
VIII 
The geometry of numbers 

It was shown by Hermite (1850) that if 

f (x) = xfAx 

is a positive definite quadratic form in n real variables, then there exists a vector x with integer. 

coordinates, not all zero, such that 

f(x) I c,(det 

where c, is a positive constant depending only on 11 .  Minkowski (1891) found a new and more 

geometric proof of Hermite's result, which gave a much smaller value for the constant c,. Soon 

afterwards (1893) he noticed that his proof was valid not only for an n-dimensional ellipsoid 

f(x) I const., but for any convex body which was symmetric about the origin. This led him to 

a large body of results, to which he gave the somewhat paradoxical name 'geometry of 

numbers'. It seems fair to say that Minkowski was the first to realize the importance of 

convexity for mathematics, and it was in his lattice point theorem that he first encountered it. 

1 Minkowski's lattice point theorem 

A set C c Rn is said to be convex if xlr% E C implies Ox1 + (1 - 8)x2 E C for 0 < 0 < 1. 

Geometrically, this means that whenever two points belong to the set the whole line segment 

joining them is also contained in the set. 

The indicatol-fitriction or 'characteristic function' of a set S c Rn is defined by ~ ( x )  = 1 

or 0 according as x E S or x e S. If the indicator function is Lebesgue integrable, then the set S 

is said to have volume 

k(s)  = IR n x(X) . 

The indicator function of a convex set C is actually Riemann integrable. It is easily seen 

that if a convex set C is not contained in a hyperplane of R", then its interior int C (see 54 of 
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Chapter I) is not empty. It follows that h(C) = 0 if and only if C is contained in a hyperplane, 

and 0 < h(C) < - if and only if C is bounded and is not contained in a hyperplane. 

A set S c Rn is said to be symmetric (with respect to the origin) if x E S implies - x E S. 

Evidently any (nonempty) symmetric convex set contains the origin. 

A point x = (cl, ...,c,) E R" whose coordinates cl ,  ...& are all integers will be called a 

lattice yoint. Thus the set of all lattice points in Rn is Zn. 

These definitions are the ingredients for Minkowski's lattice yoint tlzeorenz: 

THEOREM 1 Let C be a symmetric convex set in Rn. I f  h(C) > 2", or  if C is compact and 

h(C) = 2,, then C contains a nonzero yoint ofZn. 

The proof of Theorem 1 will be deferred to $3. Here we illustrate the utility of the result 

by giving several applications, all of which go back to Minkowski himself. 

PROPOSITION 2 I fA is an nxn positive definite real symmetric matrix, then tlzere exists 

a nonzero point x E Zn such that 

xtAx I c,(det A)lJy~, 

where c, = (4/n){(n/2)! }2In. 

Proof For any p > 0 the ellipsoid xrAx I p is a compact symmetric convex set. By putting 

A = TtT, for some nonsingular matrix T, it may be seen that the volume of this set is 

K,pnI2(det A)-lJ2, where K, is the volume of the n-dimensional unit ball. It follows from 

Theorem 1 that the ellipsoid contains a nonzero lattice point if ~,p"/~(det  A)-1/" But, as 

we will see in $4 of Chapter IX, K ,  = ~ ~ / ~ / ( n / 2 ) ! ,  where x! = T(x + 1). This gives the value c, 

for p. 

It follows from Stirling's formula (Chapter IX, 54) that c, - 211/7ce for n + -. Hermite 

had proved Proposition 2 with c, = (4/3)(+1)/2. Hermite's value is smaller than Minkowski's 

for n I 8, but much larger for large n. 

As a second application of Theorem 1 we prove Minkowski's linem- forms theorem: 

PROPOSITION 3 Let A be an nxn real nzatrix ~ ~ i t h  determinant -t 1. Then tlzere exists a 

nonzero point x E Zn such that Ax = y = (qk) satisfies 

Proof For any positive integer m, let C,, be the set of all x E Rn such that Ax E D,,, where 
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Then C,  is a symmetric convex set, since A is linear and D, is symmetric and convex. 

Moreover h(Cm) = 2n(l + l lm),  since h(Dm) = 2n(l + l lm)  and A is volume-preserving. 

Therefore, by Theorem 1, C, contains a lattice point x, z 0. Since C, c C1 for all m > 1 and 

the number of lattice points in C1 is finite, there exist only finitely many distinct points x,. 

Thus there exists a lattice point x # 0 which belongs to C, for infinitely many m. Evidently 

x has the required properties. 

The continued fraction algorithm enables one to find rational approximations to irrational 

numbers. The subject of Diophantine approximation is concerned with the more general 

problem of solving inequalities in integers. From Proposition 3 we can immediately obtain a 

result in this area due to Dirichlet (1842): 

PROPOSITION 4 Let A = (ajk) be an nxm real matrix and let t > 1 be real. Then there 

exist integers ql ,..., q,,pl ,..., p,, with 0 < max (lql 1 ,..., lqml) < tnlm, such that 

1 C ajkqk -pjl I llt (1 I j I n).  

Proof Since the matrix 

has determinant 1, it follows from Proposition 3 that there exists a nonzero vector 

such that 

lqkl < tnlm (k = 1 ,  ..., m ) ,  

I C ? = l a j ~ k - p j l  I llt G =  1 ,..., n). 

Since q = 0 would imply lpjl < 1 for all j and hence p = 0, which contradicts x + 0, we must 

have maxk lqkl > 0. 

COROLLARY 5 Let A = (ajk) be an nxm real matrix such that Az e Zn for any nonzero 

vector z E Zm. Then there exist infinitely many (m+n)-tuples q l ,  ...,q,,pl,...g, of integers 

with greatest common divisor 1 and with arbitrarily large values of 
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Proof Let ql ,.. .,q,gl ,... ,p, be integers satisfying the conclusions of Proposition 4 for some 

t > 1. Evidently we may assume that q l ,  ...,q,,pl,...,pn have no common divisor greater than 

1. For given q l ,  ...,q,, let 6j be the distance of C ctjkqk from the nearest integer and put 

6 = max 8j (1 I j I n). By hypothesis 0 < 6 < 1 ,  and by construction 

Choosing some t' > 218, we find a new set of integers qll ,  ...,qml,pl',...,pn' satisfying the same 

requirements with t replaced by t', and hence with 8' I llt' < 612. Proceeding in this way, we 

obtain a sequence of (rn + n)-tuples of integers ql("), ...,q,(v),pl(v),...,p,(V) for which 6(") + 0 
and hence I I q ( " ) I I  + 00, since we cannot have q ( ~ )  = q for infinitely many v. 

The hypothesis of the corollary is certainly satisfied if l , a j l ,  ..., aj, are linearly 

independent over the field Q of rational numbers for some j E { 1, ..., n ) .  

Minkowski also used his lattice point theorem to give the first proof that the discriminant of 

any algebraic number field, other than Q, has absolute value greater than 1. The proof is given 

in most books on algebraic number theory. 

2 Lattices 

In the previous section we defined the set of lattice points to be Zn. However, this 

definition is tied to a particular coordinate system in Rn. It is useful to consider lattices from a 

more intrinsic point of view. The key property is 'discreteness'. 

With vector addition as the group operation, Rn is an abelian group. A subgroup A is said 

to be discrete if there exists a ball with centre 0 which contains no other point of A. (More 

generally, a subgroup H of a topological group G is said to be discrete if there exists an open set 

U c G such that H n U = { e ) ,  where e is the identity element of G.) 

If A is a discrete subgroup of W, then any bounded subset of Rn contains at most finitely 

many points of A since, if there were infinitely many, they would have an accumulation point 

and their differences would accumulate at 0. In particular, A is a closed subset of Rn. 

PROPOSITION 6 Zfxl, ...jm are linearly independent vectors in Rn, then the set 

is a discrete subgroup of Rn. 
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Proof It is clear that A is a subgroup of Rn, since x,y E A implies x - y E A. If A is not 

discrete, then there exist y(V) E A with Iy(l)I > ly(*)l > ... and Iy(v)I -+ 0 as v + w. Let V be the 

vector subspace of Rn with basis XI, ...J, and for any vector 

This defines a norm on V. We have 

where c k ( V )  E Z (1 I k I m). Since any two norms on a finite-dimensional vector space are 

equivalent (Lemma VI.7), it follows that C k ( ~ )  --+ 0 as v --+ (1 I k I m). Since C k ( ~ )  is an 

integer, this is only possible if y(V) = 0 for all large V, which is a contradiction. 

The converse of Proposition 6 is also valid. In fact we will prove a sharper result: 

PROPOSITION 7 If A is a discrete subgroup of Rn, then there exist linearly independent 

vectors XI, ...J, in Rn such that 

Furthermore, if yl, ...,y, is any maxinml set of linearly independent vectors in A, we cart 

choose xl ,..., x,, so that 

where <Y> denotes the vector subspace generated by the set Y 

Proof Lee S1 denote the set of all al > 0 such that alyl E A and let p1 be the infimum of all 

al E S1. We are going to show that y1 E S1. If this is not the case there exist a l ( ~ )  E S1 with 

al(l) > a1(2) > ... and al(v) + yl as v --+ m. Since the ball 1x1 5 (1 + pI)Iyll contains only 

finitely many points of A, this is a contradiction. 

Any al E S1 can be written in the foim al = ppl + 9, where p is a positive integer and 

0 I 8 < y I. Since 9 > 0 would imply 9 E S1, contrary to the definition of y I ,  we must have 

9 = 0. Hence if we put xl = plyl, then 
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Assume that, for some positive integer k (1 I k < m), we have found vectors XI,..& E A 
such that 

A n <yl ,..., yk> = { c l x l  + ... + ckxk: e l  ,..., ck E Z). 
We will prove the proposition by showing that this assumption continues to hold when k is 

replaced by k + 1. 

Any x E A n < ~ ~ , . . . , y ~ + ~ >  has the form 

where al,...,ak+l E R. Let Sk+l denote the set of all ak+1 > 0 which arise in such 

representations and let pk+l be the infimum of all ak+l E Sk+l. We will show that pk+1 E Sk+1. 

If pk+l 4 Sk+l,  there exist ak+l(V) E Sk+l with ak+l(l) > ak+1(2) > .,. and ak+l(v) 4 pk+l as 

v + m. Then A contains a point 

where aj(v) E R (1  I j 5 k).  In fact, by subtracting an integral linear combination of xl , . . .~k  

we may assume that 0 I a j ( v )  < 1 ( 1  5 j < k) .  Since only finitely many points of A are 

contained in the ball 1x1 5 Ixll + ... + lxkl + (l+pk+l)lyk+ll, this is a contradiction. 

Hence pk+l > 0 and A contains a vector 

As for S1,  it may be seen that Sk+l consists of all positive integer multiples of pk+l. Hence any 

x E A n <Y~, . . . ,Y~+~> has the form 

we must actually have cl,...,ck E Z. 

By being more specific in the proof of Proposition 7 it may be shown that there is a unique 

choice of x l ,  ...,xm such that 

Y1 = P l G l  

Y2 = P21Xl + P22X2 
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where p E Z, pll > 0, and 0 I plJ <p,, if j < i (Hernzite's rzornzal fomz). 
'J 

It is easily seen that in Proposition 7 we can choose x, = y, (1 I i I nz) if and only if, for 

any x E A and any positive integer h, x is an integral linear combination of yl ,  ...,y, whenever 

hx is. 

By combining Propositions 6 and 7 we obtain 

PROPOSITION 8 For a set A c Rn the following two conditions are equivalent: 

(i) A is a discrete subgroup of RN and there exists R > 0 such that, for each y E Rn, there 

is some x E A with ly - xl < R; 

(ii) there exist n linearly iwdeperiderzt vectors .rl,...jx-, in Rn such that 

Proof If (i) holds, then in the statement of Proposition 7 we must have m = n, i.e. (ii) holds. 

On the other hand, if (ii) holds then A is a discrete subgroup of Rn, by Proposition 6. 

Moreover, for any y E R" we can choose x E A SO that 

where 0 5 Oj < 1 0' = 1, ..., n),  and hence 

A set A c [Wn satisfying either of the two equivalent conditions of Proposition 8 will be 

called a lattice and any element of A a lattice point. The vectors xl,...,xri in (ii) will be said to 

be a basis for the lattice. 

A lattice is sometimes defined to be any discrete subgroup of [Wn, and what we have called 

a lattice is then called a 'nondegenerate' lattice. Our definition is chosen simply to avoid 

repetition of the word 'nondegenerate'. We may occasionally use the more general definition 

and, with this warning, believe it will be clear from the context when this occurs. 

The basis of a lattice is not uniquely deteimined. In fact yl,  ...,yn is also a basis if 

where A = (aJk) is an rzxn matrix of integers such that det A = Ifl 1, since A-1 is then also a 

matrix of integers. Moreover, every basis yl, ...y,, is obtained in this way. For if 
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where A = (ajk) and B = (Pi) are nxn matrices of integers, then BA = I and hence 

(det B)(det A) = 1. Since det A and det B are integers, it follows that det A = _+ 1. 

Let xl, ...A be a basis for a lattice A c Rn. If 

xk = CJ,lyjkej (k = 1 ,..., n), 

where el, ..., e, is the canonical basis for Rn then, in terms of the nonsingular matrix T = ("/j), 

the lattice A is just the set of all vectors Tz with z E Zn. The absolute value of the determinant 

of the matrix T does not depend on the choice of basis. For if xlr, ..., xnl is any other basis, 

then 

xi' = C 7=laipj (i = 1 ,..., n), 

where A = (ai) is an nxn matrix of integers with det A = f 1. Thus 

xkl = CJ,Iyjk'ej (k = 1 ,..., n ) ,  

where T' = ("I;.') satisfies T' = TAbnd hence 

ldet T'I = ldet TI. 

The uniquely determined quantity ldet T I  will be called the determinant of the lattice A and 

denoted by d(A). (Some authors, e.g. Conway and Sloane [14], call ldet ~1~ the determinant of 

A, but others prefer to call this the discriminant of A.) 

The determinant d(A) has a simple geometrical interpretation. In fact it is the volume of the 

parallelotope II, consisting of all points y E Rn such that 

where 0 I Bk I 1 (k = 1, ..., n). The interior of n is a fundamental domain for the subgroup 

A, since 

Rn = U x G * ( n + 4 ,  

For any lattice A c Rn, the set A* of all vectors y E [Wn such that yix E Z for every x E A 

is again a lattice, the dual (or 'polar' or 'reciprocal') of A. In fact, 

i fA = {Tz: z E Zn),  then A* = {(Tt)-lw: w E Zn). 

Hence A is the dual of A* and d(A)d(A*) = 1. A lattice A is self-dual if A* = A. 
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3 Proof of the lattice point theorem, and some generalizations 

In this section we take up the proof of Minkowski's lattice point theorem. The proof will 

be based on a very general result, due to Blichfeldt (1914), which is not restricted to convex 

sets. 

PROPOSITION 9 Let S be a Lebesgue measurable subset of Rn, A a lattice in Rn with 

determinant d(A) and m a positive integer. 

rfh(S) > m d(A), or if S is compact and h(S) = m d(A), then there exist m + 1 distinct 

points X~,...,X,+~ of S such that the diferences xj -xk (1 I j,k I m + 1) all lie in A. 

Proof Let bl, ..., b, be a basis for A and let P be the half-open parallelotope consisting of all 

points x = O1bl + ... + O,bn, where 0 1 Oi < 1 (i = 1 ,..., n). Then L(P) = d(A) and 

Suppose first that h(S) > m d(A). If we put 

then Tz c P, L(Tz) = h(Sz) and 

VS) = CZ,, US,). 
Hence 

CzGAh(Tz) = h(S) > m d(A) = m h(P). 

Since Tz c P for every z, it follows that some pointy E P is contained in at least m + 1 sets Tz. 

On fact this must hold for all y in a subset of P of positive measure.) Thus there exist m + 1 

distinct points zl ,..., z,+~ of A and points xl ,... J,+~ of S such that y = xj - zj (j = 1 ,.., m+l). 

Then X~,...J,+~ are distinct and 

Suppose next that S is compact and L(S) = m d(A). Let {q,) be a decreasing sequence of 

positive numbers such that E, + 0 as v + m, and let Sv denote the set of all points of Rn 

distant at most E, from S. Then Sv is compact, h(Sv) > L(S) and 

By what we have already proved, there exist m + 1 distinct points X~(~),...J,+~(~) of Sv such 

that xj(V) - x ~ ( ~ )  E A for all j,k. Since Sv c S1 and S1 is compact, by restricting attention to a 
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subsequence we may assume that xj(V) -+ xJ as v + 0' = 1, ..., m+l). Then xj E S and 

x.(V) - x ~ ( ~ )  + xj - xk. Since xj(") - x ~ ( ~ )  E A, this is only possible if xj - xk = x,@) - x ~ ( ~ )  for J 

all large v. Hence xl ,... J,,,~ are dstinct. 

Siege1 (1935) has given an analytic formula which underlies Proposition 9 and enables it to 

be generalized. Although we will make no use of it, this formula will now be established. 

For notational simplicity we restrict attention to the (self-dual) lattice A = Zn. 

PROPOSITION 10 If y: IWn + @ is a bourlded nieasurable function which vartishes 

outside some conryact set, then 

Proof Since y, vanishes outside a compact set, there exists a finite set T c Z n  such that 

y,(x + z )  = 0 for all x E R'Gf z E Zn\ T. Thus the sum defining $(x) has only finitely many 

nonzero terms and also is a bounded ineasurable function which vanishes outside some 

compact set. 

If we wsite 

x = <51>...>5,,>> -. = <rl> . . .7 in>,  

then the sum defining $(x) is ullaltered by the substitution Cj + Cj + 1 and hence $ has period 1 

in each of the variables cj 0' = 1, ..., n). Let ll denote the fundamental parallelotope 

Since the functions e2E'wrx (w E Z") are an orthogonal basis for L2(II), Parseval's equality 

(Chapter I, 5 10) holds: 

In l$(x)12 dx = ZwEZtz IcM,l2, 
where 

C ,  = In $ (x)e-2xiwr.~ dx. 

But 

c,. = I, ,chi, y(x  + z)e-2"'~" rlx 

since e2"& 1 for any integer k. Hence 
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Substituting these expressions in Passeval's equality, we obtain the result. 

Suppose, in particular, that y~ takes only real nonnegative values. Then so also does $ and 

On the other hand, omitting all terms with w # 0 we obtain 

C wEzn 16. w(x)e-2'"'x dx 2 ( j,,, ~ ( x j  dx)2. 

Hence, by Proposition 10, 

IZ 
sup_ R,, B(x) 2 ~ ( x )  dx. 

For example, let S c_ Rn be a measurable set with h(S) > nz. Then there exists a bounded 

measurable set S' c S with h(S'j > nz. If we take y~ to be the indicator function of S', then 

and we conclude that there exists y E Rn such that 

Since the only possible values of the su~nmands on the left are 0 and 1, it follows that there exist 

nz + 1 distinct points zl ,..., z,,,~ E Zn = A such that y + z ,  ,..., y + z ,,,, E S. The proof of 

Proposition 9 can now be completed in the same way as before. 

Let {K,} be a family of subsets of Rn, where each K, is the closure of a nonempty open 

set G,, i.e. K, is the intersection of all closed sets containing G,. The family {K,} is said to be 

a yackirlg of Rn if a # a' implies G ,  n G u t  = 0 and is said to be a covering of Rn if 
Rn = U,KW It is said to be a tiling of [W" if it is both a packing and a covering. 

For example, if Il is a fundamental parallelotope of a lattice A, then the family {II + a: 
a E A )  is a tiling of Rn. More generally, if G is a nonempty open subset of Rn with closure K, 

we may ask whether the family { K  + a: a E A} of all A-translates of K is either a packing or a 

covering of Rn. Some necessary conditions may be derived with the aid of Proposition 9: 
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PROPOSITION 11 Let K be the closure of a bounded nonempty open set G c Rn and let A 

be a lattice in Rn. 
If the A-translates of K are a covering of [Wn then h(K) 2 d(A), with strict inequality 

if they are not also a packing. 

If the A-translates of K are a packing of Rn then h(K) 5 d(A), with strict inequality if 
they are not also a covering. 

Proof Suppose first that the A-translates of K cover Rn. Then every point of a fundamental 

parallelotope II of A has the form x - a, where x E K and a E A. Hence 

Suppose, in addition, that the A-translates of K are not a packing of Rn. Then there exist 

distinct points x l j 2  in the interior G of K such that a =xl  -x2 E A. Let 

We can choose E > 0 SO small that the balls BE + xl and BE + x2 are disjoint and contained in G. 

Then G' = G \ (BE + xl) is a bounded nonempty open set with closure K' = K \ (int BE + xl). 

Since 

BE+xl  = B E + x 2 + a  G K 1 + a ,  

the A-translates of K' contain K and therefore also cover Rn. Hence, by what we have already 

proved, h(K') 2 d(A). Since h(K) > h(K'), it follows that h(K) > d(A). 

Suppose now that the A-translates of K are a packing of Rn. Then A does not contain the 

difference of two distinct points in the interior G of K, since G + a and G + b are disjoint if a,b 

are distinct points of A. It follows from Proposition 9 that 

Suppose, in addition, that the A-translates of K do not cover Rn. Thus there exists a point 

y E Rn which is not in any A-translate of K. We will show that we can choose E > 0 so small 

that y is not in any A-translate of K +BE. 

If this is not the case then, for any positive integer v, there exists a, E A such that 
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Evidently the sequence a, is bounded and hence there exists a E A such that a, = a for 

infinitely many v. But then y E K + a, which is contrary to hypothesis. 

We may in addition assume E chosen so small that 1x1 > 2~ for every nonzero x E A. Then 

the set S = G u (BE + y) has the property that A does not contain the difference of any two 

distinct points of S. Hence, by Proposition 9, h(S) 5 d(A). Since 

it follows that A(K) < d(A). 0 

We next apply Proposition 9 to convex sets. Minkowski's lattice point theorem (Theorem 

1) is the special case m = 1 (and A = kn) of the following generalization, due to van der Corput 

(1936): 

PROPOSITION 12 Let C be a symmetric convex subset of Rn, A a lattice in Rn with 

determinant d(A), and m a positive integer. 

If h(C) > 2"m d(A), or if C is compact and h(C) = 2nm d(A), then there exist 2m 

distinct nonzero points + yl, ...,+ y, of A such that 

yj E C (1 l j l m ) ,  

yj-yk E C ( l I j , k I m ) .  

Proof The set S = {x/2: x E C} has measure h(S) = X(C)/2n. Hence, by Proposition 9, there 

exist m + 1 distinct points X ~ , . . . J ~ + ~  E C such that (xj -xk)/2 E A for all j,k. 

The vectors of Rn may be totally ordered by writing x > x' if the first nonzero coordinate 

of x - x' is positive. We assume the points X ~ , . . . , X ~ + ~  E C numbered so that 

Put 
X1 > X2 > ... > X m + l .  

yj = (xj - ~ , + ~ ) / 2  (j = 1, ..., m). 

Then, by construction, yj E A (j = 1 ,..., m). Moreover yj E C, since xl ,... ,x,+~ E C and C is 

symmetric, and similarly yj - yk = (xj - x&/2 E C. Finally, since 

The conclusion of Proposition 12 need no longer hold if C is not compact and 

h(C) = 2"m d(A). For example, take A = kn and let C be the symmetric convex set 
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Then d(A) = 1 and A(C) = 2%. However, the only nonzero points of A in C are the 2(m - 1) 

points (If: k,O ,..., 0) (1 I k 4 m - 1). 

To provide a broader view of the geometry of numbers we now mention without proof 

some further results. A different generalization of Minkowski's lattice point theorem was 

already proved by Minkowski himself. Let A be a lattice in [W" and let K be a compact 

symmetric convex subset of [Wn with nonelnpty interior. Then pK contains no nonzero point of 

A for small p > 0 and contains rz linearly independent points of A for large p > 0. Let pi be the 

infimum of all p > 0 such that pK contains at least i linearly independent points of A 

(i = 1, ..., 1%). The successive nzininza pi = p,(K,A) evidently satisfy the inequalities 

Minkowski's lattice point theorem says that 

Minkowski's theorenz on successive nzirzin~a stsengthens this to 

The lower bound is quite easy to prove, but the upper bound is deeper-lying - notwithstanding 

simplifications of Minkowski's original proof. If A = Zn,  then equality holds in the lower 

bound for the c~.oss-polytope K = {(~l,...,kl,) E R": Cy=l lkil I 1 } and in the upper bound for 

the cube K = {(cl,...,tn) E Rn: Iti/ I 1  for all i]. 

If K is a compact symmetric convex subset of [W" with nonempty interior, its critical 

cleternzinant A(K) is defined to be the infimum of the determinant d(A) for all lattices A with no 

nonzero point in the interior of K. A lattice A for which d(A) = A(K) is called a critical lattice 

for K. It will be shown in $6 that a critical lattice always exists. 

It follows from Proposition 12 that A(K) 2 2-nA(K). A conjectured sharpening of 

Minkowski's theorem on successive minima, which has been proved by Minkowski (1896) 

himself for n = 2 and for n-dimensional ellipsoids, and by Woods (1956) for n = 3, claims that 

The successive minima of a convex body are connected with those of its dual body. If K is 

a compact symmeuic convex subset of R" with nonempty interior, then its h a 1  

K* = {y E Rn: ytx I 1 for all x E K)  
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has the same properties, and K is the dual of K*. Mahler (1939) showed that the successive 

minima of the dual body K* with respect to the dual lattice A* are related to the successive 

minima of K with respect to A by the inequalities 

and hence, by applying Minkowski's theorem on successive minima also to K* and A*, he 

obtained inequalities in the opposite direction: 

pi(K,A)p,-i+l(K*,A*) I 4n/h(K)h(K*) (i = 1 ,..., n). 

By further proving that X(K)X(K*) 2 4n(n!)-2, he deduced that 

pi(K,A)pn-i+l(K*,A*) 5 (n!l2 (i = 1 ,..., n). 

Dramatic improvements of these bounds have recently been obtained. Banaszczyk (1996), 

using techniques from harmonic analysis, has shown that there is a numerical constant C > 0 
such that, for all n 2 1 and all i E { 1 ,..., n), 

He had shown already (1993) that if K = B1 is the n-dimensional closed unit ball, which is self- 

dual, then for all n 2 1 and all i E { 1 ,..., n), 

This result is close to being best possible, since there exists a numerical constant C' > 0 and 

self-dual lattices An c Rn such that 

Two other applications of Minkowski's theorem on successive minima will be mentioned 

here. The first is a sharp form, due to Bombieri and Vaaler (1983), of 'Siegel's lemma'. In his 

investigations on transcendental numbers Siege1 (1929) used Dirichlet's pigeonhole principle to 

prove that if A = (aj& is an mxn matrix of integers, where m i n, such that I p for all j,k, 

then the system of homogeneous linear equations 

has a solution x = (Ck) in integers, not all 0, such that I 1 + (np)ml("-m) for all k. Bombieri 

and Vaaler show that, if A has rank m and if g > 0 is the greatest common divisor of all mxm 
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subdeterminants of A,  then there are n - m linearly independent integral solutions xj = (cjk) 

= 1, ..., n - m )  such that 

n;~; IIxj 11 5 [det (AA~)] 112 ig , 

where x-. = maxk Itjk/. II JII 
The second application, due to Gillet and SoulC (1991), may be regarded as an arithmetic 

analogue of the Riemann-Roch theorem for function fields. Again let K be a compact 

symmetric convex subset of Rn with nonempty interior and let pi denote the infimum of all 

p > 0 such that pK contains at least i linearly independent points of Zn (i = 1, ..., 1 2 ) .  If M ( K )  is 

the number of points of Zn in K, and if h is the maximum number of linearly independent points 

of Zn in the interior of K, then Gillet and SoulC show that k1 ... p,,JM(K) is bounded above and 

below by positive constants, which depend on n but not on K. 

A number of results in this section have dealt with compact symmetric convex sets with 

nonelnpty interior. Since such sets may appear rather special, it should be pointed out that they 

arise very naturally in connection with normed vector spaces. 

The vector space Rn is said to be normed if with each x E Rn there is associated a real 

number 1x1 with the properties 

(i) 1x1 2 0, with equality if and only if x = 0 ,  

(ii) Ix + y (  l lx(+ lyl f o r a l l x , y ~  Rn, 
(iii) 10x1 = la1 1x1 for all x E Rn and all a E R. 

Let K denote the set of all x E Rn such that 1x1 5 1. Then K is bounded, since all norms on a 

finite-dimensional vector space are equivalent. In fact K is compact, since it follows from (ii) 

that K is closed. Moreover K is convex and symmetric, by (ii) and (iii). Furthermore, by (i) 

and (iii), x/Ix-1 E K for each nonzero x E Rn. Hence the interior of K is nonempty and is 

actually the set of all x E Rn such that 1x1 < 1. 

Conversely, let K be a compact symmetric convex subset of Rn with nonempty interior. 

Then the origin is an interior point of K and for each nonzero x E Rn there is a unique p > 0 

such that px is on the boundary of K. If we put 1x1 = p-1, and 101 = 0, then (i) obviously holds. 

Furthermore, since I-xl = 1x1, it is easily seen that (iii) holds. Finally, if y E Rn and 

lyl = 0-1, then px,oy E K and hence, since K is convex, 

po(p + o)-l(x + y) = o(p + 0)-lpx + p(p + 0)-lay E K. 

Hence 

Ix +rl 5 (P + o)/po = 1x1 + Irl. 
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Thus Rn is a normed vector space and K the set of all x E Rn such that 1x1 I 1. 

4 Voronoi cells 

Throughout this section we suppose Rn equipped with the Euclidean metric: 

where lbll = (xtx)lD. We call lk/l2 = xtx the square-norm of x and we denote the scalar product 

ytz by 6 , ~ ) .  
Fix some point xo E Rn. For any point x # xo, the set of all points which are equidistant 

from xo and x is the hyperplane H, which passes through the midpoint of the segment joining 

xo and x and is orthogonal to this segment. Analytically, H, is the set of ally E Rn such that 

The set of all points which are closer to xo than to x is the open half-space G, consisting of all 

points y E Rn such that 

2(x -xo ,~)  < llx1I2 - llxol12. 

The closed half-space G, = H, u G, is the set of all points at least as close to xo as to x. 

Let X be a subset of Rn  containing more than one point which is discrete, i.e. for each 

y E Rn there exists an open set containing y which contains at most one point of X. It follows 

that each bounded subset of Rn contains only finitely many points of X since, if there were 

infinitely many, they would have an accumulation point. Hence for each y E Rn there exists an 

xo E X whose distance from y is minimal: 

d(xo,y) I d(x,y) for every x E X. (1) 

For each xo E X we define its Voronoi cell V(xo) to be the set of ally E Rn for which (1) holds. 

Voronoi cells are also called 'Dirichlet domains', since they were used by Dirichlet (1 850) in R2 

before Voronoi (1908) used them in Rn. 
If we choose r > 0 so that the open ball 
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contains no point of X except xo, then P,,2(xo) E V(xo). Thus xo is an interior point of V(xo). 

Since 

ex = {y E Rn: d(xg,y) 5 d(x,y)}, 

we have V(xo) c and actually 

w o )  = nx~X,xn cX. 
It follows at once from (2) that V(xo) is closed and convex. Hence V(xo) is the closure of its 

nonempty interior. 

According to the definitions of $3, the Voronoi cells form a tiling of [Wn, since 

int V(x) n int V(x3 = 0 if x,x' E X and x # x'. 

A subset A of a convex set C is said to be a face of C if A is convex and, for any c,cl E C, 

(c,cl) n A # 0 implies c,c' E A. The tiling by Voronoi cells has the additional property that 

V(x) n V(xl) is a face of both V(x) and V(xl) if x,xf E X and x # x'. We will prove this by 

showing that if y1,y2 are distinct points of V(x) and if z E (Y1,y2) n V(x'), then yl E V(x'). 

Since z E V(X) n V(X'), we have d(x,z) = d(x',z). Thus z lies on the hyperplane H which 

passes through the midpoint of the segment joining x and x' and is orthogonal to this segment. 

If yl g V(x'), then d(x,yl) < d(xl,yl). Thus yl lies in the open half-space G associated with the 

hyperplane H which contains x. But then y2 lies in the open half-space G' which contains x', 

i.e. d(x1,y2) < d(x,y2), which contradicts y2 E V(x). 

We now assume that the set X is not only discrete, but also relatively dense, i.e. 

(v there exists R > 0 such that, for each y E Rn, there is some x E X with d(x,y) < R. 

It follows at once that V(xo) c PR(xO). Thus V(xo) is bounded and, since it is closed, even 

compact. The ball P2R(~O) contains only finitely many points XI, ...jm ofX apart from xo. We 

are going to show that 

v(x,) = n 2, Gxi. (3) 

By (2) we need only show that if y E n cxi, then y E ex for every x E X. 

Assume that d(xo,y) 2 R and choose z on the segment joining xo and y so that d(xo,z) = R. 

For some x E X we have d(x,z) < R and hence 0 < d(xo,x) < 2R. Consequently x = xi for 

some i E { 1, ..., m}. Since d(xi,z) < R = d(xo,z), we have z E cxi. But this is a contradiction, 

since xo,y E Gi and z is on the segment joining them. 

We conclude that d(xo,y) < R. If x E X and x # xo,xl, ...,x,, then 
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Consequently y E for every n E X. 

It follows from (3) that V(xo) is a polyhedron. Since V(xo) is bounded and has a 

nonempty inteiior, it is actually an n-dinzensional polytope. 

The faces of a polytope are an impostant past of its structure. An (n - 1)-dimensional face 

of an n-dimensional polytope is said to be a facet and a 0-dimensional face is said to be a 

vertex. We now apply to V(xo) some properties colnrnon to all polytopes. 

In the representation (3) it may be possible to omit some closed half-spaces without 

affecting the validity of the representation. By omitting as many half-spaces as possible we 

obtain an in.edundant representution, which by suitable choice of notation we may take to be 

for some 1 I m. The intersections V(xo) n HXi (1 I i 51) are then the distinct facets of V(xo). 

Any noneinpty proper face of V(xo) is contained in a facet and is the intersection of those facets 

which contain it. Fustheimore, any nonempty face of V(xo) is the convex hull of those vertices 

of V(xo) which it contains. 

It follows that for each xi (1 I i I 1) there is a vertex vi of V(xo) such that 

For d(xo,v) I d(x,,v) for every vertex v of V(xo). Assume that d(xo,v) < d(x,,v) for every 

vertex v of V(xo). Then the open half-space G,, contains all vertices v and hence also their 

convex hull V(xo). But this is a contradiction, since V(xo) n H,, is a facet of V(xo). 

To illustrate these results take X = 8" and xo = 0 .  Then the Voronoi cell V(0) is the cube 

consisting of all points y = (ql ,  ...,q,) E iWn with lqrl 5 112 ( i  = 1, ..., n). It has the minimal 

number 2n of facets. 

In fact any lattice A in Rn is discrete and has the property (u. For a lattice A we can 

restrict attelltion to the Voroiioi cell V(A): = V(O), since an asbitrary Voronoi cell is obtained 

from it by a translation: V(xo) = V ( 0 )  + xo. The Voronoi cell of a lattice has additional 

properties. Since x E A implies - x E A, y E V(A) implies - y E V(A). Also, if x, is a lattice 

vector determining a facet of V(A) and if y E V(A) n HA{, then llyll = I!y -x,l/. Since x E A 

implies x, -x  E A, it follows that y E V(A) n H,, implies x, - y E V(A) n H I I .  Thus the 

Vororloi cell V(A) and all its facets are ceiitrosymmeti~ic. 
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In addition, any orthogonal transformation of Rn which maps onto itself the lattice A also 

maps onto itself the Voronoi cell V(A).  Furthermore the Voronoi cell V ( A )  has volume d(A), 

by Proposition 11, since the lattice translates of V(A)  form a tiling of RrJ. 

We define a facet vector or 'relevant vector' of a lattice A to be a vector xi E A such that 

V ( A )  A HXi  is a facet of the Voronoi cell V ( A ) .  If V ( A )  is contained in the closed ball 

BR = { X  E Rn: llxll I R } ,  then every facet vector xi satisfies IkiI I 2 R .  For, if y E V(A) n Hxi 

then, by Schwarz's inequality (Chapter I, $4), 

The facet vectors were characterized by Voronoi (1908) in the following way: 

PROPOSITION 13 A nonzero vector x E A is a facet vector of the lattice A c R" if and 

only if every vector x' E x + 2A, except f x, satisfies lk'll > Ilxll. 

Proof Suppose first that llxll < Ilx'll for all x' # f x such that (x' - x)/2 E A. If z E A and 

x' = 22 - x, then (x' - x)/2 E A. Hence if z # 0,x then 

i.e. x/2 E G,, Since IGi/211 = Ib -x/211, it follows that x/2 E V(A)  and x is a facet vector. 

Suppose next that there exists x' # t- x such that w = (x l -x) /2  E A and /lx'II I 1bll. Then 

also z = (x' + x)/2 E A and z,w # 0. If y E Gz n c-, , then 

Hence, by the parallelogram law (Chapter I, §lo), 

That is, y E G,. Thus Gx is not needed to define V(A) and x is not a facet vector. 

Any lattice A contains a nonzero vector with minimal square-norm. Such a vector will be 

called a nzinimal vector. Its square-norm will be called the minimum of A and will be denoted 

by m ( 4 .  

PROPOSITION 14 If A c Rn is a lattice ~ ~ i t h  nzinimunf m(A),  then any nonzero vector in 

A with square-norm < 2m(A) is a facet vector. In particular, any nzininzal vector is a facet 

vector. 
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Proof Put r = nz(A) and let x be a nonzero vector in A with < 27. If x is not a facet 

vector, there exists y z f x with O, - x ) / 2  E A such that llyll I Ilxll. Since (4, + x)/2 E A, 

/IT f y1I2 2 41.. Thus 

41 I Ibll" Ib1l2 k 2(x,y) < 4r k 2(x,y), 

which is impossible. 

PROPOSITION 15 For  ally lattice A c Rfl, the rwnber of facets of its Val-onoi cell V(A) is 

a t  most 2(2n - 1). 

Proof Let x l ,  ..., x, be a basis for A. Then any vector x E A has a unique representation 

n = x' + x", where x' E 2A and 

X" = alxl + ... + a,x,, 

with aj E {0,1) for j = 1, ..., n. Thus the number of cosets of 2A in A is 2n. But, by 

Proposition 13, each coset contains at most one pair f y of facet vectors. Since 2A itself does 

not contain any facet vectors, the total number of facet vectors is at most 2(2"- 1). tl 

There exist lattices A c Rn for which the upper bound of Proposition 15 is attained, e.g. 

the lattice A = {Tz: z E Z'L} with T = I + PJ, where J is the nxn matrix every element of which 

is 1 and p = ((1 + n)1/2 - l]/n. 

PROPOSITION 16 Every vector of a lattice A c RJ1 is an integral linear conzbination of 

facet vectol-s. 

Proof Let bl,...,bnL be the facet vectors of A and put 

Evidently A' is a subgroup of R" and actually a discrete subgroup, since A' G A. If A' were 

contained in a hyperplane of Rn any point on the line through the origin orthogonal to this 

hypesplane would belong to the Voronoi cell V of A, which is impossible because V is 

bounded. Hence A' contains rz lineasly independent vectors. 

Thus A' is a sublattice of A. It follows that the Voronoi cell V of A is co~ltained in the 

Voronoi cell V' of A'. But if y E V', then 

and hence y E V. Thus V' = V. Hence the A'-translates of V and the A-translates of V are both 

tilings of iW". Since A' c A, this is possible only if A' = A. 
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Since every integral linear combination of facet vectors is in the lattice, Proposition 16 

implies 

COROLLARY 17 Distinct lattices in Rn have distinct Voronoi cells. 

Proposition 16 does not say that the lattice has a basis of facet vectors. It is known that 

every lattice in Rn has a basis of facet vectors if n I 6, but if n > 6 this is still an open question. 

It is known also that every lattice in Rn has a basis of minimal vectors when n I 4 but, when 

n > 4, there are lattices with no such basis. In fact a lattice may have no basis of minimal 

vectors, even though every lattice vector is an integral linear combination of minimal vectors. 

Lattices and their Voronoi cells have long been used in crystallography. An n-dimensional 

crystal may be defined mathematically to be a subset of Rn of the form 

F + A = { x + y : x ~  F , ~ E  A}, 

where F is a finite set and A a lattice. Crystals may be studied by means of their symmetry 

groups. 

An isometry of Rn is an invertible affine transformation which leaves unaltered the 

Euclidean distance between any two points. For example, any orthogonal transformation is an 

isometry and so is a translation by an arbitrary vector v. Any isometry is the composite of a 

translation and an orthogonal transformation. The symmetry group of a set X c Rn is the 

group of all isometries of [Wn which map X to itself. 

We define an n-dimensional crystallographic group to be a group G of isometries of Rn 

such that the vectors corresponding to translations in G form an n-dimensional lattice. It is not 

difficult to show that a subset of Rn is an n-dimensional crystal if and only if it is discrete and 

its symmetry group is an n-dimensional crystallographic group. 

It was shown by Bieberbach (1911) that a group G of isometries of R n  is a 

crystallographic group if and only if it is discrete and has a compact fundamental domain D, i.e. 

the sets {g(D): g E G} form a tiling of Rn. He could then show that the translations in a 

crystallographic group form a torsion-free abelian normal subgroup of finite index. He showed 

later (1912) that two crystallographic groups G1,G2 are isomorphic if and only if there exists an 

invertible affine transformation A such that G2 = A-lGIA. With the aid of results of Minkowski 

and Jordan it follows that, for a given dimension n, there are only finitely many non-isomorphic 

crystallographic groups. These results provided a positive answer to the first part of the 18th 

Paris problem of Hilbert (1900). 

The structure of physical crystals is analysed by means of the corresponding 3-dimensional 

crystallographic groups. A stronger concept than isomorphism is useful for such applications. 
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Two crystallographic groups G1,G2 may be said to be properly isomorphic if there exists an 

orientation-preserving invertible affine transformation A such that G2 = A-lGIA. An 

isomorphism class of crystallographic groups either coincides with a proper isomorphism class 

or splits into two distinct proper isomorphism classes. 

Fedorov (1891) showed that there are 17 isomorphism classes of 2-dimensional 

crystallographic groups, none of which splits. Collating earlier work of Sohncke (1879), 

Schoenflies (1889) and himself, Fedorov (1892) also showed that there are 219 isomorphism 

classes of 3-dimensional crystallographic groups, 11 of which split. More recently, Brown et 

al .  (1978) have shown that there are 4783 isomorphism classes of 4-dimensional 

crystallographic groups, 112 of which split. 

5 Densest packings 

The result of Hermite, mentioned at the beginning of the chapter, can be formulated in 

terms of lattices instead of quadratic forms. For any real non-singular matrix T, the matrix 

is a real positive definite symmetric matrix. Conversely, by a principal axes transformation or 

otherwise, it may be seen that any real positive definite symmetric matrix A may be represented 

in this way. 

Let A be the lattice 

A = {y = Tx E Rn: x E Zn} 
and put 

y(A) = m(A)/d(A)2'fl, 

where d(A) is the determinant and m(A) the minimum of A. Evidently y(pA) = y(A) for any 

p > 0. Hermite's result that there exists a positive constant c,, depending only on n, such that 

0 < x'Ax I c,(det A)'/" for some x E Z n  may be restated in the form 

Hermite's constant yn is defined to be the least positive constant c, such that this inequality 

holds for all A c Rn. 

It may be shown that yflfl is a rational number for each n. It follows from Proposition 2 
- 

that lim,+,y,/n 12/ne. Minkowski (1905) showed also that 
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and it is possible that actually limr1,, y,ln = 1 1 2 ~ ~ .  The significance of Hermite's constant 

derives from its connection with lattice packings of balls, as we now explain. 

Let A be a lattice in Rn and K a subset of Rn which is the closure of a nonempty open set 

G. We say that A gives a lattice packing for K if the family of vanslates K + x ( x  E A )  is a 

packing of Rn, i.e. if for any two distinct points x,y E A the interiors G + x and G + y are 

disjoint. This is the same as saying that A does not contain the difference of any two distinct 

points of the interior of K, since g + x = g' + y if and only if g' - g = x - y. If K is a compact 

symmetric convex set with nonempty interior G, it is the same as saying that the interior of the 

set 2K contains no nonzero point of A,  since in this case g,g' E G implies (g' - g)/2 E G and 

2g=g-( -g) .  
The density of the lattice packing, i s .  the fraction of the total space which is occupied by 

translates of K, is readily shown to be X(K)ld(A). Hence the maximum density of any lattice 

packing for K is 

6(K) = k(K)/A(2K) = 2-'%(K)/A(K), 

where A(K) is the critical determinant of K, as defined in $3. The use of the word 'maximum' 

is justified, since it will be shown in $6 that the infimum involved in the definition of critical 

determinant is attained. 

We are interested in the special case of a closed ball: K = B p  = {x E Rn: ibll I p } .  By 

what we have said, A gives a lattice packing for B p  if and only if the interior of B2,, contains no 

nonzero point of A, i.e. if and only if m(A)lI2 2 2p. Hence 

6(Bp)  = sup { h ( ~ ~ ) / d ( A ) :  nz(A)lI2 = 2 p }  

= K,P" sup {d(A)-l: nz(A)lI2 = 2 p } ,  

where K,, = ~ ~ / ~ / ( n / 2 ) !  again denotes the volume of the unit ball in Rfl. By homogeneity it 

follows that 

6,: = 8(Bp)  = 2 - " ~ ~  SLIP* y(A),I2, 

where the supremum is now over all lattices A G RrL, i.e. in terms of Heimite's constant y,, 

Thus y,, like 6,, measures the densest lattice packing of balls. A lattice A G RyL for which 

y(A) = y,, i.e. a critical lattice for a ball, will be called simply a derlsest lattice. 
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The densest lattice in Rn is known for each n I 8, and is uniquely determined apart from 

isometrics and scalas multiples. In fact these densest lattices ase all examples of indecomposable 

root lattices. These tenns will now be defined. 

A lattice A is said to be deconlposable if there exist additive subgroups Al ,A2 of A, each 

containing a nonzero vector, such that (x l j2 )  = 0 for all xl E A1 and x2 E A2, and every 

vector in A is the sum of a vector in AI and a vector in A2. Since Al and A2 are necessarily 

discrete, they are lattices in the wide sense (is.  they ase not full-dimensional). We say also that 

A is the orthogonal sunz of the lattices Al and A2. The osthogonal sum of any finite number of 

lattices is defined similarly. A lattice is indecon~posaDle if it is not decomposable. 

The following result was fisst proved by Eichler (1952). 

PROPOSITION 18 Any lattice A is a11 ol~hogollul sum of finitely many indeconlposable 

lattices, which are uniquely determined apart jifi.onz or.de/.. 

Proof (i) Define a vector x E A to be 'decomposable' if there exist nonzero xl& E A such 

that x = xl + x2 and (x l j2)  = 0. We show first that eveiy nonzero x E A is a sum of finitely 

many indecomposable vectors. 

By definition, x is either indecomposable or is the sum of two nonzero orthogonal vectors 

in A. Both these vectors have square-norm less than the square-norm of x, and for each of 

them the same alternative presents itself. Continuing in this way, we must eventually asrive at 

indeco~nposable vectors, since there ase only finitely many vectors in A with square-norm less 

than that of x. 

(ii) If A is the orthogonal sum of finitely many lattices L, then, by the definition of an 

orthogonal sum, every indecomposable vector of A lies in one of the sublattices L,. Hence if 

two indecomposable vectors are not osthogonal, they lie in the same sublattice L,. 

(iii) Call two indecomposable vectors x,x' 'equivalent' if there exist indecomposable vectors 

x = X ~ , X ~ , . . . , X ~ - ~ , X ~  = X' S L I C ~  that (,I~,.Y,+~) # 0 for 0 < j < k.  Clearly 'equivalence' is indeed 

an equivalence relation and thus the set of all indecomposable vectors is partitioned into 

equivalence classes %p Two vectors from different equivalence classes are orthogonal and, if 

A is an orthogonal sum of lattices L, as in (ii), then two vectors from the same equivalence 

class lie in the same sublattice L,,. 
(iv) Let Ap be the subgroup of A generated by the vectors in the equivalence class gp. Then, 

by (i), A is generated by the sublattices Ap. Since, by (iii), Al, is orthogonal to Ap, if p # p', 

A is actually the orthogonal sum of the sublattices Ap. If A is an orthogonal sum of lattices L, 
as in (ii), then each Ap is contained in some L,. It follows that each Ap is indecomposable and 

that these indecomposable sublattices ase uniquely detellnined apast from order. 
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Let A be a lattice in RN. If A c A*? i.e. if (x,y) E Z for all x,y E A, then A is said to be 

integral. If (x,x) is an even integer for every x E A, then A is said to be even. (It follows that 

an even lattice is also integral.) I f  A is even and every vector in A is an integral linear 

combination of vectors in A with square-norm 2, then A is said to be a root lattice. 

Thus in a root lattice the minimal vectors have square-norm 2. It may be shown by a long, 

but elementary, argument that any root lattice has a basis of minimal vectors such that every 

minimal vector is an integral linear combination of the basis vectors with coefficients which are 

all nonnegative or all nonpositive. Such a basis will be called a simple basis. The facet vectors 

of a root lattice are precisely the minimal vectors, and hence its Voronoi cell is the set of all 

y E Rn such that @,x) I 1 for every minimal vector x. 

Any root lattice is an orthogonal sum of indecomposable root lattices. It was shown by 

Witt (1941) that the indecomposable root lattices can be completely enumerated; they are all 

listed in Table 1.  We give also their minimal vectors in terms of the canonical basis e l ,  ..., en of 

R". 

A, = { x  = (50,51 ,..., tn) E En+l: + t l  + ... + C f i  = 0 }  (n  2 1); 

Dn = { X  = (e l  ,..., Sn) E Zn: 6 ,  + ... + 6,  even} (ti 2 3); 

E8 = U D 8 f ,  where D8t = (1/2,1/2, ..., 112) + D8; 

E7 = {X = (519...,68) E E8: 57 = - 5,); 
Eb = 1~ ' ( 5 1 , . . . 9 & 3 )  E Es:  5 6  = 5 7  = - 5 8 1 .  

Table 1 : Indecon~posable root lattices 

The lattice A, has n(n + 1 )  minimal vectors, namely the vectors f (ei - ek) (0 I j < k I n), 

and the vectors eo - e l ,  e l  - e2,  ... , - e ,  form a simple basis. By calculating the 

determinant of B'B, where B is the (n  + 1)xn matrix whose columns are the vectors of this 

simple basis, it may be seen that the determinant of the lattice A, is (n + 1)1/2. 

The lattice D, has 2n(n - 1) minimal vectors, namely the vectors f ej f ek ( 1  I j < k I n). 

The vectors el - e2, e2 - e3, ... , E , ~  - en, enPl + en form a simple basis and hence the lattice 

D, has determinant 2. 

The lattice E8 has 240 minimal vectors, namely the 112 vectors f ej f fell (1 I j < k I 8) 

and the 128 vectors ( f  el f ... f e8)/2 with an even number of minus signs. The vectors 

form a simple basis and hence the lattice has determinant 1. 
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The lattice E7 has 126 minimal vectors, namely the 60 vectors Ifr ej rt ek ( 1  I j < k I 6) ,  the 

vectors rt (e7 - e g )  and the 64 vectors f (2 f=l (rt ei) - e7 + e8)/2 with an odd number of minus 

signs in the sum. The vectors vl ,  ..., v7 form a simple basis and the lattice has determinant 42. 

The lattice E6 has 7 2  minimal vectors, namely the 40 vectors k ej + ek ( 1  I j < k I 5)  and 
5 the 32 vectors rt (C i=l (k ei) - e6 - e7 + eg)/2 with an even number of minus signs in the sum. 

The vectors v l ,  ..., v6 form a simple basis and the lattice has determinant 43. 

We now return to lattice packiilgs of balls. The densest lattices for n 2 8 are given in Table 

2. These lattices were shown to be densest by Lagrange (1773) for n = 2, Gauss (1831) for 

n = 3,  Korkine and Zolotareff (1872,1877) for 11  = 4,5 and Blichfeldt (1925,1926,1934) for 

n = 6,7,8. 

Table 2: Derisest lattices in Rn 

Although the densest lattice in [Wn is unknown for every rz > 8, there are plausible 

candidates in some dimensions. In particular, a lattice discovered by Leech (1967) is believed 

to be densest in 24 dimensions. This lattice may be constructed in the following way. Let y be 

a prime such that y = 3 mod 4 and let Hn be the Hadamard matrix of order 11 = y + 1 constructed 

by Paley's method (see Chapter V, $2). The colu~llns of the matrix 

generate a lattice in R2n. For y = 3 we obtain the root lattice Eg and for y = 1 1  the Leech lattice 

A 24. 

Leech's lattice may be characteiized as the unique even lattice A in R24 with d(A)  = 1 and 

nz(A)  > 2. It was shown by Conway (1969) that, if G is the group of all orthogonal 



tsansformations of R24 which map the Leech lattice A24 onto itself, then the factor group 

GI{? IZ4} is a finite simple group, and two more finite simple groups are easily obtained as 

(stabilizer) subgroups. These are three of the 26 sporadic simple groups which were mentioned 

in $7 of Chapter V. 

Leech's lattice has 196560 minimal vectors of squase-norm 4. Thus the packing of unit 

balls associated with A24 is such that each ball touches 196560 other balls. It has been shown 

that 196560 is the maximal number of nonoverlapping unit balls in R24 which can touch another 

unit ball and that, up to isometry, there is only one possible arrangement. 

Similarly, since E8 has 240 minimal vectors of square-norm 2, the packing of balls of 

radius 2-lI2 associated with E8 is such that each ball touches 240 other balls. It has been 

shown that 240 is the maximal number of nonoverlapping balls of fixed radius in R8 which can 

touch another ball of the same radius and that, up to isometry, there is only one possible 

arrangement. 

In general, one may ask what is the kissiilg nun~ber of Rn, i.e. the maximal number of 

nonoverlapping unit balls in Rn which can touch another unit ball? The question, for n = 3, 
first arose in 1694 in a discussion between Newton, who claimed that the answer was 12, and 

Gregory, who said 13. It was first shown by Hoppe (1874) that Newton was right, but the 

assangeinent of the 12 balls in R3 is not unique up to isometsy. One possibility is to take the 

centres of the 12 balls to be the vertices of a regular icosahedron, the centre of which is the 

centre of the unit ball they touch. 

The kissing number of R1 is clearly 2. It is not difficult to show that the kissing number 

of R2 is 6 and that the centres of the six unit balls must be the vertices of a regular hexagon, the 

centre of which is the centre of the unit ball they touch. For n > 3 the kissing number of Rn is 

unknown, except for the two cases n = 8 and n = 24 already mentioned. 

6 Mahler's compactness theorem 

It is useful to study not only individual lattices, but also the family 3, of all lattices in Rn. 
A sequence of lattices Ak E g,, will be said to converge to a lattice A E 2,, in symbols 

Ak + A, if there exist bases bkl ,..., Dkn of Ak (k = 1,2 ,... ) and a basis bl ,..., b, of A such that 

bkj -+ bj as k + ti = 1, ..., n). 

Evidently this implies that d(Ak) + d(A) as k + w. Also, for any x E A there exist xk E Ak 



such that X ,  + x as k + m. In fact if x = albl + ... + anbrL, where ai E Z ( i  = 1 ,..., n),  we 

can take xk = albkl  + ... + anbkrL. 

It is not obvious from the definition that the limit of a sequence of lattices is uniquely 

deteimined, but this follows at once from the next result. 

PROPOSITION 19 Let A be a lattice in Rn and let {A,} be a sequence of lattices in Rn 

such that A, -+ A as k -+ m. I f x k  E A, and .rk + x as k + m, then n E A. 

Proof With the above notation, 

x = a lb l  + ... + a,b,, 

where ai E R (i = 1, ..., n), and similarly 

where Rand  aki + a j  as k + (i = 1, ..., n). 

The linear transformation T, of R" which maps bi to bkr (i = 1, ..., n) can be wiitten in the 

form 

T, = I -A,, 

where Ak + 0 as k + m. It follows that 

where also Ck + 0 as k + m. Hence 

where qki + 0 as k + M (i = 1, ..., 1 2 ) .  But aki + qki  E Z for every k. Letting k + w, we 

obtain a; E Z. That is, x G A. 

It is natural to ask if the Voronoi cells of a convergent sequence of lattices also converge in 

some sense. The required notion of convergence is in fact older than the notion of convergence 

of lattices and applies to asbitrasy compact subsets of Rn. 

The Hausdorfdistance h(K,K? between two compact subsets K,K' of Rn is defined to be 

the infimum of all p > 0 such that every point of K is distant at most p from some point of K' 

and every point of K' is distant at most p from some point of K. We will show that this defines 

a metric, the Hausdorffnzetric, on the space of all compact subsets of Rn. 
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Evidently 

0 I h(K,K') = h(K',K) < -. 

Moreover h(K,K') = 0 implies K = K'. For if x' E K', there exist xk E K such that xk + x' and 

hence x' E K, since K is closed. Thus K' c K, and similarly K c  K'. 

Finally we prove the triangle inequality 

To simplify writing, put p = h(K,K1) and p'  = h(K1,K"). For any E > 0, if x E K there exist 

x' E K' such that Ib - xlll< p + E and then x" E K" such that Ibr - x"ll < p' + E. Hence 

Similarly, if x" E K" there exists x E K for which the same inequality holds. But E can be 

arbitrarily small. 

The definition of Hausdorff distance can also be expressed in the form 

h(K,K') = inf { p 2 0 : K c K ' + B p , K ' c K + B p } ,  

where B p  = {x E Rn: lbll I p}. A sequence Kj of compact subsets of Rn converges to a 

compact subset K of R" if h(Kj,K) + 0 as j + .o. 

It was shown by Hausdorff (1927) that any uniformly bounded sequence of compact 

subsets of Rn has a convergent subsequence. In particular, any uniformly bounded sequence of 

compact convex subsets of Rn has a subsequence which converges to a compact convex set. 

This special case of Hausdorffs result, which is all that we will later require, had already been 

established by Blaschke (1916) and is known as Blaschke's selection principle. 

PROPOSITION 20 Let {Ak} be a sequence of lattices in Rn and let Vk be the Voronoi cell 

of Ak. If there exists a compact convex set V with nonempty interior such that Vk + V in 

the Hausdorff metric as k + m, then V is the Voronoi cell of a lattice A and Ak + A as 

k + =. 

Proof Since every Voronoi cell Vk is symmetric, so also is the limit V. Since V has nonempty 

interior, it follows that the origin is itself an interior point of V. Thus there exists 6 > 0 such 

that the ball B8 = { x  E Rn: lbli I 6 )  is contained in V.  

It follows that BS12 c Vk for all large k. The quickest way to see this is to use Ra"dstromls 

cancellation law, which says that if A,B,C are nonempty compact convex subsets of Rn such 

that A + C c B + C, then A L B. In the present case we have 
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and hence BSt2 c Vk for k 2 kO. Since also Vk c V + Bgt2 for all large k, there exists R > 0 

such that Vk L BR for all k. 
The lattice Ak has at most 2(2n - 1) facet vectors, by Proposition 15. Hence, by restriction 

to a subsequence, we may assume that all Ak have the same number m of facet vectors. Let 

xklr...,xkm be the facet vectors of Ak and choose the notation so that xkl, ..., xkn are linearly 

independent. Since they all lie in the ball BZR, by restriction to a further subsequence we may 

assume that 

xkj + xj as k -+ .o ('j = 1, ..., m). 

Evidently Ibj(( 2 6 ('j = 1, ..., m) since, for k 2 ko, all nonzero x E Ak have lbll2 8. 
The set A of all integral linear combinations of xl,  . . .jm is certainly an additive subgroup 

of Rn. Moreover A is discrete. For suppose y E A and lbll < 6. We have 

y = alx l  + ... + amxm, 
where aj E h ('j = I ,  ..., m). If 

Y k  = alXkl + . a .  + amXkmr 

then yk + y as k -+ and hence lbkll < 8 for all large k. Since yk E Ak, it follows that yk = 0 

for all large k and hence y = 0. 

Since the lattice Ak' with basis xkl, ...& is a sublattice of Ak, we have 

Since d(Ak') = ldet (xkl, ...jkn)l, it follows that also 

Thus the vectors xl,  ...A are linearly independent. Hence A is a lattice. 

Let bl ,..., b, be a basis of A. Then, by the definition of A, 

where (1 I i I n ,  1 I j I m ) .  Put 

Then bki E Ak and bki + bi as k + (i = 1, ..., n). Hence, for all large k ,  the vectors 

bkl, ..., bkn are linearly independent. We are going to show that bkl,  ..., bkn is a basis of Ak for 

all large k. 
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Since bl ,..., b, is a basis of A, we have 

where yji E Z (1 I i I n, 1 I j I nz). Hence, if 

then ykj E Ak and ykj -+ xj as k -+ rn 0 = 1, ..., nz). Thus, for all large k, 

Since ykj -xkj E Ak, this implies that, for all large k, ykj = xkj 0 = 1 ,  ..., m). Thus every facet 

vector of Ak is an integral linear combination of bkl, ..., bkrL and hence, by Proposition 16, every 

vector of A, is an integral linear combination of bk l ,  ..., bkn. Since bkl,. , . ,bkn are linearly 

independent, this shows that they are a basis of A,. 
Let W be the Voronoi cell of A. We wish to show that V = W. If v E V, then there exist 

vk E Vk such that v, + v. Assume v P W. Then ilvll > llz - v I I  for some z E A, and so 

where p > 0. There exist zk E Ak such that zk + z. Then, for all large k, 

llvll > llz, - vll + ~ 1 2  
and hence, for all large k, 

llvkll > llzk - ~ k l l .  

But this conwadicts vk E Vk. 

This proves that V W. On the other hand, V has volume 

It follows that every interior point of W is in V,  and hence W = V. Corollay 17 now shows that 

the same lattice A would have been obtained if we had restricted attention to some other 

subsequence of { A k } .  

Let a l ,  ..., a ,  be any basis of A.  We are going to show that, for the sequence { A k )  

originally given, there exist uki E Ak such that 

aki -+ ai ask  + rn (i = 1, ..., n).  
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If this is not the case then, for some i E { 1, ..., n }  and some E > 0,  there exist infinitely many k 

such that 

I/x - ail/ > E for all x E Ak. 

From this subsequence we could as before pick a further subsequence Akv + A. Then evely 

y E A is the limit of a sequence yv E Ah. Taking y = ai, we obtain a contradiction. 

It only remains to show that akl ,  ..., akn is a basis of Ak for all lasge k. Since 

= d(A) = k(V) = l i n ~ ~ , ~ h ( V ~ ) ,  

for all large k we must have 

o < ldet (a kl,...,akw)( < 2k(Vk). 

But if akl ,  ..., akn were not a basis of Ak for all large k, then for infinitely many k we would 

have 

Idet (akl ,..., akn)l 2 2d(Ak) = 2h(Vk). 

Proposition 20 has the following counterpart: 

PROPOSITION 21 Let { A k }  be a sequence ofluttices irt Rn and let Vk be the Voronoi cell 

of Ak. If there exists a lattice A such that Ak + A as k + =, and if V is the Voronoi cell 

of A, then Vk + V in the Hausdorf metric as k + m. 

Proof By hypothesis, there exists a basis bl ,..., D, of A and a basis bkl  ,..., bkrL of each Ak 

such that bkj + bj as k + M 0' = I ,  ..., n). Choose R > 0 so that the fundamental parallelotope 

of A is contained in the ball BR = {X E Rn: Ibll l R } ,  Then, for all k 2 ko, the fundamental 

parallelotope of Ak is contained in the ball BZR. It follows that, for all k 2 ko, every point of Rn 
is distant at most 2R from some point of Ak and hence Vk c BZR. 

Consequently, by Blaschke's selection principle, the sequence { V k }  has a subsequence 

{Vkv} which converges in the Hausdorff metric to a compact convex set W. Moreover, 

Consequently, since W is convex, it has nonelnpty interior. It now follows from Proposition 

20 that W = V. 

Thus any convergent subsequence of { V k }  has the same limit V .  If the whole sequence 

{ V k }  did not converge to V ,  there would exist p > 0 and a subsequence {Vkv}  such that 

h(Vkv,V) 2 p for all v. 
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By the Blaschke selection principle again, this subsequence would itself have a convergent 

subsequence. Since its limit must be V, this yields a contradiction. 

Suppose Ak E 2, and Ak + A as k + a. We will show that not only d(Ak) + d(A), but 

also m(Ak) -+ nz(A) as k + M. Since evely x E A is the limit of a sequence xk E Ak, we must 

have limk+=nz(hk) < m(A). On the other hand, by Proposition 19, if xk E Ak and xk + x, 
then x E A. It follows that limk ,,nz(Ak) 2 nz(A). 

Suppose now that a subset 9 of 3, has the property that any infinite sequence Ak of 

lattices in 9 has a convergent subsequence. Then there exist positive constants p,o such that 

nz(A) 2 p2, d(A) < o for all A E 9. 

For otherwise there would exist a sequence Ak of lattices in 9 such that either nz(Ak) + 0 or 

d(Ak) + m, and this sequence could have no convergent subsequence. 

We now prove the fundamental col?lyactims theorem of Mahler (1946), which says that 

this necessary condition on 9 is also sufficient. 

PROPOSITION 22 If {Ak} is a sequerice of lattices in Rn such that 

nz(Ak) 2 p2, d(Ak) l o for all k ,  

where p,o  are positive constants, then the seque~zce {Ak} has a convergent subsequence. 

Proof Let Vk denote the Voronoi cell of Ak. We show first that the ball Bp12 = {X E Rn: 

lkli 5 p/2} is contained in every Voronoi cell Vk. In fact if ILx1I I p/2 then, for every nonzero 

Y E Ak, 

Ib -yIl 2 Ilrll - llxll 2 P - ~ 1 2  = ~ 1 2  2 Ilx4 
and hence x E Vk. 

Let vk be a point of Vk which is fusthest from the origin. Then Vk contains the convex hull 

Ck of the set vk u Bp12. Since the volume of Vk is bounded above by o, so also is the volume 

of Ck. But this implies that the sequence vk is bounded. Thus there exists R > 0 such that the 

ball BR contains every Voronoi cell Vk. 

By Blaschke's selection principle, the sequence {Vk) has a subsequence {Vk,) which 

converges in the Hausdorff metric to a compact convex set V. Since Bp12 c V, it follows from 

Proposition 20 that Ak, + A, where A is a lattice with Voronoi cell V. 

To illustrate the utility of Mahler's compactness theorem, we now show that, as stated in 

$3, any compact symmehic convex set K with nonelnpty intelior has a critical lattice. 
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By the definition of the ciitical deteilninant A(K), there exists a sequence Ak of lattices with 

no nonzero points in the interior of K such that d(Ak) + A(K) as k + m. Since K contains a 

ball B,, with radius p > 0,  we have m(Ak) 2 p2 for all k. Hence, by Proposition 22, there is a 

subsequence Akv which converges to a lattice A as v + m. Since evely point of A is a limit of 

points of Ak,, no nonzero point of A lies in the interior of K. Furthermore, 

and hence A is a ciitical lattice for K. 

7 Further remarks 

The geometry of numbers is tseated more extensively in Cassels [ l l ] ,  Erdos et al. [22] and 

Gruber and Lekkerkerker [27]. Minkowski's own account is available in 1421. Numerous 

references to the earlier literature are given in Keller 1341. Lagasias [36] gives an overview of 

lattice theory. For a simple proof that the indicator function of a convex set is Riemann 

integrable, see Szabo [57]. 

Diophantine approximation is studied in Cassels [12], Koksma [35] and Schmidt 1501. 

Minkowski's result that the discriminant of an algebraic number field other than QQ has absolute 

value greater than 1 is proved in Narkiewicz [44], for example. 

Minkowski's theorem on successive minima is proved in Bambah et al. [3] .  For the 

results of Banaszczyk mentioned in $3, see [4] and [5].  Sharp forms of Siegel's lemma are 

proved not only in Bombieii and Vaaler [7], but also in Matveev 1401. The result of Gillet and 

Soul6 appeared in [25]. Some interesting results and conjectures concerning the product 

A(K)A(K*) are described 011 pp. 425-427 of Schneider [51]. 

An algorithm of Lovisz, which first appeared in Lenstra, Lenstra and Lovhsz [38],  

produces in finitely many steps a basis for a lattice A in Rn which is 'reduced'. Although the 

first vector of a reduced basis is in general not a minimal vector, it has squase-norm at most 

2"'-1 ???(A). This suffices for many applications and the algorithm has been used to solve a 

number of apparently unrelated computational problems, such as factoring polynomials in Q[t] ,  

integer linear programming and simultaneous Diophantine approximation. There is an account 

of the basis reduction algorithm in Schrijver [52]. The algosithmic geometry of numbers is 

surveyed in Kannan [33]. 

Mahler [39] has established an analogue of the geometsy of numbers for foimal Laurent 

series with coefficients from an arbitrary field F, the roles of Z,Q and R being taken by Fit],  



F(t) and F((t)). In particulas, Eichler [19] has shown that the Riemann-Roc11 theorem for 

algebraic functions may be derived by geoinetsy of numbers arguments. 

There is also a generalization of Minkowski's lattice point theorem to locally compact 

groups, with Haar measwe taking the place of volume; see Chapter 2 (Lemma 1) of Weil [60]. 

Voronoi diagranu and their uses we surveyed in Aurenhammer [I]. Proofs of the basic 

properties of polytopes refessed to in 54 may be found in Brgndsted [9] and Coppel [15]. 

Planar tilings are studied in detail in Griinbauin and Shephasd [28]. 

Mathematical clystallography is treated in Schwaszenberger [53] and Engel [21]. For the 

physicist's point of view, see Burckhardt [lo], Janssen [32] and Birinan [6]. There is much 

theoretical infolmation, in addition to tables, in [31]. 

For Bieberbach's theorems, see Vince [59], Charlap [13] and Milnor [41]. Various 

equivalent fosms for the definitions of clystal and crystallogsaphic group ase given in Dolbilin et 

al. [17]. It is shown in Charlap [13] that crystallographic groups may be abstractly 

characterized as groups containing a finitely generated maximal abelian torsion-free subgoup of 

finite index. (An abelian group is torsioiz-J.i.ee if only the identity element has finite order.) 

The fundamental group of a compact flat Riemannian manifold is a torsion-free crystallographic 

group and all torsion-free crystallographic groups may be obtained in this way. For these 

connections with differential geoinetsy, see Wolf [61] and Charlap [13]. 

In more than 4 dimensions the complete enumeration of all crystallographic groups is no 

longer practicable. However, algorithms for deciding if two crystallographic groups are 

equivalent in some sense have been developed by Opgenorth et al. [45]. An interesting subset 

of all crystallograpliic groups consists of those generated by reflections in hypesplanes, since 

Stiefel(1941f2) showed that they are in 1-1 correspondence with the compact simply-connected 

semi-siinple Lie groups. See the 'Note historique' in Bourbaki [8]. 

There has recently been considerable interest in tilings of Rn which, although not lattice 

tilings, consist of translates of finitely many n-dimensional polytopes. The first example, in 

R2, due to Penrose (1974), was explained more algebraically by de Bruijn (1981). A 

substantial generalization of de Bruijn's construction was given by Katz and Duneau (1986), 

who showed that many such 'quasiperiodic' tilings may be obtained by a method of cut and 

projection from ordinary lattices in a higher-dimensioilal space. The subject gained practical 

significance with the discovery by Shechtman et al. (1984) that the diffraction pattern of an 

alloy of aluminium and magnesium has icosahedral symmetry, which is impossible for a 

crystal. Many other 'quasicrystals' have since been found. The papers referred to are 

reproduced, with others, in Steinhardt and Ostlund [56]. The mathematical theory of 

quasicrystals is surveyed in Le et al. [37]. 
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Skubenko [54] has given an upper bound for Hermite's constant y,. Somewhat sharper 

bounds are known, but they have the same asymptotic behaviour and the proofs ase much more 

complicated. A lower bound for y, was obtained with a new method by Ball [2 ] .  

For the densest lattices in Rn (11 I 8), see Ryshkov and Baranovskii [49] .  The 

enumeration of all root lattices is cmied out in Ebeling 1181. (A more general problem is treated 

in Chap. 3 of Hu~nphreys [30] and in Chap. 6 of Bourbaki [8] .)  For the Voronoi cells of root 

lattices, see Chap. 21 of Conway and Sloane [14] and Moody and Patera [43].  For the Dynkin 

diagram associated with root lattices, see also Reiten [47]. 

Rajan and Shende [46] characterize root lattices as those lattices for which every facet 

vector is a minimal vector, but their definition of root lattice is not that adopted here. Their 

argument shows that if every facet vector of a lattice is a minimal vector then, after scaling to 

make the minimal vectors have square-norm 2, it is a root lattice in our sense. 

There is a fund of information about lattice packings of balls in Conway and Sloane [14].  

See also Thompson 1581 for the Leech lattice and Coxeter [16] for the kissing number problem. 

We have restricted attention to lattice packings and, in particular, to lattice packings of 

balls. Lattice packings of other convex bodies are discussed in the books on geometry of 

iluinbers cited above. Non-lattice packings have also received much attention. The notion of 

density is not so intuitive in this case and it should be realized that the density is unaltered if 

finitely many sets are removed from the packing. 

Packings and coverings are discussed in the texts of Rogers [48] and Fejes T6th [23],[24]. 

For packings of balls, see also Zong [62]. Sloane [55] and Elkies 1201 provide introductions to 

the connections between lattice packings of balls and coding theory. 

The third part of Hilbest's 18th problem, which is suiveyed in Milnor [41] ,  deals with the 

densest lattice or non-lattice packing of balls in Ru. It is known that, for 11 = 2,  the densest 

lattice packing is also a densest packing. The original proof by Thue (1882/1910) was 

incomplete, but a complete proof was given by L. Fejes T6th (1940). The famous Kepler 

conjecture asserts that, also for rz = 3, the densest lattice packing is a densest packing. A 

computes-aided proof has recently been announced by Hales [29].  It is unknown if the same 

holds for any rz > 3. 

Propositions 20 and 21 are due to Groemer [26],  and are of interest quite apart from the 

application to Mahler's compactness theorem. Other proofs of the latter ase given in Cassels 

[11] and Gruber and Lekkerkerker [27] .  Blaschke's selection principle and RAdstrom's 

cancellation law ase proved in [15] and [5 11, for example. 
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