
Chapter 2 

PREREQUISITES FROM T H E  
THEORY OF STOCHASTIC 
PROCESSES A N D  STOCHASTIC 
DYNAMIC OPTIMIZATION 

In this chapter we collect some fundamental notions for stochastic pro- 
cesses needed throughout the text and formalize the notions of a decision 
model in discrete and in continuous time. For the latter we follow closely 
the presentation in [Hin70] and [GS79]. 

2.1 STOCHASTIC PROCESSES 

D e f i n i t i o n  2.1 (Stochast ic  process). A family of random variables 
c = (tt : t E T ) ,  in more detail: 

with T # 0 is called a stochastic process. Here (R, F, Pr) is the underlying 
probability space and (X, X) is the state space o f  the process. 

I f  the state space X is discrete (countable), then we always assume 
x = 2 X .  0 
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The index set T has many relevant interpretations. If T C R, then T 
is often interpreted as time, which may be discrete, T = W, .Z or subsets 
thereof, or continuous T = R, [0, oo) or subsets thereof. The classical 
theory of stochastic processes is concerned with this setting, and the 
systems we are mostly interested in evolve on one of these time scales. 

If T is not linearly ordered, e.g., if T = .Z2 is a regular lattice, then T 
is often interpreted as space. Again, space may be continuous or discrete; 
in either case, c is then often called a random field. 

If T = V is the set of vertices of some graph r = (V, B) with edge 
set B ,  then the state space is structured by B and coordinates of the 
space, which are neighbors according to the edges of T', are thought to 
interact; for details we refer to the fundamental Definition 3.2, which 
lays the groundwork for interacting systems we are interested in. 

Such a random field describes the global state of a system at some 
fixed time point, and Cj, for j E V records the actual local state of the 
system at vertex (location) j E V = T. 

If such system with an interaction structure that is thought to be 
varying in space is given, we may then equip this with an additional 
time scale, say N, resulting in a stochastic process 

Such a process describes the evolution in space and time of a distributed 
system with interacting components. 

Remark 2.2. We usually separate in the general notion (2.1) the time 
variables from the space variables by writing 

such that It is a V-indexed random vector and we allow the local states at 
the different nodes t o  be different. 0 



2.1. Stochastic processes 13 

The most prominent class of stochastic processes we are interested 
in during the modeling process are Markov processes. 

Definition 2.3 (Markov processes). Let 

7  = ($  : ( R ,  F ,  Pr) + ( X ,  X ) ,  t  E T )  

be a stochastic process with parameter set T  C R and denote by 

the pre-t o-algebra of  q (the o-algebra of the past of q before t), and by 

the post-t o-algebra of q (the a-algebra of the future of q after t) .  
7  is a Markov process if the following holds: 
For all t E T  and all B E F;, we have Pr-almost surely 

We always assume that there exists a family of  regular transition probabilities 
for q,  i.e., a family P = ( P ( s , t ) :  s, t  E T ,  s  < t )  of kernels 

such that for all s  < t  and all x  E X  and C  E X holds 

P(s, t ;  x ,  C )  = Pr ($  E C  I yS = x ) .  

q is a (time) homogeneous Markov process if the kernels ( ~ ( s ,  t ) :  s ,  t  E 
T ,  s  5 t) depend on s  and t only via t - s. We then write ( P ( s , t )  = 

P(t - s ) :  s ,  t  E T ,  s  < t )  and have a family P = ( ~ ( t ) :  t  E T )  of kernels 
such that for all t E T  with s , t  E T and all C  E X 
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holds. I f  0 E T, we then have the usual relation 

We always assume that P(0) is the identity operator. 
We use the term Markov process t o  refer t o  homogeneous Markov 

processes. Exceptions will be explicitly noted. 0 

Throughout the text we assume that the state spaces are smooth 
enough to guarantee that in connection with conditional expectations, 
regular conditional probabilities exist and we shall use this without men- 
tioning it further. 

For more details on Markov jump processes, see Subsection 5.2.1. 

D e f i n i t i o n  2.4 ( M a r k o v  chains). A (homogeneous) Markov process 
on discrete time scale (usually T C Z) is called a (homogeneous) Markov 
chain. The probabilistic transition behavior of a Markov chain is determined 
by the onestep transition kernels P(1; x, C) .  We therefore introduce for 
homogeneous Markov chains with time scale N 

j = (tt : (R, F, Pr) + (X, X), t E W) 

throughout the notation 

for all x E X and C E X and similarly for other discrete time scales. 
I f  the state space X is discrete (countable), then the onestep transition 

kernels are determined by the stochastic matrices of the respective transi- 
t ion counting densities. We use the same symbols for the kernels and the 
associated stochastic matrices. 0 
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Definition 2.5. I f  for a Markov chain with discrete state space and 
transition matrix Q(y I x )  some probability i.r exists which fulfills 

then r is called an invariant or steady state distribution of [. 0 

Definition 2.6 (Markov processes with discrete state space). I f  

is a continuous time Markov process with discrete state space such that 

lim P( t )  = P(0)  
t.Lo 

holds, i.e., the family of transition kernels is standard, then the right deriv- 
ative 

1 
lim - ( ~ ( t )  - ~ ( 0 ) )  = Q 
t L 0  t 

is called the Q-matrix of P  = ( ~ ( t ) :  t 2 0 ) .  0 

To exclude pathological behavior we enforce the following assump- 
tion. 

Assumption 2.7. I f  the state space of a Markov process 7 is a topological 
space, then the paths o f  7 are assumed t o  be right continuous with left-hand 
limits (cadlag paths). 

For any homogeneous Markov process 7 with discrete state space (x, 2 X ) ,  
we assume throughout that its paths are right continuous with left-hand lim- 
its (cadlag paths), that its Q-matrix Q is conservative, which means 
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and that 7 is non explosive (having only a finite number of jumps in any 
finite time interval with probability one). 

Unless otherwise specified, we assume that q is irreducible on X .  

Corollary 2.8. Let 

7 = 7' : (0, F, Pr) + (x, 2 X ) ,  t E (0, m)) ( 
be a continuous time Markov process with discrete state space that fulfills 
the Assumption 2.7. Then q can be characterized uniquely by a sequence 
(E, T) = {(tn, T ~ ) ,  n = 0,1, .  . . ) ,  which describes the interjump times T~ 

and the successive states cn, which the process enters at the jump instants. 

The sequence o f  jump times of 7 is o = {on: n = 0 , 1 , .  . .), given by 
a0 = 0, and an = C7=l T ~ ,  n E W, and therefore for t E [an,an+'), we 
have rlt = tn, n E W. 

The sequence = {tn = n = 0,1, .  . . ) is a homogeneous Markov 
chain, called the embedded jump chain of 7. The one-step transition prob- 
ability of the embedded jump chain is the Markov kernel 

The definition of an embedded jump chain carries over to the case 
of general Markov jump processes; see the detailed description in Defin- 
ition 5.19. 

One of the possibly most important examples of processes with dis- 
crete state space is a birth-death process, for details see Theorem 5.23. 
Birth-death processes will serve as building blocks of the network pro- 
cesses and migration processes that we describe in Section 5.2.1. 
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Definition 2.9 (Birth-death processes). Let 

denote a Markov process with right continuous paths having left-hand limits 
(cadlag paths) and Q-Matrix fi = (q(m, n)  : m, n  E N )  given by 

i f  O < m , n = m + l ;  

i f  l < m , n = m - 1 ;  

i f  m=n=O;  

- ( A m )  + ( m ) ) ,  if m = n  > 0;  

otherwise. 

Then q is a (one dimensional) birth-death process with birth rates A(. )  and 
death rates p( . ) .  

Unless otherwise specified, we assume p(m) > 0, Y m > 1.  A(m) may 
be 0 for some m E W. 0 

A class of processes that is often amenable to explicit structural in- 
vestigation and computation of steady state distribution is the class of 
reversible Markov processes in continuous as well as in discrete time. 
For example, many of the processes that describe particle systems from 
statistical physics are reversible; see [Lig85]. 

Definition 2.10. A Markov chain c = (tt: t E Z) is called reversible (in 
time) if, for all t 2 0 and A, B E X, it holds 

Pr {tt E A, ct+' E B )  = Pr {tt E B, tt+l E A).  0 

Lemma 2.11. (a) A reversible Markov chain is stationary. 
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(b) A Markov chain c with discrete state space is reversible i f  it is 
stationary and a strict positive probability measure T on X exists such that 
for all x ,  y E X ,  we have 

i.r is then the stationary probability of [. 0 

Reversibility of a Markov chain means that the operator defined by 
the onestep transition kernel which generates this Markov chain is self- 
adjoint; see [Str05, Section 5.1.11. If this operator is symmetric or self- 
adjoint, in many cases it is easy to solve (2.2) for the steady state dis- 
tribution by solving (2.3) instead. There are many cases where Markov 
chains are reversible. But (2.3) is a rather strong condition on the tran- 
sition probabilities Q ( x  I y). 

The following criterion for reversibility of a Markov chain is of im- 
portance because it does not rely on having the stationary probability 
~ ( x )  explicitly given. 

Theorem 2.12. Let the Markov chain c be stationary. 

(a) Then c is reversible if and only i f  for all n > 1 and any sequence o f  
states 21,. . . , x, E X and xn+l = XI, we have 

(b) The stationary probability i.r is then obtained as follows: 
Fix some xo E X and let 

x0 = {xo), and for n > 0 
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and normalize finally. 0 

Definition 2.13. A Markov process q = ($: t E R) in continuous time 
with discrete state space is called reversible (in time) if for all n > 1 and 
for all t ime points tl < t2 < . . . < t, and for all states XI, 22,. . . , x, E X 
holds 

p r  {$% = xi: i = 1,. . . , n }  = Pr {?Is-ti = xi : i = 1,.  . . , n} .  0 

Lemma 2.14. (a) A reversible Markov process as given in Definition 2.13 
is stationary. 

(b) A Markov process with discrete state space is reversible if it is 

stationary and a strict positive probability measure i.r on X exists such that 
for all x, y E X we have 

7r is then the stationary probability of q. 0 

Corollary 2.15. A stationary birth-death process according t o  Defini- 
t ion 2.9 is a reversible Markov process. 

If the embedded jump chain of the birth-death process is stationary then 
i t  is reversible. 0 

2.2 DISCRETE TIME DECISION MODELS 

Optimization of systems under stochastic influences is a challenging 
problem and is known to be often a complex operation. Especially if the 
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real systems under investigation are large, a careful modelling process 
is needed. Therefore a precise definition of decision models is necessary. 
We start with decision making in discrete time systems, i.e., the system 
is observed only at  discrete subsequent time points and decision making 
is allowed at  these time points only. 

Definition 2.16. A general decision model in discrete time (see [Hin70]) 
consists of the following items: 

0 A nonempty state space X that is endowed with a a-algebra X. 
0 A nonempty action space A that is endowed with a a-algebra Z. 
0 A sequence (H t :  t E W) of  admissible histories, where H0 = X ,  

Ht+l = Ht x A x X for t > 0. Each Ht (containing 2t + 1 factor sets) is 
endowed with the respective product a-algebra st. 

0 A sequence A = (At: t E W) of  set valued functions, which deter- 
mines the admissible actions. At: Ht C Ht + 2A - {@), where the domain 
Ht is recursively defined as H0 := X ,  and Ht+l := {(h,  a ,  z) E Ht+': h E 
Ht, a E At(h), x E x). At(h) is the set of admissible actions at t ime t 
under history h. 

Ht is endowed with the trace-a-algebra fit := Ht n s t .  
We denote Kt := {(h,  a )  : h E Ht, a E At(h)) ,  and shall always assume 

that these sets contain the graph of a measurable mapping. K t  is endowed 
with the trace of the product-a-algebra At := Kt n st 8 (U. 

0 An initial probability measure q0 on (X,X) and a sequence Q = 

(Qt : t E N) of  transition kernels, where Qt : Kt x X + [O, 11 is the transition 
law of the system from time t t o  t + 1. 

0 A sequence r = ( r t :  t E W) of At-IB measurable reward functions 
r t :  Kt + R, where r t (h ,  a )  is the reward obtained in the time interval 
(t,  t + 11 if the history h E Ht is observed until t ime t and the decision then 
is a E At(h). 0 

The control of the decision model is performed by application of 
specified strategies to select under an observed history a decision vari- 
able that then triggers a new transition of the system's state. We will 
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define different types of strategies that enable us to cover a variety of 
abstract problem formulations and real applications. For simplicity of 
presentation we first introduce deterministic strategies. 

Definition 2.17. A deterministic admissible strategy (policy, control 
sequence, plan) is a sequence A = (A t :  t E W )  of measurable functions 
At: X + A with the following property: 

I f  we use the strategy A and if up t o  time t the sequence of states 
occurred is ( x O ,  x l ,  . . . , x t )  and the history observed is 

then we have 

A ( x O  x  . . , x  E At xO,  x l ,  . . . , x t ) ) .  

The functions At are called decision rules, decisions, or actions. We denote 
the set of all deterministic admissible strategies (policies, control sequences, 
plans) in a decision model by IIp. (Deterministic admissible strategies are 
often called pure strategies.) 0 

Definition 2.18. A randomized admissible strategy (control sequence, 
policy, plan) is a sequence T = ( d :  t E W )  of transition kernels 

from ( H t ,  f i t )  t o  ( A ,  Z), h  E H t ,  such that for all histories t E N 

;rt ( h ;  ~ ~ ( h ) )  = ;rt ( ~ ~ ( h )  I h )  = I 

holds. (We use the notations d ( h ;  B )  = r t ( B  I h )  as equivalent.) 
We denote the set o f  all randomized admissible strategies (policies, con- 

trol sequences, plans) in a decision model by II. The transition kernels i.rt 

are called decision rules, decisions, or actions. 
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A decision rule is called Markovian i f  for all t E N and all histories h = 

( xO ,  aO, x l ,  a', x 2 , .  . . , at-', x t ) ,  g = ( Y O ,  bO, Y ' ,  b l ,  . . . , bt- l ,  t ~ ~ )  E Ht 
with xt = yt we have ;rt(h; .) = ;rt(g; .). 

In such situation we call the strategy Markovian as well and consider 
a Markov strategy as a sequence ;r = ( ;r t :  t E N) of transition kernels 
;rt: X x (U --- [O, 11 from ( X ,  X) t o  ( A ,  (U). 

We denote the set of all Markov (admissible) strategies in a decision 
model by IIlcI. 

Note that whenever we deal with Markovian strategies, we can assume 
that At (h t )  depends on ht only through xt.  We denote this restricted de- 
pendence by At (h t )  =: At ( x t ) .  This will be done without further mention. 

A Markovian strategy is stationary i f  the transition kernels are time 
independent, i.e., ;rt = ;rs, s, t E N. 

We denote the set of all stationary (Markovian admissible) strategies in 
a decision model by I I s .  

The set of all deterministic (pure) Markovian (admissible) strategies in 
a decision model is denoted by I Iphr .  

The set of all deterministic stationary Markovian (admissible) strategies 
in a decision model is denoted by nD. 0 

Remark 2.19. Whenever we are dealing with deterministic strategies, we 
assume that all the involved a-algebras contain the one-point sets. Then 
deterministic plans can be considered as randomized plans as well. 

We then have 

~ D C ~ S C ~ M C ~  

and 

n~ c n,, c n, c n. 

Remark 2.20. We will later consider controlled processes in continuous 
time and use controls that are families ;r = (;rt : t > 0)  of suitable transition 
kernels as randomized controls, and pure strategies that are in the Markovian 
case then functions A = (At :  X --- A, t E [ O ,  00)). 
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Without further remarks we will use the same notation as in Remark 2.19. 
The same procedure will apply i f  we are concerned with controlled 

processes in continuous time where the control and decision making is only 
allowed at an embedded sequence of random or deterministic time points, 
as, e.g., in the case of semi-Markov processes (Section 5.1) or Markov jump 
processes (Section 5.2). 0 

If a decision model according to Definition 2.16 is given and a (mn- 
domized) admissible strategy according to Definition 2.18 is fixed then 
from the transition kernels (Qt: t E N) for the state transitions and 
(d: t E N) for the decisions a dynamics for the system is specified over 
any finite time horizon {O,l, .  . . , t ) .  We denote by 

the sequence of successive states and decisions and assume that this 
sequence is given for an infinite horizon. A consistent construction of a 
probability space (0, 3, Pr) where this stochastic process lives on can be 
done in the standard way by construction of the canonical process. 

Let R = ( X  x A)", 3 = (X 8 %IN, at and tt are the respective 
projections, and Pr is constructed with the help of the theorem of Ionescu 
Tulcea.The procedure is as follows. 

For a prescribed (randomized) strategy T according to Definition 2.18, 
an initial distribution q0 on (X, X) and sequence of transition kernels Qt, 
t E N (see Definition 2.16) we have for all t E N 
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with CS E X, BS E Z, s 5 t. This sequence of finite dimensional distribu- 
tions uniquely determines Pr  and the distribution of (I, a), which is the 
sequence of the respective projections on R. Therefore (2.4) determines 
Pr on the cylindrical sets of F = (X 8 ' u ) ~  by 

That Pr  exists and is uniquely determined on F = (X@ a)' is the result 
of Ionescu Tulcea. 

It should be noted that formally we have to extend the domain of 
the Qt from K t  x X to ( X  x A)t x X. The construction sketched here is 
the most general one and does not need the assumption of having Polish 
state and action spaces. Moreover, if the strategy is deterministic, it is 
possible to  construct an underlying probability space that governs the 
evolution of the decision model on some space with R = xN, F = XN; 
see [Hin70, page 801 or [GS79, Section 1.11. 

We are faced with the problem of howto compare the behavior of 
different decision models with fixed transition mechanisms Qt, t E W, 
but under different initial distributions q0 and different strategies T .  For 
easier reading, we will distinguish the different underlying probability 
measures by suitably selected indices in a form, say Pr:o, which in case 

that q0  is concentrated in the point xO will be abbreviated by Pr;,. Ex- 
pectations under Pr:o, will be written as EGO. 

In our discrete time models the evaluation of the decision model and 
of the sequence (<, a) = ( (tt, at) : t E W , i.e., the assessment of the 1 
strategy and of the time behavior of the decision model, will be according 
to the asymptotic expected time average reward/costs principles. We will 
consider mainly cost and reward functions that are stationary in time, 
i.e., r t  is independent of t and therefore a function 
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Therefore, if at time t E N the system is in state ct = xt and a 
decision for action cut = at  is made a (one-step) cost r (xt, at)  2 0 is 
incurred to the system. The average expected cost up to  time T when c 
is started with to = xO and strategy a is applied is 

where Ezo is expectation associated with the controlled process (c, a) 
under ;r if to = xO. 

The first problem is to  find a strategy ;r that minimizes the maximal 
asymptotic average expected costs. 

Definition 2.21. For the controlled process (t, a) under policy ;r and 
starting with to = xO the asymptotic maximal expected time average cost 
is 

.. T 
0 1 

p(x , T) = limsup E;o - 
T+oo T + 1  

r (tt, cut) 
t=O 

A strategy T* E II is optimal with respect t o  the (minimax) cost criterion 
(in the class of admissible randomized strategies) if 

0 
p(xO, T*) = inf p(x , a), 'd x0 E X. 0 

"En 

The dual problem is to  find a strategy ;r that maximizes the asymp- 
totic average expected reward. 

Definition 2.22. For the controlled process (I, cu) under policy T and 
starting with to = xO the asymptotic mainimal expected time average reward 
is 

< 
1 4 (xO, a) = lim inf EZ0 -- C r (tt, cut) . 

T-a2 T + 1  t=O 
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A strategy T* E II is optimal with respect t o  the (maximin) reward criterion 
(in the class of admissible randomized strategies) i f  

Whenever it is clear from the context whether we consider the (mini- 
max) reward criterion or the (maximin) reward criterion, we will use the 
phrase optimal policy. 

2.3 CONTINUOUS TIME DECISION 
MODELS 

In this section we consider stochastic processes with time scale [0, TI or 
[O,T) for T < GO. 

When studying controlled stochastic processes in continuous time, 
we often assume that the state spaces and the action spaces are Polish 
topological spaces that are endowed with Bore1 a-algebras. This will 
provide sufficient generality for all the applications we have in mind and 
encompass the most prominent classes of stochastic processes used in 
applications. Our description in this introduction follows closely the 
presentation in [GS79]. 

Let (X, X) and (A, 'U) be measurable spaces, with a-algebras X and 
'U. (X, X) is the state space of the basic stochastic process, and (A, 'U) 
is the action space for the control. 

We denote by x [ O I T ]  the space of all functions defined on [0, TI with 
values in X and by X [ O > ~ ]  the a-algebra generated by cylinder sets from 
x[OIT]. Further we define A [ O > ~ ]  and ' U I O I T ]  in the same way for the me, 
surable space (A, 'U) . 

Similarly, for 0 < s < t < T ,  we define ~ [ ~ l ~ ]  to be the a-algebra 
over x [ O I T ]  generated by cylinder sets with bases in [s ,  t], and ~ [ ~ l ~ )  the 
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o-algebra over x [ O I T ]  generated by cylinder sets with bases in [s, t). Fur- 
ther expressions for a-algebras with other time intervals are to be read 
analogously. 

Sometimes we abbreviate Xt = X [ O ~ ~ ]  and Xt-O = a (Us,, xs) = 

x [ O > ~ )  . Similarly, we determine L?l[Slt] , L?l[Slt), L?lt and L?ltpO. 

2.3.1 Continuous time decision models with 
step control 

In this subsection we consider processes with time scale [0, TI, where 
T < G o .  

We follow in the next part the procedure of Gihman and Skorohod 
and define in a formal analogy to the discrete time situation a controlled 
object and a control as families of probability measures that resemble 
the definition of the respective transition kernels in discrete time and 
which may serve as similar objects in the continuous time setting. 

Definition 2.23 (see [GS79]). A controlled object is a family of prob- 
ability measures C L ( ~  I a), defined for all events C  E ~ [ ~ 1 ~ ]  and histories 

a(.) E A[O>~ ] ,  which satisfies the following measurability condition: 
For all t E [O,T] and all events C  E X [ O ~ ~ ]  up t o  time t, the function 

p(C 1 a(.)) is a L?l[Olt)-measurable function of the second component a(.). 
A control is a family of probability measures V(B I x(.)) defined for 

all decision history events B E ( U [ O > ~ ]  and state space paths 2(.) E X [ O > ~ ] ,  

which satisfies the following measurability condition: 
For all t E [0, TI and all decision history events B E L?l[Olt] up t o  time 

t, the function V(B 1 x(.)) is a  measurable function o f  the second 
component x(.). 0 

Note that we use the term control for the measure v(. I .) as well 
as for the elements a = a(.) E A [ O ~ ~ ] .  The meaning will always be clear 
from the context. 
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In general, the construction of stochastic processes with given control 
and a controlled object is difficult. 

The construction of associated processes is simpler for the case of 
deterministic controls, i.e., controls that are determined by a family of 

~[Ol'l-measurable functionals {$(xi:(.)) : t t [o,T]}, such that for B t 

L?l[O~t], we have 

In this case for the controlled process ( ~ ( t ) ,  a:(t)) the equality 

holds with probability 1, and hence it is possible to determine the control, 
although the controlled object cannot be determined in this way. 

This is because to construct the basic process on [0, t], we need to 
know the control a: on [0, t ) ,  which in turn is only determined if the basic 
process is known on [0, t) .  In discrete time we have an iterative scheme 
to determine the process and the control step-by-step but, in continuous 
time, this is obviously not the case, for more details, see [GS79, page 801. 

These problems will not occur if the control is delayed with respect 
to the process, i.e., knowledge of the control up to time t allows us to 
determine the state process on some time interval [0, t + s], s > 0. 

Definition 2.24. Let F be some nonempty set. A function f  : [0, oo] 7- F 
is a step function if i t  is piecewise constant and the sequence of jump points 
0 = to < t1 < . . . < tn < . . . of the function is either finite or diverges, i.e., 
limn,, tn = GO. 

A function f :  I + F on a finite interval I is a step function i f  i t  is 
piecewise constant and the number o f  jumps of the function is finite. 

We denote by F[O>T] the set of all step functions f :  [0, TI 7- F. 
A control a( . )  E A [ O > ~ ]  is a step control i f  i t  is a step function on [0, TI, 

i.e., for some sequence 0 = to < t1 < . . . < tn < . . . holds 
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Note that according to  our definition, a step function has only isolated 
jump points. 

Definition 2.25. A control u(. I .) is a step control i f  for all x(.) E x [ O > ~ ]  

the measure v(. I x(.)) is concentrated on the set o f  all step functions in 
A[O>TI, 0 

Let for x(.) E x [ O > ~ ]  a step control v(. I x(.)) be given. We describe 
next how to derive the details for the subsequent further process con- 
struction from this information. 

Sojourn time distributions and jump probabilities: 
Denote by a', a 2 , .  . . the random times at which the random control 

a(.)  changes its value. From the prescribed measure u(. I x(.)), we obtain 
the measure 

v({a(.) : a(0) t B O )  1 x(.)) =: u0 (BO 1 x(o)), 

which determines the distribution of the control at the initial time 0. 
The distribution of the sojourn time in the initial state for the control is 
determined as follows: For all t 

is a 2dolt]-measurable function. As a function of B0 this measure is 
absolute continuous with respect to the measure vO(BO I x(0)). This 
yields the existence of the density function 

such that 
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holds. A' (t I x(.), a(0)) determines the probability that o1 > t holds, 
i.e., the sojourn time distribution in the initial state of the control. 

Given the initial state a0 of the control a:(.)  and the time o1 = s1 of 
the first jump of the control, we further define 

v1 ( B ~  

the conditional probability that 
define the density functions 

a:(sl) E B1. Similarly, for all k ,  we 

, s  , . . .  ~ ~ ( t  1 z( . ) , aO, .  . . , a k 1  , sy (sl < . . . < sk-l < t)  

and vk(Bk I x(.) ,aO, . . . ,  a"' , s  ' , . . . ,  sk) ((s < . . .  < sk ) ,  

which are the conditional distributions of ok ,  respectively of a:(ok), under 
the condition that 

1 1 - sk-1 a = s  , . . . ,  - , (~spectively ak = sk) ,  
0 0 and a(a ) = a  , . . . , a (  a'-') =ak- ' .  

The functions Ak and vk are measurable in all arguments, and Ak(t I .) 
is measurable in x(.) with respect to Xt, and vk(. I .) is measurable with 

respect to X[O~S~]. 
Analogously, starting from the controlled object p,  we introduce the 

conditional measures pt ( C  1 x(.), a(.)) defined on a o-algebra mea- 
surable in z(.) and a(.) with respect to XIOlt] x %[O~T], and such that for 
any C1 E X [ O > ~ ]  we have for the given control a(.) 

So the measure pt ( C  I x(.), a(.)) determines the conditional distribution 
on [t, TI of the processes corresponding to the measure p(. I a(.)) (the 
controlled object), if its value on [0, t] and the control over [0, TI are 
known. 
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Construction of the process distribution: 
We now show how to determine for a given control and controlled ob- 

ject the distributions of the controlled process ( ( ~ ( t ) ,  a ( t ) )  : t E [0, TI) 

(which will be defined iteratively) by utilizing the functions X k ,  vk, and 
pt (. I (.), a ( . ) ) .  In doing this we construct a sequence of processes (re- 
spectively their distributions) 

as follows. 

n=O: Given ((O),  the conditional distribution for ao(0) is vO(BO I 
EO) ,  and for all t E [0, TI a. (t) = a. (0) holds. Define Eo (t) such that 

co(0) = ((0) and for all C c x [ O > ~ ]  holds 

n=l: We define o1 and a1 (0') such that 

Put 
ao(t) ,  if t < a l ;  

W(t) = 
al (a1), if t > a', 

and construct the process El (t) such that El (t) = co(t) holds for t < o l ,  
and for o1 5 t: 

n=k: Continuing this way, we define ((k ( t) ,  ak( t ) )  such that ak ( t )  
has exactly k jumps in [0, TI, say at jump times 0 < a' < . . . < ak, and 
ak ( t )  = akPl ( t )  for t < okP1, and &(t) = (kPl(t) for t < ok.  



Chapter 2. Prerequisites 

n=k+l: If we have constructed &(t) and ak ( t ) ,  then we first deter- 
mine the time instant a'+' and the value of a k + l  (ak+') such that 

Then we set ak+1(t) = ak( t )  for t < ak+l, and ak+'(t) = ak (ak+') for 
t 2 a'+'. If the process ak+'(t) is constructed, we determine the process 
&+'(t) by setting it to be equal to &(t) on [0, a'+'], and extending it 
to [a"', T] such that for all C E x [ ~ > ~ ]  and ok+' 5 t we have 

If owl 2 T ,  then the process ((&.+'(t), ~ k + ~ ( t ) )  : t E [0, T I )  is (for the 

path under construction) the required process ( ( ~ ( t ) ,  a ( t ) )  : t E [0, T I )  . 
(Note that the mnning index k is random.) 

We have shown how to construct the controlled process from the mea- 
sures p and v, where v is a step control, such that the controlled process 

((((t), a ( t ) )  : t t [O, T I )  has the required control and controlled object. 

We will need te following explicit definition of a general construction re- 
lated to that procedure. The definition recalls the previous construction 
starting from a given abstract process. We discuss this below on page 34 

Definition 2.26 (Representation of a controlled object). Let 

( R , 3 ,  Pr) be a probability space. We say that the family of random processes 
((t, w; a( . ) ) ,  t E [0, TI, w E R ,  a(.) E A [ O ~ ~ ] ,  is the representation of a con- 
trolled object p(. I .) i f  the following conditions hold: 
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1) for all C E XIOIT] 

2) if a l ( t )  = a 2 ( t )  for all t 5 a', then we have [ ( t ,  w ;  a ' ( . ) )  = 

~ ( t ,  w;  a 2 ( . ) )  for all t 5 ol;  

3) [(., w ;  a ( . ) )  is a measurable random function defined on with 

values in X [ O > ~ I ,  i.e., for all t E [0, TI and C E XIOIT] we have 

Denote by (p: t E [0, T I )  the natural filtration in F ,  generated by [, i.e., 

F' = o ( s ,  ., a ( . ) )  : s 5 t ,  a ( . )  E A[oJ'I}. { ( 
A generalized control is an arbitrary process a = ( a ( t ) :  t E [0, T I )  

with values in A for all t ,  which is measurable with respect t o  FtpO = 

4 Us<t F S ) .  0 

The first condition in Definition 2.26 is necessary for the process 
[ (., w;  a ( . ) )  to have for fixed a( . )  the same distributions as the controlled 
process with the controlled object p( .  I .) and the fixed control a( . ) .  The 
second condition is a consistence condition for the control and the basic 
process: To define the basic process on [ O , t ] ,  it is necessary to define 
the control on [0, t ] .  The third condition is necessary to replace a( . )  in 
c ( . ,  w ;  a ( . ) )  by the process a ( . ) .  

Remark 2.27. Under condition 3) from Definition 2.26, i t  follows that for 
any generalized control a ( . )  the process ( [ ( t ,  w ) ,  a ( . ) )  is a random process 
on ( R ,  F ,  Pr) .  We call i t  the controlled process under control a ( . ) .  

I f  instead of condition 3) of Definition 2.26 the following condition 3' 
holds: 

3') { ( w , a ( . ) ) :  ( ( . , w , o ( . ) )  E C} E .Ft x Q[O.tl. for all t E [O,T]. C E 

Xt ,  then the process ( ( t ,  w ,  a ( t ) )  is even p-measurable. 0 



Chapter 2. Prerequisites 

In the following we study representations of controlled objects that 
are of the structure given in Definition 2.26. We restrict ourself to step 
controls, and additionally assume that the controlled object has paths 
that are step functions, i.e., for all a(.) E A [ O > ~ ]  the probability mea- 
sure p(.  I a(.)) fulfills p ( x [ O I T ]  l a( .))  = l, where is a set of all 
step functions in x[OIT]. A step controlled object can be defined by the 
following set of conditional distributions: 

where P O ( ~ X O )  is the distribution of x(0), which is independent from 
a(.); A' (ds I xO; a(.)) is the conditional distribution of the first jump 
time of the process; p1 (dxl I xO, t l ;  a(.)) is the conditional distribution 
of the state of the process after the first jump, given the time t1 of the first 
jump and the initial state xO, and so on. We can choose these conditional 
distributions such that they satisfy the following conditions: 

The measures Ak(ds I xO,.  . . , x"' , t1 , . . . , tkpl; a(.)) and 
pk(dxk I xO, .  . . , xkpl , t , . . . , tk ;  a(.)) are measurable with respect to 

X" (NO, ~ 1 ) ' ~ '  x and X" ((Bo, TI)" respectively; 
For any Borel-measurable r c [t, t + h], the measure 

Ak(r I xO, .  . . , xk-l , t , . . . , tk-l; a(.)) depends for tk-l < t on a(.) only 
on a(s) ,  s E [0, t + h),  and pk(dxk I xO, . . . , xk-I , t1 , . . . , tk ;  a(.)) depends 
on a(.) only through its values on [0, tk)  . 

To construct a representation of the controlled object we need the 
following auxiliary results. 

Lemma 2.28 (see [GS79, Lemma 2.21). Let X be a complete separa- 
ble metric space with Borel a-algebra X, A be some topological space with 
Borel a-algebra %. Let {pa(.), a E A) be a set of measures over X such 
that p,(C) is %-measurable for all C E X. Then there exists a function 
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f ((C, a)  from [ O , 1 ]  x A t o  X ,  measurable with respect t o  B[O, 11 x (U. which 
satisfies the following conditions: 

1) if pal = pa2, then f (P, a') = f ((C, a2) for any P; 
2 )  if m L  is the Lebesgue measure on [O; 11, then for all C E X and 

a E A 
0 

Lemma 2.29 (see [GS79, Lemma 2.31). Let (B,  '5) be a measurable 
space and p ( .  I b, a( .))  be a family o f  distributions on B[O, TI, where b E B 
and a E A [ O > ~ ] ,  which satisfies the following conditions: 

1) p(.  1 b, a(.)) is measurable with respect t o  '5 x z [ O ~ ~ ] ;  

2 )  if F E B[O, t] and al(s)  = a2(s) for s < t ,  then 

p (F I b, a' (.)) = p ( r  I b, a'(.)) for any b. 

Then there exists a real valued function p((, b, a ( . ) ) ,  defined on [0, TI x B x 
A [ O > ~ ] ,  measurable with respect t o  B[O, TI x 23 x ( U [ O > ~ I ,  which possesses the 
following properties: 

A) m i  ({(: p ( ~ ,  b,a(.)) E T}) = i'(T I b, a( .))  for all Borel sets 

T' E B[O, TI; 
B) I f  al(s)  = a2 (s) for s < t ,  then p(<, b, a' (.)) = p(<, b, a2  (.)) for 

all (, for which p((, b, a'(.)) < t holds. 0 

Utilizing the above lemmas, we now sketch the construction of a 
controlled object with step function paths governed by a step control 
with the conditional distributions P' and X~ from (2.8). By Lemmas 2.28 
and 2.29 we find functions 

pk ((c, xO, .  . . , x k l  , t ' , . . . , t"', a(.)) on [0,1] x xk x [0, TI"' x 

f ((C, xO, . . . , xk-' , t ' , . . . , tk ,  a( .))  on [o, 11 x X' x [0, TI' x 

with values in [0, TI and X respectively, measurable in all variables, such 
that the following holds: 
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1) if r' is a Bore1 set in [0, TI, then 

o 
- 1  , t  1 , . . . , t X p l ,  a ( . ) )  E T}) 

= x';(F 1 x O , .  . . , xPp l  , t  , . . . , t P p l ,  a ( . ) ) ;  

and if C E X, then 

2) if t 1  < . . . < tPp l  < t ,  a l ( s )  = a2( s )  for s  < t ,  then 

pk (c ,  xO,  . . . , xkpl  , t  , . . . , t k p l ,  a ' ( . ) )  
0 xk- l  1 

= p k ( C 7 x  , . . . ,  , t  , . . . , t k - l ,  a2 ( . ) )  

for all C ,  for which p k ( < ,  x O , .  . . , xk-I 7 t 1  7 . " )  t k - l ,  a ' ( . ) )  < t .  

Now let so, p l ,  s l ,  c2, s2,  . . . be a sequence of independent uniformly 
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From 1) and 2) we conclude: 
If a l ( s )  = a 2 ( s )  for all s  < t ,  then for all w  with e k ( w ,  a ' ( . ) )  < t we 

have 

e k ( w ,  a ' ( . ) )  = e k ( w ,  a ' ( . ) ) ,  and t k ( w ,  a ' ( . ) )  = t k ( w ,  a ' ( . ) ) .  

Now, the joint distribution of the so constructed random variables j O ( w ) ,  
6' (w ,  a ( . ) ) ,  . . . , ek (w ,  a ( . ) )  and Ck (w ,  a ( . ) )  coincides with the joint dis- 
tribution of the values co, o l ,  . . . , ok,  c (ok)  under the probability mea- 
sure p ( .  I a ( . ) ) .  

Therefore, with o0 = 0 the random function ( defined by 

~ ( t ,  w ,  a ( . ) )  = t k ( w ,  a ( . ) ) ,  for $1 t E [ek-l (w ,  a ( . ) ) ,  e k ( w ,  a ( . ) ) )  

is a representation of the controlled object we wanted to find. 

2.3.2 Markov jump processes with step control 

In this subsection we consider processes with time scale R+ and spe- 
cialize first the general definition of control and controlled object to the 
Markovian setting. We consider only Markov processes with Polish state 
space X  and compact action space A. X  and 'U are the respective Borel- 
o-algebras. 

Definition 2.30. A controlled Markov process with Polish state space 
( X ,  X )  of  the basic process and compact action space (A ,  'U) for the control 
is defined by a set of consistent transition probabilities ~ ( t ,  x, s ,  C; a ( . ) )  for 

0 < t < s  < oo, x  E X ,  C E X ,  a ( . )  E A [ O ~ ~ ) .  The transition probabilities 
are measurable for fixed t < s  and C with respect t o  X  x ~ [ ~ l ' ) .  From the 
(controlled) transition probabilities ~ ( t ,  x ,  s ,  C; a ( . ) )  we can derive a family 
p,(. I .) of Markov process distributions, which depend on the initial state 
o f  the basic process z as a parameter. For every a( . )  E A['@) the family 
of measures p,(. I a ( . ) )  corresponds t o  a Markov process with transition 
probability P ( . ,  ., .; a ( . ) ) .  0 
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Remark 2.31. I f  the controls a( . )  are step functions then for determining 
the process distributions, it is sufficient t o  know transition probabilities o f  
the form ~ ( t ,  x ,  s ,  C ;  a ( . ) )  = P(t, x ,  s ,  C ;  a ) ,  where the controls are constant 
functions a( . )  = a. From these transition functions we can construct the 
transition functions under general step control with the aid of the Markov 
property as follows: 

Assume that for a general step control a( . )  with jump times 0 = t 1  < 
t 2  < . . .  < tn < . . . we have a( t )  = ak for t" t  < tk+l then for t  < s  
with tj-' < t  < t j  < . . .  < tn  < s  < tn+l we have 

Our main interest is in the class of controlled Markov jump processes 
under step control. These processes are connected with step controls 
and controlled objects p( .  I a ( . ) ) ,  which are concentrated on the space 
of step functions and pose a Markov property for a given control. We 
further require that the inter-jump times ak+' -ak ,  k E W, have bounded 
densities. 

Definition 2.32. A controlled Markov jump process is specified by the 
following properties: 

Let the state and action space be as in Definition 2.30 and denote by 
D([o ,  GO), A )  the set of functions on [0, oo) with values in A being right 
continuous with left-hand limits. 

For the family of transition functions ~ ( t ,  z ,  s ,  C ;  a ( . ) )  from Defini- 
tion 2.30 for all 0 5 t  < s  < oo and x  E X ,  C  E X with a( . )  E 
A['>") n D ( [ o ,  oo), A )  (the space o f  right continuous step functions without 
discontinuities of the second kind) the right derivative 

1 
lim -- [ ~ ( t , x ,  s ,  C ;  a ( . ) )  - n c ( z ) ]  = n ( t ,  x , a ( . ) ,  C ) ,  
s l t  s  - t  
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exists, and the limit function II(t, x, a ,  C) is continuous in  t ,  jointly measur- 
able in  t ,  x, a ,  a-additive in  C ,  and the function 

is bounded. 0 

If the control of the Markov jump process is not a deterministic func- 
tion a(.) as suggested in the above definition, the construction of the 
controlled process needs some care. For a given randomized step con- 
trol v(. I x(.)), which governs the development of the process, we now 
sketch the time development of a controlled Markov jump process simi- 
larly to the construction on page 31. We define a sequence of processes 

{ (h (t) , a, (t) : t > 0) : n E w as follows: 1 
If ((0) = xO is the initial state of the basic process, then we define 

xo(t) = xO, 0 < t < oo, and to = xo. The control process ao(t)  is then 
governed by the distribution v(. I xo(.)). 

Let t l ( t )  be a jump process, for which tl(0) = xO, and the time of 
the first jump a1 has the conditional distribution 

1 0 Pr {a > t I a o  = a ) = exp 

We prescribe 

and if El (a1 + 0) = xl ,  we set then El(t) = El (a1 + 0) = x1 for t > a'. 
The associated control is the process a l ( . ) ,  which coincides with ao(.)  
until time a', and then develops such that the conditional distribution 
of a l ( . )  given xO, a', xl,  a l ( . )  coincides with that of v(. I t l( .)) .  
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Define the conditional distribution of the time 02 of the second jump 
conditioned on xO, a', xl ,  a' (.) by 

and give 6 (a2 + 0) the following conditional distribution: 

Continuing this way, we see that we have constructed a sequence of 

processes (((,(t), a,(t)) : t > 0 for n = 2, 3 , .  . ., with joint jump times 1 
a" which satisfy the following conditions: 

1) (,(t) is a right continuous step process, which has exactly n jumps, 
which are a', . . . , an; 

2) (,-~(t) = &(t) for t < on; 
3) a n - ~ ( t )  = an( t )  for t < on; 
4) let { c , t  > 0) be the natural filtration of the process a, = 

( a , ( t ) : t  > 0); F& = ~ ( u ~ ~ ~ - F ; " )  = a ( a ( t ) : t  > 0) and !7Xn = 

o((( t ) :  t > 0) the o-algebras generated by the processes a, and & 
respectively. Then 
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where Pr {. I F&, 2Rn} is the conditional probability with respect to a- 
algebra generated by Fz, 2Rn; in the second case, the conditioning a- 
algebra is generated by F;, 2Rn and an+'; 

5) let 9Tn be a a-algebra generated by the events of the following type: 

where Ct E q, D E Dln, t > 0; then for all sets B from L?l[tlOO] we have 

One can verify that (2.9)-(2.11) and the conditions 1, 2, 3 uniquely 
determine the joint distributions of the processes a, (t) and (, (t), if only 
co(0) = &(O) is given. Put c(t) = &(t),  a ( t )  = an( t ) ,  t E [on; an+'), 
where a0 = 0. Note that from the boundedness of the inter-jump time 
intensities we have Pr {on i m) = 1. Then the processes ((t) and a ( t )  
are defined on [O; GO). The pair of processes [ = ([(t): t 2 0) and 
a = (a ( t ) :  t > 0) constructed this way is a controlled Markov jump 
process with the given controlled object and control v. 

If v(. I .) is of the following form: 

For t > 0, B E A [ ~ > ~ ] ,  and x(.) given, we have "(B I x(.)) = 

1, (?(t, x)) , where q(t, x) is a deterministic function, then the construc- 
tion is much simpler. (We have a non-randomized Markov control.) From 
(2.9) and (2.10) it follows, that [(t) is a Markov jump process with tran- 
sition probability Pv(t, x, s ,  C) satisfying 
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2.4 TOPOLOGICAL FOUNDATIONS 

Before we present the details of our stochastic optimization problems, we 
recall some Definitions and Theorems from [Kur69] and [HV69]. These 
are definitions of multivalued functions (set valued functions) and theo- 
rems on the existence of smooth functions that select from the set valued 
image of such functions a single value. The theorems are therefore know 
as theorems on the existence of smooth selectors. 

Definition 2.33. Given nonempty sets X and A; a multivalued function 
(multifunction) F :  X + A is a function on X such that each value F(x )  
is a nonempty subset o f  A. 

I f  we denote by 2A the set of all subsets of A, then a multifunction is a 
function 

F :  X 4 2A - (01, 

i.e., a set valued function with domain X 
I f  B c A, then 

A function f :  X + A is a selector for the multifunction F i f  f (x) E 
F(x )  for all x E X. 0 

Typical examples of multifunctions (set valued functions) are the 
elements of the sequences A = (At : t E W) from Definition 2.16 that 
determine the admissible actions in a decision model. 

Definition 2.34. For topological spaces X and A with Borel a-algebras X 
and (U a map F :  X 4 2A-  {fl), and the associated multifunction F :  X + 

A are point-closed if for all x E X the subset F(x )  C A is closed. 
A point-closed map F is 

0 open-measurable, i f  for all open sets E C A we have F-'(E) E X, 
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0 closed-measurable, if for all closed sets E C A we have F-'(E) E X ,  
and 

0 Borel-measurable, i f  for all Borel sets E C A we have F p l  ( E )  E X .  

A point-closed map F is upper semicontinuous, if for all closed sets 
E c A the set F- ' (E)  is closed. 

A point-closed map F is lower semicontinuous, i f  for all open sets E C A 
the set F- ' (E)  is open. 

A mapping F is continuous if i t  is simultaneously upper and lower semi- 
continuous. 0 

Theorem 2.35 (Selection theorem; see [Kur69, p. 741, [KRN65, 
AL721). Let ( X ,  X )  be a measurable space, and let A be a complete sep- 
arable metric space. I f  a point-closed map is according t o  Definition 2.34 
closed-, open-, or Borel-measurable, then i t  has a Borel measurable se1ector.O 

Theorem 2.36 (Selection theorem for semicontinuous maps 
[Kur69, p. 741). Let ( X ,  X )  be a measurable space, and let A be a 
complete separable metric space. Then any semicontinuous map F :  X 7- 

2A - (0) has a selector belonging t o  Baire class 1. 0 

Corollary 2.37. Let ( X ,  X )  be a measurable space, and let A be a compact 
space with countable basis. Then any semicontinuous map F :  X 7- 2A - 
(0) has a selector belonging t o  Baire class 1. 0 




