
Chapter 2 

A Quick Tour of Logic Synthesis 
with the Help of a Simple 
Example 

Our purpose in this chapter is to  give a quick overview of logic synthesis from the 
point of view of the user. We shall see what problems are faced (and solved) by a 
synthesis program and what general strategy may be applied to their solution. We 
shall use a very simple circuit as an example. No special effort has been made to  
make the example realistic. The sole purpose was to  come up with something simple 
enough to be analyzed in detail with limited effort, and yet demonstrating a sufficient 
number of interesting problems. 

In the rest of this chapter, we shall not concern ourselves with the solution of 
the problems, but rather with their statement. Thus we shall identify some of the 
particular degrees of freedom that present themselves to  a designer in a practical 
problem. We shall then show how the designer's ingenuity exploits these degrees of 
freedom to create an efficient design. The sequel of this book is then devoted to 
showing how, and to what extent, equivalent ingenuity can be embodied in CAD 
tools that solve the same design problems automatically. 

2.1 A Simple Case Conversion Circuit 

We consider a simple circuit that will serve us as an example to  illustrate the major 
steps of the synthesis process. The interface of the circuit is described in Figure 2.1. 

A stream of alphabetic ASCII characters (a-z, A-Z) is fed to the circuit, one 
character for each clock cycle. The circuit performs case conversion on the incoming 
characters and outputs the corresponding sequence. One character is output for each 
clock cycle. No specification is given for the latency of the circuit. This means we 
can choose how many clock cycles will be required to process one character, as long 
as the throughput is one character per clock cycle. 

The type of case conversion to  be applied is specified by escape sequences1, which 

'An escape sequence is a sequence of two or more characters, the first of which is the escape 
character. Escape sequences are used to augment a character set and are typically used to carry 



48 Chapter 2. A Quick Tour of Logic Svnthesis 

+i LUNC 

Figure 2.1: Interface of the example circuit. 

are interspersed with the text characters. Our circuit recognizes four escape sequences 
( -  [ is our representation of the escape character): 

A CL Lower case; 

A CU Upper case; 

A [N No conversion; 

A CC Change Case. 

By joining the four characters we get the name of our circuit: LUNC. 
When the circuit is reset, it goes into a state where it passes the input characters 

unchanged. It  remains in that state until it receives an escape sequence other than 
-[N . 

The behavior of the circuit for escape sequences other than the four listed above 
and for non-alphabetic characters is don't care, represented by symbol ? (that is, 
the behavior is unspecified). In addition, the output of the circuit when an escape 
sequence is input is also ? (that is, left unspecified). 

We are allowed to  use the freedom resulting from the don't care specification to  
simplify our design as much as we can. In a more realistic situation specifications 
may be more complete. However, it is important to  make use of such don't care 
information, whenever it is available. 

As an example of possible behavior of the circuit, consider the following two 
streams of characters. The one on the top is the input stream and the other is the 
output stream. In this example we are assuming that the latency of the circuit is two 
clock cycles. 

The question marks indicate don't care outputs. They occur a t  the beginning, when 
the first character has not been processed yet, and in response to  the escape sequence. 
After the escape sequence has been processed, the circuit converts all incoming char- 
acters to  upper case. 

commands. Refer to the ASCII table of Figure A. l  in the Appendix for the codes of the characters. 



2.2. First Refinement 49 

-- transform . 

t t t t  

ck I 1 reset 

Figure 2.2: Block diagram for LUNC. 

2.2 First Refinement 

Our first step in the design of the LUNC circuit is to  separate the data  processing 
from the control. The result of this first step is shown in the block diagram of 
Figure 2.2. In this block diagram we can distinguish two main blocks: A command 
interpreter block (CMDINT), which parses the escape sequences and decides the state 
of the circuit accordingly, and a transformation block (TRANSFORM), which actually 
performs the case conversion. There are also an input and an output register, which 
determine the latency of the circuit. (We assume that there is no register inside the 
TRANSFORM block.) 

The type of decomposition we have applied to  our problem is fairly typical in the 
design of large digital systems. It is customary to  divide the control functions from 
the data processing functions. It  is not uncommon that different design methods are 
then applied to the separate parts. For instance, in a microprocessor, the design of 
the data  path (ALUs and register files) is approached differently from the design of 
the instruction decoder or the cache controllers. In addition, the design of a complex 
circuit is carried out by a team. The block diagram is then important in defining the 
interfaces between the blocks designed by different people. 

Defining the top-level block diagram of a circuit goes under the name of high- 
level or architectural design. In this course, we shall assume that this phase of the 
design has been carried out already-either manually or automatically-and we shall 
concentrate on the succeeding phases. It  should be clear, however, that architectural 
design has a large impact on the outcome of the entire design process. 

Before returning to  our example, we make another general remark. In this case 
we have used a graphical representation of our block diagram. We could have used 
a textual representation as well. We are going to  see examples of both in the sequel. 
It is typical of a real-life design system to support both ways of representation, for 
each has its own advantages. 

Consider for instance the two major blocks of Figure 2.2. The command inter- 
preter communicates with the transformation block by means of four signals (Lcmd, 



50 Chapter 2. A Quick Tour of Logic Synthesis 

Ucmd, Ncmd, Ccmd). At any time, only one of these signals is active. The active 
signal indicates the transformation to be applied to the character currently in the 
input register. 

This kind of information is not easily conveyed by a drawing, but can be easily 
expressed by text. The previous paragraph is an example of informal textual de- 
scription; formal languages can be used instead. These formal languages are similar 
to programming languages and are called Hardware Description Languages (HDLs). 

Hardware description languages are used to describe both the structure of a cir- 
cuit (what parts constitute it and how they are connected) and its behavior (how it 
reacts to  given inputs). The  syntax of HDLs is often similar to  that of programming 
languages. For instance, V H D L , ~  one of the most widely used HDLs, is derived from 
Ada. The semantics of the HDLs, however, differ from those of ordinary programming 
languages in various respects. 

In this book, we shall use a fictitious language, which borrows its syntax from the 
'C' language. We shall informally define its semantics as we examine the examples 
of its use. Our treatment of HDLs in this book is essentially restricted to  these 
brief introductory notes. It is important to  realize, though, their relevance and their 
relationship to  automatic logic synthesis. We shall t ry to  emphasize that relationship 
as we discuss the design of the transform and command interpreter blocks. 

2.3 The Transform Block 

In the architectural design phase we decided that the TRANSFORM block would be a 
combinational circuit that,  given an alphabetic character, outputs either the character 
itself or the character obtained by changing its case. The choice is determined by the 
four control inputs coming from the command interpreter and by the case of the input 
character. 

We can describe the desired function in the following piece of code, that is largely 
self-explanatory. 

P r o c e d u r e  T R A N S F O R M ( R ~ ~ ,  Lcmd, Ucmd, Ncmd, Ccmd) { 
if (Lcmd) 

{ mux = ~ o L o w ~ R ( R i n ) )  
e l s e  if (Ucmd) 

{mux = T o U P P E R ( R ~ ~ ) }  
e l se  if (Ncmd) 

{mux = Rin ) 
e lse  if (Ccmd) 

{mux = C H A N G E C A S E ( R ~ ~ )  } 
re turn(mux)  

1 

Rin, Lcmd, Ucmd, Ncmd, and Ccmd are the inputs and mux is the output. All 
of these are either 1 or 0 on each clock cycle. In a complete description, we would 

'vHDL stands for VHSIC Hardware Description Language; VHSIC stands for Very High Speed 
Integrated Circuits and is the name of a research initiative of the US Department of Defense. 



2.3. The Transform Block 5 1 

Rin 

Ncmd ---------] 
Ccmd 

Figure 2.3: Block diagram for the transform block. 

also specify how many bits each terminal has. The horizontal data  path is marked as 
an &bit line, which is natural, since there are 2' = 256 ASCII characters. The other 
lines are symbolic in principle, although in this case, as discussed below, all represent 
just one data  bit. 

Two remarks are in order here. First, a relatively high-level description like the 
one afforded by our simple HDL is easy to read and write. It is easier to  interpret 
than a gate-level schematic, because it is more concise, it uses evocative names like 
TOLOWER, and it describes the behavior rather than the structure. For the same 
reasons, such a description is easier to  write. In order to  write it ,  we do not have to  
make up our mind on how precisely we are going to  implement our circuit. 

The second consideration should be suggested by the name of the circuit output. 
Calling the output MUX suggests that we can translate the if-then-else statement 
into a multiplexer. The translation is portrayed in Figure 2.3. In general, a synthesis 
program will have a scheme to  translate the constructs of its input language into 
structure (i.e., into the interconnection of registers, multiplexers, adders, gates, and 
similar building blocks). 

The translation scheme is not in general very sophisticated. We shall see that 
in our simple example, a straightforward translation of the initial description into a 
circuit yields an implementation that is far from optimal. We do not worry too much, 
though, because we rely on optimization techniques to improve our 'draft' circuit. 
This approach is followed by commercial and academic synthesis programs alike. 
One of its advantages is to make the final result independent-to a large extent, if 
not completely-from the initial description. The user of such a system can therefore 
save time and concentrate on clarity. 

The approach we have just described relies heavily on the effectiveness and ef- 
ficiency of the optimization techniques. We shall indeed concentrate on these tech- 
niques for most of this course. Returning to our LUNG circuit, we have described the 
TRANSFORM block in terms of simpler functions (TOLOWER, TOUPPER, CHANGECASE) 
We have to  specify them, in order to  complete our design. Here we shall only examine 



5 2 Chapter 2. A Quick Tour of Logic Synthesis 

Procedure C H A N G E C A S E ( R ~ ~ )  { 
if (1sUC(Rin)) 

{ res = Rin + 32 ) 
else 

{res = Rin  - 32 ) 
return (res) 

1 

Figure 2.4: Procedure CHANGECASE. 

Rin 

Figure 2.5: Block diagram for the CC block. 

the most complex of them (CHANGECASE); the others are similar. 

2.3.1 The CC Block 

From Figure A.1 we see that,  for each letter, the ASCII code for the lowercase char- 
acter can be obtained from that of the uppercase character by adding 32 (base 10). 
This suggests the following definition for the CHANGECASE function. In this piece 
of code, ISUC is a function that says whether the input character is uppercase or 
lowercase. Since the output of the circuit is don't care when the input character is 
non-alphabetic, we can define ISUC by noting that bit 5 (the third most significant 
bit) is 0 for all uppercase letters and is 1 for all lowercase letters. Therefore, we can 
just define ISUC as ~ i n [ 5 ] ~ .  If we notice that both addition and subtraction can be 
performed by a single adderlsubtracter, then we can come up with the block diagram 
of Figure 2.5. 

The TOLOWER and TOUPPER functions can also be implemented with an adder 
and a subtracter, respectively. Even though we have not worked out all the details, we 
can now get an idea of the cost-in terms of gates-of our 'draft' implementation of 
the TRANSFORM block. We have a total of three &bit adderlsubtracters and an &bit, 
four-way multiplexer. It  is reasonable to assume that about 200 gates are necessary 
for this implementation. 

3 ~ u e s t i o n :  How could we hide the details of the ASCII code still further? (What if we used 
EBCDIC instead of ASCII?) 



2.3. The Transform Block 53 

Ccmd 

Lcmd - 
Figure 2.6: Circuit schematic for the optimized transform block. 

2.3.2 An Optimized Transform Block 

The discussion of the ISUC function may have already suggested to  the attentive 
reader an alternative implementation of the TRANSFORM block. Let us consider the 
codes for 'a' and 'A.' 

It  is sufficient to  flip bit 5 t o  go from lowercase t o  uppercase or vice versa. The same 
is t rue of all letters in ASCII. A minute's thought will show that the circuit of Fig- 
ure 2.6-based on this idea-is indeed a correct implementation of the TRANSFORM 

block. The circuit actually produces only bit 5 of the results. All other bits of the 
result are identical to  the corresponding input bits and therefore are not represen- 
ted. Suppose Ccmd = 1. This implies Ncmd = Lcmd = 0. Then, the output is the 
complement of bit 5 of the input. Similarly, we can analyze the other three cases. 
Notice that Ucmd does not explicitly appear as an input to  the circuit of Figure 2.6. 
Therefore, when Ucmd = 1, the output is 0. 

This new implementation consists of only three gates. This is a lot less than the 
two hundred gates we estimated for our first 'draft.' If the optimization phase cannot 
pick up this slack, then the translation/optimization scheme is in trouble. Fortunately, 
in this case and in many others, optimization can easily get rid of the extra gates. 

On the other hand, most people will agree that the purpose of the circuit of 
Figure 2.6, taken out of context, is not obvious. Our high-level description is more 
readable and eventually leads to  an equally efficient implementation. 

In drawing conclusions from our simple example, it is important t o  put things in 
perspective. There are cases where careful manual design is superior to the results 
of the best synthesis programs. The opposite also occurs, though less frequently. 
The importance of time-to-market should be always kept in mind when comparing 
manual design t o  automatic synthesis. One should also keep in mind that the problem 
of readability of a circuit description increases considerably with its size. If all design 
problems where of the complexity of our LUNC circuit, logic synthesis would have 
probably never evolved. For circuits with millions of transistors, on the other hand, 
the advantage afforded by logic synthesis may be decisive. 



54 Chapter 2. A Quick Tour of Logic Synthesis 

Lcmd 

LUNC? Ucmd 

Ncmd 
Ccmd 

Figure 2.7: Block diagram for the command interpreter 

2.4 The Command Interpreter 

Let us consider now the command interpreter. A simple block diagram for it is shown 
in Figure 2.7. As in the case of the Transform block we are initially interested in 
clarity and simplicity more than in efficiency. 

The circuit of Figure 2.7 works by keeping a copy of the previous input character 
in a register. If the previous character is 'escape,' then the current character is used 
to  determine the new state. The current input character is always decoded, but 
unless the previous character is 'escape,' the output of the decoder (block LUNC?) is 
ignored. 

The function of the decoder is described by the code of Figure 2.8. 
This code can be translated, for instance, in a truth table, from which a circuit 

can be derived. Notice that the output of the block is don't care for any unexpected 
character. This information is extremely important for the optimization of the circuit. 

2.4.1 Checking for Equality 

We can translate the test I sESC into a test for equality. 

is~SC(Reg) = issame (Reg, ESC) ; 

Checking two values for equality occurs frequently in digital designs. In Figure 2.9 
we show the typical template used in the translation phase. Similar templates are 
used for tests like x > y. 

Notice that this circuit simplifies considerably when one of the two operands is 
constant. 

2.4.2 Optimizing the Command Interpreter 

Also for the command interpreter we now see how things can be optimized manually. 
This will give a target for the optimization phase. Let us consider the codes of the 
four letters that may appear in an escape sequence. 



2.4. The Command Interpreter 55 

Procedure Lu~c?(Rin)  { 
if (Rin = L) { 

Lcmd = 1 
Ucmd = Ncmd = Ccmd = I 
break 

1 
else if (Rin = U) { 

Ucmd = 1 
Lcmd = Ncmd = Ccmd = 1 
break 

I 
else if (Rin = N) { 

Ncmd = 1 
Lcmd = Ucmd = Ccmd = 1 
break 

1 
else if (Rin = C) { 

Ccmd = 1 
Lcmd = Ucmd = Ncmd = 1 
break 

1 
else 

Lcmd = Ucmd = Ncmd = Ccmd = Don't Care 
return (Lcmd, Ucmd, Ncmd, Ccmd) 

1 

Figure 2.8: Procedure LUNC? 



5 6 Chapter 2. A Quick Tour of Logic Synthesis 

Figure 2.9: Circuit schematic for an equality checker. 

Notice that the two least significant bits are sufficient to  distinguish them. Further- 
more, from the discussion of the TRANSFORM block, we know that we do not need 
to produce Ucmd. Therefore, we can implement the command decoder as shown in 
Figure 2.10. 

Notice also that we can considerably reduce the number of flip-flops by a simple 
device. Instead of storing each input to  test whether it is an 'escape' a t  the next 
clock cycle, we can test each input character as soon as  we see it, and then store (in 
a single flip-flop) the result of the test. Such a transformation is called a retiming 

Figure 2.10: Circuit schematic for the optimized command interpreter. 



2.5. Technology Mapping 57 

of the circuit. It can be formalized and automated as it is in SIS. For lack of time, 
however, we shall not study it in this course and we only mention it here. 

We can further reduce the number of flip-flops by noting that our command in- 
terpreter has only three possible states. Two flip-flops are sufficient to  encode three 
states. In general, eliminating one flip-flop this way may make the combinational logic 
more complicated. One of the a.dvantages of an automatic synthesis system is to make 
it possible for a designer to  explore several possible solutions in a short time. In our 
case, though, a simple retiming transformation is sufficient t o  reduce the number of 
flip-flops without changing the combinational logic. It  is sufficient to  latch the inputs 
to the circuit of Figure 2.10, instead of the outputs. This transformation will make 
the circuit a little slower, but will also reduce power consumption. 

2.5 Technology Mapping 

Let us assume that our objective is to  produce a netlist that may be used to fabricate 
a standard-cell chip. Suppose we have chosen a CMOS library. We now have to 
address the concerns arising from these choices. 

Gates in CMOS (and in other technologies) are negative. This means that the 
basic gate is the inverter, rather than the non-inverting buffer. Consequently, NANDs 
and NORs are cheaper and faster than ANDs and ORs. Practical gates have limited 
driving capability, so that a gate typically drives four other gates or less. We say 
that the maximum fanout is four. This number may be further reduced if speed is a 
primary concern. 

Likewise, a restriction is usually applied to the number of inputs to  a gate. Even 
though it is possible in theory to build NAND and NOR gates with very large number 
of inputs, performance rapidly degrades as the number of inputs increases. Therefore, 
cell libraries do not usually provide gates with more than four or five inputs. Not 
all functions with those many inputs will be available either. A five-input NAND 
gate may be available, but a five-input EXOR may not. One must then make sure 
that only gates from the library are used in the circuit. All these concerns must be 
addressed by a synthesis program, as they are addressed by a human designer. This 
task is called technology mapping. 

In the translation/optimization scheme we have examined so far,  we have assumed 
that the result of the optimization phase is a technology-independent circuit. Our final 
scheme is therefore composed of three phases: Translation, optimization and techno- 
logy mapping (or techmapping for short). The division is to  some extent arbitrary. 
By separating optimization from technology mapping we simplify the two tasks and 
we can develop very powerful techniques for both. On the other hand, in the op- 
timization phase we may have a less than perfect knowledge of the consequences of 
a given choice. In general the penalty for ignoring technology-specific information 
during optimization is higher when the target of optimization is high performance or 
low power. It is lower, but non-null, when area is being optimized. 

As a consequence, the boundaries between the technology-independent phase and 
the technology-dependent phase tend to be blurred in real systems. The division is, 
however, useful from the didactic standpoint and we shall adopt it. 

Suppose our cell library consists of inverters, two-input NAND and NOR gates, 



5 8 Chapter 2. A Quick Tour of Logic Synthesis 

Figure 2.11: Circuit schematic for the technology-mapped decoder of the command 
interpreter. 

and D-type flip flops. Then Figure 2.11 describes a possible mapping for the decoder 
of the command interpreter. 

The choice we made (standard-cell chip in CMOS) is not the only one possible. On 
the one hand, we may be interested in full-custom design, and therefore in mapping a t  
the transistor level, rather than a t  the gate level. On the other hand, we may want to  
implement our circuit as  a Field Programmable Gate Array (FPGA). In both cases 
the mapping problem is different from that encountered with a fixed cell library. 

2.6 Problems 

1. Describe an 8-bit adder in BLIF format. 

Run SIS on your adder. Read in the circuit (with SIS command r ead -b l i f )  and 
print out the statistics for it (with command p r i n t s t a t s ) .  

Include in your homework the description of the adder and the result of the 
p r i n t s t a t s  command. 

Save your adder, because you will use it in other assignments as  a building 
block. You may want to  spend some time to  familiarize with SIS. For instance, 
you may want t o  t ry the s i m u l a t e  command t o  verify that your description 
works as intended. Take a look a t  the man page. Obviously, a t  this stage, not 
everything will be clear: Don't worry. Notice that there is a handy UNIX a l i a s  
command that lists all standard abbreviations. You may use a l i a s  to  create 
your own abbreviations. 
Solution. Since the description of the standard "ripple-carry" adder is already 
in the blif documentation-albeit for four-bit numbers-we describe here an- 
other type of adder, which is faster. It is known as a carry-bypass adder. We 
shall have occasion to  discuss it later in the course. Notice that it is composed 
of four blocks, each computing two output bits. 

#------------------------- cbpadd8 blif ........................ 
# Adds two 8-bit inputs and a carry-in bit. Index 0 signals the 
# least significant bit. The result is a 9-bit number. No two's 
# complement overflow output is produced. 
# The adder is composed of 4 modules, each computing the sum of 
# two bits and based on the carry-bypass scheme. 



2.6. Problems 5 9 

.model cbpadd8 

. i n p u t s  c i n  a0 a 1  a2 a3 a4 a5 a6 a7 \ 
bO b1 b2 b3 b4 b5 b6 b7 
.outputs  SO s l  s 2  s 3  s 4  s 5  s 6  s7  s 8  
.subckt cbp2 cO=cin aO=aO bO=bO a l = a l  b l = b l  s O = s O  s l = s l  c2=c2 
.subckt cbp2 cO=c2 aO=a2 bO=b2 a l=a3  bI=b3 sO=s2 s1=s3 c2=c4 
.subckt cbp2 cO=c4 aO=a4 bO=b4 al=a5 b1=b5 sO=s4 s l = s 5  c2=c6 
.subckt cbp2 cO=c6 aO=a6 bO=b6 al=a7 b1=b7 s0=s6 s I=s7  c2=s8 
. end 

# Two-bit c a r r y  bypass adder .  

.names g2 g6 g7 
1- I 
-1 1 
.names g3 g7 g8 
10 I 
01 1 
.names g3 g7 g9 
11 1 
.names g l  g3 glO 
11 1 
.names g4 g9 g l l  
1- 1 
-1 1 
.names glO g l l  cO mux 
01- 1 
1-1 I 
.names g5 SO 
I 1  
.names g8 s1 
1 1  
.names mux c2 



6 0 Chapter 2. A Quick Tour of Lodc  Svnthesis 

Figure 2.12: Iterative scheme for the &bit comparator of Problem 3. 

1 1  
. end 

The result of running the PS command (an alias for p r i n t s t a t s  - f ) ,  is the 
following: 

2. Repeat Problem 1, this time for an 8-bit equality comparator. 

3. Describe an 8-bit comparator in BLIF that takes two unsigned integers a and b 
as inputs and produces two outputs: 

(a) agtb: is 1 if and only if a > b;  

(b) bgta: is 1 if and only if a < b. 

Clearly, if a = b both outputs are 0, and it is never the case that the two outputs 
are 1 simultaneously. 

Use the following "interface" for your comparator. 

.model cmp8 

. i n p u t s  a0 a 1  a2 a3  a4 a5  a6 a7 bO b l  b2 b3 b4 b5 b6 b7 

.outputs  agtb  bgta  

Design the circuit by replicating a basic cell according to  the scheme of Fig- 
ure 2.12. Verify that your circuit works properly by using SIS to  simulate the 
following pairs of inputs: 



2.6. Problems 6 1 

Create a script file containing the simulation commands and use the sou rce  
command to run them. 

Include in your homework your BLIF description, the simulation script, and the 
output of the simulation produced by s ~ s .  (Use the s e t  s i s o u t  f o o  command 
to redirect your output to  file f 00.) 

This problem counts for 10. 
Solution. A BLIF file for the comparator is as follows: 

.model cmp8 

. i n p u t s  a0 a 1  a2 a3  a4 a5 a6 a7 bO b l  b2 b3 b4 b5 b6 b7 

.ou tpu t s  a g t b  bg ta  

names z e r o  

. subckt  comp agtb-l=zero a l t b - l = z e r o  a=a7 b=b7 agtb=agtb7 a l tb=bg ta7  

. subckt  comp agtb- l=agtb7 a l tb-1=bgta7 a=a6 b=b6 agtb=agtb6 a l tb=bg ta6  

. subckt  comp agtb-l=agtb6 a l tb - l=bg ta6  a=a5 b=b5 agtb=agtb5 a l tb=bg ta5  

. subckt  comp agtb- l=agtb5 a l tb - l=bg ta5  a=a4 b=b4 agtb=agtb4 a l tb=bg ta4  

. subckt  comp agtb- l=agtb4 a l tb - l=bg ta4  a=a3 b=b3 agtb=agtb3 a l tb=bg ta3  

. subckt  comp agtb- l=agtb3 a l tb-1=bgta3 a=a2 b=b2 agtb=agtb2 a l tb=bg ta2  

. subckt  comp agtb- l=agtb2 a l tb - l=bg ta2  a = a l  b=bl agtb=agtbl  a l t b = b g t a l  

. subckt  comp ag tb - l=ag tb l  a l t b - l = b g t a l  a=aO b=bO agtb=agtb  a l t b = b g t a  

. end 

.model comp 

. i n p u t s  agtb-I  a l t b - I  a b 

.ou tpu t s  a g t b  a l t b  

.names agtb-1 a l t b - 1  a b a g t b  
I--- 1 
0010 I 

.names agtb-1 a l t b - 1  a b a l t b  
-I-- I  
0001 1 
. end 

The script file to  simulate the comparator is: 

When the script file is 'sourced,' the output is: 

Network s i m u l a t i o n :  
Outputs :  0 0 



6 2 C h a ~ t e r  2. A Quicli Tour o f  Logic Svnthesis 

Figure 2.13: Circuit for Problem 4. 

Next s t a t e  

Network s imulat  ion :  
Outputs: 0 1 
Next s t a t e :  

Network s imulat ion : 
Outputs : 1 0 
Next s t a t e  : 

Network s imulat ion 
Outputs: 1 0 
Next s t a t e :  

Network s imulat ion:  
Outputs : 0 0 
Next s t a t e :  

4. This problem guides you through a simple example of optimization and tech- 
nology mapping with SIS. Describe in BLIF the circuit of Figure 2.13. Use one 
.names directive for each gate in the drawing. Do the following. 

(a) Read your file into SIS; 

(b) read in a library for mapping with the command r l i b  l i b 2 .  genl ib ;  

(c) print the statistics of your circuit with ps;  

(d) perform techmapping with the command map; (ignore the warnings;) 

(e) print the statistics on your mapped network with pg -s; 

(f) print the equations of the network with p. 

(g) read in your file again; 

(h) simplify the circuit with the command ESPRESSO; 



2.6. Problems 6 3 

(i) repeat Steps 4c-4f. 

Report in your homework the output of SIS for all steps. Include also your BLIF 

file. By how much does the area decrease when the circuit is optimized? (Use 
the areas reported by the command pg -s. Note that those areas only account 
for the active area; the area taken by the interconnections is not included.) 
Solution. This is the b l i f  file: 

.model pb3.16 

.inputs x y z 

.outputs e 

.names y z a 
01 0 
.names x a b 
01 1 
.names y z c 
10 0 
.names x c d 
11 I 
.names b d e 
00 0 
. end 

This is the output of SIS: 

pb3.16 pi= 3 po= 1 nodes= 5 latches= 0 
lits(sop)= 10 lits(fac)= 10 
inv2x : 2 (area=928.00) 
nor2 : I (area=1392.00) 
oai21 : 2(area=1856.00) 
Total: 5 gates, 6960.00 area 

C3391 = z' 
a = [339] ' y ' 
C3381 = y' 
[355] = [338] ' z' + x' 
Ce) = C3551' + a' x' 

pb3. 16 pi= 3 po= 1 nodes= 5 latches= 0 
lits(sop)= 10 lits(fac)= 10 
inv2x : 1 (area=928.00) 
nand2 : I (area=l392.00) 
oai221 : 1 (area=2784.00) 
Total: 3 gates, 5104.00 area 

C4001 = x' 
C4151 = y' + z' 
(el = C4001' y' + C4151' + x' z' 

The area decreases by 6960 - 5104 = 1856 units (in this case square microns). 
The percentage improvement is about 27%. Note that in both cases (with and 
without optimization) complex gates from the library are used to  map the cir- 
cuit. 0 



64 Chapter 2. A Quick Tour of Logic Synthesis 

5. In this problem we use SIS to synthesize the TRANSFORM block of the LUNC 
circuit. (See Figure 2.3.) The  purpose of this problem is twofold. On the 
one hand, we get t o  know SIS better. On the other hand, we see that the 
translation/optimization strategy can actually produce the results we got by 
manual optimization. Summarizing in a few words, the typical synthesis system 
translates a, high-level description of the circuit into a structure composed of 
adders, multiplexors, comparators, etc.. This structure is then optimized. In 
this problem, we describe the initial structure in b l i f  format and then use SIS 

to  optimize it. 

Though the optimized transform block is small, the initial description, with 
several adders and multiplexors, is not so small. Therefore, we use a hierarchical 
description. How to  write hierarchical descriptions in b l i f  is described in the 
b l i f  manual. 

To get good results from SIS, it is important that we specify whatever don't 
care information we have. How to  specify external don't cares in b l i f  is also 
described in the b l i f  manual. 

Once we have described the TRANSFORM block, we have to  optimize it with SIS. 
We shall use a s c r i p t ,  i.e., an existing recipe that applies several commands 
in sequence. Scripts are run with the source command. Sta,ndard scripts are 
provided with SIS and can be used directly, without even knowing what they look 
like. (Though it is not advisable in general.) As all files in the default library 
directory, they can be referenced directly from within SIS by just giving the 
last component of their pathnames. One of the script is called s c r i p t .  rugged. 
It  is a good idea t o  look a t  it and then t ry it out. You should also read 
s c r i p t .  rugged. notes.  Finally, you may want to compare different scripts. 

Once we have optimized the logic, we shall perform technology mapping. We 
shall use the l i b 2 . g e n l i b  library for that. The commands that we need are 
r e a d l i b r a r y  and map. 

Finally, we shall run the a tpg  -r command to  generate test vectors for our 
optimized circuit. Note we use the -r option. 

You may find it useful to check what the a l i a s  command does for you. There 
are many handy aliases that are defined for frequently used commands in the 
standard configuration file. 

Now, the details of how you have to  report your results. 

(a) Write separate BLIF files for each block in Figure 2.3. You will also need 
separate files for components like adders that you will use in separate 
blocks. Finally, write a master file, where you describe how the blocks are 
connected. Use the . search directive to  put everything together. Remem- 
ber the external don't cares! 

(b) Run SIS. Show the statistics before running s c r i p t  .rugged and after- 
wards. Show the equations after optimization. Draw a schematic of the 
circuit after optimization and compare it to  what might have been obtained 
manually. 



2.6. Problems 6 5 

(c) Perform technology mapping. Show the stats, the equations, and the lib- 
rary gates used (the last with the p r i n t s a t e  command). Draw a schem- 
atic of the mapped circuit. 

(d) Run a tpg and include the untestable faults and the tests generated in your 
report. 

Solution. Listed below are the files comprising the description of the transform 
block. First we show the top-level description. We use a style that is only 
partially hierarchical. Indeed, the multiplexer is not describe as a nested block, 
but rather as a set of gates-one for each output. Notice also the description of 
the don't cares. It is a requirement of SIS that all don't cares be listed in the 
top level description-one function for each primary output. 

.model t r a n s f o r m  

. i n p u t s  L U N C i n 0  i n 1  i n 2  i n 3  i n 4  i n 5  i n 6  i n 7  

. o u t p u t s  00 01 02 03  04 05  06 07 

. subck t  toLower \ 
inO=inO i n l = i n l  in2=in2 in3= in3  in4= in4  in5= in5  in6= in6  in7=in7 \ 
00=10 o l = l l  02=12 03=13 04=14 05=15 06=16 07=17 

. subck t  t ouppe r  \ 
inO=inO i n l = i n l  in2=in2 in3= in3  in4= in4  in5= in5  in6=in6 in7=in7 \ 
oO=UO 01=~1 0 2 = ~ 2  0 3 = ~ 3  0 4 = ~ 4  0 5 = ~ 5  06=u6 0 7 = ~ 7  

. subck t  changecase  \ 
inO=inO i n l = i n l  in2=in2 in3= in3  in4= in4  in5= in5  in6= in6  in7= in7  \ 
oO=cO 01=cl  0 2 x 2  03=c3 04=c4 05=c5 06=c6 07=c7 

.names L U N C 1 0  uO i n 0  cO 00 
10001--- 1 
0100-1-- 1 
0010--1- 1 
0001---1 1 
.names L U N C 11 u l  i n 1  c 1  01 
10001--- 1 
0100-1-- 1 
0010--1- 1 
0001---1 1 
.names L U N C 1 2  u2 i n 2  c2 02 
10001--- 1 
0100-1-- 1 
0010--1- 1 
0001---1 1 
.names L U N C 1 3  u3  i n 3  c 3  0 3  
10001--- 1 
0100-1-- 1 
0010--1- 1 
0001---I 1 
.names L U N C 1 4  u4 i n 4  c 4  04 
10001--- 1 



6 6 Chapter 2. A Quick Tour of lor?ic Synthesis 

0100-I-- 1 
0010--1- 1 
0001---I I 
.names L U N C 15 u5 in5 c5 05 
10001--- 1 
0100-I-- 1 
0010--1- 1 
0001---I 1 
.names L U N C 16 u6 in6 c6 06 
1OOOl--- 1 
0100-1-- 1 
0010--1- 1 
0001---I 1 
.names L U N C 17 u7 in7 c7 07 
10001--- I 
0100-I-- 1 
0010--1- 1 
0001---I 1 
. exdc 
.names L U N C 00 
11-- 1 
1-1- 1 
I--1 1 
-11- I 
-1-1 1 
--I1 1 
0000 I 
.names L U N C 01 
11-- 1 
1-1- 1 
I--1 I 
-11- I 
-1-1 1 
--I1 I 
0000 I 
.names L U N C 02 
11-- 1 
1-1- 1 
1--1 I 
-11- 1 
-1-1 1 
--I1 I 
0000 1 
.names L U N C 03 
11-- 1 
1-1- 1 
I--1 I 
-11- 1 
-1-1 1 
--I1 I 
0000 I 
.names L U N C 04 



2.6. Problems 67 

11-- 1 
1-1- 1 
1--1 1 
-11- 1 
-1-1 1 
--I1 1 
0000 1 
.names L U N C 05 
11-- 1 
1-1- 1 
1--1 I 
-11- 1 
-1-1 1 
--I1 1 
0000 1 
.names L U N C 06 
11-- 1 
1-1- 1 
1--1 1 
-11- 1 
-1-1 1 
--I1 1 
0000 1 
.names L U N C 07 
11-- 1 
1-1- 1 
1--1 1 
-11- 1 
-1-1 1 
--I1 1 
0000 1 
. end 

#--------------------------- changecase b l i f  ....................... 
# Changes c a s e  of an  a l p h a b e t i c  ASCII c h a r a c t e r  by adding o r  
# s u b t r a c t i n g  32 (dec ima l ) .  Th i s  b lock does no t  check f o r  t h e  
# c h a r a c t e r  be ing non-a lphabet ic .  

.model changecase 

. i n p u t s  i n 0  i n 1  i n 2  i n 3  i n 4  i n 5  i n 6  in7  

. o u t p u t s  00 01 02 03 04 05 06 07 

.names z e r o  

.names one 
1 
. subck t  addsub8 addsub=in5 \ 

aO=inO a l = i n l  a2=in2 a3=in3 a4=in4 a5=in5 a6=in6 a7=in7 \ 
bO=zero b l=ze ro  b2=zero b3=zero b4=zero b5=one b6=zero b7=zero \ 
sO=oO s l = o l  s2=02 s3=03 s4=04 s5=05 s6=06 s7=07 s8=dummy 

. end 



6 8 C h a ~ t e r  2. A Quick Tour o f  Logic Synthesis 

# Changes case  of an uppercase a lphabe t i c  ASCII charac te r  by adding 32 
# (decimal) .  Lowercase c h a r a c t e r s  a r e  l e f t  unchanged. 
# This block does not check f o r  t h e  charac te r  being non-alphabetic.  

.model toLower 

. i n p u t s  in0 i n 1  in2 i n 3  in4  in5  in6 in7 

.ou tpu t s  00 01 02 03 04 05 06 07 

.names ze ro  

.names one 
1 
.subckt adder8 c in=zero \ 

aO=inO a l = i n l  a2=in2 a3=in3 a4=in4 a5=in5 a6=in6 a7=in7 \ 
bO=zero bi=zero b2=zero b3=zero b4=zero b5=one b6=zero b7=zero \ 
sO=kO s l = k l  s2=k2 s3=k3 s4=k4 s5=k5 s6=k6 s7=k7 s8=dummy 

.names in5  in0 kO 00 
11- 1 
0-1 I  
.names in5  i n 1  k l  01 
11- I 
0-1 1 
.names in5 in2 k2 02 
11- 1 
0-1 1 
.names in5  i n 3  k3 03 
11- 1 
0-1 I  
.names in5  in4  k4 04 
11- 1 
0-1 1 
.names in5  in5  k5 05 
11- 1 
0-1 1 
.names in5  in6  k6 06 
11- I  
0-1 1 
.names in5  in7  k7 07 
11- 1 
0-1 I  
. end 

#--------------------------- toupper b l i f  ....................... 
# Changes case  of a lowercase a lphabe t i c  ASCII c h a r a c t e r  by 
# s u b t r a c t i n g  32 (decimal) .  Uppercase charac te r s  a r e  l e f t  unchanged. 
# This block does not  check f o r  t h e  c h a r a c t e r  being non-alphabetic.  



2.6. Problems 6 9 

.inputs in0 in1 in2 in3 in4 in5 in6 in7 

.outputs 00 01 02 03 04 05 06 07 

.names zero 

.names one 
1 
.subckt addsub8 addsub=one \ 

aO=inO al=inl a2=in2 a3=in3 a4=in4 a5=in5 a6=in6 a7=in7 \ 
bO=zero bi=zero b2=zero b3=zero b4=zero b5=one b6=zero b7=zero \ 
sO=kO si=kl s2=k2 s3=k3 s4=k4 s5=k5 s6=k6 s7=k7 s8=dummy 

.names in5 in0 kO 00 
01- 1 
1-1 1 
.names in5 in1 k1 01 
01- 1 
1-1 1 
.names in5 in2 k2 02 
01- i 
1-1 1 
.names in5 in3 k3 03 
01- 1 
1-1 1 
.names in5 in4 k4 04 
01- 1 
1-1 1 
.names in5 in5 k5 05 
01- 1 
1-1 1 
.names in5 in6 k6 06 
01- I 
1-1 1 
.names in5 in7 k7 07 
01- i 
1-1 1 
. end 

#--------------------------- addsub8 blif ....................... 
# Adds/subtracts two 8-bit integers. Index 0 signals the least 
# significant bit. Input addsub causes addition when it is 0 and 
# subtraction (a-b) when it is 1. The result is a 9-bit number. 
# No two's complement overflow output is provided. 

.model addsub8 

.inputs addsub a0 a1 a2 a3 a4 a5 a6 a7 bO bl b2 b3 b4 b5 b6 b7 

.outputs SO sl s2 s3 s4 s5 s6 s7 s8 

.names addsub bO cO 
10 1 
01 1 
.names addsub bl c1 
10 1 
01 1 



70 Chapter 2. A Quick Tour o f  Loek Synthesis 

.names addsub b2 c2 
10 I 
01 1 
.names addsub b3 c3 
10 1 
01 I 
.names addsub b4 c4 
10 I 
01 I 
.names addsub b5 c5 
10 1 
01 1 
.names addsub b6 c6 
10 I 
01 I 
.names addsub b7 c7 
10 1 
01 I 
.subckt adder8 \ 

cin=addsub aO=aO al=al a2=a2 a3=a3 a4=a4 a5=a5 a6=a6 a7=a7 \ 
bO=cO bl=cl b2=c2 b3=c3 b4=c4 b5=c5 b6=c6 b7=c7 \ 
sO=sO sl=sl s2=s2 s3=s3 s4=s4 s5=s5 s6=s6 s7=s7 s8=s8 

. end 

#--------------------------- adder8 blif ....................... 
# Adds two 8-bit inputs and a carry-in bit. Index 0 signals the least 
# significant bit. The result is a 9-bit number. No two's complement 
# overflow output is produced. 
.model adder8 
.inputs cin a0 a1 a2 a3 a4 a5 a6 a7 bO bl b2 b3 b4 b5 b6 b7 
.outputs SO sl s2 s3 s4 s5 s6 s7 s8 
.subckt full-adder cin=cin a=aO b=bO sum=sO cout=cO 
.subckt full-adder cin=cO a=al b=bl sum=sl cout=cl 
.subckt full-adder cin=cl a=a2 b=b2 sum=s2 cout=c2 
.subckt full-adder cin=c2 a=a3 b=b3 sum=s3 cout=c3 
.subckt full-adder cin=c3 a=a4 b=b4 sum=s4 cout=c4 
.subckt full-adder cin=c4 a=a5 b=b5 sum=s5 cout=c5 
.subckt full-adder cin=c5 a=a6 b=b6 sum=s6 cout=c6 
.subckt full-adder cin=c6 a=a7 b=b7 sum=s7 cout=s8 
. end 

.model full-adder 

.inputs a b cin 

.outputs sum cout 

.names cin a b sum 
001 1 
010 1 
100 1 
111 1 
.names cin a b cout 
-11 I 
1-1 I 



2.6. Problems 71 

11- 1 
. end 

If these files are read into SIS, the following initial statistics a,re obtained. 

t ransform pi=12 po= 8 nodes= 94 l a t c h e s =  0  
l i t s ( s o p ) =  700 l i t s ( f a c ) =  606 

After running the script, we get the following stats. 

t ransform pi=12 po= 8 nodes= 9  l a t c h e s =  0  
l i t s ( s o p ) =  12 l i t s ( f a c ) =  12 

These are the equations. As we can see, we obtain the same solution that was 
obtained manually. 

These are the equations after mapping. 

The library cells used in the mapped circuit are given by the pg command 

Finally, running the a tpg  -r command, we get the following output. 



72 Chapter 2. A Quick Tour of Logic Synthesis 

38 t o t a l  f a u l t s  
RTG: covered 35 remaining 3 
RTG: covered 1 remaining 2 
36 f a u l t s  covered by RTG 
S-A-0: NODE: U OUTPUT 
Redundant 
S-A-1: NODE: U OUTPUT 
Redundant 
f a u l t s :  38 t e s t e d :  36 abor ted:  0 redundant : 2 

Notice that the redundant faults correspond to input U ,  that is not used in the 
circuit (and hence, it is not observable). The following is the list of patterns 
that are generated. 

# atpg t e s t  p a t t e r n s  f o r  transform 
. inpu t s  L U N C in0  i n 1  in2 in3  in4 in5 in6 in7 
011000000001 
111001010110 
010001101110 
100000011000 
010000111011 
010110111010 
101001111111 
000111000101 
001001011111 
101001001110 

6. Create a blif file and perform the SIS printstats  and sim (for the input character 
string of Section 2.1) commands for the overall LUNC circuit. 




