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Geometrical
Optics

1.1 INTRODUCTION

Geometrical optics uses light rays to describe image formation by spherical
surfaces, lenses, mirrors, and optical instruments. Let us consider the real image
of a real object, produced by a positive thin lens. Cones of light are assumed to
diverge from each object point to the lens. There the cones of light are transformed
into converging beams traveling to the corresponding real image points. We
develop a very simple method for a geometrical construction of the image, using
just two rays among the object, the image, and the lens. We decompose the object
into object points and draw a line from each object point through the center of
the lens. A formula is developed to give the distance of the image point, when
the distance of the object point and the focal length of the lens are known. We
assume that the line from object to image point makes only small angles with the
axis of the system. This approximation is called the paraxial theory. Assuming
that the object and image points are in a medium with refractive index 1 and that
the lens has the focal length f, the simple mathematical formula
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(1.1)

gives the image position xi when the object position x0 and the focal length are
known.

Formulas of this type can be developed for spherical surfaces, thin and thick
lenses, and spherical mirrors, and one may call this approach the thin lens model.

For the description of the imaging process, we use the following laws.

1. Light propagates in straight lines.
2. The law of refraction,

n1 sin θ1 � n2 sin θ2. (1.2)
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The light travels through the medium of refractive index n1 and makes the an-
gle θ1 with the normal of the interface.After traversing the interface, the angle
changes to θ2, and the light travels in the medium with refractive index n2.

3. The law of reflection

θ1 � θ2. (1.3)

The law of reflection is the limiting case for the situation where both refraction
indices are the same and one has a reflecting surface. The laws of refraction
and reflection may be derived from Maxwell’s theory of electromagnetic
waves, but may also be derived from a “mechanical model” using Fermat’s
Principle.

The refractive index in a dielectric medium is defined as n � c/v, where v

is the speed of light in the medium and c is the speed of light in a vacuum. The
speed of light is no longer the ratio of the unit length of the length standard over
the unit time of the time standard, but is now defined as 2.99792458 × 108m/s
for vacuum. For practical purposes one uses c � 3 × 108m/s, and assumes that
in air the speed v of light is the same as c. In dielectric materials, the speed v is
smaller than c and therefore, the refractive index is larger than 1.

Image formation by our eye also uses just one lens, but not a thin one of fixed
focal length. The eye lens has a variable focal length and is capable of forming
images of objects at various distances without changing the distance between the
eye lens and the retina. Optical instruments, such as magnifiers, microscopes,
and telescopes, when used with our eye for image formation, can be adjusted
in such a way that we can use a fixed focal length of our eye. Image formation
by our eye has an additional feature. Our brain inverts the image arriving on the
retina, making us think that an inverted image is erect.

1.2 FERMAT’S PRINCIPLE AND THE LAW OF
REFRACTION

In the seventeenth century philosophers contemplated the idea that nature always
acts in an optimum fashion. Let us consider a medium made of different sections,
with each having a different index of refraction. Light will move through each
section with a different velocity and along a straight line. But since the sections
have different refractive indices, the light does not move along a straight line
from the point of incidence to the point of exit.

The mathematician Fermat formulated the calculation of the optimum path as
an integral over the optical path∫ P2

P1

nds. (1.4)
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FIGURE 1.1 Coordinates for the travel of light from point P1 in medium 1 to point P2 in medium
2. The path in length units and the optical plath are listed.

The optical path is defined as the product of the geometrical path and the refractive
index. In Figure 1.1 we show the length of the path from P1 to P2,

r1(y) + r2(y). (1.5)

In comparison, the optical path is defined as

n1r1(y) + n2r2(y), (1.6)

where n1 is the refractive index in medium 1 and n2 is the refractive index in
medium 2.

The optimum value of the integral of Eq. (1.4) describes the shortest optical
path from P1 to P2 through a medium in which it moves with two different
velocities. It is important to compare only passes in the same neighborhood. In
Figure 1.2 we show an example of what should not be compared.

In Figure 1.1, the light ray moves with v1 in the first medium and is incident
on the interface, making the angle θ1 with the normal. After penetrating into the

FIGURE 1.2 Application of Fermat’s Principle to the reflection on a mirror. Only the path with
the reflection on the mirror should be considered.
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medium in which its speed is v2, the angle with respect to the normal changes
from θ1 to θ2.

Let us look at a popular example. A swimmer cries for help and a lifeguard
starts running to help him. He runs on the sand with v1, faster than he can swim
in the water with v2. To get to the swimmer in minimum time, he will not choose
the straight line between his starting point and the swimmer in the water. He will
run a much larger portion on the sand and then get into the water. Although the
total length (in meter’s) of this path is larger than the straight line, the total time
is smaller. The problem is reduced to what the angles θ1 and θ2 are at the normal
of the interface (Figure 1.1). We show that these two angles are determined by
the law of refraction, assuming that the velocities are known.

In Figure 1.1 the light from point P1 travels to point P2 and passes the point Q
at the boundary of the two media with indices n1 and n2. The velocity for travel
from P1 to Q is v1 � c/n1. The velocity for travel from Q to P2 is v2 � c/n2.
From Eq. (1.4) and Figure 1.1, the optical path is

n1r1(y) + n2r2(y), (1.7)

where we have

r1(y) �
√

{x2
q + y2}

r2(y) �
√

{(xf − xq)2 + (yf − y)2} (1.8)

and with r1(y) � v1t1(y) and r2(y) � v2t2(y) we get for the total time T (y), to
travel from P1 to P2,

T (y) � r1(y)/v1 + r2(y)/v2. (1.9)

Only for the special case that v1 � v2, where the refractive indices are equal,
will the light travel along a straight line. For different velocities, the total travel
time through medium 1 and 2 will be a minimum. In FileFig 1.1 we show a graph
of T (y) and see the minimum for a specific value of y. In FileFig 1.2 we discuss
the case where light is traveling through three media. To determine the optimum
conditions we have to require that

dT (y)/dy � 0. (1.10)

This may be done without a computer. We show it in FileFig 1.3 for two media.
Using the expression for r1(y) and r2(y) of Figure 1.1, we have to differentiate

n1r1(y) + n2r2(y), (1.11)

that is,

dT (y)/dy � d/dy{(c/v1)
√

x2
q + y2 + (c/v2)

√
(xf − xq)2 + (yf − y)2} (1.12)

and set it to zero. From FileFig 1.3 we get

y/(r1(y)v1) + (y − yf )/(r2(y)v2) � 0. (1.13)
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With

sin θ1 � y/r1(y) and sin θ2 � (y − yf )/r2(y) (1.14)

we have

sin θ1/v1 � sin θ2/v2 (1.15)

and after multiplication with c, the Law of Refraction,

n1 sin θ1 � n2 sin θ2. (1.16)

FileFig 1.1 (G1FERMAT)

Graph of the total time for travel from P1 to P2, through medium 1, with velocities
v1, and medium 2, with v2. For minimum travel time, the light does not travel
along a straight line between P1 and P2. Changing the velocities will change the
length of travel in each medium.

G1FERMAT

Fermat’s Principle

Graph of total travel time: t1 is the time to go from the initial position (0, 0) to
point (xq, y) in medium with velocity v1. t2 is the time to go from point (xq, y)
to the final position (xf, yf ) in medium with velocity v2. There is a y value for
minimum time. v1 and v2 are at the graph.

xq :� 20 xf :� 40 yf ≡ 40

y :� 0, .1 . . . 40.

Time in medium 1 Time in medium 2

t1(y) :� 1

v1
·
√

(xq)2 + y2 t2(y) :� 1

v2
·
√

(xf − xq)2 + (yf − y)2

T (y) :� t1(y) + t2(y).
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v1 ≡ 1 v2 ≡ 2.5.

Changing the parameters v1 and v2 changes the minimum time for total travel.

Application 1.1.

1. Compare the three choices

a. v1 < v2

b. v1 � v2

c. v1 > v2 and how the minimum is changing.

2. To find the travel time t1 in medium 1 and t2 in medium 2 plot it on the graph
and read the values at y for T (y) at minimum.

FileFig 1.2 (G2FERMAT)

Surface and contour graphs of total time for traversal through three media.
Changing the velocities will change the minimum position.

G2FERMAT is only on the CD.

Application 1.2. Change the velocities and observe the relocation of the
minimum.

FileFig 1.3 (G3FERREF)

Demonstration of the derivation of the law of refraction starting from Fermat’s
Principle. Differentiation of the total time of traversal. For optimum time, the
expression is set to zero. Introducing c/n for the velocities.

G3FERREF is only on the CD.
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1.3 PRISMS

A prism is known for the dispersion of light, that is, the decomposition of white
light into its colors. The different colors of the incident light beam are deviated
by different angles for different colors. This is called dispersion, and the angles
depend on the refractive index of the prism material, which depends on the
wavelength. Historically Newton used two prisms to prove his “Theory of Color.”
The first prism dispersed the light into its colors. The second prism, rotated by 90
degrees, was used to show that each color could not be decomposed any further.
Dispersion is discussed in Chapter 8. Here we treat only the angle of deviation
for a particular wavelength, depending on the value of the refractive index n.

1.3.1 Angle of Deviation

We now study the light path through a prism. In Figure 1.3 we show a cross-
section of a prism with apex angle A and refractive index n. The incident ray
makes an angle θ1 with the normal, and the angle of deviation with respect to
the incident light is call δ. We have from Figure 1.3 for the angles

δ � θ1 − θ2 + θ4 − θ3 A � θ2 + θ3 (1.17)

and using the laws of refraction

sin θ1 � n sin θ2 n sin θ3 � sin θ4 (1.18)

we get for the angle of deviation, using asin for sin−1

δ � θ1 + asin {(
√

n2 − sin2(θ1)) sin(A) − sin(θ1) cos(A)} − A. (1.19)

In FileFig 1.4 a graph is shown of δ (depending on the angle of incidence). A
formula may be derived to calculate the minimum deviation δm of the prism,
depending on n and A. From the Eq. (1.17) and (1.18) we have

δ � θ1 − θ2 + θ4 − θ3, A � θ2 + θ3, (1.20)

FIGURE 1.3 Angle of deviation δ of light incident at the angle θ1 with respect to the normal. The
apex angle of the prism is A.
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and

sin θ1 � n sin θ2, n sin θ3 � sin θ4. (1.21)

We can eliminate θ2 and θ4 and get two equations in θ1 and θ3,

sin θ1 � n sin(A − θ3) (1.22)

n sin θ3 � sin(δ + A − θ1). (1.23)

The differentiations with respect to the angle of Eqs. (1.22) and (1.23) may
be done using the “symbolic capabilities” of a computer (see FileFig 1.5). To
calculate the optimum condition, the results of the differentiations have to be
zero:

cos θ1dθ1 + n cos(A − θ3)dθ3 � 0 (1.24)

n cos θ3dθ3 + cos(δ + A − θ1)dθ1 � 0. (1.25)

We consider these equations as two linear homogeneous equations of the un-
known dθ1 and dθ3. In order to have a nontrivial solution of the system of the
two linear equations, the determinant has to vanish. This is done in FileFig 1.5,
and one gets

cos θ1 cos θ3 − cos(A − θ3) cos(δ + A − θ1) � 0.

The minimum deviation δm, which depends only on n and A, may be calculated
from

δm � 2 asin {n sin(A/2)} − A, (1.26)

where we use asin for sin−1. At the angle of minimum deviation, the light tra-
verses the prism in a symmetric way. Equation (1.26) may be used to find the
dependence of prism material on the refractive index n.

FileFig 1.4 (G4PRISM)

Graph of angle of deviation δ1 as function of θ1 for fixed values of apex angle A

and refractive index n. For fixed A and n the angle of deviation δ has a minimum.

G4PRISM

Graph of the Angle of Deviation for Refraction on a Prism Depending on the Angle of
Incidence

θ1 is the angle of incidence with respect to the normal. δ1 is the angle of deviation.
n is the refractive index and A is the apex angle.

θ1 :� 0, .001 . . . 1 n :� 2 A :�
(

2 · π

360

)
· 30
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δ(θ1) :� θ1 + asin
(√

n2 − sin(θ1)2 · sin(A) − sin(θ1) · cos(A)
)

− A.

Application 1.4.

1. Observe changes of the minimum depending on changing A and n.
2. Numerical determination of the angle of minimum deviation. Differentiate

δ(θ1) and set the result to zero. Break the expression into two parts and plot
them on the same graph. Read the value of the intersection point.

FileFig 1.5 (G5PRISMIM)

Derivation of the formula for the refractive index determined by the angle of
minimum deviation and apex angle A of prism.

G5PRISMIM is only on the CD.

1.4 CONVEX SPHERICAL SURFACES

Spherical surfaces may be used for image formation. All rays from an object
point are refracted at the spherical surface and travel to an image point. The
diverging light from the object point may converge or diverge after traversing
the spherical surface. If it converges, we call the image point real; if it diverges
we call the image point virtual.

1.4.1 Image Formation and Conjugate Points

We want to derive a formula to describe the imaging process on a convex spher-
ical refracting surface between two media with refractive indices n1 and n2

(Figure 1.4). The light travels from left to right and a cone of light diverges
from the object point P1 to the convex spherical surface. Each ray of the cone is
refracted at the spherical surface, and the diverging light from P1 is converted to
converging light, traveling to the image point P2. The object point P1 is assumed
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to be in a medium with index n1, the image point P2 in the medium with index
n2. We assume that n2 > n1, and that the convex spherical surface has the radius
of curvature r > 0.

For our derivation we assume that all angles are small; that is, we use the
approximation of the paraxial theory. To find out what is small, one may look at
a table of y1 � sin θ and compare it with y1 � θ . The angle should be in radians
and then one may find angles for which y1 and y2 are equal to a desired accuracy.

We consider a cone of light emerging from pointP1.The outermost ray, making
an angle α1 with the axis of the system, is refracted at the spherical surface, and
makes an angle α2 with the axis at the image point P2 (Figure 1.4). The refraction
on the spherical surface takes place with the normal being an extension of the
radius of curvature r , which has its center at C. We call the distance from P1 to
the spherical surface the object distance xo, and the distance from the spherical
surface to the image point P2, the image distance xi . In short, we may also use
xo for “object point” and xi for “image point.”

The incident ray with angle α1 has the angle θ1 at the normal, and pene-
trating in medium 2, we have the angle of refraction θ2. Using the small angle
approximation, we have for the law of refraction

θ2 � n1θ1/n2. (1.27)

From Figure 1.4 we have the relations:

α1 + β � θ1 and α2 + θ2 � β. (1.28)

For the ratio of the angles of refraction we obtain

θ1/θ2 � n2/n1 � (α1 + β)/(β − α2). (1.29)

We rewrite the second part of the equation as

n1α1 + n2α2 � (n2 − n1)β. (1.30)

The distance l in Figure 1.4 may be represented in three different ways.

tan α1 � l/xo, tan α2 � l/xi, and tan β � l/r. (1.31)

Using small angle approximation, we substitute Eq. (1.31) into Eq. (1.30) and get

n1l/xo + n2l/xi � (n2 − n1)l/r. (1.32)

FIGURE 1.4 Coordinates for the derivation of the paraxial imaging equation.



1.4. CONVEX SPHERICAL SURFACES 11

The ls cancel out and we have obtained the image-forming equation for a spher-
ical surface between media with refractive index n1 and n2, for all rays in a cone
of light from P1 to P2:

n1/x0 + n2/xi � (n2 − n1)/r. (1.33)

So far all quantities have been considered to be positive.

1.4.2 Sign Convention

In the following we distinguish between a convex and a concave spherical surface.
The incident light is assumed to travel from left to right, and the object is to the left
of the spherical surface. We place the spherical surface at the origin of a Cartesian
coordinate system. For a convex spherical surface the radius of curvature r is
positive; for a concave spherical surface r is negative. Similarly we have positive
values for object distance x0 and image distance xi , when placed to the right of
the spherical surface, and negative values when placed to the left.

Using this sign convention, we write Eq. (1.33) with a minus sign, and have
the equation of “spherical surface imaging” (observe the minus sign),

− n1

x0
+ n2

xi

� n2 − n1

r
. (1.34)

The pair of object and image points are called conjugate points.
We may define ζo � xo/n1, ζi � xi/n2, and ρ � r/(n2 − n1) and have from

Eq. (1.34)

−1/ζo + 1/ζi � 1/ρ. (1.35)

This simplification will be useful for other derivations of imaging equations.

1.4.3 Object and Image Distance, Object and Image Focus,
Real and Virtual Objects, and Singularities

When the object point is placed to the left of the spherical surface, we call it a
real object point. When it appears to the right of the spherical surface, we call it
a virtual object point. A virtual object point is usually the image point produced
by another system and serves as the object for the following imaging process.
To get an idea, of how the positions of the image point depend on the positions
of the object point, we use the equation of spherical surface imaging

−n1/xo + n2/xi � (n2 − n1)/r (1.36)

or

xi � n2/[(n2 − n1)/r + n1/xo],



12 1. GEOMETRICAL OPTICS

and plot a graph (FileFig 1.6). We choose an object point in air with n1 � 1,
a spherical convex surface of radius of curvature r1 � 10, and refractive index
n2 � 1.5.

We do not add length units to the numbers. It is assumed that one uses the
same length units for all numbers associated with quantities of the equations.
When the object point is assumed to be at negative infinity, we have the image
point at the image focus

xif � n2r/(n2 − n1). (1.37)

Similarly there is the object focus, when the image point is assumed to be at
positive infinity

xof � −n1r/(n2 − n1). (1.38)

We see from the graph of FileFig 1.6 that there is a singularity at the object focus
(at xo � −20). To the left of the object focus all values of xi are positive. To the
right of the object focus the values of xi are first negative, from the object focus
to zero, and then positive to the right to infinity.

When xo � 0 we have in Eq. (1.36) another singularity, and as a result we have
xi � 0. One may get around problems in plotting graphs around singularities t

by using numerical values for xo that never have values of the singular points.
In FileFig 1.7 we have calculated the image point for four specifically chosen

object points, discussed below.

FileFig 1.6 (G6SINGCX)

Graph of image coordinate depending on object coordinate for convex spherical
surface, for r � 10, n1 � 1 and n2 � 1.5. There are three sections. In the first
and third sections, for a positive sign, the image is real. In the middle section,
for a negative sign, the image is virtual.

G6SINGCX

Convex Single Refracting Surface

r is positive, light from left propagating from medium with n1 to medium with
n2. xo on left of surface (negative).

Calculation of Graph for xi as Function of xo over the Total Range of xo

Graph for xi as function of xo over the range of xo to the left of xof . Graph for
xi as function of xo over the range of xo to the right of xof .

r ≡ 10 n1 :� 1 n2 :� 1.5.
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Image focus Object focus

xif :� n2 · r

n2 − n1
xif � 30 xof :� n1 · r

n1 − n2
xof � −20

xo :� −100.001, −99.031 . . . 100 xi(xo) :� n2(
n2−n1

r

)+ n1
xo

.

xxo :� −100.001, −99.031 xxi(xxo) :� n2(
n2−n1

r

)+ n1
xxo

.
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xxxo :� −15.001, −14.031 . . . 50

xxxi(xxxo) :� n2(
n2−n1

r

)+ n1
xxxo

.

Application 1.6.
1. Change the refractive index and look at the separate graphs for the sections

to the left and right of the object focus. To the left of the object focus, xi is
positive. To the right it is first negative until zero, and then positive. What are
the changes?

2. Change the radius of curvature, and follow Application 1.

FileFig 1.7 (G7SINGCX)

Convex spherical surface. Calculation of image and object foci. Calculation of
image coordinate for four specifically chosen object coordinates.

G7SINGCX

Convex Single Refracting Surface

r is positive, light from left is propagating from medium with n1 to medium with
n2. xo is on left of surface (negative).

Calculation for Four Positions for Real and Virtual Objects, to the Left and Right of the
Objects Focus and Image Focus

Calculation of xi from given xo, refractive indices, and radius of curvature.
Calculation of magnification

r ≡ 10 n1 :� 1 n2 :� 1.5.
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Image focus Object focus

xif :� n2 · r

n2 − n1
xif � 30 xof :� n1 · r

n1 − n2
xof � −20.

1. x1o :� −100

x1i :� n2(
n2−n1

r

)+ n1
x1o

x1i � 37.5 mm1 :� x1i · n1

x1o · n2
mm1 � −0.25.

2. x2o :� −10

x2i :� n2(
n2−n1

r

)+ n1
x2o

x2i � −30 mm2 :� x2i · n1

x2o · n2
mm2 � 2.

3. x3o :� −10

x3i :� n2(
n2−n1

r

)+ n1
x3o

x3i � 15 mm3 :� x3i · n1

x3o · n2
mm3 � 0.5.

4. x4o :� 100

x4i :� n2(
n2−n1

r

)+ n1
x4o

x4i � 25 mm4 :� x4i · n1

x4o · n2
mm4 � 0.167.

Application 1.7.

1. Calculate Table 1.1 for refractive indices n1 � 1 and n2 � 2.4 (Diamond).
2. Calculate Table 1.1 for refractive indices n1 � 2.4 and n2 � 1.

1.4.4 Real Objects, Geometrical Constructions, and
Magnification

1.4.4.1 Geometrical Construction for Real Objects to the Left of the Object Focus

We consider an extended object consisting of many points. A conjugate point at
the image corresponds to each point. When using a spherical surface for image
formation, a cone of light emerges from each object point and converges to the
conjugate image point. Let us present the object by an arrow, parallel to the
positive y axis. The corresponding image will also appear at the image parallel
to the y axis, but in the opposite direction (Figure 1.5).

The image position and size can then be determined by a simple geometrical
construction. In Figure 1.5a we look at the ray connecting the top of the object
arrow with the center of curvature of the spherical surface. We call the light ray
corresponding to this line the C-ray (from center). A second ray, the PF-ray,
starts at the top of the object arrow and is parallel to the axis along the distance
to the spherical surface. It is refracted and travels to the image focal point Fi on
the right side of the spherical surface (Figure 1.5c). The paraxial approximation
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FIGURE 1.5 (a) The C-ray and conjugate points for extended image and object; (b) for the
calculation of the lateral magnification we show the C-ray, and the ray from the top of y0, refracted
at the center of the spherical surface, connected to the top of yi ; (c) geometrical construction of
image using the C-ray and the FP-ray.

requires that all C-rays and PF-rays have small angles with the axis of the system.
The C-ray and the PF-ray meet at the top of the image arrow.

1.4.4.2 Geometrical Construction for Real Object to the Right of the Object Focus

We place the object arrow between the object focus and the spherical surface.
From FileFig 1.7, with the input data we have used before, we find that the
image position is at −30, when the object position is at −10. The geometrical
construction is shown in Figure 1.7b. The C-ray and the PF-ray diverge in the
forward direction to the right. However, if we trace both rays back they converge
on the left side of the spherical surface. We find the top of an image arrow at
the image position, at −30. We call the image, obtained by tracing the diverging
rays back to a converging point, a virtual image. A virtual image may serve as a
real object for a second imaging process.

We have listed in Table 1.1 the image positions for real object positions
discussed so far and have indicated for images and objects if they are real or
virtual.
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FIGURE 1.6 (a) The C-ray and the PF-ray diverge in the forward direction; (b) they are traced
back to the virtual image.

1.4.4.3 Magnification

If we draw a C-ray from the top of the arrow representing the object, we find the
top of the arrow presenting the image (Figure 1.5). The lateral magnification m

is defined as

m � yi/yo. (1.39)

It is obtained by using the proportionality of corresponding sides of right
triangles, and taking care of the sign convention

−yi/(xi − r) � yo/(−xo + r). (1.40)

For m � yi/yo we have

m � −(xi − r)/(−xo + r). (1.41)

Rewritten, eliminating the radius of curvature, one gets with Eq. (1.36),

m � yi/yo � (xi/xo)(n1/n2). (1.42)

1.4.5 Virtual Objects, Geometrical Constructions, and
Magnification

In Figure 1.7 we have made geometrical constructions of virtual objects to the
left and right of the image focus. The objects are placed before and after the
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FIGURE 1.7 Geometrical construction of images for the convex spherical surface. The images of
real objects are constructed in (a) and (b), for virtual objects in (c) and (d). The light converges to
real images in (a), (c), (d). In (b) the light diverges and a virtual image is obtained by “trace back.”

image focus. The magnification is obtained from Eq. (1.42) and the calculations
are shown in FileFig 1.7.

In FileFig 1.7, we have calculated the four object positions listed in Table 1.1
and shown in Figure 1.7a to d.

1. Real object left of object focus
A real object is positioned to the left of the object focus. The construction
uses the C-ray, PF-ray, and image focus. The rays converge to an image point,
we have a real image.

2. Real object between object focus and spherical surface
We draw the C-ray and the PF-ray and use the image focus. The rays diverge
in a forward direction. We trace both back to a point where they meet. The
image is a virtual image.

3. and 4. Virtual objects.
In Figures 1.7c and 1.7d we consider a virtual object to the right of the
spherical surface, one to the left and another to the right of the image focus.
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TABLE 1.1 Convex Surface. r � 10, xif � 30, xof � −20a

xo xi m Image Object

−100 37.5 −.25 r r

−10 −30 2 vi r

20 15 05 r vi

100 25 .0167 r vi

a Calculations with G7SINGCX.

The C-ray is drawn through C in the “forward direction, but the PF-ray is now
drawn first “backward” to the surface and then “forward” through the image
focus. The C-ray and the PF-ray converge to real images for both positions
of the virtual objects.

In Section 1.4 we discussed the case of Eq. (1.36) where n1 < n2 and r is
positive. The case where n1 > n2 and r is negative will result in a very similar
discussion and is considered as an application.

1.5 CONCAVE SPHERICAL SURFACES

The image-forming equation of a convex spherical surface (Eq. (1.34)), is
changed for application to a concave spherical surface by changing the radius
of curvature to a negative value. We show that this minor change makes image
formation quite different.

Again we assume that the refractive index to the left of the surface is smaller
than the refractive index on the right (n1 < n2). The formation of images of
extended objects, their magnification, and geometrical construction are similar
to the process discussed above for the convex spherical surface.

In FileFig 1.8 we have the graph for the dependence of xi on xo. In FileFig
1.9, we determine for four specific positions of xo, for real and virtual objects,
calculations of image positions and magnifications. Observe the difference in
the position of object and image focus.

FileFig 1.8 (G8SINGCV)

Graph of image coordinate depending on object coordinate for concave spherical
surface, for r � −10, n1 � 1, and n2 � 1.5. There are three sections. In the
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first and third sections, for a negative sign, the image is virtual. In the middle
section, for a positive sign, the image is real.

G8SINGCV is only on the CD.

Application 1.8.
1. Observe the singularity at the object focus, which is on the “other side” in

comparison to the convex case.
2. Change the refractive index and look at the separate graphs for the sections

to the left and right of the object focus. To the left of the object focus, xi is
negative to the left of zero, positive to the right. To the right of the object focus
it is negative. What are the changes?

3. Change the radius of curvature, and follow Application 2.

FileFig 1.9 (G9SINGCV)

Concave spherical surface. Calculation of the image and object foci, and image
coordinate for four specifically chosen object coordinates.

G9SINGCV is only on the CD.

Application 1.9.
1. Calculate Table 1.2 for refractive indices n1 � 1 and n2 � 2.4 (Diamond).
2. Calculate Table 1.2 for refractive indices n1 � 2.4 and n2 � 1 (Diamond).

The results are listed in Table 1.2, together with the labeling of the real and
virtual objects and image.

The geometrical constructions of the four cases calculated in FileFig 1.9 are
shown in Figures 1.8a to 1.8d.

1. and 2. Real objects.
A real object is positioned to the left of the spherical surface. The C-ray and
PF-ray diverge in a forward direction. The PF-ray is traced back through the
image focus (it is on the left). The C-ray and PF-ray meet at an image point.
We have virtual images for both positions of the real object.

TABLE 1.2 Concave Surface. r � −10, xif � −30, xof � 20a

xo xi m Image Object

−100 −25 .167 vi r

−20 −15 .5 vi r

10 30 .2 r vi

100 −37.5 −.25 vi vi

a Calculations with C9SINGCV.
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FIGURE 1.8 Geometrical construction of images for the concave spherical surface. The images
of real objects are constructed in (a) and (b), for virtual objects in (c) and (d). The light converges
to real images in (c). The light diverges in (a), (b), (d), and a virtual image is obtained by “trace
back.”

3. Virtual object between spherical surface and object focus.
We draw the C-ray and have to trace back the PF-ray to the surface and through
the image focus. From there, we extend the ray in a forward direction. The
rays converge in a forward direction and we have a real image.

4. Virtual objects to the right of object focus.
The C-ray is drawn through C in a forward direction. The PF-ray is traced
back to the surface and then drawn backwards through the image focus. In
the backward direction the two rays meet at a virtual image.

Comparing Figures 1.7 and 1.8, one finds that the regions of appearance of
real and virtual images are dependent upon the singularities: one when the object
distance is equal to the focal length, and the other when the object distance is
zero. A virtual image is always found when the C-ray and PF-ray diverge in a
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forward direction. If we could place a screen into the position of a virtual image,
we could not detect it because the rays toward it are diverging.

The case where n1 > n2 and r is positive is very similar and is discussed as
an application in FileFig 1.9.

Applications to Convex and Concave Spherical Surfaces

1. Single convex surface. A rod of material with refractive index n2 � 1.5 has
on the side facing the incident light a convex spherical surface with radius of
curvature r � 50 cm.

a. What is the object distance in order to have the image at +7 cm?

b. What is the object distance in order to have the image at −7 cm?

c. Assume r � 25 cm; make a graph of xi as a function of xo for n1 � 1,
n2 � 1.33, and do the graphical construction of the image (i) for real
objects before and after the object focal point, and (ii) for virtual objects
before and after the image focal point.

2. Rod sticks in water, calculation of image distance. A plastic rod of length 70
cm is stuck vertically in water. An object is positioned on the cross-section
at the top of the rod, which sticks out of the water and faces the sun. On the
other side in the water, the rod has a concave spherical surface, with respect
to the incident light from the sun, with r � −4 cm. The refractive index of
the rod is n1 � 1.5 and of water n2 � 1.33. Calculate the image distance of
the object.

3. Single concave surface. A rod of material with refractive index n2 � 1.5 has
on one side a concave spherical surface with radius of curvature r � −50
cm.

a. What is the object distance in order to have the image at +5 cm?

b. What is the object distance in order to have the image at −5 cm?

c. Assume r � 25 cm; make a graph of xi as a function of xo for n1 � 1,
n2 � 1.33, and do the graphical construction of the image (i) for real
objects before and after the image focal point, and (ii) for virtual objects
before and after the object focal point.

4. Plastic film on water as spherical surface. A plastic film is mounted on a ring
and placed on the surface of water. The film forms a spherical surface filled
with water. The thickness of the film is neglected and therefore we have a
convex surface of water of n2 � 1.33. Sunlight is incident on the surface
and the image is observed 100 cm deep in the water. Calculate the radius of
curvature of the “spherical water surface.”



1.6. THIN LENS EQUATION 23

1.6 THIN LENS EQUATION

1.6.1 Thin Lens Equation

A thin lens has two spherical surfaces with a short distance between them. The
thin lens equation is a combination of the imaging equations applied to each of
the two surfaces. In the derivation of the final equation, one ignores the distance
between the spherical surfaces. The result is an imaging equation, which has
the same absolute value for object and image focus. A positive lens has the
object focus to the left and the image focus to the right. For the derivation, we
assume that the lens has the refractive index n2, real objects are in a medium with
refractive index n1, and virtual objects are in a medium with refractive index n3.

To obtain the imaging equation of the thin lens we consider a convex and a
concave spherical surface, separated by the distance a. The imaging equation for
the first single spherical surface, as given in Eq. (1.35), is

−1/ζo + 1/ζi � 1/ρ1, (1.43)

where ζo � xo/n1, ζi � xi/n2, ρ1 � r1/(n2−n1), and all distances are measured
from the center of the first surface. The imaging equation for the second spherical
surface is described by

−1/ζ ′
o + 1/ζ ′

i � 1/ρ2, (1.44)

where ζ ′
o � x ′

o/n2, ζ ′
i � x ′

i/n3, ρ2 � r2/(n3−n2), and all distances are measured
from the center of the second surface.

The two surfaces are positioned such that their distance in medium n2 is “a”
(Figure 1.9). To relate this distance to the image distance of the first surface
and the object distance of the second surface, we place both at the same point
(Figure 1.9). Measured from the first spherical surface the image is at +ζi .
Measured from the second spherical surface the object is at −ζ ′

o. Since ζ ′
o and ζi

are distances divided by the refractive index, we have to do the same with “a”.

FIGURE 1.9 Coordinates for the derivation of the thin lens equation.



24 1. GEOMETRICAL OPTICS

To get the absolute value for a/n2 we have

−ζ ′
o + ζi � a/n2. (1.45)

The relation holds for the coordinates of each lens, and substitution into the
equation for Surface 2 results in

−1/(−a/n2 + ζi) + 1/ζ ′
i � 1/ρ2. (1.46)

Adding Eq. (1.46) and the equation for Surface 1, that is, Eq. (1.43), we get

−1/ζo + 1/ζi − 1/(−a/n2 + ζi) + 1/ζ ′
i � 1/ρ2 + 1/ρ1. (1.47)

The thickness a is now set to zero, two terms cancel each other out, and we obtain

−1/ζo + 1/ζ ′
i � 1/ρ1 + 1/ρ2. (1.48)

Rewriting Eq. (1.48) by using ζo � xo/n1, ζ ′
i � x ′

i/n3, ρ1 � r1/(n2 − n1), and
ρ2 � r2/(n3 − n2), and setting x ′

i � xi , we have

−n1/x0 + n3/xi � (n2 − n1)/r1 + (n3 − n2)/r2. (1.49)

The focal length of the thin lens f is defined as

1/f � (n2 − n1)/r1 + (n3 − n2)/r2 (1.50)

and depends on the refractive indices outside and inside the lens, and on the two
radii of curvature. In most cases both sides of the lens have the same refractive
index 1; that is, n3 � n1 � 1. Calling the refractive index of the lens n, we have

1/f � (n − 1)/r + (1 − n)/r ′.

For a symmetric lens in air we obtain

1/f � 2(n − 1)/r.

Using n3 � n1 � 1 and the focal length of Eqs. (1.50), we have from Eq. (1.49)
the thin lens equation,

−1/xo + 1/xi � 1/f. (1.51)

There are positive and negative values for f , associated with positive and
negative lenses. For example, a biconvex lens is a positive lens.

1.6.2 Object Focus and Image Focus

When f is positive, that is, for a positive lens, the object focus is on the left and
has the coordinate xof � −f , and the image focus is at xif � f . When f is
negative, that is, for a negative lens, the object focus is on the right and has the
coordinate xof � |f |, and the image focus is xif � −|f |.
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FIGURE 1.10 Graph of C-ray connecting object and image arrows. The length of the object arrow
y0 and image arrow yi and their distances from the thin lens x0 and xi are also indicated.

1.6.3 Magnification

In Figure 1.10 we consider the case of a real object and real image and draw a
line from the top of the object arrow through the center of the lens to the top
of the arrow on the image arrow. The corresponding light ray is called the chief
ray and is again referred to as the C-ray. It passes the lens at the center and
therefore is not deviated by refraction. From the two “similar” triangles shown
in Figure 1.10 we define the magnification m as

m � yi/yo � xi/xo. (1.52)

1.6.4 Positive Lens, Graph, Calculations of Image Positions,
and Graphical Constructions of Images

In FileFig 1.10 we show a graph of the thin lens equation. The image distance
xi is plotted as a function of xo for positive f . There is a singularity at the object
focus at −f . To the left of the object focus, xi is positive. To the right between
the object focus and lens, xi is negative, and on the right of the lens it is positive.
As a result, we have three sections. In the first and third sections, for a positive
sign, the image is real. In the middle section, for a negative sign, the image is
virtual.

In FileFig 1.11 we have chosen four specific values of object distances and
calculate the corresponding image distances and magnifications.

FileFig 1.10 (G10TINPOS)

Graph of image coordinate xi , depending on the object coordinate xo for the thin
lens equation with f � 10.

G10TINPOS

Positive Lens

Focal length f is positive, light from left propagating from medium with index 1
to lens of refractive index n. xo on left of surface (negative).
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Calculation of Graph for xi as Function of xo over the Total Range of xo

Graph for xi as function of xo over the range of xo to the left of f . Graph for
xi as function of xo over the range of xo to the right of f .

f ≡ 10

Image focus: f Object focus: −f

xo :� −100.001, −99.031 . . . 100

xi(xo) :� 1( 1
f

)+ 1
xo

.

xxo :� −50.001, −49.031 . . . − 11

xxi(xxo) :� 1( 1
f

)+ 1
xxo

.
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xxxo :� −9.001, −8.031 . . . 50

xxxi(xxxo) :� 1( 1
f

)+ 1
xxxo

.

Application 1.10.

1. Observe the singularity at the object focus, which has the same absolute value
as the focal length but with a negative sign. The image focus has a positive
sign. Note that they play different roles in the geometrical construction of the
image.

2. Change the refractive index and describe what happens.

3. Change the focal length and describe what happens.
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FileFig 1.11 (G11TINPOS)

Calculation of image and object foci for f � 10. Calculation of image distances
xi and magnification for four specific values of object distance xo

G11TINPOS

Positive Lens

Focal length f is positive, light from left propagating from medium with index 1
to lens of refractive index n. xo on left of lens (negative).

Calculation for Four Positions for Real and Virtual Objects, to the Left and Right of the
Object Focus and Image Focus

Calculation of xi from given xo and focal length. Calculation of magnification.

f ≡ 10 n1 :� 1 n2 : 1.5

Image focus: f Object focus: −f

1. xo1 :� −30

xi1 :� 1( 1
f

)+ 1
xo1

xi1 � 15 mm1 :� xi1

xo1
mm1 � −0.5.

2. xo2 :� −5

xi2 :� 1( 1
f

)+ 1
xo2

xi2 � −10 mm2 :� xi2

xo2
mm2 � 2.

3. xo3 :� 5

xi3 :� 1( 1
f

)+ 1
xo3

xi3 � 3.333 mm3 :� xi3

xo3
mm3 � 0.667.

4. xo4 :� 30

xi4 :� 1( 1
f

)+ 1
xo4

xi4 � 7.5 mm1 :� xi4

xo4
mm4 � 0.25.

Application 1.11. The distance between the chosen object coordinate and the
resulting image coordinate changes with the choice of the object coordinate.

1. Find analytically the condition for the shortest distance between image and
object.

2. Make a graph of y � −xo + xi depending on xo and find the minimum.
3. Make a sketch.
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FIGURE 1.11 Geometrical construction of the images for a converging lens with positive f . Real
objects for (a) and (b) and virtual objects for (c) and (d). The light converges to real images in (a),
(c), (d). The light diverges in (b), and a virtual image is obtained by “trace back.”

The geometrical construction of the images for the values calculated in FileFig
1.11 are shown in Figures 1.11a to d.

1. Real object and real image.
The object is presented by an arrow of length yo, placed at the object point
xo. The image point and the length of the arrow presenting the image can
be geometrically determined. The C-ray is drawn from the top of the object
arrow through the center of the thin lens. The second ray, the PF-ray, is drawn
from the object arrow parallel to the axis to the lens, and from there, through
the image focus. The two rays meet at the position of the image arrow. In
Figure 1.11a, we obtain for a real object a real image.

2. Real object and virtual image.
In Figure 1.11b we place the real object between the object focus and the
lens and draw the C-ray and PF-ray. These rays diverge in a forward direction
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and both are traced back to the left. They meet at the virtual image. A virtual
image is always found when the C-ray and the PF-ray diverge in a forward
direction. If we could place a screen into the position of a virtual image, we
could not see it, because the rays toward the virtual image are diverging.

3. and 4. Virtual object and real images.
In Figures 1.11c and 1.11d we place the object to the right of the lens. We are
considering virtual objects. A virtual object may be produced by the image
formed by another optical imaging system. The virtual objects are placed
between the lens and the image focus and to the right of the image focus. In
both cases we draw the C-ray in a forward direction. The PF-1 ray is drawn
first backward to the lens and then forward through the image focus. The
C-ray and the PF-ray converge to real images for all positions of the virtual
object.

The results of the calculations of the positive thin lens with f � −10 are
listed in Table 1.3.

1.6.5 Negative Lens, Graph, Calculations of Image Positions,
and Graphical Constructions of Images

In FileFig 1.12, we show graphs of the thin lens equation, plotting xi as a function
of xo for negative f . We see the singularity is at the object focus f , which is
now to the right of the lens. To the left of the lens, xi is negative. Between the
lens and the object focus, xi is positive. To the right of the object focus, xi is
negative. As a result, we have three sections. In the first and third sections, for a
negative sign, the image is virtual. In the middle section, for a positive sign, the
image is real.

In FileFig 1.13, we have calculated for four specific values of object distance
the corresponding image distances and the magnification. In Figure 1.12 we have
the geometrical construction of the images for the values calculated in FileFig
1.13.

TABLE 1.3 Positive Lens. f � 10, Image Focus 10, Object Focus −10
xo xi m Image Object

−30 15 −.5 r r

−5 −10 2 vi r

5 3.3 .67 r vi

30 7.5 .25 r vi
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FIGURE 1.12 Geometrical construction of the images for a diverging lens with negative f . Real
objects for (a) and (b) and virtual objects for (c) and (d). The light converges to real images in (c).
The light diverges in (a), (b), (d), and a virtual image is obtained by “trace back.”

FileFig 1.12 (G12TINNEG)

Graph of image coordinate xi , depending on object coordinate xo for the thin
lens equation with f � −10.

G12TINNEG is only on the CD.

Application 1.12.
1. Observe the singularity at object focus, which has the same absolute value

as the focal length but with a positive sign. The image focus has a negative
sign. Note that they play different roles in the geometrical construction of the
image.

2. Change the refractive index and describe what happens.
3. Change the focal length and describe what happens.
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FileFig 1.13 (G13TINNEG)

Calculation of image focus and object focus for negative lens. Calculation of
image distances xi and magnification for four specific values of object distance
xo.

G13TINNEG is only on the CD.

Application 1.13. The distance between the chosen object coordinate and
resulting image coordinate changes with the choice of the object coordinate.

1. Modify the analytical calculation done in Application FF11 for the condition
of the shortest distance between image and object.

2. Make a sketch.

The geometrical construction of the images for the values calculated in FileFig
1.13 are shown in Figures 1.12a to d.

1. and 2. Real object to the left of the lens and virtual image.
The object is presented by an arrow of length yo, placed at the object point xo

to the left of the negative lens. The image point and the length of the arrow
presenting the image can be geometrically determined using the C-ray and
the PF-ray. The C-ray is drawn from the top of the object arrow through the
center of the thin lens. The PF-ray is drawn from the object arrow parallel to
the axis to the lens, and then diverges in a forward direction. It is traced back
to the image focus. The two rays meet at the positions of the image arrow. In
Figures 1.12a and 1.12b, we obtain for a real object a virtual image. A virtual
image is obtained when the C-ray and the PF-ray diverge in a “forward”
direction.

3. Virtual object between lens and object focus.
In Figure 1.12c, we place the virtual object between the object focus and
the lens and draw the C-ray. The PF-ray is first traced back to the lens, then
connected to the image focus, and extended in the forward direction. The two
rays meet in the forward direction at a real image.

4. Virtual object on the right side of the object focus.
In Figure 1.12d, we place the virtual object to the right of the object focus
and draw the C-ray. The PF-ray is first traced back to the lens, then connected
to the image focus and extended further in the backward direction. The two
rays meet in the backward direction for a virtual image.

The results of the calculations of the negative thin lens with f � −10 are
listed in Table 1.4

For the geometrical construction, we note that the size of the lens does not
matter. One uses a plane in the middle of the lens with sufficient extension in the
y direction; see Figure 1.13a.
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TABLE 1.4 Negative Lens. f � −10, Image Focus −10, Object focus 10
xo xi m Image Object

−30 −7.5 .25 vi r

−5 −3.3 .67 r r

5 10 2 vi vi

30 −15 −.5 vi vi

FIGURE 1.13 (a) Image formation of an object larger than the diameter of the lens. The extended
plane of the lens is used; (b) image formation for an object at infinity. The axis B of the system is
the ray from the center of the object through the center of the lens. the PF-ray is assumed to come
from the top of an object at finite distance; the corresponding image is indicated.

If the object is at infinity, one uses for the object distance a finite number so
that the image is not exactly at the focal point, where it would have a length
equal to zero (Figure 1.13b).

1.6.6 Thin Lens and Two Different Media on the Outside

We go back to the thin lens equation and choose different indices of refraction
at the two media on both sides of the lens. We start again from the definitions
ζo � xo/n1, ζ ′

i � xi/n3, ρ1 � r1/(n2 − n1) and ρ2 � r2/(n3 − n2) and have

−n1/x0 + n3/xi � (n2 − n1)/r1 + (n3 − n2)/r2. (1.53)

We call the focal length of the thin lens fn given by

1/fn � (n2 − n1)/r1 + (n3 − n2)/r2 (1.54)

and obtain the thin lens equation

−n1/xo + n3/xi � 1/fn. (1.55)
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This equation is very similar to the spherical surface imaging equation discussed
in Section 1.4a just as we found there, we have different values for the object
focus and image focus.

For the object focus, when the image point is assumed to be at positive infinity,
we have

xof � −n1fn (1.56)

and for the image focus, obtained when the object point is assumed to be at
negative infinity, we have

xif � n3fn. (1.57)

The construction of the images for positive and negative lenses is similar to the
procedure for the spherical surfaces and is not discussed further. The value of
the focal length for different cases of the refractive indices may be calculated
using FileFig 1.14.

FileFig 1.14 (G14TINFOC)

Calculation of the focal length and object and image focus of the thin lens for
different combinations of the refractive indices.

G14TINFOC

Focal Length

1. Calculation of focal length of thin lens of refractive index n2 in medium with
refractive index n1.
First surface: r1 :� −5. Second surface: r2 :� 5. r is positive for convex
surface, negative for concave surface. Refractive index of lens n2: n2 :� 1.
and Refractive index of medium n1: n1 :� 1.5.

2. Graph of focal length of thin lens with index n2 depending on refractive index
of medium n1.
The range on n1 is divided into lower and higher ranges because of sin-
gularity. Refractive index of lens nn2: nn2 :� 1.5. Lower range: nn1 :�
1, 1.1 . . . nn2 − .00001. Upper range: nnn1 :� nn2 + .1, nn2 + .2 . . . 4.

ff (nn1) :� 1
nn2−nn1

r1 + nn1−nn2
r2

fff (nnn1) :� 1
nn2−nnn1

r1 + nnn1−nn2
r2

.
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Application 1.14. Consider the case n2 > n1. What is the result when
interchanging n1 and n2?

Applications for the Sections on Positive and Negative
Lenses

1. Air lens in plastic. A plastic rod is flat on one side and has a spherical surface
on the other side. The spherical surface is concave with respect to the incident
light, which comes from the flat side. An identical second rod is taken and
the two curved ends are put together, forming an air lens by the ends of the
two rods. The cross-section of this lens has its thinnest point in the middle.
Assume that the radii of curvatures of the spherical surfaces are r � −r ′ � 10
cm and the refractive index of the rod is n � 1.5. Sunlight is incident on an
object on the face of the first rod at 20 cm from the air lens. Find the image
distance.

2. Thin lens on water. A lens of refractive index n � 1.5 is put on water, one
surface in air, the other in water. The lens is a symmetric biconvex lens and has
a focal length of f � 10 cm in air. The refractive index of water is n � 1.33.
a. Calculate the radii of curvature of the lens in air and the focal length to be

used in the above position.

b. Sunlight is shining on the lens; calculate the image distance in the water.

1.7 OPTICAL INSTRUMENTS

Optical instruments, such as magnifiers, and microscopes, enlarge tiny objects,
making it possible to observe objects we can barely see with the naked eye. The
magnifier gives us a modest magnification, in most cases less than ten times. The
microscope makes it possible to observe objects of about 1 micron diameter, and
the telescope enables us to see objects at a far distance in more detail. Our eye is
a one lens system and may produce a real image of a real object, like a positive
lens (Figure 1.11a). The real image of a real erect object of a positive lens is
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inverted. However, our brain makes a “correction” (another inversion) and we
“see” the object erect, as it is. In discussing optical instruments, we have to take
this fact into account when making statements about image formation. For a
microscope or astronomical telescope it does not matter much if the final image
is erect or inverted. However, for the telescope of a sharpshooter it is important.

From Figures 1.11 and 1.12, we read a simple rule: If the image appears at
the same side of the lens as an erect object, it is erect. If it appears on the other
side of the lens, it is inverted.

1.7.1 Two Lens System

To obtain the final image distance of a two-lens system, one first applies the
thin lens equation to the first lens and determines the image distance. The object
distance for the second lens is calculated from the distance between the two
lenses and the image distance of the first lens. The thin lens equation is then
applied to the second lens and the final image distance for a two-lens system is
obtained as the distance from the second lens. The formulas for this procedure
are listed in FileFig 1.15.

For graphical constructions one proceeds in the same way. Using C- and PF-
rays, one constructs the image of the first lens. The image is taken as an object
for the second lens, and C- and PF-rays are used to construct the image formed
by the second lens. The existence of the first lens is ignored when going through
the second process.

The magnification of the system is the product m of the magnification of each
of the two lenses. One has m � m1m2 with m1 � xi1/xo1 and m2 � xi2/xo2,
where m1 is calculated with respect to the first lens and m2 with respect to the
second lens.

FileFig 1.15 (G15TINTOW)

Calculation of the final image distance of a two-lens system, for a given object
distance of the first lens, focal length, and separation of the two lenses.

G15TINTOW

Two Thin Lenses, Distance Between Lenses: D

1. First lens, xo1, xi1, f 1

xo1 :� −5 f 1 :� 6

xi1 :� 1( 1
f 1

)+ 1
xo1

xi1 � −30.
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2. Second Lens, xo2, xi2, f 2, and Distance D (Positive Number)

D :� 10 f 2 :� 1.85.

The image distance of the first process is given with respect to the first lens.
(Let us assume it is positive.) The object distance must be given with respect
to the second lens, taking the distance D between the two lenses into account.
(D is negative when counted from the second lens.) Therefore we have

xo2 :� −D + xi1 xo2 � −40

xi2 :� 1( 1
f 2

)+ 1
xo2

xi2 � 1.94.

3. Magnification for each lens and product for the magnification of the system

m1 :� xi1

xo1
m1 � 6

m2 :� xi2

xo2
m2 � −0.048

System

m1 · m2 � −0.291.

Application 1.15.
1. Distance between the lenses is larger than 2f . Calculate the final image

distance for two lenses at distance D � 50. Assume that the object distance
from the first lens is −20. Give the magnification, and make a sketch of object
and image, assuming that the object is erect. Consider the following cases.
a. First lens f1 � 10; second lens f2 � 10.

b. First lens f1 � 10; second lens f2 � −10.

c. First lens f1 � −10; second lens f2 � 10.

d. First lens f1 � −10; second lens f2 � −10.
2. Distance between the lenses is smaller than 2f . Calculate the final image

distance for two lenses at distance D � 6. Assume that the object distance
from the first lens is −20. Give the magnification, and make a sketch of object
and image, assuming that the object is erect. Consider the following cases.
a. First lens f1 � 10; second lens f2 � 10.

b. First lens f1 � 10; second lens f2 � −10.

c. First lens f1 � −10; second lens f2 � 10.

d. First lens f1 � −10; second lens f2 � −10.

1.7.2 Magnifier and Object Positions

The size of an image on the retina increases when placed closer and closer to the
eye. There is a shortest distance at which the object may be placed, called the near
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FIGURE 1.14 Two positive lenses in the magnifier configuration: (a) the virtual image yi of the
object y0 serves as object Yoe for the eye lens. The image yie (see bold dotted lines) appears on the
retina upside down; we see it therefore erect; (b) the object of the eye in the near field configuration;
(c) the object of the eye in the infinity configuration.

point at about 25 cm. For shorter distances the eye can no longer accommodate
production of an image because the eye–retina distance is fixed. To increase the
size of the object one may use a positive lens as a magnifier. In Figure 1.14, we
show the magnifier and the eye as a two-thin-lens system. In FileFig 1.16 we
show the calculation of the image distance for a two lens system. We assume that
the positive lens and the eye are separated by a distance of D � 1 cm. Object
distance and focal lengths of the lenses are both input data.

From Figure 1.14, we see that the first lens produces a virtual erect image of
a real erect object. The second lens (eye) treats the virtual erect image as a real
erect object and produces a real inverted image on the retina. The final image on
the retina is inverted. However, we “see” it upright because our brain does the
conversion. The virtual image of the magnifier lens is the object of the eye lens.
The object producing this virtual image may only be positioned with respect to
the magnifier in such a way that the virtual image is not closer than the near
point, but may have a distance as large as negative infinity. We therefore discuss
the two cases: the virtual image is at the near point; and the virtual image is at
infinity.
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FileFig 1.16 (G16MAG2L)

Calculation of the image distance for a two-lens system consisting of a positive
lens and the eye lens. Magnification for each lens and the system.

G16MAG2L is only on the CD.

Application 1.16. Object distance at xo1 � −5, focal length of first lens f1 � 6,
distance D between lens and eye is D � 0, focal length of eye f2 � 1.85. Study
different resulting magnifications for changes of xo1 and f1.

1.7.2.1 Virtual Image at Near Point

The virtual image produced by the first lens is the real erect object for the second
lens (eye), and is assumed to be at the near point (−25 cm). In the first step, we
calculate the object distance for the first lens when the image is at −25 cm from
the second lens (eye). In the second step we consider the eye. The calculation is
shown in FileFig 1.17 where the magnification of the magnifier is given as

m1 � xi1/xo1 (1.58)

and of the eye as

m2 � xi2/xo2. (1.59)

Considering only the magnification m1 of the magnifier, one may use the thin lens
equation in order to express m1 in known quantities; that is, f1 and xi1 � −25.
We have

m1 � xi1/xo1 � xi1(1/xo1) � xi1(−1)(1/f − 1/xi1) � (1 − xi1/f1). (1.60)

Neglecting the distance D between magnifier and eye lens, and setting xi1 �
−25, we obtain for the magnification,

m1 � 1 + 25/f1. (1.61)

1.7.2.2 Virtual Image at Infinity

The virtual image produced by the first lens is assumed to be at negative infinity
(−∞). It is the real erect object for the second lens (eye). The calculation is
shown in FileFig 1.18 for f1 � 12, and taking for xi1 the numerical value of
−1010. For the magnification of the magnifier we get, after using the thin-lens
equation, similarly done as in Eq. (1.60),

m1 � xi1/xo1 � 1 − xi1/f1 � 8.333 · 108,

This is a meaningless number. In order to discuss the case where the virtual image
is at infinity, we have to change our approach and consider angular magnification.
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FIGURE 1.15 Angular magnification; (a) object at the near point, seen with the eye lens; object
at the near point, seen with magnifier and eye lens.

1.7.2.3 Angular Magnification or Magnifying Power

To avoid the difficulties we encountered in Section 1.7.2.2, where we calculated
meaningless numbers for the magnification, we take a different approach and
use angular magnification. We compare the angles at the eye by looking at the
object with and without a magnifier (Figure 1.15).

The object is positioned at the near point because that gives the largest mag-
nification without a lens. First the eye looks at the object without a magnifier,
(Figure 1.15a), where angle α is

α � yo1/xo1 � yo1/(−25). (1.62)

Then we introduce the magnifier and have for the angle β, as shown in
Figure 1.15b,

β � yi1/xi1 � yo1/xo1β � yo1(1/xi1 − 1/f1), (1.63)

where xo1β is the object distance when calculating the angle β, and the thin-lens
equation was used to eliminate xo1β .

We define the angular magnification or magnifying power as

MP � β/α � −25(1/xi1 − 1/f1). (1.64)

We now discuss the applications of angular magnification to the cases where the
virtual image is at the near point and at infinity.
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1. Near point.
The object is at the near point, and assuming D � 0 we have xo1 � xi1 � −25
and get

MP � 1 + 25/f1. (1.65)

This is the same expression we obtained in Section 1.7.2.1; for the case of
the Near point, see Eq. (1.61).

FileFig 1.17 (G17MAGNP)

Calculations of the magnifier in the near point configuration. Assume D � 0.
First step: Determination of object point for image point at −25 for first lens with
f1 � 12, result xo1 � −8.108. Second step: Determination of xi2 for xo2 � −25
and eye lens f2 � 1.85, result xi2 � 2. Calculation of magnification.

G17MAGNP is only on the CD.

Application 1.17. Find the resulting magnifications for three choices of f1.

2. Virtual image at infinity.
We consider the virtual image of lens 1 as the real object of lens 2. We have
xi1 � −∞, and have for the angular magnification

MP � −25(1/xi1 − 1/f1) (1.66)

� 25/f1.

This value is marked on magnifiers as MP times x. Example: for f1 � 5 we
would have MP � 5x.
In both cases the object is placed at the near point of the eye without a
magnifier, and the resulting angular magnification depends on the focal length
of the magnifier.

FileFig 1.18 (G18MAGIN)

Calculations of the magnifier for the “virtual image at infinity” configuration.
Assume D � 0. First step: Determination of object point for image point xi1 �
−1010 , that is, at (−∞) for the first lens with f1 � 12, result is xo1 � −12.
Second step: Determination of xi2 for xo2 � (−∞), for the eye lens f2 � 1.85,
result is xi2 � 1.85. Calculation of magnification.

G18MAGIN is only on the CD.

Application 1.18. Study several resulting magnifications for three choices of f1.
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FIGURE 1.16 Microscope as three-lens system of objective, magnifier (ocular), and eye. The
object is close to the focal length of the objective lens L1 and the image is yi1. The magnifier L2
and eye lens act in the magnifier configuration on the image y02 produced by L1. The image yi2 is
the object y0e for the magnifier and the image yie appears on the retina erect; we see it therefore
upside down.

1.7.3 Microscope

1.7.3.1 Microscope as Three-Lens System

In a compound microscope, the first lens L1 (objective lens) has a short focal
length and forms a real inverted image of a real erect object. Then the magnifier
configuration is applied, which is the second lens L2 (ocular lens) plus the eye
lens. See Section 1.7.2 above and Figure 1.16. The final image on the retina is
erect, but we see it upside down.

We ignore the eye lens and calculate the final image of a two lens system,
using for the image distance xi1 the fixed value of tube length 16 cm plus Fi1 (in
cm), see Figure 1.16. The magnification is the product of m1 of the objective lens,
times m2 of the ocular lens (magnifier). We discuss the following cases where
the magnifier is used in (1) the near point configuration, and (2) the virtual image
at infinity configuration.
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1. Magnification, Near Point Configuration, Magnifying Power

In FileFig 1.19 we calculate the magnification, using f1 � 2, xi1 � 16 + f1,
f2 � 6, and xi2 � −25; we have for the magnification

m � m1m2 � (xi1/xo1)(xi2/xo2) � −41.34. (1.67)

The magnifying power MP for the magnifier in the Near point configuration
was obtained in Eq. (1.66), and was the same as the magnification m1m2. Using
the thin-lens equation to xo1 and x02 we have

MP � m1m2 � xi1(−1)(1/f1 − 1/xi1)xi2(−1)(1/f2 − 1/xi2)

� (1 − [16 + f1]/f1)(1 + 25/f2) (1.68)

and as the result we get m1m2 � −41.34. Neglecting f1 with respect to 16 we
have

MP ≈ (1 − 16/f1)(1 + 25/f2) � −36.17. (1.69)

The negative magnification indicates that we see the object upside down.

FileFig 1.19 (G19MICNP)

Calculations of the microscope in the near point configuration. The object is
close to the focal point of lens 1. Lens 1: f1 � 2 cm; xi1 � +16 + 2 cm, result
xo1 � −2.25 cm. The magnifier lens L2 is in the near point configuration. Lens
2: f2 � 6 cm, xi2 � −25.008 cm; xo2 � −4.839 cm. The angular magnification
is also calculated.

G19MICNP is only on the CD.

Application 1.19. Go through all the steps and study the resulting magnification
by changing f1 and f2.

2. Magnification, Virtual Image at Infinity, Magnifying Power

We assume that the virtual image is at infinity; that is, x2i � −∞. The calcula-
tions using the direct approach, which is m � (xi1/xo1)(xi2/xo2), are shown in
FileFig 1.20. Using f1 � 2 cm, xi1 � 16 + f1, f2 � 6 cm, and xi2 � −1010

cm, we obtain a meaningless number.
The magnifying power in the near point configuration of the magnifier was

obtained in Eq. (1.68) as MP � (1 − [16 + f1]/f1)(1 + 25/f2). The second
factor changes for the case where the “virtual image is at infinity,” and the result
is

MP � (1 − [16 + f1]/f1)(25/f2) � −33.333. (1.70)

Neglecting f1 with respect to 16 one has

MP � −(16/f1)(25/f2) � −29.167. (1.71)
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One may also disregard the one in the first factor and have MP �
−(16/f1)(25/f2).

FileFig 1.20 (G20MICIN)

Calculations of the microscope in the “virtual image at infinity” configuration.
The virtual image is at infinity; that is, x2i � −∞. Lens 1: f1 � 2 cm; xi1 �
+16+2 cm; result xo1 � −2.25 cm. Lens 2: f2 � 6 cm; xi2 � −1010 cm; result
xo2 � −6 cm. The magnification is also calculated neglecting f1.

G20MICIN is only on the CD.

Application 1.20. Go through all the steps and study the resulting magnification
by changing f1 and f2.

1.7.3.2 Magnification of Commercial Microscopes

Commercial microscopes give the magnification of the objective and eye lens by
a MPx value, similar to the one discussed above for the magnifier. For example,
the magnifier power MP of the microscope was approximately −(16/f1)(25/f2).
Assuming f1 � 2 and f2 � 6, the objective would be marked 8x and the ocular
4x. The magnification of this microscope would be 32 times.

1.7.4 Telescope

1.7.4.1 Kepler Telescope

In a simple telescope, the first lens L1 forms an image of a far away object at a
distance close to the focal point f1 of the objective lens (Figure 1.17). The object
is considered real and erect, and the image is real inverted. The second lens is
the magnifier lens and the eye and magnifier lens are used together in the virtual
image at −∞ configuration. In this setup the image of lens 1, which is the object
of lens 2, is close to the focal point of f2, and forms an inverted virtual image
at infinity. When we look at this virtual image the final image on the retina is
erect, but we see it upside down. The calculations are shown in FileFig 1.21. To
find the approximate magnification of the telescope, we do not need to use the
concept of magnifying power and can use the calculation of the magnification:

m � (xi1/xo1)(xi2/xo2), (1.72)

where m1 � xi1/xo1 is about f1/xo1, because the image of lens 1 is close to
the focal point. For m2 � xi2/xo2 we have approximately −xi2/f2, because
the object for f2 is close to the focal point. Since xo1 and xi2 are both large
numbers of the same order of magnitude, they cancel each other out and for the
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FIGURE 1.17 Optical diagram of a Kepler telescope: (a) the object is far away from the objective
lens L1 and the image is yi1, located close to xi1 � f1; (b) the image yi1 is the object for the
magnifier L2 and eye lens in the magnifier configuration and produces the virtual image yi2 � y0e.
The final image yie appears on the retina erect, we therefore see it upside down. The distance
f1 + f2 is approximately the length of the telescope.

magnification we have

m � m1m2 � −f1/f2. (1.73)

Note that this is a negative number since f1 and f2 are both positive, and the
object is “seen” inverted.

To get a large magnification, we need a large value of f1 and a small one of
f2. The large value of the focal length of the first lens makes powerful telescopes
“large.”

FileFig 1.21 (G21TELK)

The Kepler telescope is treated as a two-lens system, assuming for xo1 and xi2

the same large negative numerical values. The magnification is calculated from
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m � (xi1/xo1)(xi2/xo2) and results in m � m1m2 � −f1/f2. Lens L1: f1 � 30;
xo1 � −1010; xi2 � 30. Lens L2: f2 � 6; distance a � f1 + f2; xi2 � −1010,
xo2 � −6. Calculation of magnification.

G21TELK is only on the CD.

Application 1.21. Study magnifications of 2 and 4 by changing f1 and f2 and
make a sketch.

1.7.4.2 Galilean Telescope

The Galilean telescope is the combination of a positive lens L1 and a negative
lens L2. The positive lens forms a real inverted image of a far-away real erect
object (Figure 1.18a). The negative lens replaces the magnifier. The image of
lens 1 is the object for lens 2 and is virtual inverted, see Fig. 1.12(d). Lens 2
forms a virtual erect image of it, at negative infinity (Figure 1.18b). The eye looks
at the virtual erect image of lens 2 as a real erect object and forms a real inverted
image on the retina (we see it erect). The calculation is shown in FileFig 1.22.

FIGURE 1.18 Optical diagram of a Galileo telescope: (a) the object is far away from the objective
lens L1 and the image is yi1, located close to xi1 � f1; (b) the image of lens 1 is virtual inverted
object for lens 2, and lens 2 forms a virtual erect image of it. This virtual erect image is the object
of the eye lens and the image yie appears on the retina upside down, therefore we see it erect.
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For the magnification one gets:

m � (xi1/xo1)(xi2/xo2), (1.74)

where m1 � xi1/xo1 is approximately f1/xo1 because the image of lens 1 is
close to the focal point. The magnification of the second lens, m2 � xi2/xo2, is
approximately −xi2/f2, because the object of lens 2 is close to the focal point
and to the right side of the lens, and f2 is negative. Since xo1 and xi2 are both
large numbers, of the same order of magnitude, they cancel each other out and
we have for the magnification

m � m1m2 � −f1/f2. (1.75)

Note that this is a positive number since f2 is a negative lens, and the object
is seen erect. The Galilean telescope is used for many terrestrial applications in
theaters and on ships.

FileFig 1.22 (G22TELG)

The Galilean telescope is treated as a two-lens system with the first lens having
a positive focal length and the second lens a negative focal length. For xo1 and
xi2 the same large negative numerical values are assumed. The magnification
is calculated as m � (xi1/xo1)(xi2/xo2) and results in m � m1m2 � −f1/f2.
(Note that the numerical value is positive.) Lens L1: f1 � 30, xo1 � −1010,
xi1 � 30 Lens L2: f2 � −29.99, xi2 � −9 · 104; xo2 � 30.

G22TELG is only on the CD.

Application 1.22. Go through all the stages and study magnifications by
changing f1 and f2.

Applications to Two- and Three-Lens Systems

1. Magnifier. A magnifier lens of f1 � 12cm is placed 8 cm from the eye.
a. Find the position of xo1 for

i. the near point configuration; and

ii. the infinite configuration.

b. Give the magnification and the angular magnification.
2. Microscope.A microscope has a first lens (objective) with focal length .31 cm,

a magnifier (ocular) lens of 1.79 cm, and the eye lens is assumed to be fe � 2
cm. The focal length of the objective lens has been chosen so that the image
is at about 16 cm. The distance between the lenses is 18 cm and we assume
that the eye is in near point configuration. Calculate the magnification of the
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first and of the second lenses, and compare the product with the magnifying
power, as derived, and its approximation.

3. Microscope (near point). A microscope has a first lens (objective) with focal
length 1.31 cm and a magnifier (ocular) lens of 1.79 cm. We assume that the
image of the first lens is at 16 cm and the eye is in the near point configuration.
a. Find the object distance for the objective lens.

b. Find the distance from the first image and the magnifier lens.

c. Find the distance between the lenses (length of microscope).

d. Find the magnification.
4. Microscope (−∞). A microscope has a first lens (objective) with focal length

1.31 cm and a magnifier (ocular) lens of 1.79 cm. We assume that the image
of the first lens is at 16 cm and the eye is relaxed, looking at −∞.
a. Find the objective distance for the objective lens.

b. Find the distance from the first image and the magnifier lens.

c. Find the distance between the lenses (length of microscope).

d. Find the magnification.
5. Kepler telescope. Make a suggestion for construction of a Kepler telescope

with magnifications of 4 and 10.At what higher number does the construction
become unrealistic? Why?

6. Galilean telescope. A Galilean telescope has for the first lens f1 � 30 cm and
for the negative lens f2 � −9.9 cm. If xo1 is large and the distance a between
the two lenses is 20 cm, calculate xi2, the image distance with respect to
the negative lens. Calculate the magnification and show that for the object at
infinity, one again has M � −f1/f2. The distance between the two lenses is
then f1 + f2.

7. Laser beam expander. A laser beam of diameter of 2 mm should be expanded
to a beam of 20 mm.
a. A biconvex and a biconcave lens should be used. The beam first passes

the biconcave lens of focal length −5 mm. Where should one place the
biconvex lens of diameter of 30 mm and focal length of 50 mm?

b. Two biconvex lenses should be used, one with f � 5 mm, the other with
f � 50 mm. Make a sketch and give approximate values for the diameter
of the lenses.

1.8 MATRIX FORMULATION FOR THICK LENSES

1.8.1 Refraction and Translation Matrices

A thick lens has two spherical surfaces separated by a dielectric material of a
certain thickness. Previously we ignored the distance between the two surfaces
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FIGURE 1.19 Multiple lens system. The lenses may have different radii of curvature and different
refractive indices.

but now take it into account. One may calculate the image formation of the thick
lens by first finding the image produced by the first surface. Then one uses this
image as an object in the second imaging process and finds the image produced
by the second surface. One could also use this procedure for lens systems with
many lenses (Figure 1.19). However, one can develop a mathematical formalism
to describe the image formation of a system of lenses by using the thin-lens
equation. But one now has to measure the object and image distance from newly
determined “principal planes,” and not from the center of the thick lens. To do
this, we first consider the case of refraction on a spherical surface (Figure 1.20).
We want to represent the first surface by an operation which transforms the set of
coordinates of the object into the set of coordinates of the first image. We show
that this operation can be represented by a transformation matrix, which we
call refraction matrix. Then we make a translation to get to the second surface,
accomplished by a translation matrix, and the next operation on the second
surface is again associated with a refraction matrix. This method is applicable to
many different curved surfaces and their separations, having different thickness
and refraction indices. The mathematical operation representing the processes
of refraction at one and translation between two surfaces is a two-by-two matrix.
The matrices are derived by using the paraxial theory, taking as the coordinates
the distance from the axis of the point of the ray at the surface and the angle the
ray makes with the axes (Figure 1.20a).

We now construct matrices to represent the refraction and translation opera-
tions. The matrices act on sets of two coordinates, written in the form of a vector.
The initial coordinates (index1) in the plane of the object are acted on, and the
result is the set of coordinates (index 2) in the plane of the image. We start from
the equation for refraction on a single surface

−n1/xo + n2/xi � (n2 − n1)/r (1.76)

and rewrite it, using α1 and l1 (see Figure 1.20a), as

n1(α1/l1) + n2(−α2/l2) � (n2 − n1)/r. (1.77)

In addition we have for the second coordinate

l1 � l2. (1.78)
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FIGURE 1.20 Coordinates for vector and matrix formulation: (a) the coordinates 11 and α1 are
used to form the vectors I1 � (l1, α1), and the coordinates l2 and α2 are used to form the vectors
I2 � (l2, α2); (b) translation, the dependence of d on α1, l1, and l2.

We define the vectors I1 of object coordinates and I2 of image coordinates using
for I1 the coordinates l1 and α1, and for I2 we using l2 and α2,

I1 �
(

l1

α1

)
I2 �

(
l2

α2

)
. (1.79)

The two equations (1.77) and (1.78) may be written in matrix notation as(
l2

α2

)
�
(

1 0
−(1/r)(n2 − n1)/n2 n1/n2

) (
l1

α1

)
. (1.80)

For a proof, we may multiply the matrix with the vector and arrive back at
Eqs. (1.76) to (1.78). In short notation we may also write

I2 � R12I1.

The matrix R12 is called the refraction matrix of a single spherical surface

R12 �
(

1 0
−(1/r)(n2 − n1)/n2 n1/n2

)
. (1.81)

For a plane surface, that is, for an infinite large radius of curvature, the matrix
of Eq. (1.81) reduces to the refraction matrix of a plane surface

R �
(

1 0
0 n1/n2

)
. (1.82)

We get the translation matrix T , that is, the translation from one vertical plane
to the next over the distance d, by taking into account that l2 � l1 + α1d; see
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Figure 1.20b.

T �
(

1 d

0 1

)
. (1.83)

1.8.2 Two Spherical Surfaces at Distance d and Principal
Planes

1.8.2.1 The Matrix

For a thick lens we use the refraction and translation matrices. We apply the
refraction matrix corresponding to the first spherical surface, the translation
matrix corresponding to the thickness of the lens, and the refraction matrix
corresponding to the second spherical surface. We again assume that the light
comes from the left, and realize that the sequence of the matrices is the sequence
of action on I1. In other words, the first surface is represented by the matrix on
the far right.

First operation: Refraction on first surface: Matrix on the right
Second operation: Translation between the surfaces: Matrix in the middle

Third operation: Refraction on the second surface: Matrix on the left.

For the refraction matrix of a thick lens of thickness d and two different spherical
surfaces, we obtain(

1 0
−(1/r2)(n3 − n2)/n3 n2/n3

)(
1 d

0 1

)(
1 0

−(1/r1)(n2 − n1)/n2 n1/n2

)
.

(1.84)

Multiplication of the three matrices will give us one matrix representing the total
action of the thick lens. To do this we define some abbreviations, called refracting
powers P12, P23, and P , where P is related to the focal length of the thick lens.

P12 � −(1/r1)(n2 − n1)/n2 (1.85)

P23 � −(1/r2)(n3 − n2)/n3, and (1.86)

P � −1/f � P23 + dP12P23 + (n2/n3)P12. (1.87)

(From the 2,1 element P we get the focal length of the system.) We obtain the
thick-lens matrix as(

1 + dP12 d(n1/n2)
P d(n1/n2)P23 + (n1/n3)

)
. (1.88)

FileFig 1.23 (G23SYMB3M)

Symbolic calculation of the product of three matrices corresponding to a thick
lens of refractive index n2 and thickness d. The light is incident from a medium
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with refractive index n1 and transmitted into a medium with refractive index n3.
The case of the thin lens is derived by setting d � 0 and n1 � n3; one obtains
the thin-lens matrix.

G23SYMB3M

Thin-Lens Matrix

Special case of the thin-lens matrix. We start with the symbolic calculation of
two surfaces at distance d

P 12 � (−1/r1)(n2 − n1)/n2 P 23 � (−1/r2)(n3 − n2)/n3⎡
⎣ 1 0

P 23
n2

n3

⎤
⎦ ·

[
1 d

0 1

]
·
⎡
⎣ 1 0

P 12
n1

n2

⎤
⎦

⎡
⎢⎣

1 + d · P 12 d · n1

n2
(P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3

(P 23 · d · n3 + n2)

n3
· n1

n2

⎤
⎥⎦

P � P 23 + dP 12P 23 + (n2/n3)P 12.

We go to the thin lens and set d � 0⎡
⎣ 1 0

P 23
n2

n3

⎤
⎦ ·

[
1 0

0 1

]
·
⎡
⎣ 1 0

P 12
n1

n2

⎤
⎦

⎡
⎣ 1 0

(P 23 · n3 + P 12 · n2)

n3

1

n3
· n1

⎤
⎦ .

Since n3 and n1 are set to 1 we have[
1 0

(P 23 + P 12 · n2) 1

]
.

We set

P � (P 23 + P 12 · n2)

and

P � −1

f
; f is the focal length of the lens.

With

P 12 � (−1/r1)(n2 − n1)/n2 P 23 � (−1/r2)(n3 − n2)/n3
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we obtain for 1/f � −((−1/r2)(1 − n2) + (−1/r1)(n2 − 1)) and have finally
for the thin-lens matrix,⎡
⎣ 1 0

−1

f
1

⎤
⎦ .

1.8.2.2 Application to the Thin Lens

We demonstrate more about the meaning and significance of the four matrix
elements when reducing the matrix to the one corresponding to a thin lens. We
use two surfaces close together; that is, we set d � 0 (Figure 1.21). The product
matrix of Eq. (1.88) reduces to(

1 0
P23 + (n2/n1)P12 1

)
. (1.89)

Assuming n1 � n3=1, we have for P23 + (n1/n3)P12 � −(1 − n2)/r2 − (n2 −
1)/r1 � −1/f , where f is the focal length of the thin lens. If we introduce these
expressions into Eq. (1.89) and write the matrix with the coordinate vectors as
in Eq. (1.80), we get(

l2
α2

)
�
(

1 0
−(1/f ) 1

)(
l1
α1

)
. (1.90)

We label the matrix elements M0,0, M0,1, M1,0, and M1,1.
By using the coordinates as done in Eq. (1.77) and (1.78), we want to show

that Eq. (1.90) is equivalent to the thin-lens equation. Multiplication yields

l2 � l1

α2 � −l1/f + α1. (1.91)

From Figure 1.21 we have α2 � −l1/xi , and α1 � −l1/xo, and have

l1/(−xo) + l1/xi � l1/f. (1.92)

FIGURE 1.21 Coordinates for the thin lens.
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We see that if the 0,0 and 1,1 elements are 1 and the 0,1 element is zero, we may
obtain the focal length of the thin lens from the 1,0 element; that is, −1/f �
P23 + (n2/n1)P12.

We have gone through this example of the thin lens to show how the procedure
with the refraction matrix works to get to the object–image relation. We measure
xo and xi from the surface of the thin lens, and apply in the usual way the thin-lens
equation, and take the focal length from the 1,0 element.

1.8.2.3 Thick Lens

For a thick lens, the matrix elements 0,0 and 1,1 of Eq. (1.88) are not 1, and the
0,1 element is not zero. To apply a similar procedure to that discussed for the
thin lens, we introduce a transformation in order to get the 0,0 and 1,1 element
to 1 and the 0,1 element to 0. These three requirements may be obtained by
application of a translation. We first translate by −h the plane of the object and
at the end we go back by a translation of hh. The introduction of these two new
parameters corresponds to the displacements of the points from which we have
to count xo and xi . We apply these two translations to the thick-lens matrix of
Eq. (1.88) and have to calculate(

1 hh

0 1

)(
1 + d P12 d (n1/n2)

P d(n1/n2)P23 + n1/n3

)(
1 −h

0 1

)
. (1.93)

We rewrite the thick-lens matrix, using the following abbreviations,(
1 hh

0 1

)(
M0,0 M0,1

M1,0 M1,1

)(
1 −h

0 1

)
. (1.94)

The multiplication is done in FileFig 1.24, and we get as the result(
M0,0 + hhM1,0 −M0,0h + M0,1 + hh(−M1,0h + M1,1)

M1,0 −M1,0h + M1,1

)
. (1.95)

There are three requirements to be fulfilled, and only two new parameters. We
set M0,0 + hhM1,0 � 1 and −M1,0h + M1,1 � 1, and calculate h and hh. In
order to be successful, the introduction of the calculated values of h and hh from
these two equations must make the 0,1 element zero. It can be shown analytically
that [−M0,0h + M0,1 + hh(−M1,0h + M1,1)] � 0, and numerically as seen in
FileFig 1.24.

We have the same form of the matrix as in Eq. (1.89) and find that the (1,0)
element has not been changed by the transformation. We have P � −1/f �
M1,0. As a result of our transformation we have for the parameters h, hh, and
the focal length

hh � (1 − M0,0)/M1,0 (1.96)

−h � (1 − M11)/M1,0 (1.97)

P � −1/f � M1,0. (1.98)
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FileFig 1.24 (G24SYMBH)

Symbolic calculations of the general transformation for a thick lens. Calculation
of the two-spherical-surface matrix and displacement matrix with parameters
−h and hh. A numerical example is presented for n1 � 1, n2 � 1.5, n3 � 1,
r1 � 10, r2 � −10, and d � 20.

G24SYMBH

Symbolic Calculations of the Product of Three Matrices Corresponding to a General
Thick Lens

1. Symbolic calculation of the matrix for the thick lens⎡
⎣ 1 0

P 23
n2

n3

⎤
⎦ ·

[
1 d

0 1

]
·
⎡
⎣ 1 0

P 12
n1

n2

⎤
⎦

P 12 � (−1/r1)((n2 − n1)/n2)

P 23 � (−1/r2)((n3 − n2)/n3)⎡
⎢⎣

1 + d · P 12 d · n1

n2
(P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3

(P 23 · d · n3 + n2)

n3
· n1

n2

⎤
⎥⎦ .

2. Determination of h and hh. For simpler calculation we define the matrix[
M0,0 M0,1

M1,0 M1,1

]

M0,0 � 1 + d · P 12 M0,1 � d · n1

n2

M1,0 � (P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3
M1,1 � (P 23 · d · n3 + n2)

n3
· n1

n2
and determine h and hh,[

1 hh

0 1

]
·
[

M0,0 M0,1

M1,0 M1,1

]
·
[

1 −h

0 1

]

[
M0,0 + hh · M1,0 − h · M0,0 −h · hh · M1,0 + M0,1 + hh · M1,1

M1,0 −M1,0 · h + M1,1

]
.

3. The results for h, hh, and f are

hh � 1 − M0,0

M1,0
h � −(1 − M1,1)

M1,0
f � −1

M1,0
.
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4. Numerical calculation

P 12 :� −1

r1
· n2 − n1

n2
P 23 :� 1

r2
· n3 − n2

n3
P 12 � −3.333 · 10−11 P 23 � −0.05

M0,0 :� 1 + d · P 12 M0,1 � d · n1

n2
M0,0 � 1 M0,1 � 6.667

M1,0 :� (P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3

M1,1 :� (P 23 · d · n3 + n2)

n3
· n1

n2
M1,0 � −0.05 M1,1 � 0.667.

5. The result for h, hh, and f

hh :� 1 − M0,0

M1,0
h :� −(1 − M1,1)

M1,0
f :� −1

M1,0

hh � −6.667 · 10−9 h � 6.667 f � 20.

6. The input values are globally defined

n1 ≡ 1 n2 ≡ 1.5 n3 ≡ 1 r1 ≡ 1010 r2 ≡ −10 d ≡ 10.

The transformation using the two matrices(
1 hh

0 1

) (
1 −h

0 1

)
(1.99)

has the effect that we have to count xo from the point on the axis determined
by h, and xi from the point on the axis determined by hh. We do not count from
the vertex of the spherical surfaces. If we call the vertex of the first surface V1

and the vertex of the second surface V2, we have a similar sign convention as we
have used before:

1. if h > 0, the point to start calculating xo is to the right of V1; otherwise to the
left; and

2. if hh > 0, the point to start calculating xi is to the right of V2; otherwise to
the left.

The calculation is shown in FileFig 1.25. The planes perpendicular to the axis at h
and hh are called principal planes.As a check one finds, that in the approximation
of the thin lens, the difference hh − h � 0.

We state the general procedure for using the thin-lens equation with the matrix
method: One calculates hh � (1 − M0,0)/M1,0 and −h � (1 − M11)/M1,0. The
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focal length f is obtained from P � −1/f � M1,0. One measures xo from h

and xi from hh and applies the thin-lens equation.

FileFig 1.25 (G25SYMBGTH)

Calculation of the general transformation for a thin lens. Calculation of the
product of the two-spherical-surface matrix, and the displacement matrix. De-
termination of the parameters −h and hh. Specialization for the case of the
thin lens. Numerical example for n1 � 1, n2 � 1.5, n3 � 1.3, r1 � 120, and
r2 � −10.

G25SYMBGTH is only on the CD.

1.8.2.4 Application to the Hemispherical Thick Lens

We consider a thick lens of hemispherical shape (see Figure 1.22). In FileFig
1.26 we present the calculations and for the choice of parameters: n2 � 1.5,
n1 � n3 � 1, r1 � 20, and r2 � ∞.

If we set n2 � n � 1.5, n1 � n3 � 1, r1 � r � d, and r2 � ∞, we have
the result that P12 � −1/3r , P23 � 0, P � −1/2r; that is, f � 2r , h � 0, and
hh � −2r/3.

FIGURE 1.22 Coordinates for a hemispherical thick lens of index n. The principal planes are
indicated as H and H ′.
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FIGURE 1.23 Coordinates for a spherical thick lens.

FileFig 1.26 (G26HEM)

Calculations of the hemispherical thick lens with curved surface to the left. For
the numerical values we take n2 � 1.5, n1 � n3 � 1, r1 � 10 � d, and r2 � ∞.

G26HEM is only on the CD.

Application 1.26. Repeat the calculations for a hemispherical thick lens with
curved surface to the right.

1.8.2.5 Application to Glass Sphere

We consider a thick lens of spherical shape (Figure 1.23). In FileFig 1.27 we
show the calculations for n2 � 1.5 � n, n1 � n3 � 1, r1 � −r2 � 10, and
d � 2r1 � 20. The result is P12 � −1/3r , P23 � −1/2r , P � −2/3r; that is,
f � 3r/2, h � r , and hh � −r .

From Figure 1.23 we see that the principal planes are at the center, as expected
for a symmetric lens. We have to start at the center to measure xo and xi and apply
the thin lens equation with focal length f � 3r/2. For the numerical calculations
we use r1 � 10 and have h � 10, and hh � −10.

FileFig 1.27 (G27SPH)

Calculation of the spherical thick lens. For the numerical values we have chosen
n2 � 1.5, n1 � n3 � 1, r1 � 10, r2 � −10, and d � 20.
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G27SPH is only on the CD.

Application 1.27. Go over the calculations for two different sets of parameters
n2, n1, n3, r1, d, and r2.

1.8.3 System of Lenses

1.8.3.1 System of Two Thin Lenses in Air

We now study the application of matrices to the calculation of the final image
produced by a system of two lenses. First we consider a system of two thin lenses
of focal length f1 and f2 and at distance a between them(

1 0
−1/f2 1

)(
1 a

0 1

)(
1 0

−1/f1 1

)
. (1.100)

Multiplication yields(
(f1 − a)/f1 a

−(f1 − a + f2)/f1f2 −(a − f2)/f2

)
. (1.101)

Since the (0,0) and (1,1) elements are not zero and the (0,1) element is not 1
we have to apply the transformation to principal planes, as we did for the single
thick lens. We have to evaluate (Figure 1.24)(

1 hh

0 1

)(
(f1 − a)/f1 a

−(f1 − a + f2)/f1f2 −(a − f2)/f2

)(
1 −h

0 1

)
. (1.102)

This is done in FileFig 1.28 and the result is

h � −a/Pf2

hh � a/Pf1

P � (−1/f2)(1 − a/f1) − 1/f1.

FIGURE 1.24 Coordinates for two lenses in air with corresponding matrices.
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For the application to calculate the image from a given object point, focal lengths,
and distance between the lenses, we measure xo from h, xi from hh, and get the
focal length from −1/f � P .

FileFig 1.28 (G28SYST2LTI)

Calculation for a system of two thin lenses. For the numerical values we have
chosen f1 � 10, f2 � 10, and a � 100.

G28SYST2LTI

Symbolic Calculation to Determine the Principal Planes for Two Thin Lenses at
Distance a

The matrix (M) as the product of the two lenses and the displacement between
them

⎡
⎣ 1 0

− 1

f 2
1

⎤
⎦ ·

[
1 a

0 1

]
·
⎡
⎣ 1 0

− 1

f 1
1

⎤
⎦

⎡
⎢⎢⎣

(f 1 − a)

f 1
a

−(f 1 − a + f 2)

(f 2 · f 1)

−(a − f 2)

f 2

⎤
⎥⎥⎦ .

Special case a � 0, two thin lenses in contact

⎡
⎣ 1 0

− 1

f 2
1

⎤
⎦ ·

[
1 0

0 1

]
·
⎡
⎣ 1 0

− 1

f 1
1

⎤
⎦

⎡
⎣ 1 0

−(f 1 + f 2)

(f 2 · f 1)
1

⎤
⎦ .

Principal planes with h and hh, and P � (−1/f 2)(1 − a/f 1) − 1/f 1

[
1 hh

0 1

]
·

⎡
⎢⎢⎣

−(−f 1 + a)

f 1
a

P
−(a − f 2)

f 2

⎤
⎥⎥⎦ ·

[
1 −h

0 1

]
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[ (f 1−a+hh·P ·f 1)
f 1

(−h·f 2·f 1+h·f 2·a−h·f 2·hh·P ·f 1+f 1·a·f 2−f 1·hh·a+f 1·hh·f 2)
(f 1·f 2)

P
−P ·h·f 2+a−f 2)

f 2

]
.

If the (0, 0) and (1, 1) elements are one, we have for hh � a/P · f 1 and
h � a/P · f 2, P is always −1/f

P � (−1/f 2)(1 − a/f 1) − 1/f 1

P :�
(−1

f 2

)
·
(

1 − a

f 1

)
− 1

f 1
hh :� a

P · f 1
h :� −a

P · f 2

M :�
[ (f 1−a+hh·P ·f 1)

f 1
(−h·f 2·f 1+h·f 2·a−h·f 2·hh·P ·f 1+f 1·a·f 2−f 1·hh·a+f 1·hh·f 2)

(f 1·f 2)

P
−(P ·h·f 2+a−f 2)

f 2

]

f 1 ≡ 10 f 2 ≡ 10 a ≡ 100

M �
[

1 0

0.8 1

]
f :� −1

P

hh � 12.5 h � −12.5 f � −1.25.

Application 1.28. Consider the case where a � 0, and compare the resulting
focal length f with 1/(1/f1 + 1/f2).

1.8.3.2 System of Two Thick Lenses

We consider two thick lenses and assume that lens 1 has the refractive index
n lens 2 the index nn. We also assume that the radii of curvature of the four
spherical surfaces are labeled r1 to r4 and that the distance between lens 1 and
lens 2 is a. The matrix for the system is obtained from the sequence of three
matrices (Figure 1.25).

We start on the right with the thick-lens matrix of the first lens, then the
translation matrix, and then to the left the thick-lens matrix of the second lens.
The calculation is shown in FileFig 1.29 and one obtains(

1 + d2P34 d2/nn

P2 d2(P45/nn) + 1

)(
1 a

0 1

)(
1 + d1P12 d1/n

P1 d1(P23/n) + 1

)

(1.103)

with

P12 � −(1/r1)(n − 1)/n

P23 � −(1/r2)(1 − n)

P34 � −(1/r3)(nn − 1)/nn
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FIGURE 1.25 Coordinates for two thick lenses in air with corresponding matrices.

P45 � −(1/r4)(1 − nn)

P1 � P23 + P12P23d1 + P12n

P2 � P45 + P34P45d2 + P34nn.

To determine the principal planes of this system, we call M the product of the
three matrices in Eq. (1.103), and have to calculate (see FileFig 1.29)
(

1 hh

0 1

)
M

(
1 −h

0 1

)
. (1.104)

We have to set in the product matrix the (0,0) and (1,1) elements equal to one,
and it follows that the (0,1) element is 0. The result of the transformation is:

h � −(1 − M1,1)/M1,0

hh � (1 − M0,0)/M1,0

1/f � −M1,0.

To calculate the image distance for a given object distance, we have to measure
xo from h, xi from hh, and apply the thin-lens equation with focal length f

calculated from −1/f � M1,0.
For a specific example of a system of two thick lenses we choose a system of

two hemispherical lenses. Each lens is one-half of a sphere, and we assume that
the distance a is zero. The results are the same as we found in Section 1.8.2.4 for
a sphere.

In Figure 1.26, we show the two hemispherical lenses with their refract-
ing powers P12 and P45, each of thickness d and a refractive index n with the
corresponding matrices. The details of the calculation are shown in FileFig 1.29.
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FIGURE 1.26 Two hemispherical lenses at distance a, and the corresponding matrices. The lenses
have refractive index n, thickness d � r , P12 is the refracting power of the first spherical surface,
and P45 of the last.

FileFig 1.29 (G29SYST2LTC)

Calculation for a system of two thick lenses with refractive indices n and nn at
distance a. The choices of the numerical values are n � 1.5, nn � 1.5, d1 � 10,
d2 � 10, a � 100, r1 � 10, r2 � −10, r3 � 10, and r4 � −10. See also
(G27SPH).

G29SYST2LTC

Symbolic Calculation of the Principal Planes for Two Thick Lenses of Refractive
Indices n and nn in Air.

Distance between lenses is a and the thickness of the first is d1, of the second
d2. Radii of curature are r1 to r4. The matrix of the first lens is on the right.

(
1 0

P 45 nn
1

)
·
(

1 d2

0 1

)
·
(

1 0

P 34 1
nn

)
·
(

1 a

0 1

)

·
[(

1 0

P 23 n
1

)
·
(

1 d1

0 1

)
·
(

1 0

P 12 1
n

)]

P 12 � −(1/r1)(n − 1)/n P 23 � −(1/r2)(n − 1)/n

P 34 � −(1/r3)(nn − 1)/nn P 45 � −(1/r4)(1 − nn)

Matrix for the first lens[(
1 0

P 23 n
1

)
·
(

1 d1

0 1

)
·
(

1 0

P 12 1
n

)]
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[
1 + d1 · P 12 d1

n

P 23 + P 12 · P 23 · d1 + P 12 · n
(P 23·d1+n)

n

]

Matrix for the second lens(
1 0

P 45 nn
1

)
·
(

1 d2

0 1

)
·
(

1 0

P 34 1
nn

)

[
1 + d2 · P 34 d2

nn

P 45 + P 34 · P 45 · d2 + P 34 · nn
(P 45·d2+nn)

nn

]

For the determination of h and hh[
1 hh

0 1

]

·

⎡
⎢⎣

1 + d2 · P 34
d2

nn

P 45 + P 34 · P 45 · d2 + P 34 · nn
(P 45 · d2 + nn)

nn

⎤
⎥⎦ ·

[
1 a

0 1

]

·

⎡
⎢⎣

1 + d1 · P 12
d1

n

P 23 + P 12 · P 23 · d1 + P 12 · n
(P 23 · d1 + n)

n

⎤
⎥⎦ ·

[
1 −h

0 1

]

Multiplication results in a very large expression, and we go right away to
numerical calculations.

We have for the powers of refraction

P 12 :� −n − 1

r1 · n
P 23 :� −1 − n

r2

P 34 :� −nn − 1

r3 · nn
P 45 :� −1 − nn

r4
.

The thick lens matrix is then

M :�

⎡
⎢⎣

1 + d2 · P 34
d2

nn

P 45 + P 34 · P 45 · d2 + P 34 · nn
(P 45 · d2 + nn)

nn

⎤
⎥⎦ ·

(
1 a

0 1

)

·

⎡
⎢⎣

1 + d1 · P 12
d1

n

P 23 + P 12 · P 23 · d1 + P 12 · n
(P 23 · d1 + n)

n

⎤
⎥⎦ .

The result is[
0.333 13.333

−0.667 0.333

]
.
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We define M as[
M0,0 M0,1

M1,0 M1,1

]
.

For the determination of h and hh we multiply by the two translation matrices[
1 hh

0 1

]
·
[

M0,0 M0,1

M1,0 M1,1

]
·
[

1 −h

0 1

]

[
M0,0 + hh · M1,0 − h · M0,0 −h · hh · M1,0 + M0,1 + hh · M1,1

M1,0 −M1,0 · h + M1,1

]

hh :� 1 − (M0,0)

M1,0
h :� 1 − (M1,1)

(−M)1,0
f :� − 1

M1,0

hh � −10 h � 10 f � 15.

Input Data

n ≡ 1.5 nn ≡ 1.5 d1 ≡ 10 d2 ≡ 10 a ≡ 0

r1 ≡ 10 r2 ≡ 1010 r3 ≡ 1010 r4 ≡ −10.

Check the form of the final matrix product

MM :�
[

1 hh

0 1

]
·
[

M0,0 M0,1

M1,0 M1,1

]
·
[

1 −h

0 1

]

MM �
[

1 −1.776 · 10−15

−0.667 1

]
.

Applications to Matrix Method

1. An exercise for matrix multiplication. Draw two cartesian coordinate systems
x, y and x ′, y, the second rotated by the angle θ with respect to the first.
Identify the matrix

A �
(

cos θ − sin θ

sin θ cos θ

)

with the rotation of x, y into x ′, y ′.
a. Is this a rotation in the mathematical positive or negative sense?

b. The matrix for rotation in the opposite direction A−1 is obtained by
substituting for θ the negative value −θ .

c. Show that A A−1 is the unit matrix.

d. The transposed matrix AT is obtained from A by interchanging the 2,1
and 1,2 elements. In our case the AT is equal to A−1 and AAT is the unit
matrix.
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e. Show that A A is the same matrix if we substitute into A the angle 2θ .

2. Noncommutation of matrices. In general two matrices A and B may not be
commuted; that is, AB is not equal to BA. We show this in the following
example for a different sequence of the same matrices. We consider two
hemispherical thick lenses where light is coming from the left. The light hits
the first lens L1 at a spherical surface of radius of curvature r , then traverses
the thickness d, and emerges from a plane surface. The second, L2, has the
reverse order; first the plane surface, then thickness d, and then the curved
surface with the same radius of curvature r . The refractive indices of the lenses
are n2 and outside we assume n1 � n3 � 1. Make a sketch. See how the two
lenses are different. The product matrices for lens 1 and lens 2 are different
for the two cases. Compare the position of the principal planes. Compare for
the case where r � ∞.

3. Calculate, using the matrix method, the position of the two principal planes
for a system of two thin lenses, both of focal length f , and a distance f .

4. Consider a convex-concave lens. The first surface has a radius of curvature
r1 � 20 cm, the second, a radius of curvature r2 � −10 cm with thickness
of d � 5 cm.
a. Calculate the principal planes and focal length and find the image of an

object positioned at 5 cm to the left of the first surface.

b. Find the same result by using twice the imaging equation of a single
surface.

5. Thick concentration lens. A thick lens of radius of curvature −r1 � r2 � −5
mm and thickness of 4 mm is used to concentrate incident parallel light on
a detector. Using the matrix method, find the position with respect to the
detector plane.

6. Plane-convex and convex-plane lens. The radii of curvature for the convex
surface is r � 10 cm and for the concave surface r � −10 cm and the
thickness is 4 cm.

a. Compare h, hh, and f for both lenses.

b. An object is placed 100 cm to the left of the first surface. Find the image
point for both lenses.

See also on the CD

PG1. Single convex Surface. (see p. 22)
PG2. Single concave Surface. (see p. 22)
PG3. Rod Sticks in Water, calculation of Image Distance. (see p. 22)
PG4. Plastic Film on Water as Spherical Surface. (see p. 22)
PG5. Air Lens in Plastic. (see p. 35)
PG6. Positive thin Lens on Water. (see p. 35)
PG7. Magnifier. (see p. 47)
PG8. Microscope (Near Point). (see p. 48)
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PG9. Microscope (negative infinity). (see p. 48)
PG10. Kepler Telescope.(see p. 48)
PG11. Galilean Telescope. (see p. 48)
PG12. Laser Beam Expander. (see p. 48)
PG13. An Exercise for matrix Multiplication. (see p. 65)
PG14. Non commutation of Matrices. (see p. 66)
PG15. System with Focal Length f. (see p. 66)
PG16. Convex-concave Lens. (see p. 66)
PG17. Plane-Concave lens.
PG18. Convex-Concave Lens.
PG19. Comparison of Plane-Concave and Convex-Plane Lens. (see p. 66)
PG20. Convex-Concave Lens. (equal xov, xiv)
PG21. Glass Sphere. (see p. 58)
PG22. Short Focal Length Lens.
PG23. Thick Concentration Lens. (see p. 66)
PG24. Surface Corrections of hot Laser Rod.
PG25. Laser burning of Image
PG26. Corner Mirror. (p. 71)
PG27. Reflectivity and Eigenvalues. (see p. 76)

1.9 PLANE AND SPHERICAL MIRRORS

1.9.1 Plane Mirrors and Virtual Images

A two-dimensional object appears in a flat mirror as a virtual and left–right
inverted image. First we look at one reflected ray (Figure 1.27a). We observe the
law of reflection, which says the angle of incidence has the same absolute value
as the angle of reflection.

In Figure 1.27b we show the reflection of a cone of light, emerging from a
point source. The object point appears to us as it is on the “other side” of the
mirror. Now we look at a three-dimensional object, represented by the arrows of
a right-handed coordinate system. The virtual image produced by the flat mirror
appears as a left-handed coordinate system. This may be seen by comparing the
image of our left hand as it appears in a mirror, with our right hand placed before
the mirror. Similarly one finds “Ambulance” written on the front of an ambulance
truck written in letters from left to right. A driver in a car before the truck can
read it “normally” in the rear view mirror.

1.9.2 Spherical Mirrors and Mirror Equation

Spherical concave mirrors of diameters of a few meters are used in astronomical
telescopes, replacing the first lens, as discussed in Section 1.7 on optical instru-
ments. A real inverted image is produced by a real erect object. Spherical convex
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FIGURE 1.27 (a) Coordinates of the law of reflection; (b) virtual image of a real point source
produced by a plane mirror. The image is observed by using a lens, which may be the eye lens.

mirrors with much smaller diameters are used for cosmetic applications, where
an erect virtual image is formed from an erect object. Our eye uses a positive
lens for the image formation on the retina, but “sees” the virtual image erect, as
discussed in Section 1.7.

We derive the image-forming equation for spherical mirrors by looking at the
image-forming equation of a single spherical surface

n1/(−xo) + n2/xi � (n2 − n1)/r. (1.105)

By formally setting n1 � −n2 we get the imaging equation for a spherical mirror

n1/(−xo) + (−n1)/xi � (−n1 − n1)/r (1.106)

n1/(−xo) + (−n1)/xi � (−2n1)/r, (1.107)

where r is the radius of curvature of the spherical surface.
Division by −n1 results in the spherical mirror equation

1

xo

+ 1

xi

� 2

r
. (1.108)
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FIGURE 1.28 Coordinates for the production of a real image from a real object.

FIGURE 1.29 Magnification with respect to real object and real image.

1.9.3 Sign Convention

The light is assumed to be incident from the left. The object points xo are to the
left of the mirror, and x0 is always negative. No positive values are considered.
If xi is negative we have a real image. If xi is positive we have a virtual image
(Figure 1.28).

For a convex spherical mirror, r is positive. For a concave spherical mirror, r

is negative.

1.9.4 Magnification

For the magnification (Figure 1.29, we have

m � yi/yo � −xi/xo. (1.109)

1.9.5 Graphical Method and Graphs of xi Depending on xo

1.9.5.1 Concave Spherical Mirror

Geometrical Construction

1. Choose yo and draw the PF-ray to the mirror and then reflected back through
the focus F , given by r/2.
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FIGURE 1.30 Geometrical construction of images for concave spherical mirror. The object is:
(a) to the left of the focal point; (b) to the right of the focal point.

2. The ray incident through the top of the arrow and then going to the center of
curvature C is reflected back onto itself (Figure 1.30).
Both may be extended to the other side of the mirror when xo is between the
focus and mirror.

Graph of xi as Function of xo

A concave spherical mirror has a negative radius of curvature. In FileFig 1.30
we calculate the image points for given object points and radius of curvature.
The light comes from the left. For xif � −∞, the focus xof � r/2, and since
r is negative for a convex mirror, it is to the left of the mirror. This is the only
focus we have for a concave mirror. The focus is also a singularity. We obtain
real images for xo to the left and virtual images for xo to the right.

FileFig 1.30 (G30MIRCV)

Concave spherical mirror. Calculation of image positions from given object
positions. Graph for image positions depending on object positions for radius
of curvature r � −50, that is, r/2 � −25, and xo from −100 to −0.1.
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G30MIRCV

Concave Mirror

Raduis of curvature is negative; xo is on left, and is negative. To get around the
singularity at −xo � f one chooses the increments such that the value for the
singularity does not appear.

r :� −50

xo :� −60

xi :� 1( 1
2

)− 1
xo

xi � −42.857

m :� −xi

xo
m � −0.714.

Graph

xxo :� −100, −99.1 . . . − .1

xxi(xxo) :� 1(
1
r
2

)
− 1

xxo

.

1.9.5.2 Convex Spherical Mirror

Geometrical Construction

1. Choose yo and draw the PF-ray to the mirror and trace it forward to the focus
F ′.

2. The ray from the top of the arrow to the center of curvature C is reflected
back onto itself (Figure 1.31).

Graph of xi as Function of xo

A convex spherical mirror has a positive radius of curvature. We show in FileFig
1.31 a graph of the image points as a function of the object points for xo from
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FIGURE 1.31 Geometrical construction of image for convex spherical mirror. The image yi of
object yo is for any object distance to the right of the mirror (always virtual).

−100 to −.1. When the light comes from the left, there is no singularity at
r/2 � xo, and we obtain virtual images for all positions of xo.

FileFig 1.31 (G31MIRCX)

Convex spherical mirror. Calculation of image position from given object posi-
tion. Graph for image position depending on the object position coordinate for
the radius of curvature r � 50, that is, r/2 � 25, and xo from −100 to −0.1.

G31MIRCX is only on the CD.

A summary of the image formation and the dependence on the various
parameters is given in Table 1.5.

Applications to Spherical Mirrors

1. A corner mirror is made of two flat mirrors, joined together at an angle of
90 degrees. Show that the light incident on one mirror is parallel to the light
leaving the other mirror for any angle of incidence.

2. Do the geometrical construction of:

TABLE 1.5

Concave Concave Concave Convex

Object xo Left of f at f Right of f Any

Image xi Negative - Infinity Positive Positive

Magnification Negative Positive Positive

Real Virtual Virtual

Inverted Upright Upright
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a. convex spherical mirrors for (i) object at −∞; (ii) object to the left of
focus; and (iii) object to the right of focus.

b. concave spherical mirror with same focal length, for the three positions
of xo about the same values as in a.

1.10 MATRICES FOR A REFLECTING CAVITY AND
THE EIGENVALUE PROBLEM

The first Ne–He laser used a Fabry–Perot cavity with two flat mirrors at a sepa-
ration of 1 m. It was very difficult to align this cavity, and the first alignment was
done by accident. One of the researchers bumped into the table, causing the flat
mirrors to vibrate, and laser action was observed. Later, spherical mirrors were
used to construct easy to align cavities.

For our discussion of laser cavities, consisting of two reflecting spherical
surfaces, we first look at a periodic lens line, equivalently representing the “round
trips” of the light in a reflecting cavity. One section of the lens line is shown in
Figure 1.32, where the forward and backward traveling light are shown sepa-
rately. The next section has the same configuration and the light enters and leaves
each section in the same way. The first and third lenses are shared by two sec-
tions. Therefore we have drawn them as half-lenses and assigned to them twice
the focal length. The sequence of matrices for the lens line is
(

1 0
−1/2f1 1

)(
1 d

0 1

)(
1 0

−1/f2 1

)(
1 d

0 1

)(
1 0

−1/2f1 1

)
.

(1.110)

FIGURE 1.32 Unit cell of a lens system of periodic appearance. The light enters each cell in the
same way. Such a periodic arrangement may be used to represent the reflection in a mirror cavity.
The first and third lenses are only half-lenses and the focal lengths are twice as large. Rays of a
possible light path are indicated.
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We substitute for the focal length of the lenses one-half of the value of the radius
of curvature of the corresponding mirrors. We use f � r/2 and obtain for the
mirror cavity(

1 0
−1/r1 1

)(
1 d

0 1

)(
1 0

−2/r2 1

)(
1 d

0 1

)(
1 0

−1/r1 1

)
.

(1.111)

The first three matrices describe the travel of the light from the first to the second
mirror. The last two matrices describe the travel from the second mirror back to
the first.

We introduce the resonator parameters g1 and g2,

g1 � 1 − d/r1 and g2 � 1 − d/r2 (1.112)

and calculate the product of the five matrices using FileFig 1.32.

FileFig 1.32 (G32RESGG)

Calculation of the product of the five matrices of the lens line corresponding to
a cavity with two reflecting mirrors. Calculation of the eigenvalues of the cavity
using g1, g2, and d. Graphs of the stability relation.

G32RESGG

Calculation of Resonator Using g1, g2, and d

(
1 0

g1−1
d

1

)
·
(

1 d

0 1

)
·
[

1 0
2·(g2−1)

d
1

]
·
(

1 d

0 1

)
·
(

1 0
g1−1

d
1

)

[ −1 + 2 · g1 · g2 2 · d · g2
2 · g1 · (−1+g1·g2)

d
−1 + 2 · g1 · g2

]

eigenvals

[[ −1 + 2 · g1 · g2 2 · d · g2
2 · g1 · (−1+g1·g2)

d
−1 + 2 · g1 · g2

]]
[
(1, 1, 1) � −1 + 2 · g1 · g2 + 2 ·

√
−g1 · g2 + g12 · g22

(1, 1, 2) � −1 + 2 · g1 · g2 − 2 ·
√

−g1 · g2 + g12 · g22
]

r1 :� 1 r2 :� 1 d :� 2

g1 :� 1 − d

r1
g2 :� 1 − d

r2
λ1 :� −1 + 2 · g1 · g2 + 2

√
−g1 · g2 + g12 · g22
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λ2 :� −1 + 2 · g1 · g2 − 2
√

−g1 · g2 + g12 · g22

λ1 � 1 λ2 � 1.

We set the product g1g2 � x and plot it over the range from −1 to 2.

x :� −1, −9 . . . 2

y(x) :� |(2 · x − 1) +
√

(2 · x − 1)2 − 1| − 1

yy(x) :� |(2 · x − 1) −
√

(2 · x − 1)2 − 1| − 1

We obtain from FileFig 1.32 the matrix product of the matrices of Eq. (1.111),( −1 + 2g1g2 2dg2

2g1(−1 + 2g1g2)/d −1 + 2g1g2

)
. (1.113)

The round trip in the cavity must have the symmetry of the path of the rays at the
beginning and end of a unit cell of the lens line. This corresponds to a mode of
oscillation of the cavity. The eigenvalues of this oscillation are obtained from the
eigenvalues of the product matrix and the calculation is shown in FileFig 1.32.
First the product of the five matrices is calculated using the symbolic method.
Then the eigenvalues are obtained

λ1 � (2g1g2 − 1) + [(2g1g2 − 1)2 − 1]1/2 (1.114)

λ2 � (2g1g2 − 1) − [(2g1g2 − 1)2 − 1]1/2. (1.115)

The coordinates, used for setting up the matrices, may now be transformed into
a new coordinate system. In this coordinate system the matrix describing the
round trip in the cavity is a diagonal matrix. When the diagonal matrix is a unit
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matrix, the light may pass through many round trips and no light will escape.
One calls such a resonator stable, and the condition for stability is where the
magnitudes of the eigenvalues are equal to 1.

|λ1| � |λ2| � 1. (1.116)

We may write for Eq. (1.114),

λ1 � (2g1g2 − 1) + [(2g1g2 − 1)2 − 1]1/2 (1.117)

or

λ1 � (2g1g2 − 1) + i[1 − (2g1g2 − 1)2]1/2. (1.118)

The real and imaginary parts of Eq. (1.118) must be on a circle of radius 1; that is,

|(2g1g2 − 1)| ≤ 1, or 0 ≤ g1g2 ≤ 1. (1.119)

in agreement with the imaginary part and plotted in FileFig 1.32.
In FileFig 1.33 we show a repetition of the calculations, starting from the

five matrices of the cavity in Eq. (1.111), but now in terms of r1, r2, and d. In
Figure 1.33, we show schematics of the Fabry–Perot, a focal, a confocal and a
spherical cavity for values of the parameters r1, r2, and d, and also of g1 and g2.
For both representations one finds that the absolute values of the eigenvalues λ1

and λ2 are always 1.

FileFig 1.33 (G33RESCY)

Calculation of the eigenvalues of the cavity with two reflecting mirrors using r1,
r2, and d. Numerical calculation with r1 � 1, r2 � 1, and d � 2.

G33RESCY is only on the CD.

Application 1.33. Use the values of the parameters r1, r2, and d for the Fabry–
Perot, focal, confocal, and spherical cavities, and find that all are stable cavities.
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FIGURE 1.33 Schematic of light path for four cavities with different values of radii of curvature
and length of cavity. The corresponding values of g1 and g2 are indicated: (a) Fabry–Perot; (b) focal;
(c) confocal; (d) concentric.






