We use both directions 
of the implication in discovering similarity: If two entities are used in the 
same (related) context, then these entities are similar and vice versa; if in two 
contexts the same (related) entities are used then these contexts are similar. 

Domain Knowledge: 

Special shared ontology domains have their own additional vocabulary, e.g., 
the bibliographic domain often rehes on the Dublin Core (Caplan, 1995) con
structs dciauthor or dcititle. This domain specific vocabulary is treated in a 
special way, thus returning own similarities, i.e., an author similarity or title 
similarity instead of a general attribute similarity. The right part of Figure 
2.3 shows the domain-specific aspects. As this domain-specific knowledge may 
be situated at any level of ontological complexity, it is presented as a vertical 
box across all of them. 

2.4.3 Specific Similarity Measures 

After having presented the general similarity layers, we now show specific 
measures, which fit the framework. The list of measures is by no means 

http://www.amazon.com/ 
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complete, but shall give an overview of important individual similarities. They 
will be reused later on in this work for identifying ontology alignments. An 
extensive work, not necessarily focused on ontology similarity only, has been 
provided by Bernstein et al. (2005b). 

D a t a Layer 

In the ontology definition section we have defined datatypes to be concepts, 
and their concrete values being instances V C I. These value instances allow 
special operators for comparison based on the individual letters of a string 
or the numerical value of an integer. The lexical signs (typically strings) for 
concepts, relations, and instances (G = Gc U GR U GJ), are also compared 
based on data layer similarities. In this section we will not distinguish between 
V andG, thus we (VuG). 

Equality: 

For some datatypes and scenarios, it is appropriate to require equality of data 
values for entities to be similar. An example where this is necessary would be 
data values that are used as identifiers, vi and V2 are respective data values. 

N J l ' i f i ' i= i ' 2 , . „ , . 
Simeguality{vi,V2) ••= < ̂  , , . (2.1) 

10, otherwise 

Syntactic Similarity: 

Levenshtein (1965) introduced a widely-used measure to compare two strings, 
the so-called edit distance. The idea behind this measure is to take two strings 
and determine how many atomic actions are required to transform one string 
into the other one. Atomic actions are addition, deletion, and replacement 
of characters, but also shifting their position. The number of operations are 
expressed in ed. For our purposes, we rely on the syntactic similarity of 
Maedche and Staab (2002), which is inverse to the edit distance measure. 

simsyntacUc{vi,V2) := max(0, —TJ—n—\\ ) (2'2) 
mm(|vi|,|w2|) 

Names are a prominent example, which require syntactic similarity. Small 
variations such as different cases or typing errors still lead to a high similarity. 
Many other possibihties to compare strings exist, e.g., Stoilos et al. (2005). 
Often it will also be necessary to use bag-of-words approaches when the label 
does not only contain one word but a whole description. Chaves (2003) for 
instance uses stemming (Porter, 1980) and the sequence of words instead of 
characters to determine the similarity. 
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Distance-Based Similarity for Numeric Values: 

For numeric datatypes with a limited range (e.g., subsets of integer or double) 
it is advisable to dispose of a similarity measure that assigns the similarity be
tween two numerical values based on their arithmetical difference (Bergmann, 
2002). A generic example of such a distance-based similarity measure is 

. i m , . , , ( . i , . , ) : ^ l - ( i ^ ^ ) (2.3) 

where wi,f2 G [min„gv(y),maxj,gv'(F)] and maxdiff = max„gv'(^) — 
min„gy(y) for a numeric datatype V. The parameter 7 € M"*" may be used 
to lessen or amplify the influence of increasing differences on the similarity 
assessment. 

Objects 

Whereas on the data layer we simply compare data values with each other, we 
now define how to actually compare objects, without respecting their semantic 
type yet. In our similarity framework objects only exist on the upper layers 
making object similarities part of the ontology layer. 

Object Equality: 

Object equality of ontology objects is based on existing logical assertions. 
This assertion may be explicitly included in the ontology definition, e.g., 
owhsameAs, or have been identified at an earlier point in time either man
ually or by an automatic approach. 

J l align{e) = f, 
simobjectie, f) := < ,̂ . (2.4) 

I 0 otherwise 

Dice Coefficient: 

Often it is necessary to compare not only two entities but also two sets of 
entities E and F. Two sets of entities may be compared based on the overlap 
of the sets' individuals {e e E,f e F) (Castano et al., 1998): 

2 • \E r\ F\ 
simdice{E,F):= | J , ^ | j , | (2-5) 

Unfortunately, the dice coefficient only returns results if the individuals are 
marked with a unique identifier where equal individuals have the same iden
tifier, even across several ontologies. Only then, it is possible to exactly 
determine whether an individual is in only one or both of the sets. 
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Jacquard Coefficient: 

This coefficient is related to the previous set similarity. It calculates the frac
tion of overlapping elements compared to the number of all existing elements 
in the two sets. 

\EnF\ 

\EUF\ 

Single Linkage: 

simjacquardiE,F) := Y^r—^ (2.6) 

The maximum similarity between two sets is a basic operator for comparisons. 
Linkage measures are typically used for measuring distances of sets for data 
mining, e.g., for clustering. Here we apply them for similarities instead. In 
contrast to the coefficient similarities, single linkage also deals with similarities 
of individual entities. In specific, it determines the maximum. For this, we 
rely on other measures that already did the calculation of similarity values 
[0,1] between single entities. 

simsi„gie{E,F) = max {sim{e,f)) (2.7) 
ie,f)\eeE,feF 

Average Linkage: 

Many other related similarities, e.g., based on average similarities between the 
sets' individuals are also possible. 

, . E v ( e , / ) | e G £ ; , / e F * * " ^ ( ^ ' / ) .„ „,. 
Simcomplete[E,F)^ , „ , , „ , (2.8) 

Multi Similarity: 

This measure compares sets by representing them through an average element 
each. As the individual entities have various different features, it is difficult 
to create a feature vector representing the whole sets. Therefore, we use 
a technique known as a prestep to multidimensional scaling. We describe 
each entity through a vector representing the similarity to any other entity 
contained in the two sets. For both sets, a representative vector can be created 
by calculating an average vector over all individuals. Please note, that this 
averaging means that we cannot distinguish any longer, if one entity pair 
of the sets was very similar or many entity pairs were only slightly similar. 
Finally, we determine the cosine between the two set vectors through the 
scalar product as the similarity value. 

simrrruiu {E, F) = 7 ^ ^ ^ • T S ^ (2.9) 

with e = (sim(e,ei),sim(e,e2),... ,sim(e,/ i) ,sim(e,/2), . . . ) , f analogously. 
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This measure has several advantages. In contrast to any similarity based 
on maximum considerations, multi similarity is monotonic and thus more 
suited for optimization. A differing number of elements in the sets does not 
distort the similarity, e.g., when only one element needs to be aligned with 
many elements, still the whole range of [0,1] for similarity may occur. Vice 
versa, the equality of only two elements in the sets does not lead to an overall 
high similarity. 

For more set similarities we refer to Valtchev (1999); Brinkhoff (2004); 
Bernstein et al. (2005a). 

Ontology Layer 

We continue with specific similarity measures derived from the ontology struc
ture. As for the other layers, these measures are examples; many others are 
also possible. 

Label Similarity: 

One basic feature of entities in ontologies is their label. Labels are human 
identifiers (names) for entities, normally shared by a community of people 
speaking a common language. We rely on string similarity to compare the 
labels, in our case syntactic similarity. 

simiabei{e, f) := simsyntactic{label{e),label{f)) (2.10) 

Dictionaries (WordNet (Fellbaum, 1998)) may further be used for comparisons 
even across languages. Two strings representing synonyms return 1, otherwise 
0. Please note that homonyms would erroneously also return high similarities. 

Taxonomic Similarity for Concepts: 

One possible generic measure to determine the semantic similarity of concepts 
C within one ontology, in one concept hierarchy <c, has been presented in 
Radaet al. (1989): 

{(.-Oil .e^lsie^^ i f C i ^ C 2 , 
simtaxonomic{cl-,C2):= {^ e ' ^ '+e-"" ' ^ 2, ^2.11) 

I 1, otherwise 

a > 0 and /? > 0 are parameters scaling the contribution of shortest path 
length I and depth h in the concept hierarchy, respectively. The shortest 
path length is a metric for measuring the conceptual distance of Ci and C2. 
The intuition behind using the depth of the direct common subsumer in the 
calculation is that concepts at upper layers of the concept hierarchy are more 
general and are semantically less similar than concepts at lower levels. This 
measure is easily used analogously for relation R comparisons through <ij. 
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Extensional Concept Similarity: 

Besides describing a concept c £ C through its features (intension), using 
the extension is also feasible. Two concepts are similar, if they have similar 
instances I. We use a set similarity for comparing the sets of instances, e.g., 
multi similarity. 

simextension{ci,C2) : = simmulti{t'C{ci), l'C{c2)) (2-12) 

Domain and Range Similarity: 

We define a similarity measure for relations r £ R based on their domain and 
range definitions given by an' 

simdomRan{ri,r2) := 0.5 • {simobject{ran{ri),ran{r2)) 

+simobject{dom{ri),dom{r2))) (2.13) 

Concept Similarity of Instances: 

Instances / have a certain similarity if they are assigned to the same parent 
class through LC-

simparent{ii, 12) = simobject{ci, C2) With ii 6 Lc{ci),i2 e t-cici) (2.14) 

As there are many more ontological structures, which are used to determine 
the similarity of entities, this list can easily be extended. In fact, the general 
approach for ontology alignment in this book will refer to some additional 
ones later on. 

Context Layer 

The similarity of two objects on the contextual level is defined as: 

(e , / ) := szmdi//(Usage(e, con), Usage(/, con)), (2.15) 

where e,f £ E are entities from the ontology model (e.g., two concepts or two 
instances) and Usage(e, con) corresponds to the frequency of the usage of e 
in the context con. As we already mentioned, the context could be a portal 
application in which the given entities are used. Note that this formula can be 
easily extended in order to compare the usage of some selected characteristics 
of two entities, instead of the entities themselves. It enables several levels of 
abstractions in which the similarity can be discovered. For example, two books 
are similar if their authors (that are difiierent persons) have many coauthored 
publications. 

Especially the two areas of context similarity and domain knowledge will 
not be extended here as a reasonable description cannot be given in general, 
but requires a fixed application scenario. Section 8.2 will present such simi
larities for one specific case, the Bibster application. 
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2.4.4 Similarity in Related Work 

Similarity measures for ontological structures have been widely researched, 
e.g., in cognitive science, databases, software engineering and artificial intelli
gence. Rodriguez and Egenhofer (2000) give a general overview of similarity. 
In Bisson (1995) we find measures that deal both with the local structure of 
the objects and the relational structure that exist between the objects thus 
approaching some of the issues of our ontology layer. In Bisson (1992) the 
attention is restricted to the comparison of concepts. Furthermore, Bisson 
does not distinguish relations into taxonomic relations and other ones, thus 
ignoring the semantics of inheritance. Weinstein and Birmingham (1999) com
pute description compatibility in order to answer queries that are formulated 
with a conceptual structure that is different from the one of the information 
system. Their measures depend largely on a shared ontology that mediates 
between locally extended ontologies. This is related to our domain-specific 
measures, which make use of a shared ontology. Their algorithm also seems 
less suited to evaluate similarities of sets of lexical entries, taxonomies, and 
other relations. 

Bernstein et al. (2005a) presented interesting results on how humans in
terpret similarity. They assembled a catalogue of ontology-based similarity 
measures, which have experimentally been compared with a similarity gold 
standard obtained by surveying 50 human subjects. Results show that simi
larity predictions among humans and among algorithms varied substantially, 
but can be grouped into cohesive clusters. It will be interesting to apply these 
findings for alignment in future. 

2.4.5 Heuristic Definition 

The main operator for comparisons is similarity. Moreover, the listed concrete 
similarities are sufficient for most cases of ontology alignment as considered 
here. However, it is also possible to use other more general operators, which 
are here summarized through the term heuristics. In the end, they are a gen
eralization of similarity as required for general or complex ontology alignment 
(Section 10.2). 

Definition 2.9 (Heuristic). A heuristic for a relation p is a function 

heuTp : q3(£;) x '^{E) x O x O -> [0,1] 

• Ve,/ e ^{E),heur{e,f,0i,02) > 0 (positiveness) 
• heurp{e, f,0i,02) = I-' The relation p holds between the two objects. 
• 0 < heurp{e,f,0i,02) < I: The relation p holds to a certain degree. 
• heurp{e, f,0i,02) = 0; The relation p does not hold. 

Heuristics measure to which degree a relation such as inclusion (on sets, 
strings, or numbers), overlap, or also dissimilarity is met. A complete list 
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of heuristics and their concrete implementation for ontologies is beyond the 
focus of this work, as they are only required for few methods of identity 
ontology alignment. The corresponding implementations will be defined in 
the respective sections when they are required. 

An example for a heuristic on numerical values is the smaller than rela
tion. In this case, we adhere to a fuzzy notion of the relation smaller than. 
Comparing two prices might result in: 

smallerThan{price{e),price{f)) = smallerThan{9,10) = 0.8 (2.16) 

In contrast to existing work, the similarity layers present a concise struc
ture for different similarity measures and help users to find the ones suiting 
their need best. We will make use of it for our ontology alignment. 




