
Preface

This book is about matrix and linear algebra, and their applications. For
many students the tools of matrix and linear algebra will be as fundamental
in their professional work as the tools of calculus; thus it is important to
ensure that students appreciate the utility and beauty of these subjects as
well as the mechanics. To this end, applied mathematics and mathematical
modeling ought to have an important role in an introductory treatment of
linear algebra. In this way students see that concepts of matrix and linear
algebra make concrete problems workable.

In this book we weave significant motivating examples into the fabric of
the text. I hope that instructors will not omit this material; that would be
a missed opportunity for linear algebra! The text has a strong orientation
toward numerical computation and applied mathematics, which means that
matrix analysis plays a central role. All three of the basic components of lin-
ear algebra — theory, computation, and applications — receive their due.
The proper balance of these components gives students the tools they need
as well as the motivation to acquire these tools. Another feature of this text
is an emphasis on linear algebra as an experimental science; this emphasis is
found in certain examples, computer exercises, and projects. Contemporary
mathematical software make ideal “labs” for mathematical experimentation.
Nonetheless, this text is independent of specific hardware and software plat-
forms. Applications and ideas should take center stage, not software.

This book is designed for an introductory course in matrix and linear
algebra. Here are some of its main goals:

• To provide a balanced blend of applications, theory, and computation that
emphasizes their interdependence.

• To assist those who wish to incorporate mathematical experimentation
through computer technology into the class. Each chapter has computer
exercises sprinkled throughout and an optional section on computational
notes. Students should use the locally available tools to carry out the
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experiments suggested in the project and use the word processing capabil-
ities of their computer system to create reports of results.

• To help students to express their thoughts clearly. Requiring written
reports is one vehicle for teaching good expression of mathematical ideas.

• To encourage cooperative learning. Mathematics educators are becoming
increasingly appreciative of this powerful mode of learning. Team projects
and reports are excellent vehicles for cooperative learning.

• To promote individual learning by providing a complete and readable text.
I hope that readers will find the text worthy of being a permanent part of
their reference library, particularly for the basic linear algebra needed in
the applied mathematical sciences.

An outline of the book is as follows: Chapter 1 contains a thorough develop-
ment of Gaussian elimination. It would be nice to assume that the student is
familiar with complex numbers, but experience has shown that this material is
frequently long forgotten by many. Complex numbers and the basic language
of sets are reviewed early on in Chapter 1. Basic properties of matrix and de-
terminant algebra are developed in Chapter 2. Special types of matrices, such
as elementary and symmetric, are also introduced. About determinants: some
instructors prefer not to spend too much time on them, so I have divided the
treatment into two sections, the second of which is marked as optional and not
used in the rest of the text. Chapter 3 begins with the “standard” Euclidean
vector spaces, both real and complex. These provide motivation for the more
sophisticated ideas of abstract vector space, subspace, and basis, which are
introduced largely in the context of the standard spaces. Chapter 4 introduces
geometrical aspects of standard vector spaces such as norm, dot product, and
angle. Chapter 5 introduces eigenvalues and eigenvectors. General norm and
inner product concepts for abstract vector spaces are examined in Chapter 6.
Each section concludes with a set of exercises and problems.

Each chapter contains a few more “optional” topics, which are indepen-
dent of the nonoptional sections. Of course, one instructor’s optional is an-
other’s mandatory. Optional sections cover tensor products, linear operators,
operator norms, the Schur triangularization theorem, and the singular value
decomposition. In addition, each chapter has an optional section of compu-
tational notes and projects. I employ the convention of marking sections and
subsections that I consider optional with an asterisk.

There is more than enough material in this book for a one-semester course.
Tastes vary, so there is ample material in the text to accommodate different
interests. One could increase emphasis on any one of the theoretical, applied,
or computational aspects of linear algebra by the appropriate selection of
syllabus topics. The text is well suited to a course with a three-hour lecture
and lab component, but computer-related material is not mandatory. Every
instructor has her/his own idea about how much time to spend on proofs, how
much on examples, which sections to skip, etc.; so the amount of material
covered will vary considerably. Instructors may mix and match any of the
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optional sections according to their own interests, since these sections are
largely independent of each other. While it would be very time-consuming to
cover them all, every instructor ought to use some part of this material. The
unstarred sections form the core of the book; most of this material should
be covered. There are 27 unstarred sections and 10 optional sections. I hope
the optional sections come in enough flavors to please any pure, applied, or
computational palate.

Of course, no one size fits all, so I will suggest two examples of how one
might use this text for a three-hour one-semester course. Such a course will
typically meet three times a week for fifteen weeks, for a total of 45 classes.
The material of most of the unstarred sections can be covered at a rate of
about one and one-half class periods per section. Thus, the core material
could be covered in about 40 class periods. This leaves time for extra sections
and in-class exams. In a two-semester course or a course of more than three
hours, one could expect to cover most, if not all, of the text.

If the instructor prefers a course that emphasizes the standard Euclidean
spaces, and moves at a more leisurely pace, then the core material of the first
five chapters of the text are sufficient. This approach reduces the number of
unstarred sections to be covered from 27 to 23.

I employ the following taxonomy for the reader tasks presented in this
text. Exercises constitute the usual learning activities for basic skills; these
come in pairs, and solutions to the odd-numbered exercises are given in an
appendix. More advanced conceptual or computational exercises that ask for
explanations or examples are termed problems, and solutions for problems
are not given, but hints are supplied for those problems marked with an as-
terisk. Some of these exercises and problems are computer-related. As with
pencil-and-paper exercises, these are learning activities for basic skills. The
difference is that some computing equipment (ranging from a programmable
scientific calculator to a workstation) is required to complete such exercises
and problems. At the next level are projects. These assignments involve ideas
that extend the standard text material, possibly some numerical experimen-
tation and some written exposition in the form of brief project papers. These
are analogous to lab projects in the physical sciences. Finally, at the top
level are reports. These require a more detailed exposition of ideas, consid-
erable experimentation — possibly open ended in scope — and a carefully
written report document. Reports are comparable to “scientific term papers.”
They approximate the kind of activity that many students will be involved
in throughout their professional lives. I have included some of my favorite
examples of all of these activities in this textbook. Exercises that require
computing tools contain a statement to that effect. Perhaps projects and re-
ports I have included will provide templates for instructors who wish to build
their own project/report materials. In my own classes I expect projects to be
prepared with text processing software to which my students have access in a
mathematics computer lab.



x Preface

About numbering: exercises and problems are numbered consecutively in
each section. All other numbered items (sections, theorems, definitions, etc.)
are numbered consecutively in each chapter and are prefixed by the chapter
number in which the item occurs.

Projects and reports are well suited for team efforts. Instructors should
provide background materials to help the students through local system-
dependent issues. When I assign a project, I usually make available a Maple,
Matlab, or Mathematica notebook that amounts to a brief background lec-
ture on the subject of the project and contains some of the key commands
students will need to carry out the project. This helps students focus more
on the mathematics of the project rather than computer issues. Most of the
computational computer tools that would be helpful in this course fall into
three categories and are available for many operating systems:

• Graphing calculators with built-in matrix algebra capabilities such as the
HP 48, or the TI 89 and 92.

• Computer algebra systems (CAS) such as Maple, Mathematica, and Mac-
syma. These software products are fairly rich in linear algebra capabilities.
They prefer symbolic calculations and exact arithmetic, but can be coerced
to do floating-point calculations.

• Matrix algebra systems (MAS) such as Matlab, Octave, and Scilab. These
software products are specifically designed to do matrix calculations in
floating-point arithmetic and have the most complete set of matrix com-
mands of all categories.

In a few cases I include in this text software-specific information for some
projects for purpose of illustration. This is not to be construed as an endorse-
ment or requirement of any particular software or computer. Projects may
be carried out with different software tools and computer platforms. Each
system has its own strengths. In various semesters I have obtained excellent
results with all these platforms. Students are open to all sorts of technology
in mathematics. This openness, together with the availability of inexpensive
high-technology tools, has changed how and what we teach in linear algebra.

I would like to thank my colleagues whose encouragement has helped me
complete this project, particularly David Logan. I would also like to thank
my wife, Muriel Shores, for her valuable help in proofreading and editing the
text, and Dr. David Taylor, whose careful reading resulted in many helpful
comments and corrections. Finally, I would like to thank the outstanding staff
at Springer, particularly Mark Spencer, Louise Farkas, and David Kramer, for
their support in bringing this project to completion.

I continue to develop a linear algebra home page of material such as project
notebooks, supplementary exercises, errata sheet, etc., for instructors and stu-
dents using this text. This site can be reached at

http://www.math.unl.edu/~tshores1/mylinalg.html
Suggestions, corrections, or comments are welcome. These may be sent to me
at tshores1@math.unl.edu.
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MATRIX ALGEBRA

In Chapter 1 we used matrices and vectors as simple storage devices. In this
chapter matrices and vectors take on a life of their own. We develop the
arithmetic of matrices and vectors. Much of what we do is motivated by a
desire to extend the ideas of ordinary arithmetic to matrices. Our notational
style of writing a matrix in the form A = [aij ] hints that a matrix could be
treated like a single number. What if we could manipulate equations with
matrix and vector quantities in the same way that we do equations with
scalars? We shall see that this is a useful idea. Matrix arithmetic gives us new
powers for formulating and solving practical problems. In this chapter we will
use it to find effective methods for solving linear and nonlinear systems, solve
problems of graph theory and analyze an important modeling tool of applied
mathematics called a Markov chain.

2.1 Matrix Addition and Scalar Multiplication

To begin our discussion of arithmetic we consider the matter of equality of
matrices. Suppose that A and B represent two matrices. When do we declare
them to be equal? The answer is, of course, if they represent the same matrix!
Thus we expect that all the usual laws of equalities will hold (e.g., equals may
be substituted for equals) and in fact, they do. There are times, however, when
we need to prove that two symbolic matrices are equal. For this purpose, we
need something a little more precise. So we have the following definition, which
includes vectors as a special case of matrices.

Definition 2.1. Two matrices A = [aij ] and B = [bij ] are said to be equal if Equality of
Matricesthese matrices have the same size, and for each index pair (i, j), aij = bij ,

that is, corresponding entries of A and B are equal.

Example 2.1. Which of the following matrices are equal, if any?

(a)
[

0
0

]
(b)

[
0 0

]
(c)

[
0 1
0 2

]
(d)

[
0 1

1 − 1 1 + 1

]



56 2 MATRIX ALGEBRA

Solution. The answer is that only (c) and (d) have any chance of being equal,
since they are the only matrices in the list with the same size (2 × 2). As a
matter of fact, an entry-by-entry check verifies that they really are equal. ��

Matrix Addition and Subtraction

How should we define addition or subtraction of matrices? We take a clue
from elementary two- and three-dimensional vectors, such as the type we
would encounter in geometry or calculus. There, in order to add two vectors,
one condition has to hold: the vectors have to be the same size. If they are
the same size, we simply add the vectors coordinate by coordinate to obtain
a new vector of the same size. That is precisely what the following definition
does.

Definition 2.2. Let A = [aij ] and B = [bij ] be m × n matrices. Then theMatrix
Addition and
Subtraction

sum of the matrices, denoted by A + B, is the m × n matrix defined by the
formula

A + B = [aij + bij ] .

The negative of the matrix A, denoted by −A, is defined by the formula

−A = [−aij ] .

Finally, the difference of A and B, denoted by A−B, is defined by the formula

A − B = [aij − bij ] .

Notice that matrices must be the same size before we attempt to add them.
We say that two such matrices or vectors are conformable for addition.

Example 2.2. Let

A =
[

3 1 0
−2 0 1

]
and B =

[
−3 2 1

1 4 0

]
.

Find A + B, A − B, and −A.

Solution. Here we see that

A + B =
[

3 1 0
−2 0 1

]
+

[
−3 2 1

1 4 0

]
=

[
3 − 3 1 + 2 0 + 1
−2 + 1 0 + 4 1 + 0

]
=

[
0 3 1

−1 4 1

]
.

Likewise,

A − B =
[

3 1 0
−2 0 1

]
−

[
−3 2 1

1 4 0

]
=

[
3 −−3 1 − 2 0 − 1
−2 − 1 0 − 4 1 − 0

]
=

[
6 −1 −1

−3 −4 1

]
.

The negative of A is even simpler:

−A =
[

−3 −1 −0
−− 2 −0 −1

]
=

[
−3 −1 0

2 0 −1

]
. �
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Scalar Multiplication

The next arithmetic concept we want to explore is that of scalar multiplica-
tion. Once again, we take a clue from the elementary vectors, where the idea
behind scalar multiplication is simply to “scale” a vector a certain amount by
multiplying each of its coordinates by that amount. That is what the following
definition says.

Definition 2.3. Let A = [aij ] be an m × n matrix and c a scalar. Then the
product of the scalar c with the matrix A, denoted by cA, is defined by the
formula Scalar

MultiplicationcA = [caij ] .

Recall that the default scalars are real numbers, but they could also be com-
plex numbers.

Example 2.3. Let

A =
[

3 1 0
−2 0 1

]
and c = 3.

Find cA, 0A, and −1A.

Solution. Here we see that

cA = 3
[

3 1 0
−2 0 1

]
=

[
3 · 3 3 · 1 3 · 0

3 · −2 3 · 0 3 · 1

]
=

[
9 3 0

−6 0 3

]
,

while

0A = 0
[

3 1 0
−2 0 1

]
=

[
0 0 0
0 0 0

]

and

(−1) A = (−1)
[

3 1 0
−2 0 1

]
=

[
−3 −1 0

2 0 −1

]
= −A. �

Linear Combinations

Now that we have a notion of scalar multiplication and addition, we can blend
these two ideas to yield a very fundamental notion in linear algebra, that of
a linear combination.

Definition 2.4. A linear combination of the matrices A1, A2, . . . , An is an Linear
Combinationsexpression of the form

c1A1 + c2A2 + · · · + cnAn

where c1, c2, . . . , cn are scalars and A1, A2, . . . , An are matrices all of the same
size.
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Example 2.4. Given that

A1 =

⎡
⎣ 2

6
4

⎤
⎦ , A2 =

⎡
⎣2

4
2

⎤
⎦ , and A3 =

⎡
⎣ 1

0
−1

⎤
⎦ ,

compute the linear combination −2A1 + 3A2 − 2A3.

Solution. The solution is that

−2A1 + 3A2 − 2A3 = −2

⎡
⎣ 2

6
4

⎤
⎦ + 3

⎡
⎣ 2

4
2

⎤
⎦ − 2

⎡
⎣ 1

0
−1

⎤
⎦

=

⎡
⎣ −2 · 2 + 3 · 2 − 2 · 1

−2 · 6 + 3 · 4 − 2 · 0
−2 · 4 + 3 · 2 − 2 · (−1)

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ . �

It seems like too much work to write out objects such as the vector (0, 0, 0)
that occurred in the last equation; after all, we know that all the entries are
all 0. So we make the following notational convention for convenience. A zeroZero Matrix
matrix is a matrix whose every entry is 0. We shall denote such matrices by
the symbol 0.

Caution: This convention makes the symbol 0 ambiguous, but the meaning
of the symbol will be clear from context, and the convenience gained is worth
the potential ambiguity. For example, the equation of the preceding example
is stated very simply as −2A1 + 3A2 − 2A3 = 0, where we understand from
context that 0 has to mean the 3 × 1 column vector of zeros. If we use bold-
face for vectors, we will also then use boldface for the vector zero, so some
distinction is regained.

Example 2.5. Suppose that a linear combination of matrices satisfies the
identity −2A1 + 3A2 − 2A3 = 0, as in the preceding example. Use this fact to
express A1 in terms of A2 and A3.

Solution. To solve this example, just forget that the quantities A1, A2, A3

are anything special and use ordinary algebra. First, add −3A2 +2A3 to both
sides to obtain

−2A1 + 3A2 − 2A3 − 3A2 + 2A3 = −3A2 + 2A3,

so that
−2A1 = −3A2 + 2A3,

and multiplying both sides by the scalar − 1
2 yields the identity

A1 =
−1
2

(−2A1) =
−1
2

(−3A2 + 2A3) =
3
2
A2 − A3. �
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The linear combination idea has a really useful application to linear sys-
tems, namely, it gives us another way to express the solution set of a linear
system that clearly identifies the role of free variables. The following example
illustrates this point.

Example 2.6. Suppose that a linear system in the unknowns x1, x2, x3, x4

has general solution (x2 + 3x4, x2, 2x2 − x4, x4), where the variables x2, x4

are free. Describe the solution set of this linear system in terms of linear
combinations with free variables as coefficients.

Solution. The trick here is to use only the parts of the general solution
involving x2 for one vector and the parts involving x4 as the other vectors in
such a way that these vectors add up to the general solution. In our case we
have

⎡
⎢⎢⎣

x2 + 3x4

x2

2x2 − x4

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2

x2

2x2

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

3x4

0
−x4

x4

⎤
⎥⎥⎦ = x2

⎡
⎢⎢⎣

1
1
2
0

⎤
⎥⎥⎦ + x4

⎡
⎢⎢⎣

3
0

−1
1

⎤
⎥⎥⎦ .

Now simply define vectors A1 = (1, 1, 2, 0), A2 = (3, 0,−1, 1), and we see that
since x2 and x4 are arbitrary, the solution set is

S = {x2A1 + x4A2 | x2, x4 ∈ R} .

In other words, the solution set to the system is the set of all possible linear
combinations of the vectors A1 and A2. ��

The idea of solution sets as linear combinations is an important one that
we will return to in later chapters. You might notice that once we have the
general form of a solution vector we can see that there is an easier way to
determine the constant vectors A1 and A2. Simply set x2 = 1 and the other
free variable(s) equal to zero—in this case just x4—to get the solution vector
A1, and set x4 = 1 and x2 = 0 to get the solution vector A2.

Laws of Arithmetic

The last example brings up an important point: to what extent can we rely on
the ordinary laws of arithmetic and algebra in our calculations with matrices
and vectors? For matrix multiplication there are some surprises. On the other
hand, the laws for addition and scalar multiplication are pretty much what
we would expect them to be. Here are the laws with their customary names.
These same names can apply to more than one operation. For instance, there
is a closure law for addition and one for scalar multiplication as well.
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Let A,B,C be matrices of the same size m × n, 0 the m × n zero
matrix, and c and d scalars.
(1) (Closure Law) A + B is an m × n matrix.
(2) (Associative Law) (A + B) + C = A + (B + C)
(3) (Commutative Law) A + B = B + A
(4) (Identity Law) A + 0 = A
(5) (Inverse Law) A + (−A) = 0
(6) (Closure Law) cA is an m × n matrix.
(7) (Associative Law) c(dA) = (cd)A
(8) (Distributive Law) (c + d)A = cA + dA
(9) (Distributive Law) c(A + B) = cA + cB
(10) (Monoidal Law) 1A = A

Laws of
Matrix

Addition and
Scalar

Multiplication

It is fairly straightforward to prove from definitions that these laws are
valid. The verifications all follow a similar pattern, which we illustrate by
verifying the commutative law for addition: let A = [aij ] and B = [bij ] be
given m × n matrices. Then we have that

A + B = [aij + bij ]
= [bij + aij ]
= B + A,

where the first and third equalities come from the definition of matrix addition,
and the second equality follows from the fact that for all indices i and j,
aij + bij = bij + aij by the commutative law for addition of scalars.

2.1 Exercises and Problems

Exercise 1. Calculate the following where possible.

(a)
[

1 2 −1
0 2 2

]
−

[
3 1 0
1 1 1

]
(b) 2

[
1
3

]
− 5

[
2
2

]
+ 3

[
4
1

]
(c) 2

[
1 4
0 0

]
+ 3

[
0 0
2 1

]

(d) a

[
1 1
1 1

]
+ b

[
1
1

]
(e)

⎡
⎣ 1 2 −1

0 0 2
0 2 −2

⎤
⎦ + 2

⎡
⎣ 3 1 0

5 2 1
1 1 1

⎤
⎦ (f) x

⎡
⎣ 1

3
0

⎤
⎦ −

⎡
⎣2

2
1

⎤
⎦ + y

⎡
⎣4

1
0

⎤
⎦

Exercise 2. Calculate the following where possible.

(a) 8

⎡
⎣ 1 2 −1

1 0 0
2 −1 3

⎤
⎦ (b) −

[
2
3

]
+ 3

[
2

−1

]
(c)

[
1 4 2
1 0 3

]
+ (−4)

[
0 0 1
2 1 −2

]

(d) 4

⎡
⎣ 0 1 −1

2 0 2
0 2 0

⎤
⎦ − 2

⎡
⎣ 0 2 0
−3 0 1
1 −2 0

⎤
⎦ (e) 2

⎡
⎣ 2

0
1

⎤
⎦ + u

⎡
⎣−2

2
3

⎤
⎦ + v

⎡
⎣0

1
2

⎤
⎦
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Exercise 3. Let A =
[

1 0 −1
1 1 2

]
, B =

[
2 2
1 −2

]
, C =

[
1 1 0
2 1 0

]
, and compute the

following, where possible.
(a) A + 3B (b) 2A − 3C (c) A − C (d) 6B + C (e) 2C − 3 (A − 2C)

Exercise 4. With A,B,C as in Exercise 3, solve for the unknown matrix X in
the equations

(a) X + 3A = C (b) A − 3X = 3C (c) 2X +
[

2 2
1 −2

]
= B.

Exercise 5. Write the following vectors as a linear combination of constant
vectors with scalar coefficients x, y, or z.

(a)
[

x + 2y
2x − z

]
(b)

[
x − y

2x + 3y

]
(c)

⎡
⎣ 3x + 2y

−z
x + y + 5z

⎤
⎦ (d)

⎡
⎣x − 3y

4x + z
2y − z

⎤
⎦

Exercise 6. Write the following vectors as a linear combination of constant
vectors with scalar coefficients x, y, z, or w.

(a)
[

3x + y
x + y + z

]
(b)

⎡
⎣ 3x + 2y − w

w − z
x + y − 2w

⎤
⎦ (c)

[
x + 3y
2y − x

]
(d)

⎡
⎣ x − 2y

4x + z
3w − z

⎤
⎦

Exercise 7. Find scalars a, b, c such that
[

c b
0 c

]
=

[
a − b c + 2
a + b a − b

]
.

Exercise 8. Find scalars a, b, c, d such that
[

d 2a
2d a

]
=

[
a − b b + c
a + b c − b + 1

]
.

Exercise 9. Express the matrix
[

a b
c d

]
as a linear combination of the four ma-

trices
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
, and

[
0 0
0 1

]
.

Exercise 10. Express the matrix D =
[

3 3
1 −3

]
as a linear combination of the

matrices A =
[

1 1
1 0

]
, B =

[
0 1
1 1

]
, and C =

[
0 2
0 −1

]
.

Exercise 11. Verify that the associative law and commutative laws for addition
hold for

A =
[
−1 0 −1

0 1 2

]
, B =

[
1 2 −1
4 1 3

]
, C =

[
−1 0 −1

1 −1 0

]
.
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Exercise 12. Verify that both distributive laws for addition hold for c = 2,
d = −3, and A, B, and C as in Exercise 11.

Problem 13. Show by examples that it is false that for arbitrary matrices
A and B, and constant c,
(a) rank (cA) = rankA (b) rank (A + B) ≥ rankA + rankB.

Problem 14. Prove that the associative law for addition of matrices holds.

Problem 15. Prove that both distributive laws hold.

*Problem 16. Prove that if A and B are matrices such that 2A − 4B = 0 and
A + 2B = I, then A = 1

2I.

Problem 17. Prove the following assertions for m × n matrices A and B by
using the laws of matrix addition and scalar multiplication. Clearly specify
each law that you use.
(a) If A = −A, then A = 0.
(b) If cA = 0 for some scalar c, then either c = 0 or A = 0.
(c) If B = cB for some scalar c �= 1, then B = 0.

2.2 Matrix Multiplication

Matrix multiplication is somewhat more subtle than matrix addition and
scalar multiplication. Of course, we could define matrix multiplication to be
a coordinatewise operation, just as addition is (there is such a thing, called
Hadamard multiplication). But our motivation is not merely to make defini-
tions, but rather to make useful definitions for basic problems.

Definition of Multiplication

To motivate the definition, let us consider a single linear equation

2x − 3y + 4z = 5.

We will find it handy to think of the left-hand side of the equation as a “prod-
uct” of the coefficient matrix [2,−3, 4] and the column matrix of unknowns[

x
y
z

]
. Thus, we have that the product of this row and column is

[2,−3, 4]

⎡
⎣x

y
z

⎤
⎦ = [2x − 3y + 4z] .

Notice that we have made the result of the product into a 1× 1 matrix. This
introduces us to a permanent abuse of notation that is almost always used in
linear algebra: we don’t distinguish between the scalar a and the 1× 1 matrix
[a], though technically perhaps we should. In the same spirit, we make the
following definition.
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Definition 2.5. The product of the 1 × n row [a1, a2, . . . , an] with the n × 1 Row Column
Product

column

⎡
⎣

b1
b2
...

bn

⎤
⎦ is defined to be the 1 × 1 matrix [a1b1 + a2b2 + · · · + anbn].

It is this row-column product strategy that guides us to the general definition.
Notice how the column number of the first matrix had to match the row
number of the second, and that this number disappears in the size of the
resulting product. This is exactly what happens in general.

Definition 2.6. Let A = [aij ] be an m × p matrix and B = [bij ] a p × n Matrix
Productmatrix. Then the product of the matrices A and B, denoted by AB, is the

m × n matrix whose (i, j)th entry, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, is the entry
of the product of the ith row of A and the jth column of B; more specifically,
the (i, j)th entry of AB is

ai1b1j + ai2b2j + · · · + aipbpj .

Notice that, in contrast to the case of addition, two matrices may be of differ-
ent sizes when we can multiply them together. If A is m×p and B is p×n, we
say that A and B are conformable for multiplication. It is also worth noticing
that if A and B are square and of the same size, then the products AB and
BA are always defined.

Some Illustrative Examples

Let’s check our understanding with a few examples.

Example 2.7. Compute, if possible, the products AB of the following pairs
of matrices A,B.

(a)
[

1 2 1
2 3 −1

]
,

⎡
⎣ 4 −2

0 1
2 1

⎤
⎦ (b)

[
1 2 3
2 3 −1

]
,

[
2
3

]
(c)

[
1 2

]
,

[
0
0

]

(d)
[

0
0

]
,

[
1 2

]
(e)

[
1 0
0 1

]
,

[
1 2 1
2 3 −1

]
(f)

[
1 1
1 1

]
,

[
1 1

−1 −1

]

Solution. In part (a) A is 2× 3 and B is 3× 2. First check conformability for
multiplication. Stack these dimensions alongside each other and see that the
3’s match; now “cancel” the matching middle 3’s to obtain that the dimension
of the product is 2× � 3 � 3 × 2 = 2 × 2. To obtain, for example, the (1, 2)th
entry of the product matrix, multiply the first row of A and second column
of B to obtain

[1, 2, 1]

⎡
⎣−2

1
1

⎤
⎦ = [1 · (−2) + 2 · 1 + 1 · 1] = [1] .
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The full product calculation looks like this:

[
1 2 1
2 3 −1

] ⎡
⎣ 4 −2

0 1
2 1

⎤
⎦ =

[
1 · 4 + 2 · 0 + 1 · 2 1 · (−2) + 2 · 1 + 1 · 1

2 · 4 + 3 · 0 + (−1) · 2 2 · (−2) + 3 · 1 + (−1) · 1

]

=
[

6 1
6 −2

]
.

A size check of part (b) reveals a mismatch between the column number of
the first matrix (3) and the row number (2) of the second matrix. Thus these
matrices are not conformable for multiplication in the specified order. Hence

[
1 2 3
2 3 −1

] [
2
3

]

is undefined.
In part (c) a size check shows that the product has size 2× � 1 � 1×2 = 2×2.

The calculation gives
[

0
0

] [
1 2

]
=

[
0 · 1 0 · 2
0 · 1 0 · 2

]
=

[
0 0
0 0

]
.

For part (d) the size check shows gives 1× � 2 � 2 × 1 = 1 × 1. Hence the
product exists and is 1 × 1. The calculation gives

[
1 2

] [
0
0

]
= [1 · 0 + 2 · 0] = [0] .

Something very interesting comes out of parts (c) and (d). Notice that AB
and BA are not the same matrices—never mind that their entries are all 0’s—
the important point is that these matrices are not even the same size! Thus a
very familiar law of arithmetic, the commutativity of multiplication, has just
fallen by the wayside.Matrix

Multiplication
Not

Commutative
or

Cancellative

Things work well in (e), where the size check gives 2× � 2 � 2 × 3 = 2 × 3
as the size of the product. As a matter of fact, this is a rather interesting
calculation:[

1 0
0 1

] [
1 2 1
2 3 −1

]
=

[
1 · 1 + 0 · 2 1 · 2 + 0 · 3 1 · 1 + 0 · (−1)
0 · 1 + 1 · 2 0 · 2 + 1 · 3 0 · 1 + 1 · (−1)

]
=

[
1 2 1
2 3 −1

]
.

Notice that we end up with the second matrix in the product. This is similar
to the arithmetic fact that 1·x = x for a given real number x. So the matrix on
the left acted like a multiplicative identity. We’ll see that this is no accident.

Finally, for the calculation in (f), notice that
[

1 1
1 1

] [
1 1

−1 −1

]
=

[
1 · 1 + 1 · −1 1 · 1 + 1 · −1
1 · 1 + 1 · −1 1 · 1 + 1 · −1

]
=

[
0 0
0 0

]
.
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There’s something very curious here, too. Notice that two nonzero matrices
of the same size multiplied together to give a zero matrix. This kind of thing
never happens in ordinary arithmetic, where the cancellation law assures that
if a · b = 0 then a = 0 or b = 0. ��

The calculation in (e) inspires some more notation. The left-hand matrix
of this product has a very important property. It acts like a “1” for matrix
multiplication. So it deserves its own name. A matrix of the form Identity

Matrix

In =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 0
...

. . .
1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

= [δij ]

is called an n×n identity matrix. The (i, j)th entry of In is designated by the Kronecker
SymbolKronecker symbol δij , which is 1 if i = j and 0 otherwise. If n is clear from

context, we simply write I in place of In.
So we see in the previous example that the left-hand matrix of part (e) is

[
1 0
0 1

]
= I2.

Linear Systems as a Matrix Product

Let’s have another look at a system we examined in Chapter 1. We’ll change
the names of the variables from x, y, z to x1, x2, x3 in anticipation of a notation
that will work with any number of variables.

Example 2.8. Express the following linear system as a matrix product:

x1 + x2 + x3 = 4
2x1 + 2x2 + 5x3 = 11
4x1 + 6x2 + 8x3 = 24

Solution. Recall how we defined multiplication of a row vector and column
vector at the beginning of this section. We use that as our inspiration. Define

x =

⎡
⎣x1

x2

x3

⎤
⎦ , b =

⎡
⎣ 4

11
24

⎤
⎦ , and A =

⎡
⎣1 1 1

2 2 5
4 6 8

⎤
⎦ .

Of course, A is just the coefficient matrix of the system and b is the right-
hand-side vector, which we have seen several times before. But now these take
on a new significance. Notice that if we take the first row of A and multiply
it by x we get the left-hand side of the first equation of our system. Likewise
for the second and third rows. Therefore, we may write in the language of
matrices that
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Ax =

⎡
⎣ 1 1 1

2 2 5
4 6 8

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 4

11
24

⎤
⎦ = b.

Thus the system is represented very succinctly as Ax = b. ��
Once we understand this example, it is easy to see that the general abstract

system that we examined in Section 1.1 can just as easily be abbreviated. Now
we have a new way of looking at a system of equations: it is just like a simple
first-degree equation in one variable. Of course, the catch is that the symbols
A,x,b now represent an m×n matrix, and n×1 and m×1 vectors, respectively.
In spite of this, the matrix multiplication idea is very appealing. For instance,
it might inspire us to ask whether we could somehow solve the system Ax = b
by multiplying both sides of the equation by some kind of matrix “1/A” so
as to cancel the A and get

(1/A)Ax = Ix = x = (1/A)b.

We’ll follow up on this idea in Section 2.5.
Here is another perspective on matrix–vector multiplication that gives a

powerful way of thinking about such multiplications.

Example 2.9. Interpret the matrix product of Example 2.8 as a linear com-
bination of column vectors.

Solution. Examine the system of this example and we see that the col-
umn (1, 2, 4) appears to be multiplied by x1. Similarly, the column (1, 2, 6)
is multiplied by x2 and the column (1, 5, 8) by x3. Hence, if we use the same
right-hand-side column (4, 11, 24) as before, we obtain that this column can
be expressed as a linear combination of column vectors, namely

x1

⎡
⎣ 1

2
4

⎤
⎦ + x2

⎡
⎣1

2
6

⎤
⎦ + x3

⎡
⎣1

5
8

⎤
⎦ =

⎡
⎣ 4

11
24

⎤
⎦ . �

We could write the equation of the previous example very succinctly as
follows: let A have columns a1,a2,a3, so that A = [a1,a2,a3], and let x =Matrix-Vector

Multiplication (x1, x2, x3). Then
Ax = x1a1 + x2a2 + x3a3.

This formula extends to general matrix–vector multiplication. It is extremely
useful in interpreting such products, so we will elevate its status to that of a
theorem worth remembering.

Theorem 2.1. Let A = [a1,a2, . . . ,an] be an m × n matrix with columns
a1,a2, . . . ,an ∈ R

m and let x = (x1, x2, . . . , xn). Then

Ax = x1a1 + x2a2 + · · · + xnan.
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Laws of Arithmetic

We have already seen that the laws of matrix arithmetic may not be quite the
same as the ordinary arithmetic laws that we are used to. Nonetheless, as long
as we don’t assume a cancellation law or a commutative law for multiplication,
things are pretty much what one might expect.

Let A,B,C be matrices of the appropriate sizes so that the following
multiplications make sense, I a suitably sized identity matrix, and c
and d scalars.
(1) (Closure Law) The product AB is a matrix.
(2) (Associative Law) (AB)C = A(BC)
(3) (Identity Law) AI = A and IB = B
(4) (Associative Law for Scalars) c(AB) = (cA)B = A(cB)
(5) (Distributive Law) (A + B)C = AC + BC
(6) (Distributive Law) A(B + C) = AB + AC

Laws of
Matrix
Multiplication

One can formally verify these laws by working through the definitions. For
example, to verify the first half of the identity law, let A = [aij ] be an m × n
matrix, so that I = [δij ] has to be In in order for the product AI to make
sense. Now we see from the formal definition of matrix multiplication that

AI =

[
n∑

k=1

aikδkj

]
= [aij · 1] = A.

The middle equality follows from the fact that δkj is 0 unless k = j. Thus the
sum collapses to a single term. A similar calculation verifies the other laws.

We end our discussion of matrix multiplication with a familiar-looking
notation that will prove to be extremely handy in the sequel. This notation
applies only to square matrices. Let A be a square n × n matrix and k a Exponent

Notationnonnegative integer. Then we define the kth power of A to be

Ak =

⎧⎪⎪⎨
⎪⎪⎩

In if k = 0,

A · A · · ·A︸ ︷︷ ︸ if k > 0.

k times

As a simple consequence of this definition we have the standard exponent
laws.

For nonnegative integers i, j and square matrix A:
(1) Ai+j = Ai · Aj

(2) Aij = (Ai)j

Laws of
Exponents

Notice that the law (AB)i = AiBi is missing. It won’t work with matrices.
Why not? The following example illustrates a very useful application of the
exponent notation.
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Example 2.10. Let f (x) = 1 − 2x + 3x2 be a polynomial function. Use the
definition of matrix powers to derive a sensible interpretation of f (A), where
A is a square matrix. Evaluate f

([
2 −1
0 1

])
explicitly with this interpretation.

Solution. Let’s take a closer look at the polynomial expression

f (x) = 1 − 2x + 3x2 = 1x0 − 2x + 3x2.

Once we’ve rewritten the polynomial in this form, we recall that A0 = I and
that other matrix powers make sense since A is square, so the interpretation
is easy:

f (A) = A0 − 2A1 + 3A2 = I − 2A + 3A2.

In particular, for a 2 × 2 matrix we take A = I = [ 1 0
0 1 ] and obtain

f

([
2 −1
0 1

])
= I − 2

[
2 −1
0 1

]
+ 3

[
2 −1
0 1

]2

=
[

1 0
0 1

]
− 2

[
2 −1
0 1

]
+ 3

[
2 −1
0 1

] [
2 −1
0 1

]

=
[

1 0
0 1

]
−

[
4 −2
0 2

]
+

[
12 −9
0 3

]
=

[
9 −7
0 2

]
. �

2.2 Exercises and Problems

Exercise 1. Carry out these calculations or indicate they are impossible, given

that a =
[

2
1

]
, b =

[
3 4

]
, and C =

[
2 1 + i
0 −1

]
.

(a) bCa (b) ab (c) Cb (d) (aC)b (e) Ca (f) C (ab) (g) ba (h) C (a + b)

Exercise 2. For each pair of matrices A,B, calculate the product AB or indi-
cate that the product is undefined.

(a)
[

1 0
0 1

]
,

[
3 −2 0

−2 5 8

]
(b)

[
2 1 0
0 8 2

]
,

[
1 1
2 2

]
(c)

⎡
⎣3 1 2

1 0 0
4 3 2

⎤
⎦ ,

⎡
⎣−5 4 −2
−2 3 1

1 0 4

⎤
⎦

(d)

⎡
⎣ 3 1

1 0
4 3

⎤
⎦ ,

[
−5 4 −2
−2 3 1

]
(e)

⎡
⎣3

1
4

⎤
⎦ ,

[
−5 4
−2 3

]
(f)

[
2 0
2 3

]
,

[
3
1

]

Exercise 3. Express these systems of equations in the notation of matrix mul-
tiplication and as a linear combination of vectors as in Example 2.8.

(a) x1 − 2x2 + 4x3 = 3 (b) x − y − 3z = 3 (c) x − 3y + 1 = 0
x2 − x3 = 2 2x + 2y + 4z = 10 2y = 0

−x1 + 4x4 = 1 −x + z = 3 −x + 3y = 0
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Exercise 4. Express these systems of equations in the notation of matrix mul-
tiplication and as a linear combination of vectors as in Example 2.8.

(a) x1 + x3 = −1 (b) x − y − 3z = 1 (c) x − 4y = 0
x2 + x3 = 0 z = 0 2y = 0
x1 + x3 = 1 −x + y = 3 −x + 3y = 0

Exercise 5. Let A =

⎡
⎣ 2 −1 1

2 3 −2
4 2 −2

⎤
⎦, b =

⎡
⎣ 2
−3

1

⎤
⎦, x =

⎡
⎣x

y
z

⎤
⎦, and X =

⎡
⎣x 0 0

0 y 0
0 0 z

⎤
⎦.

Find the coefficient matrix of the linear system XAb + Ax =

⎡
⎣3

1
2

⎤
⎦ in the

variables x, y, z.

Exercise 6. Let A =
[

1 −1
2 0

]
and X =

[
x y
z w

]
. Find the coefficient matrix of

the linear system AX − XA = I2 in the variables x, y, z, w.

Exercise 7. Let u = (1, 1, 0), v = (0, 1, 1), and w = (1, 3, 1). Write each of the
following expressions as single matrix product.
(a) 2u − 4v − 3w (b) w − v + 2iu (c) x1u − 3x2v + x3w

Exercise 8. Express the following matrix products as linear combinations of
vectors.

(a)

⎡
⎣ 2 1

0 1
0 2

⎤
⎦

[
x
y

]
(b)

⎡
⎣ 1 1 1

0 0 0
1 2 2

⎤
⎦

⎡
⎣ 2
−5

1

⎤
⎦ (c)

[
1 1
1 1 + i

] [
x1

−x2

]

Exercise 9. Let A =
[

0 2
1 1

]
, f (x) = 1+x+x2, g (x) = 1−x, and h (x) = 1−x3.

Verify that f (A) g (A) = h (A).

Exercise 10. Let A =
[

1 2
−1 1

]
and B =

⎡
⎣ 0 1 0

0 0 1
5
2 − 3

2 0

⎤
⎦. Compute f(A) and f(B),

where f(x) = 2x3 + 3x − 5.

Exercise 11. Find all possible products of two matrices from among the follow-
ing:

A =
[

1 −2
1 3

]
B =

[
2 4

]
C =

[
1
5

]
D =

[
1 3 0

−1 2 1

]

Exercise 12. Find all possible products of three matrices from among the fol-
lowing:

A =
[
−1 2

0 2

]
B =

⎡
⎣ 2 1

1 0
2 3

⎤
⎦ C =

[
−3
2

]
D =

[
2 3 −1
1 2 1

]
E =

[
−2 4

]
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Exercise 13. A square matrix A is said to be nilpotent if there is a positive
integer k such that Ak = 0. Determine which of the following matrices are
nilpotent. (You may assume that if A is n × n nilpotent, then An = 0.)

(a)

⎡
⎣ 0 2 0

0 0 2
0 0 0

⎤
⎦ (b)

[
1 1
1 1

]
(c)

[
0 0
1 0

]
(d)

⎡
⎣ 2 2 −4
−1 0 2

1 1 −2

⎤
⎦ (e)

⎡
⎢⎢⎣

1 1 0 0
0 −1 1 0
0 0 1 1
−1 0 −2 −1

⎤
⎥⎥⎦

Exercise 14. A square matrix A is idempotent if A2 = A. Determine which of
the following matrices are idempotent.

(a)
[

1 2
0 1

]
(b)

[
1 0
0 1

]
(c)

[
0 0

−1 0

]
(d)

⎡
⎣0 0 2

1 1 −2
0 0 1

⎤
⎦ (e)

⎡
⎢⎢⎣

1 0 0 0
−1 0 0 0
0 0 1 0
0 0 −1 0

⎤
⎥⎥⎦

Exercise 15. Show by example that a sum of nilpotent matrices need not be
nilpotent.

Exercise 16. Show by example that a product of idempotent matrices need not
be idempotent.

Exercise 17. Verify that the product uv, where u = (1, 0, 2) and v =
[
−1 1 1

]
,

is a rank-one matrix.

Exercise 18. Verify that the product uv + wu, where u = (1, 0, 2), v =[
−1 1 1

]
, and w = (1, 0, 1), is a matrix of rank at most two.

Exercise 19. Verify that both associative laws of multiplication hold for

c = 4, A =
[

2 0
−1 1

]
, B =

[
0 2
0 3

]
, C =

[
1 + i 1

1 2

]
.

Exercise 20. Verify that both distributive laws of multiplication hold for

A =
[

2 0
−1 1

]
, B =

[
0 2
0 3

]
, C =

[
1 + i 1

1 2

]
.

Problem 21. Find examples of 2 × 2 matrices A and B that fulfill each of the
following conditions.

(a) (AB)2 �= A2B2 (b) AB �= BA

Problem 22. Find examples of nonzero 2× 2 matrices A, B, and C that fulfill
each of the following conditions.

(a) A2 = 0, B2 = 0 (b) (AB)2 �= 0

*Problem 23. Show that if A is a 2 × 2 matrix such that AB = BA for every
2 × 2 matrix B, then A is a multiple of I2.

Problem 24. Prove that the associative law for scalars is valid.
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Problem 25. Prove that both distributive laws for matrix multiplication are
valid.

Problem 26. Show that if A is a square matrix such that Ak+1 = 0, then

(I − A)
(
I + A + A2 + · · · + Ak

)
= I.

*Problem 27. Show that if two matrices A and B of the same size have the
property that Ab = Bb for every column vector b of the correct size for
multiplication, then A = B.

Problem 28. Determine the flop count for multiplication of m× p matrix A by
p × n matrix B. (See page 48.)

2.3 Applications of Matrix Arithmetic

We next examine a few more applications of the matrix multiplication idea
that should reinforce the importance of this idea and provide us with some
interpretations of matrix multiplication.

Matrix Multiplication as Function

The function idea is basic to mathematics. Recall that a function f is a rule of
correspondence that assigns to each argument x in a set called its domain, a
unique value y = f(x) from a set called its target. Each branch of mathematics
has its own special functions; for example, in calculus differentiable functions
f(x) are fundamental. Linear algebra also has its special functions. Suppose
that T (u) represents a function whose arguments u and values v = T (u) are
vectors.

We say that the function T is linear if T preserves linear combinations,
that is, for all vectors u,v in the domain of T, and scalars c, d, we have that
cu + dv is in the domain of T and Linear

Functions
T (cu + dv) = cT (u) + dT (v) .

Example 2.11. Show that the function T , whose domain is the set of 2 × 1
vectors and definition is given by

T

([
x
y

])
= x,

is a linear function.
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Solution. Let (x, y) and (z, w) be two elements in the domain of T and c, d
any two scalars. Now compute

T

(
c

[
x
y

]
+ d

[
z
w

])
= T

([
cx
cy

]
+

[
dz
dw

])
= T

([
cx + dz
cy + dw

])

= cx + dz = cT

([
x
y

])
+ dT

([
z
w

])
.

Thus, T satisfies the definition of linear function. ��
One can check that the function T just defined can be expressed as a

matrix multiplication, namely, T ([ x
y ]) = [ 1 0 ] [ x

y ]. This example gives yet an-
other reason for defining matrix multiplication in the way that we do. Here is
a general definition for these kinds of functions (also known as linear trans-
formations or linear operators).

Definition 2.7. Let A be an m×n matrix. The function TA that maps n× 1
vectors to m × 1 vectors according to the formulaMatrix

Operator
TA(u) = Au

is called the linear function (operator or transformation) associated with the
matrix A or simply a matrix operator.

Let’s verify that this function T actually is linear. Use the definition of TA

along with the distributive law of multiplication and associative law for scalars
to obtain that

TA(cu + dv) = A(cu + dv)
= A(cu) + A(dv)
= c(Au) + d(Av)
= cTA(u) + dTA(v).

Thus multiplication of vectors by a fixed matrix A is a linear function. Notice
that this result contains Example 2.11 as a special case.Function

Composition
Notation

Recall that the composition of functions f and g is the function f ◦g whose
definition is (f ◦ g) (x) = f (g (x)) for all x in the domain of g.

Example 2.12. Use the associative law of matrix multiplication to show that
the composition of matrix multiplication functions corresponds to the matrix
product.

Solution. For all vectors u and for suitably sized matrices A,B, we have by
the associative law that A(Bu) = (AB)u. In function terms, this means that
TA(TB(u)) = TAB(u). Since this is true for all arguments u, it follows that
TA ◦ TB = TAB , which is what we were to show. ��

We will have more to say about linear functions in Chapters 3 and 6, where
they will go by the name of linear operators. Here is an example that gives
another slant on why the “linear” in “linear function.”
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Example 2.13. Describe the action of the matrix operator TA on the x-axis

and y-axis, where A =
[

2 1
4 2

]
.

Solution. A typical element of the x-axis has the form v = (x, 0). Thus we
have that T (v) = T ((x, 0)). Now calculate

T (v) = TA ((x, 0)) = Av =
[

2 1
4 2

] [
x
0

]
=

[
2x
4x

]
= x

[
2
4

]
.

Thus the x-axis is mapped to all multiples of the vector (2, 4). Set t = 2x, and
we see that x (2, 4) = (t, 2t). Hence, these are simply points on the line given
by x = t, y = 2t. Equivalently, this is the line y = 2x. Similarly, one checks
that the y-axis is mapped to the line y = 2x as well. ��

Example 2.14. Let L be set of points (x, y) defined by the equation y = x+1

and let TA(L) = {T (((x, y)) | (x, y) ∈ L}, where A =
[

2 1
4 2

]
. Describe and

sketch these sets in the plane.

Solution. Of course, the set L is just the straight line defined by the linear
equation y = x + 1. To see what TA(L) looks like, write a typical element of
L in the form (x, x + 1). Now calculate

TA((x, x + 1)) =
[

2 1
4 2

] [
x

x + 1

]
=

[
3x + 1
6x + 2

]
.

Next make the substitution t = 3x + 1, and we see that a typical element of
TA(L) has the form (t, 2t), where t is any real number. We recognize these
points as exactly the points on the line y = 2x. Thus, the function TA maps
the line y = x + 1 to the line y = 2x. Figure 2.1 illustrates this mapping as
well as the fact that TA maps the line segment from

(−1
3 , 2

3

)
to

(
1
6 , 7

6

)
on L

to the line segment from (0, 0) to
(

3
2 , 3

)
on TA (L). ��

Graphics specialists and game programmers have a special interest in real-
time rendering, the discipline concerned with algorithms that create synthetic Real-Time

Renderingimages fast enough that the viewer can interact with a virtual environment.
For a comprehensive treatment of this subject, consult the text [2]. A num-
ber of fundamental matrix-defined operators are used in real-time rendering,
where they are called transforms. Here are a few examples of such operators.
A scaling operator is effected by multiplying each coordinate of a point by a Scaling and

Shearing
Graphics
Transforms

fixed (positive) scale factor. A shearing operator is effected by adding a con-
stant shear factor times one coordinate to another coordinate of the point.
A rotation operator is effected by rotating each point a fixed angle θ in the
counterclockwise direction about the origin.

Example 2.15. Let the scaling operator S on points in two dimensions have
scale factors of 3

2 in the x-direction and 1
2 in the y-direction. Let the shearing
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2

321

3

1

y

x

L(
3
2 , 3

)TA (L)

(−1
3 , 2

3

)
(

1
6 ,

7
6

)

(0, 0)

Fig. 2.1. Action of TA on line L given by y = x + 1, points on L, and the segment
between them.

operator H on these points have a shear factor of 1
2 by the y-coordinate on

the x-coordinate. Express these operators as matrix operators and graph their
action on four unit squares situated diagonally from the origin.

Solution. First consider the scaling operator. The point (x, y) will be trans-
formed into the point

(
3
2x, 1

2y
)
. Observe that

S ((x, y)) =

[
3
2x
1
2y

]
=

[
3
2 0
0 1

2

][
x

y

]
= TA ((x, y)) ,

where A =
[

3
2 0

0 frac12

]
. Similarly, the shearing operator transforms the point

(x, y) into the point
(
x + 1

2y, y
)
. Thus we have

H ((x, y)) =
[

x + 1
2y

y

]
=

[
1 1

2
0 1

] [
x
y

]
= TB ((x, y)) ,

where B =
[

1 1
2

0 1

]
. The action of these operators on four unit squares is illus-

trated in Figure 2.2. ��

Example 2.16. Express the concatenation S ◦ H of the scaling operator S
and shearing operator H of Example 2.15 as a matrix operator and graph the
action of the concatenation on four unit squares situated diagonally from the
origin.

Solution. From Example 2.15 we have that S = TA, where A =
[ 3

2 0

0 1
2

]
,

and H = TB , where B =
[

1 1
2

0 1

]
. From Example 2.12 we know that function

composition corresponds to matrix multiplication, that is,
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5

4

3

2

1

0 1 2 4 53 6
x

y

S

(a) Scaling in x-direction
by 3

2
, y-direction by 1

5

4

3

2

1

0 1 2 4 53 6
x

y

H

(b) Shearing in x-
direction by y, shear
factor 1

2

5

4

3

2

1

0 1 2 4 53 6 7
x

y

S ◦ H

(c) Concatenation of S and
H

Fig. 2.2. Action of scaling operator, shearing operator, and concatenation.

S ◦ H ((x, y)) = TA ◦ TB ((x, y)) = TAB ((x, y))

=
[

3
2 0
0 1

2

] [
1 1

2
0 1

] [
x
y

]

=

[
3
2

3
4

0 1
2

][
x

y

]
= TC ((x, y)) ,

where C = AB =
[ 3

2
3
4

0 1
2

]
. The action of S◦H on four unit squares is illustrated

in Figure 2.2. ��
Example 2.17. Describe the rotation operator (about the origin) for the
plane.

Solution. Consult Figure 2.3. Observe that if the point (x, y) is given by
(r cos φ, r sin φ) in polar coordinates, then the rotated point (x′, y′) has co-
ordinates (r cos (θ + φ) , r sin (θ + φ)). Now use the double-angle formula for
angles and obtain that[

x′

y′

]
=

[
r cos (θ + φ)
r sin (θ + φ)

]
=

[
r cos θ cos φ − r sin θ sin φ
r sin θ cos φ + r cos θ sin φ

]

=
[

cos θ − sin θ
sin θ cos θ

] [
r cos φ
r sin φ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Now define the rotation matrix R (θ) by Rotation
Matrix

R (θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

It follows that (x′, y′) = TR(θ) ((x, y)). ��

Discrete Dynamical Systems

Discrete dynamical systems are an extremely useful modeling tool in a wide
variety of disciplines. Here is the definition of such a system.
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θ
θ

w

φ

φ

y

x

v

R(θ)w
R(θ)v

Fig. 2.3. Action of rotation matrix R (θ) on vectors v and w.

Definition 2.8. A discrete linear dynamical system is a sequence of vectorsDiscrete
Dynamical

System
x(k), k = 0, 1, . . ., called states , which is defined by an initial vector x(0) and
by the rule

x(k+1) = Ax(k), k = 0, 1, . . . ,

where A is a given fixed square matrix, called the transition matrix of the
system.

A Markov chain is a certain type of discrete dynamical system. Here is an
example.

Example 2.18. Suppose two toothpaste companies compete for customers
in a fixed market in which each customer uses either Brand A or Brand B.
Suppose also that a market analysis shows that the buying habits of the
customers fit the following pattern in the quarters that were analyzed: each
quarter (three-month period), 30% of A users will switch to B, while the rest
stay with A. Moreover, 40% of B users will switch to A in a given quarter, while
the remaining B users will stay with B. If we assume that this pattern does not
vary from quarter to quarter, we have an example of what is called a Markov
chain model. Express the data of this model in matrix–vector language.

Solution. Notice that if a0 and b0 are the fractions of the customers using A
and B, respectively, in a given quarter, a1 and b1 the fractions of customers
using A and B in the next quarter, then our hypotheses say that

a1 = 0.7a0 + 0.4b0

b1 = 0.3a0 + 0.6b0.

We could figure out what happens in the quarter after this by replacing the
indices 1 and 0 by 2 and 1, respectively, in the preceding formula. In general,
we replace the indices 1, 0 by k, k + 1, to obtain

ak+1 = 0.7ak + 0.4bk

bk+1 = 0.3ak + 0.6bk.

We express this system in matrix form as follows: let
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x(k) =
[

ak

bk

]
and A =

[
0.7 0.4
0.3 0.6

]
.

Then the system may be expressed in the matrix form

x(k+1) = Ax(k). �

The state vectors x(k) of the preceding example have the following prop-
erty: Seach coordinate is nonnegative and all the coordinates sum to 1. Such Probability

Distribution
Vector

a vector is called a probability distribution vector. Also, the matrix A has the
property that each of its columns is a probability distribution vector. Such
a square matrix is called a stochastic matrix. In these terms we now give a Stochastic

Matrixprecise definition of a Markov chain.

Definition 2.9. A Markov chain is a discrete dynamical system whose initial Markov Chain
state x(0) is a probability distribution vector and whose transition matrix A
is stochastic, that is, each column of A is a probability distribution vector.

Let us return to Example 2.18. The state vectors and transition matrices

x(k) =
[

ak

bk

]
and A =

[
0.7 0.4
0.3 0.6

]

should play an important role. And indeed they do, for in light of our interpre-
tation of a linear system as a matrix product, we see that the two equations of
Example 2.18 can be written simply as x(1) = Ax(0). A little more calculation
shows that

x(2) = Ax(1) = A · (Ax(0)) = A2x(0)

and in general,

x(k) = Ax(k−1) = A2x(k−2) = · · · = Akx(0).

In fact, this is true of any discrete dynamical system, and we record this as a
key fact:

For any positive integer k and discrete dynamical system with transi-
tion matrix A and initial state x(0), the k-th state is given by

x(k) = Akx(0).

Computing
DDS States

Now we really have a very good handle on the Markov chain problem.
Consider the following instance of our example.

Example 2.19. In the notation of Example 2.18 suppose that initially Brand
A has all the customers (i.e., Brand B is just entering the market). What are
the market shares 2 quarters later? 20 quarters? Answer the same questions
if initially Brand B has all the customers.
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Solution. To say that initially Brand A has all the customers is to say that
the initial state vector is x(0) = (1, 0). Now do the arithmetic to find x(2):

[
a2

b2

]
= x(2) = A2x(0) =

[
0.7 0.4
0.3 0.6

] ([
0.7 0.4
0.3 0.6

] [
1
0

])

=
[

0.7 0.4
0.3 0.6

] [
0.7
0.3

]
=

[
.61
.39

]
.

Thus, Brand A will have 61% of the market and Brand B will have 39% of
the market in the second quarter. We did not try to do the next calculation
by hand, but rather used a computer to get the approximate answer:

x(20) =
[

0.7 0.4
0.3 0.6

]20 [
1
0

]
=

[
.57143
.42857

]
.

Thus, after 20 quarters, Brand A’s share will have fallen to about 57% of the
market and Brand B’s share will have risen to about 43%. Now consider what
happens if the initial scenario is completely different, i.e., x(0) = (0, 1). We
compute by hand to find that

x(2) =
[

0.7 0.4
0.3 0.6

] ([
0.7 0.4
0.3 0.6

] [
0
1

])

=
[

0.7 0.4
0.3 0.6

] [
0.4
0.6

]
=

[
.52
.48

]
.

Then we use a computer to find that

x(20) =
[

0.7 0.4
0.3 0.6

]20 [
0
1

]
=

[
.57143
.42857

]
.

Surprise! For k = 20 we get the same answer as we did with a completely
different initial condition. Coincidence? We will return to this example again
in Chapters 3 and 5, where concepts introduced therein will cast new light on
this model (no, it isn’t a coincidence). Another curious feature of these state
vectors: each one is a probability distribution vector. This is no coincidence
either (see Problem 18). ��

Another important type of model is a so-called structured population
model. In such a model a population of organisms is divided into a finiteStructured

Population
Model

number of disjoint states, such as age by year or weight by pound, so that the
entire population is described by a state vector that represents the population
at discrete times that occur at a constant period such as every day or year.
A comprehensive development of this concept can be found in Hal Caswell’s
text [4]. Here is an example.

Example 2.20. A certain insect has three life stages: egg, juvenile, and adult.
A population is observed in a certain environment to have the following prop-
erties in a two-day time span: 20% of the eggs will not survive, and 60% will
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move to the juvenile stage. In the same time-span 10% of the juveniles will
not survive, and 60% will move to the adult stage, while 80% of the adults
will survive. Also, in the same time-span adults will product about 0.25 eggs
per adult. Assume that initially, there are 10, 8, and 6 eggs, juveniles, and
adults (measured in thousands), respectively. Model this population as a dis-
crete dynamical system and use it to compute the population total in 2, 10,
and 100 days.

Solution. We start time at day 0 and the kth stage is day 2k. Here the time
period is two days and a state vector has the form x(k) = (ak, bk, ck), where ak

is the number of eggs, bk the number of juveniles, and ck the number of adults
(all in thousands) on day 2k. We are given that x(0) = (10, 8, 6). Furthermore,
the transition matrix has the form

A =

⎡
⎣0.2 0 0.25

0.6 0.3 0
0 0.6 0.8

⎤
⎦ .

The first column says that 20% of the eggs will remain eggs over one time
period, 60% will progress to juveniles, and the rest do not survive. The second
column says that juveniles produce no offspring, 30% will remain juveniles,
60% will become adults, and the rest do not survive. The third column says
that .25 eggs results from one adult, no adult becomes a juvenile, and 80%
survive. Now do the arithmetic to find the state x(1) on day 2:

x(1) =

⎡
⎣a1

b1

c1

⎤
⎦ = A1x(0) =

⎡
⎣0.2 0 0.25

0.6 0.3 0
0 0.6 0.8

⎤
⎦

⎡
⎣10

8
6

⎤
⎦ =

⎡
⎣3.5

8.4
9.6

⎤
⎦ .

For the remaining calculations we use a computer (you should check these
results with your own calculator or computer) to obtain approximate answers
(we use ≈ for approximate equality)

x(10) =

⎡
⎣a10

b10

c10

⎤
⎦ = A10x(0) ≈

⎡
⎣3.33

2.97
10.3

⎤
⎦ ,

x(100) =

⎡
⎣a100

b100

c100

⎤
⎦ = A100x(0) ≈

⎡
⎣0.284

0.253
0.877

⎤
⎦ .

It appears that the population is declining with time. ��

Calculating Power of Graph Vertices

Example 2.21. (Dominance Directed Graphs) You have incomplete data
about four teams who have played each other in matches. Each match pro-
duces a winner and a loser, with no score attached. Identify the teams by
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labels 1, 2, 3, and 4. We could describe a match by a pair of numbers (i, j),
where team i played and defeated team j (no ties allowed). Here are the given
data:

{(1, 2), (1, 4), (3, 1), (2, 3), (4, 2)} .

Give a reasonable graphical representation of these data.

Solution. We can draw a picture of all the data that we are given by repre-
senting each team as a point called a “vertex” and each match by connecting
two points with an arrow, called a “directed edge,” which points from the
winner toward the loser in the match. See Figure 2.4. ��

Edge 4Edge 2

Edge 5

Edge 3

Vertex 4 Vertex 3

Vertex 2Vertex 1 Edge 1

Fig. 2.4. Data from Example 2.21.

Consider the following question relating to Example 2.21. Given this in-
complete data about the teams, how would we determine a ranking of each
team in some sensible way? In order to answer this question, we are going to
introduce some concepts from graph theory that are useful modeling tools for
many problems.

The data of Figure 2.4 is an example of a directed graph, a modeling tool
that can be defined as follows.

Definition 2.10. A directed graph (digraph for short) is a set V whose ele-Directed
Graph ments are called vertices, together with a set or list (to allow for repeated

edges) E of ordered pairs with coordinates in V , whose elements are called
(directed) edges.

Another useful idea for us is the following: a walk in the digraph G is a se-Walk
quence of digraph edges (v0, v1), (v1, v2), . . . , (vm−1, vm) that goes from vertex
v0 to vertex vm. The length of the walk is m.

Here is an interpretation of “power” that has proved to be useful in many
situations. The power of a vertex in a digraph is the number of walks of length
1 or 2 originating at the vertex. In our example, the power of vertex 1 is 4.
Why only walks of length 1 or 2? One good reason is that walks of length 3
introduce the possibility of loops, i.e., walks that “loop around” to the same
point. It isn’t very informative to find out that team 1 beat team 2 beat team
3 beat team 1.
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The digraph of Example 2.21 has no edges from a vertex to itself (so-called
self-loops), and for a pair of distinct vertices, at most one edge connecting the
two vertices. In other words, a team doesn’t play itself and plays another team
at most once. Such a digraph is called a dominance-directed graph. Although Dominance

Directed
Graph

the notion of power of a point is defined for any digraph, it makes the most
sense for dominance-directed graphs.

Example 2.22. Find the power of each vertex in the graph of Example 2.21
and use this information to rank the teams.

Solution. In this example we could find the power of all points by inspection
of Figure 2.4. Let’s do it: simple counting gives that the power of vertex 1 is 4,
the power of vertex 3 is 3, and the power of vertices 2 and 4 is 2. Consequently,
teams 2 and 4 are tied for last place, team 3 is in second place, and team 1 is
first. ��

One can imagine situations (like describing the structure of the commu-
nications network pictured in Figure 2.5) in which the edges shouldn’t really
have a direction, since connections are bidirectional. For such situations a
more natural tool is the concept of a graph, which can be defined as follows:
a graph is a set V , whose elements are called vertices, together with a set or Graph
list (to allow for repeated edges) E of unordered pairs with coordinates in V ,
called edges.

v1 v2

v3v4 v5

v6
e2

e3

e6

e7

e1

e4

e5

e8

Fig. 2.5. A communications network graph.

Just as with digraphs, we define a walk in the graph G as a sequence of di-
graph edges (v0, v1), (v1, v2), . . . , (vm−1, vm) that goes from vertex v0 to vertex
vm. The length of the walk is m. For example, the graph of Figure 2.5 has ver-
tex set V = {v1, v2, v3, v4, v5, v6} and edge set E = {e1, e2, e3, e4, e5, e6, e7, e8},
with e1 = (v1, v2), etc, as in the figure. Also, the sequence e1, e4, e6 is a walk
from vertex v1 to v5 of length 3. As with digraphs, we can define the power of
a vertex in any graph as the number of walks of length at most 2 originating
at the vertex.

A practical question: how could we write a computer program to compute
powers? More generally, how can we compute the total number of walks of
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a certain length? Here is a key to the answer: all the information about our
graph (or digraph) can be stored in its adjacency matrix. In general, this isAdjacency

Matrix defined to be a square matrix whose rows and columns are indexed by the
vertices of the graph and whose (i, j)th entry is the number of edges going
from vertex i to vertex j (it is 0 if there are none). Here we understand that
a directed edge of a digraph must start at i and end at j, while no such
restriction applies to the edges of a graph.

Just for the record, if we designate the adjacency matrix of the digraph of
Figure 2.4 by A and the adjacency matrix of the graph of Figure 2.5 by B,
then

A =

⎡
⎢⎢⎣

0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1
1 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 0 1
0 0 1 0 0 1
1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Notice that we could reconstruct the entire digraph or graph from this matrix.
Also notice that in the adjacency matrix for a graph, an edge gets accounted
for twice, since it can be thought of as proceeding from one vertex to the
other, or from the other to the one.

For a general graph with n vertices and adjacency matrix A = [aij ], we
can use this matrix to compute powers of vertices without seeing a picture of
the graph. To count up the walks of length 1 emanating from vertex i, simply
add up the elements of the ith row of A. Now what about the paths of length
2? Observe that there is an edge from i to k and then from k to j precisely
when the product aikakj is equal to 1. Otherwise, one of the factors will be 0
and therefore the product is 0. So the number of paths of length 2 from vertex
i to vertex j is the familiar sum

ai1a1j + ai2a2j + · · · + ainanj .

This is just the (i, j)th entry of the matrix A2. A similar argument shows the
following fact:

Theorem 2.2. If A is the adjacency matrix of the graph G, then the (i, j)thVertex Power
entry of Ar gives the number of walks of length r starting at vertex i and
ending at vertex j.

Since the power of vertex i is the number of all paths of length 1 or 2 emanating
from vertex i, we have the following key fact:

Theorem 2.3. If A is the adjacency matrix of the digraph G, then the power
of the ith vertex is the sum of all entries in the ith row of the matrix A + A2.

Example 2.23. Use the preceding facts to calculate the powers of all the
vertices in the digraph of Example 2.21.
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Solution. Using the matrix A above we calculate that

A + A2 =

⎡
⎢⎢⎣

0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 2 1 1
1 0 1 0
1 1 0 1
0 1 1 0

⎤
⎥⎥⎦ .

An easy way to sum each row is to multiply A+A2 on the right by a column
of 1’s, but in this case we see immediately that the power of vertex 1 is 4,
the power of vertex 3 is 3, and the power of vertices 2 and 4 is 2, which is
consistent with what we observed earlier by inspection of the graph. ��

Difference Equations

The idea of a difference equation has numerous applications in mathematics
and computer science. In the latter field, these equations often go by the
name of “recurrence relations.” They can be used for a variety of applications
ranging from population modeling to analysis of complexity of algorithms. We
will introduce them by way of a simple financial model.

Example 2.24. Suppose that you invest in a contractual fund where you must
invest in the funds for three years before you can receive any return on your
investment (with a positive first-year investment). Thereafter, you are vested
in the fund and may remove your money at any time. While you are vested in
the fund, annual returns are calculated as follows: money that was in the fund
one year ago earns nothing, while money that was in the fund two years ago
earns 6% of its value and money that was in the fund three years ago earns
12% of its value. Find an equation that describes your investment’s growth.

Solution. Let ak be the amount of your investment in the kth year. The
numbers a0, a1, a2 represent your investments for the first three years (we’re
counting from 0). Consider the third year amount a3. According to your con-
tract, your total funds in the third year will be

a3 = a2 + 0.06a1 + 0.12a0.

Now it’s easy to write out a general formula for ak+3 in terms of the preceding
three terms, using the same line of thought, namely

ak+3 = ak+2 + 0.06ak+1 + 0.12ak, k = 0, 1, 2, . . . . (2.1)

This is the desired formula. ��
In general, a homogeneous linear difference equation (or recurrence rela- Homogeneous

Linear
Difference
Equation

tion) of order m in the variables a0, a1, . . . is an equation of the form

ak+m + cm−1ak+m−1 + · · · + c1ak+1 + c0ak = 0, k = 0, 1, 2, . . . .
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Notice that such an equation cannot determine the numbers a0, a1, . . . , ak−1.
These values have to be initially specified, just as in our fund example. Notice
that in our fund example, we have to bring all terms of equation (2.1) to the
left-hand side to obtain the difference equation form

ak+3 − ak+2 − 0.06ak+1 − 0.12ak = 0.

Now we see that c2 = −1, c1 = −0.06, and c0 = −0.12.
There are many ways to solve difference equations. We are not going to

give a complete solution to this problem at this point; we postpone this issue
to Chapter 5, where we introduce eigenvalues and eigenvectors. However, we
can now show how to turn a difference equation as given above into a matrix
equation. Consider our fund example. The secret is to identify the right vector
variables. To this end, define an indexed vector xk by the formula

xk =

⎡
⎣ak+2

ak+1

ak

⎤
⎦ , k = 0, 1, 2, . . . .

Thus

xk+1 =

⎡
⎣ak+3

ak+2

ak+1

⎤
⎦ ,

from which it is easy to check that since ak+3 = ak+2 +0.06ak+1 +0.12ak, we
have

xk+1 =

⎡
⎣1 0.06 0.12

1 0 0
0 1 0

⎤
⎦xk = Axk.

This is the matrix form we seek. It appears to have a lot in common with
the Markov chains examined earlier in this section, in that we pass from one
“state vector” to another by multiplication by a fixed “transition matrix” A.

2.3 Exercises and Problems

Exercise 1. Determine the effect of the matrix operator TA on the x-axis,
y-axis, and the points (±1,±1), where A is one of the following.

(a)
[

1 0
0 −1

]
(b) 1

5

[
−3 −4
−4 3

]
(c)

[
0 −1

−1 0

]
(d)

[
1 −1
0 1

]

Exercise 2. Determine the effect of the matrix operator TA on the x-axis,
y-axis, and the points (±1,±1), where A is one of the following. Plot the
images of the squares with corners (±1,±1).

(a)
[

1 0
0 0

]
(b)

[
1 −1

−1 1

]
(c)

[
1 0
1 1

]
(d)

[
2 3
3 1

]
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Exercise 3. Express the following functions, if linear, as matrix operators.
(a) T ((x1, x2)) = (x1 + x2, 2x1, 4x2 − x1) (b) T ((x1, x2)) = (x1 + x2, 2x1x2)
(c) T ((x1, x2, x3)) = (2x3,−x1) (d) T ((x1, x2, x3)) = (x2 − x1, x3, x2 + x3)

Exercise 4. Express the following functions, if linear, as matrix operators.
(a) T ((x1, x2, x3)) = x1 − x3 + 2x2 (b) T ((x1, x2)) = (|x1| , 2x2, x1 + 3x2)
(c) T ((x1, x2)) = (x1, 2x1,−x1) (d) T ((x1, x2, x3)) = (−x3, x1, 4x2)

Exercise 5. A linear operator on R
2 is defined by first applying a scaling oper-

ator with scale factors of 2 in the x-direction and 4 in the y-direction, followed
by a counterclockwise rotation about the origin of π/6 radians. Express this
operator and the operator that results from reversing the order of the scaling
and rotation as matrix operators.

Exercise 6. A linear operator on R
2 is defined by first applying a shear in the

x-direction with a shear factor of 3 followed by a clockwise rotation about
the origin of π/4 radians. Express this operator and the operator that results
from reversing the order of the shear and rotation as matrix operators.

Exercise 7. A fixed-point of a linear operator TA is a vector x such that
TA (x) = x. Find all fixed points, if any, of the linear operators in Exercise 3.

Exercise 8. Find all fixed points, if any, of the linear operators in Exercise 4.

Exercise 9. Given transition matrices for discrete dynamical systems

(a)

⎡
⎣ .1 .3 0

0 .4 1
.9 .3 0

⎤
⎦ (b)

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ (c)

⎡
⎣ .5 .3 0

0 .4 0
.5 .3 1

⎤
⎦ (d)

⎡
⎣ 0 0 0.9

0.5 0 0
0 0.5 0.1

⎤
⎦

and initial state vector x(0) = 1
2 (1, 1, 0), calculate the first and second state

vector for each system and determine whether it is a Markov chain.

Exercise 10. For each of the dynamical systems of Exercise 9, determine by
calculation whether the system tends to a limiting steady-state vector. If so,
what is it?

Exercise 11. A digraph G has vertex set V = {1, 2, 3, 4, 5} and edge set E =
{(2, 1), (1, 5), (2, 5), (5, 4), (4, 2), (4, 3), (3, 2)}. Sketch a picture of the graph G
and find its adjacency matrix. Use this to find the power of each vertex of the
graph and determine whether this graph is dominance-directed.

Exercise 12. A digraph has the following adjacency matrix:⎡
⎢⎢⎢⎢⎣

1 0 0 1 0
0 0 0 1 1
1 1 0 0 1
0 1 1 1 0
1 1 0 1 0

⎤
⎥⎥⎥⎥⎦ .

Sketch a picture of this digraph and compute the total number of walks in
the digraph of length at most 3.
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Exercise 13. Convert these difference equations into matrix–vector form.
(a) 2ak+3 + 3ak+2 − 4ak+1 + 5ak = 0 (b) ak+2 − ak+1 + 2ak = 1

Exercise 14. Convert these difference equations into matrix–vector form.
(a) 2ak+3 + 2ak+1 − 3ak = 0 (b) ak+2 + ak+1 − 2ak = 3

*Problem 15. Show that if A =
[

a b
c d

]
is a real 2 × 2 matrix, then the matrix

multiplication function maps a line through the origin onto a line through the
origin or a point.

Problem 16. Show how the transition matrix
[

a b
c d

]
for a Markov chain can

be described using only two variables.

*Problem 17. Use the definition of matrix multiplication function to show that
if TA = TB, then A = B.

Problem 18. Show that if the state vector x(k) = (ak, bk, ck) in a Markov chain
is a probability distribution vector, then so is x(k+1).

Problem 19. Suppose that in Example 2.24 you invest $1,000 initially (the
zeroth year) and no further amounts. Make a table of the value of your in-
vestment for years 0 to 12. Also include a column that calculates the annual
interest rate that your investment is earning each year, based on the current
and previous year’s values. What conclusions do you draw? You will need a
computer or calculator for this exercise.

2.4 Special Matrices and Transposes

There are certain types of matrices that are so important that they have
acquired names of their own. We introduce some of these in this section, as
well as one more matrix operation that has proved to be a very practical tool
in matrix analysis, namely the operation of transposing a matrix.

Elementary Matrices and Gaussian Elimination

We are going to show a new way to execute the elementary row operations
used in Gaussian elimination. Recall the shorthand we used:

• Eij : The elementary operation of switching the ith and jth rows of the
matrix.

• Ei(c): The elementary operation of multiplying the ith row by the nonzero
constant c.
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• Eij(d): The elementary operation of adding d times the jth row to the ith
row.

From now on we will use the very same symbols to represent matrices. The
size of the matrix will depend on the context of our discussion, so the notation
is ambiguous, but it is still very useful.

An elementary matrix of size n is obtained by performing the correspond- Elementary
Matrixing elementary row operation on the identity matrix In. We denote the re-

sulting matrix by the same symbol as the corresponding row operation.

Example 2.25. Describe the following elementary matrices of size n = 3:
(a) E13(−4) (b) E21(3) (c) E23 (d) E1( 1

2 )

Solution. We start with

I3 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

For part (a) we add −4 times the 3rd row of I3 to its first row to obtain

E13(−4) =

⎡
⎣1 0 −4

0 1 0
0 0 1

⎤
⎦ .

For part (b) add 3 times the first row of I3 to its second row to obtain

E21(3) =

⎡
⎣1 0 0

3 1 0
0 0 1

⎤
⎦ .

For part (c) interchange the second and third rows of I3 to obtain that

E23 =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ .

Finally, for part (d) we multiply the first row of I3 by 1
2 to obtain

E1

(
1
2

)
=

⎡
⎣

1
2 0 0
0 1 0
0 0 1

⎤
⎦ . �

What good are these matrices? One can see that the following fact is true:

Theorem 2.4. Let C = BA be a product of two matrices and perform an ele-
mentary row operation on C. Then the same result is obtained if one performs
the same elementary operation on the matrix B and multiplies the result by
A on the right.
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We won’t give a formal proof of this statement, but it isn’t hard to see why it
is true. For example, suppose one interchanges two rows, say the ith and jth,
of C = BA to obtain a new matrix D. How do we get the ith or jth row of C?
Answer: multiply the corresponding row of B by the matrix A. Therefore, we
would obtain D by interchanging the ith and jth rows of B and multiplying
the result by the matrix A, which is exactly what the theorem says. Similar
arguments apply to the other elementary operations.

Now take B = I, and we see from the definition of elementary matrix and
Theorem 2.4 that the following is true.

Corollary 2.1. If an elementary row operation is performed on a matrix A
to obtain a matrix A′, then A′ = EA, where E is the elementary matrix
corresponding to the elementary row operation performed.

The meaning of this corollary is that we accomplish an elementary row oper-
ation by multiplying by the corresponding elementary matrix on the left. Of
course, we don’t need elementary matrices to accomplish row operations; but
they give us another perspective on row operations.Elementary

Operations as
Matrix

Multiplication

Example 2.26. Express these calculations of Example 1.16 in matrix product
form: [

2 −1 1
4 4 20

]−−→
E12

[
4 4 20
2 −1 1

]−−−−−→
E1 (1/4)

[
1 1 5
2 −1 1

]

−−−−−−→
E21 (−2)

[
1 1 5
0 −3 −9

]−−−−−−−→
E2 (−1/3)

[
1 1 5
0 1 3

]−−−−−−→
E12 (−1)

[
1 0 2
0 1 3

]
.

Solution. One point to observe: the order of elementary operations. We com-
pose the elementary matrices on the left in the same order that the operations
are done. Thus we may state the above calculations in the concise form

[
1 0 2
0 1 3

]
= E12 (−1) E2 (−1/3) E21 (−2) E1 (1/4) E12

[
2 −1 1
4 4 20

]
. �

It is important to read the preceding line carefully and understand how it
follows from the long form above. This conversion of row operations to matrix
multiplication will prove to be very practical in the next section.

Some Matrices with Simple Structure

Certain types of matrices have already turned up in our discussions. For exam-
ple, the identity matrices are particularly easy to deal with. Another example
is the reduced row echelon form. So let us classify some simple matrices and
attach names to them. The simplest conceivable matrices are zero matrices.
We have already seen that they are important in matrix addition arithmetic.
What’s next? For square matrices, we have the following definitions, in as-
cending order of complexity.
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Definition 2.11. Let A = [aij ] be a square n × n matrix. Then A is Simple
Structure
Matrices

• Scalar if aij = 0 and aii = ajj for all i �= j. (Equivalently: A = cIn for
some scalar c, which explains the term “scalar.”)

• Diagonal if aij = 0 for all i �= j. (Equivalently: off-diagonal entries of A
are 0.)

• (Upper) triangular if aij = 0 for all i > j. (Equivalently: subdiagonal
entries of A are 0.)

• (Lower) triangular if aij = 0 for all i < j. (Equivalently: superdiagonal
entries of A are 0.)

• Triangular if the matrix is upper or lower triangular.
• Strictly triangular if it is triangular and the diagonal entries are also zero.
• Tridiagonal if aij = 0 when j > i + 1 or j < i − 1. (Equivalently: entries

off the main diagonal, first subdiagonal, and first superdiagonal are zero.)

The index conditions that we use above have
simple interpretations. For example, the entry aij

with i > j is located further down than over, since
the row number is larger than the column number.
Hence, it resides in the “lower triangle” of the ma-
trix. Similarly, the entry aij with i < j resides in
the “upper triangle.” Entries aij with i = j reside
along the main diagonal of the matrix. See Fig-
ure 2.6 for a picture of these triangular regions of
the matrix.

i < j

i > j

i = j

Fig. 2.6: Matrix regions.

Example 2.27. Classify the following matrices (elementary matrices are un-
derstood to be 3 × 3) in the terminology of Definition 2.11.

(a)

⎡
⎣ 1 0 0

0 1 0
0 0 −1

⎤
⎦ (b)

⎡
⎣ 2 0 0

0 2 0
0 0 2

⎤
⎦ (c)

⎡
⎣1 1 2

0 1 4
0 0 2

⎤
⎦ (d)

⎡
⎣0 0 0

1 −1 0
3 2 2

⎤
⎦

(e)

⎡
⎣ 0 2 3

0 0 4
0 0 0

⎤
⎦ (f) E21 (3) (g) E2 (−3) (h)

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎦

Solution. Notice that (a) is not scalar, since diagonal entries differ from each
other, but it is a diagonal matrix, since the off-diagonal entries are all 0. On
the other hand, the matrix of (b) is really just 2I3, so this matrix is a scalar
matrix. Matrix (c) has all terms below the main diagonal equal to 0, so this
matrix is triangular and, specifically, upper triangular. Similarly, matrix (d)
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is lower triangular. Matrix (e) is clearly upper triangular, but it is also strictly
upper triangular since the diagonal terms themselves are 0. Finally, we have

E21(3) =

⎡
⎣ 1 0 0

3 1 0
0 0 1

⎤
⎦ and E2(−3) =

⎡
⎣1 0 0

0 −3 0
0 0 1

⎤
⎦ ,

so that E21(3) is (lower) triangular and E2(−3) is a diagonal matrix. Matrix
(h) comes from Example 1.3, where we saw that an approximation to a certain
diffusion problem led to matrices of that form. Moreover, if we want more
accurate solutions to the original problem, we would need to solve systems
with a similar, but larger, coefficient matrix. This matrix is clearly tridiagonal.
In fact, note that the matrices of (a), (b), (f), and (g) also can be classified
as tridiagonal. ��

Block Matrices

Another type of matrix that occurs frequently enough to be discussed is a
block matrix. Actually, we already used the idea of blocks when we described
the augmented matrix of the system Ax = b as the matrix Ã = [A |b]. We
say that Ã has the block, or partitioned, form [A,b]. What we are really doing
is partitioning the matrix Ã by inserting a vertical line between elements.
There is no reason we couldn’t partition by inserting more vertical lines or
horizontal lines as well, and this partitioning leads to the blocks. The main
point to bear in mind when using the block notation is that the blocks mustBlock

Notation be correctly sized so that the resulting matrix makes sense. The main virtue
of the block form that results from partitioning is that for purposes of matrix
addition or multiplication, we can treat the blocks rather like scalars, provided
the addition or multiplication that results makes sense. We will use this idea
from time to time without fanfare. One could go through a formal description
of partitioning and proofs; we won’t. Rather, we’ll show how this idea can be
used by example.

Example 2.28. Use block multiplication to simplify the following multiplica-
tion: ⎡

⎣1 2 0 0
3 4 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

0 0 2 1
0 0 1 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Solution. The blocking we want to use makes the column numbers of the
blocks on the left match the row numbers of the blocks on the right and looks
like this: ⎡

⎢⎢⎣
1 2
3 4

0 0
0 0

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0
0 0

2 1
−1 1

0 0
0 0

1 0
0 1

⎤
⎥⎥⎥⎥⎦ .
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We see that these submatrices are built from zero matrices and these
blocks:

A =
[

1 2
3 4

]
, B =

[
1 0

]
, C =

[
2 1
−1 1

]
, I2 =

[
1 0
0 1

]
.

Now we can work this product out by interpreting it as

[
A 0
0 B

] [
0 C
0 I2

]
=

[
A · 0 + 0 · 0 A · C + 0 · I2

0 · 0 + B · 0 0 · C + B · I2

]
=

⎡
⎣0 0 0 3

0 0 2 7
0 0 1 0

⎤
⎦ . �

For another (important!) example of block arithmetic, examine Exam-
ple 2.9 and the discussion following it. There we view a matrix as blocked into
its respective columns, and a column vector as blocked into its rows, to obtain

Ax = [a1,a2,a3]

⎡
⎣x1

x2

x3

⎤
⎦ = a1x1 + a2x2 + a3x3.

Transpose of a Matrix

Sometimes we prefer to work with a different form of a given matrix that
contains the same information. Transposes are operations that allow us to do
that. The idea is simple: interchange rows and columns. It turns out that for
complex matrices, there is an analogue that is not quite the same thing as
transposing, though it yields the same result when applied to real matrices.
This analogue is called the conjugate (Hermitian) transpose. Here are the
appropriate definitions.

Definition 2.12. Let A = [aij ] be an m × n matrix with (possibly) complex
entries. Then the transpose of A is the n × m matrix AT obtained by inter- Transpose and

Conjugate
Matrices

changing the rows and columns of A, so that the (i, j)th entry of AT is aji.
The conjugate of A is the matrix A = [aij ] . Finally, the conjugate (Hermitian)
transpose of A is the matrix A∗ = A

T
.

Notice that in the case of a real matrix (that is, a matrix with real entries)
A there is no difference between transpose and conjugate transpose, since in
this case A = A. Consider these examples.

Example 2.29. Compute the transpose and conjugate transpose of the fol-
lowing matrices:

(a)
[

1 0 2
0 1 1

]
, (b)

[
2 1
0 3

]
, (c)

[
1 1 + i
0 2i

]
.

Solution. For matrix (a) we have

[
1 0 2
0 1 1

]∗
=

[
1 0 2
0 1 1

]T

=

⎡
⎣1 0

0 1
2 1

⎤
⎦ .
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Notice, by the way, how the dimensions of a transpose get switched from the
original.

For matrix (b) we have
[

2 1
0 3

]∗
=

[
2 1
0 3

]T

=
[

2 0
1 3

]
,

and for matrix (c) we have
[

1 1 + i
0 2i

]∗
=

[
1 0

1 − i −2i

]
,

[
1 1 + i
0 2i

]T

=
[

1 0
1 + i 2i

]
.

In this case, transpose and conjugate transpose are not the same. ��
Even when dealing with vectors alone, the transpose notation is handy.

For example, there is a bit of terminology that comes from tensor analysis
(a branch of higher linear algebra used in many fields including differential
geometry, engineering mechanics, and relativity) that can be expressed very
concisely with transposes:

Definition 2.13. Let u and v be column vectors of the same size, say n× 1.Inner and
Outer

Products
Then the inner product of u and v is the scalar quantity uT v, and the outer
product of u and v is the n × n matrix uvT .

Example 2.30. Compute the inner and outer products of the vectors

u =

⎡
⎣ 2
−1

1

⎤
⎦ and v =

⎡
⎣ 3

4
1

⎤
⎦ .

Solution. Here we have the inner product

uT v = [2,−1, 1]

⎡
⎣ 3

4
1

⎤
⎦ = 2 · 3 + (−1)4 + 1 · 1 = 3,

while the outer product is

uvT =

⎡
⎣ 2
−1

1

⎤
⎦ [3, 4, 1] =

⎡
⎣ 2 · 3 2 · 4 2 · 1
−1 · 3 −1 · 4 −1 · 1

1 · 3 1 · 4 1 · 1

⎤
⎦ =

⎡
⎣ 6 8 2
−3 −4 −1

3 4 1

⎤
⎦ . �

Here are a few basic laws relating transposes to other matrix arithmetic
that we have learned. These laws remain correct if transpose is replaced by
conjugate transpose, with one exception: (cA)∗ = cA∗.

Let A and B be matrices of the appropriate sizes so that the following
operations make sense, and c a scalar.

(1) (A + B)T = AT + BT

(2) (AB)T = BT AT

(3) (cA)T = cAT

(4) (AT )T = A

Laws of
Matrix

Transpose
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These laws are easily verified directly from definition. For example, if A =
[aij ] and B = [bij ] are m × n matrices, then we have that (A + B)T is the
n × m matrix given by

(A + B)T = [aij + bij ]
T = [aji + bji]

= [aji] + [bji]

= AT + BT .

The other laws are proved similarly.
We will require explicit formulas for transposes of the elementary matrices

in some later calculations. Notice that the matrix Eij (c) is a matrix with 1’s
on the diagonal and 0’s elsewhere, except that the (i, j)th entry is c. Therefore,
transposing switches the entry c to the (j, i)th position and leaves all other
entries unchanged. Hence Eij (c)T = Eji (c). With similar calculations we
have these facts: Transposes of

Elementary
Matrices• ET

ij = Eij

• Ei (c)T = Ei (c)
• Eij (c)T = Eji (c)

These formulas have an interesting application. Up to this point we have Elementary
Column
Operations

considered only elementary row operations. However, there are situations in
which elementary column operations on the columns of a matrix are useful. If
we want to use such operations, do we have to start over, reinvent elementary
column matrices, and so forth? The answer is no and the following example
gives an indication of why the transpose idea is useful. This example shows
how to do column operations in the language of matrix arithmetic. Here’s
the basic idea: suppose we want to do an elementary column operation on a
matrix A corresponding to elementary row operation E to get a new matrix
B from A. To do this, turn the columns of A into rows, do the row operation,
and then transpose the result back to get the matrix B that we want. In
algebraic terms

B =
(
EAT

)T
=

(
AT

)T
ET = AET .

So all we have to do to perform an elementary column operation is multiply
by the transpose of the corresponding elementary row matrix on the right.
Thus we see that the transposes of elementary row matrices could reasonably Elementary

Column
Matrix

be called elementary column matrices.

Example 2.31. Let A be a given matrix. Suppose that we wish to express the
result B of swapping the second and third columns of A, followed by adding
−2 times the first column to the second, as a product of matrices. How can
this be done? Illustrate the procedure with the matrix

A =
[

1 2 −1
1 −1 2

]
.



94 2 MATRIX ALGEBRA

Solution. Apply the preceding remark twice to obtain that

B = AET
23E21 (−2)T = AE23E12 (−2) .

Thus we have

B =
[

1 2 −1
1 −1 2

] ⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

⎡
⎣1 −2 0

0 1 0
0 0 1

⎤
⎦

as a matrix product. ��
A very important type of special matrix is one that is invariant under

the operation of transposing. These matrices turn up naturally in applied
mathematics. They have some very remarkable properties that we will study
in Chapters 4, 5, and 6.

Definition 2.14. The matrix A is said to be symmetric if AT = A and Her-
mitian if A∗ = A. (Equivalently, aij = aji and aij = aji, for all i, j, respec-Symmetric

and Hermitian
Matrices

tively.)

From the laws of transposing elementary matrices above we see right away
that Eij and Ei(c) supply us with examples of symmetric matrices. Here are
a few more.

Example 2.32. Are the following matrices symmetric or Hermitian?

(a)
[

1 1 + i
1 − i 2

]
, (b)

[
2 1
1 3

]
, (c)

[
1 1 + i

1 + i 2i

]

Solution. For matrix (a) we have

[
1 1 + i

1 − i 2

]∗
=

[
1 1 + i

1 − i 2

]T

=
[

1 1 + i
1 − i 2

]
.

Hence this matrix is Hermitian. However, it is not symmetric since the (1, 2)th
and (2, 1)th entries differ. Matrix (b) is easily seen to be symmetric by inspec-
tion. Matrix (c) is symmetric since the (1, 2)th and (2, 1)th entries agree, but
it is not conjugate Hermitian since

[
1 1 + i

1 − i 2i

]∗
=

[
1 1 + i

1 − i 2i

]T

=
[

1 1 + i
1 − i −2i

]
,

and this last matrix is clearly not equal to matrix (c). ��

Example 2.33. Consider the quadratic form (this means a homogeneous
second-degree polynomial in the variables)

Q(x, y, z) = x2 + 2y2 + z2 + 2xy + yz + 3xz.

Express this function in terms of matrix products and transposes.
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Solution. Write the quadratic form as

x(x + 2y + 3z) + y(2y + z) + z2 =
[
x y z

]
⎡
⎣x + 2y + 3z

2y + z
z

⎤
⎦

=
[
x y z

]
⎡
⎣1 2 3

0 2 1
0 0 1

⎤
⎦

⎡
⎣x

y
z

⎤
⎦ = xT Ax,

where

x = (x, y, z) and A =

⎡
⎣ 1 2 3

0 2 1
0 0 1

⎤
⎦. ��

Rank of the Matrix Transpose

A basic question is how the rank of a matrix transpose (or Hermitian trans-
pose) is connected to the rank of the matrix. There is a nice answer. We will
focus on transposes. First we need the following theorem.

Theorem 2.5. Let A,B be matrices such that the product AB is defined.
Then

rankAB ≤ rankA.

Proof. Let E be a product of elementary matrices such that EA = R, where
R is the reduced row echelon form of A. If rankA = r, then the first r rows
of R have leading entries of 1, while the remaining rows are zero rows. Also,
we saw in Chapter 1 that elementary row operations do not change the rank
of a matrix, since according to Corollary 1.1 they do not change the reduced
row echelon form of a matrix. Therefore,

rankAB = rankE(AB) = rank(EA)B = rankRB.

Now the matrix RB has the same number of rows as R, and the first r of these
rows may or may not be nonzero, but the remaining rows must be zero rows,
since they result from multiplying columns of B by the zero rows of R. If we
perform elementary row operations to reduce RB to its reduced row echelon
form we will possibly introduce more zero rows than R has. Consequently,
rankRB ≤ r = rankA, which completes the proof. ��

Theorem 2.6. For any matrix A, Rank
Invariant
Under
Transpose

rankA = rankAT .

Proof. As in the previous theorem, let E be a product of elementary matri-
ces such that EA = R, where R is the reduced row echelon form of A. If
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rankA = r, then the first r rows of R have leading entries of 1 whose col-
umn numbers form an increasing sequence, while the remaining rows are zero
rows. Therefore, RT = AT ET is a matrix whose columns have leading entries
of 1 and whose row numbers form an increasing sequence. Use elementary row
operations to clear out the nonzero entries below each column with a leading 1
to obtain a matrix whose rank is equal to the number of such leading entries,
i.e., equal to r. Thus, rankRT = r.

From Theorem 2.5 we have that rank AT ET ≤ rankAT . It follows that

rankA = rankRT = rankAT ET ≤ rankAT .

If we substitute the matrix AT for the matrix A in this inequality, we obtain
that

rankAT ≤ rank(AT )T = rankA.

It follows from these two inequalities that rankA = rankAT , which is what
we wanted to show. ��

It is instructive to see how a specific example might work out in the pre-
ceding proof. For example, R might look like this, where an x designates an
arbitrary entry:

R =

⎡
⎢⎢⎣

1 0 x 0 x
0 1 x 0 x
0 0 0 1 x
0 0 0 0 0

⎤
⎥⎥⎦ ,

so that RT would given by

RT =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
x x 0 0
0 0 1 0
x x x 0

⎤
⎥⎥⎥⎥⎦ .

Thus if we use elementary row operations to zero out the entries below a
column pivot, all entries to the right and below this pivot are unaffected by
these operations. Now start with the leftmost column and proceed to the right,
zeroing out all entries under each column pivot. The result is a matrix that
looks like ⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Now swap rows to move the zero rows to the bottom if necessary, and we see
that the reduced row echelon form of RT has exactly as many nonzero rows
as did R, that is, r nonzero rows.

A first application of this important fact is to give a fuller picture of the
rank of a product of matrices than that given by Theorem 2.5:
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Corollary 2.2. If the product AB is defined, then Rank of
Matrix
ProductrankAB ≤ min{rankA, rank B}.

Proof. We know from Theorem 2.5 that

rankAB ≤ rankA and rankBT AT ≤ rankBT .

Since BT AT = (AB)T , Theorem 2.6 tells us that

rankBT AT = rankAB and rankBT = rankB.

Put all this together, and we have

rankAB = rankBT AT ≤ rankBT = rankB.

It follows that rankAB is at most the smaller of rankA and rankB, which is
what the corollary asserts. ��

2.4 Exercises and Problems

Exercise 1. Convert the following 3 × 3 elementary operations to matrix form
and convert matrices to elementary operation form.
(a) E23 (3) (b) E13 (c) E3 (2) (d) ET

23 (−1)

(e)

⎡
⎣ 1 3 0

0 1 0
0 0 1

⎤
⎦ (f)

⎡
⎣ 1 0 0

0 1 0
−a 0 1

⎤
⎦ (g)

⎡
⎣1 0 0

0 3 0
0 0 1

⎤
⎦ (h)

⎡
⎣1 0 0

0 1 0
2 0 1

⎤
⎦

Exercise 2. Convert the following 4 × 4 elementary operations to matrix form
and convert matrices to elementary operation form.
(a) ET

24 (b) E4 (−1) (c) ET
3 (2) (d) E14 (−1)

(e)

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎦ (f)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4

⎤
⎥⎥⎦ (g)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
−3 0 0 1

⎤
⎥⎥⎦

Exercise 3. Describe the effect of multiplying the 3×3 matrix A by each matrix
in Exercise 1 on the left.

Exercise 4. Describe the effect of multiplying the 4×4 matrix A by each matrix
in Exercise 2 on the right.

Exercise 5. Compute the reduced row echelon form of the following matrices
and express each form as a product of elementary matrices and the original
matrix.

(a)
[

1 2
1 3

]
(b)

⎡
⎣ 1 1 0

0 1 1
0 2 2

⎤
⎦ (c)

[
1 1 0
1 1 −2

]
(3)

[
0 1 + i i
1 0 −2

]
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Exercise 6. Compute the reduced row echelon form of the following matrices
and express each form as a product of elementary matrices and the original
matrix.

(a)

⎡
⎣ 2 1

0 1
0 2

⎤
⎦ (b)

⎡
⎣ 1 1 1

0 0 0
1 2 2

⎤
⎦ (c)

[
1 1
1 1 + i

]
(d)

[
2 2 0 2
1 1 −4 3

]

Exercise 7. Identify the minimal list of simple structure descriptions that apply
to these matrices (e.g., if “upper triangular,” omit “triangular.”)

(a)

⎡
⎣ 0 0 0

0 0 3
0 0 0

⎤
⎦ (b)

⎡
⎢⎢⎣

2 1 4 2
0 2 1 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ (c) I3 (d)

[
1 0
0 −1

]
(e)

[
2 0
3 1

]

Exercise 8. Identify the minimal list of simple structure descriptions that apply
to these matrices.

(a)
[

2 1
3 2

]
(b)

⎡
⎢⎢⎣

2 0 0 0
1 2 0 0
0 0 1 0
1 0 1 1

⎤
⎥⎥⎦ (c)

⎡
⎣0 0 0

0 0 3
0 0 0

⎤
⎦ (d)

⎡
⎢⎢⎣
−2 1 0 0

1 −2 1 0
0 1 −2 1
0 0 1 −2

⎤
⎥⎥⎦

Exercise 9. Identify the appropriate blocking and calculate the matrix product
AB using block multiplication, where

A =

⎡
⎢⎢⎣

0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
4 1 2 1 3

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0
0 0 0 −1
0 0 1 2
2 2 −1 1
1 1 3 2

⎤
⎥⎥⎥⎥⎦ ,

and as many submatrices that form scalar matrices or zero matrices are
blocked out as possible.

Exercise 10. Confirm that sizes are correct for block multiplication and calcu-
late the matrix product AB, where

A =
[

R 0
S T

]
, B =

[
U
V

]
, R =

[
1 1 0

]
, S =

[
1 1 1
1 2 1

]
, T =

[
1 −1
2 2

]
,

U =

⎡
⎣ 1 0

1 2
1 1

⎤
⎦, and V =

[
3 1
0 1

]
.

Exercise 11. Express the matrix

⎡
⎣1 2 1

0 0 0
2 4 2

⎤
⎦ as an outer product of two vectors.
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Exercise 12. Express the rank-two matrix

⎡
⎣1 −1 1

0 0 0
2 0 0

⎤
⎦ as the sum of two outer

products of vectors.

Exercise 13. Compute the transpose and conjugate transpose of the following
matrices and determine which are symmetric or Hermitian.

(a)
[
1 −3 2

]
(b)

⎡
⎣ 2 1

0 3
1 −4

⎤
⎦ (c)

[
1 i

−i 2

]
(d)

⎡
⎣1 1 3

1 0 0
3 0 2

⎤
⎦

Exercise 14. Determine which of the following matrices are symmetric or Her-
mitian.

(a)

⎡
⎣ 1 −3 2
−3 0 0

2 0 1

⎤
⎦ (b)

[
1 1 1
1 1 1

]
(c)

[
i 1

−1 i

]
(d)

⎡
⎣1 0 0

0 4 1
0 1 2

⎤
⎦

Exercise 15. Answer True/False.
(a) Eij (c)T = Eji (c).
(b) Every elementary matrix is symmetric.
(c) The rank of the matrix A may differ from the rank of AT .
(d) Every real diagonal matrix is Hermitian.
(e) For matrix A and scalar c, (cA)∗ = cA∗.

Exercise 16. Answer True/False and give reasons.
(a) For matrices A,B, (AB)T = BT AT .
(b) Every diagonal matrix is symmetric.
(c) rank (AB) = min {rankA, rank B}.
(d) Every diagonal matrix is Hermitian.
(e) Every tridiagonal matrix is symmetric.

Exercise 17. Express the quadratic form Q(x, y, z) = 2x2 + y2 + z2 + 2xy +
4yz − 6xz in the matrix form xT Ax, where A has as few nonzero entries as
possible.

Exercise 18. Express the quadratic form Q(x, y, z) = x2 + y2 − z2 + 4yz − 6xz
in the matrix form xT Ax, where A is a lower triangular matrix.

Exercise 19. Let A =
[
−2 1 − 2i

0 3

]
and verify that both A∗A and AA∗ are

Hermitian.

Exercise 20. A square matrix A is called normal if A∗A = AA∗. Determine
which of the following matrices are normal.

(a)
[

2 i
1 2

]
(b)

⎡
⎣ 1 0 0

0 1 −1
0 −1 1

⎤
⎦ (c)

[
1 i
1 2 + i

]
(d)

[
1 −

√
3√

3 1

]
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Problem 21. Show that a triangular and symmetric matrix is a diagonal
matrix.

*Problem 22. Let A and C be square matrices and suppose that the matrix

M =
[

A B
0 C

]
is in block form. Show that for some matrix D, M2 =

[
A2 D
0 C2

]
.

Problem 23. Show that if C =
[

A 0
0 B

]
in block form, then rankC = rankA +

rankB.

Problem 24. Prove from the definition that (AT )T = A.

Problem 25. Let A be an m × n matrix. Show that both A∗A and AA∗ are
Hermitian.

Problem 26. Use Corollary 2.2 to prove that the outer product of any two
vectors is either a rank-one matrix or zero.

Problem 27. Let A be a square real matrix. Show the following.
(a) The matrix B = 1

2

(
A + AT

)
is symmetric.

(b) The matrix C = 1
2

(
A − AT

)
is skew-symmetric (a matrix C is skew-

symmetric if CT = −C.)
(c) The matrix A can be expressed as the sum of a symmetric matrix and a
skew-symmetric matrix.
(d) With B and C as in parts (a) and (b), show that for any vector x of
conformable size, xT Ax = xT Bx.

(e) Express A =

⎡
⎣ 2 2 −6

0 1 4
0 0 1

⎤
⎦ as a sum of a symmetric and a skew-symmetric

matrix.

Problem 28. Find all 2 × 2 idempotent upper triangular matrices A (idempo-
tent means A2 = A).

*Problem 29. Let D be a diagonal matrix with distinct entries on the diagonal
and B any other matrix of the same size. Show that DB = BD if and only if
B is diagonal.

Problem 30. Show that an n×n strictly upper triangular matrix N is nilpotent.
(It might help to see what happens in a 2 × 2 and a 3 × 3 case first.)

Problem 31. Use Problem 27 to show that every quadratic form Q(x) = xT Ax
defined by matrix A can be defined by a symmetric matrix B = (A + AT )/2
as well. Apply this result to the matrix of Example 2.33.

*Problem 32. Suppose that A = B +C, where B is a symmetric matrix and C
is a skew-symmetric matrix. Show that B = 1

2 (A + AT ) and C = 1
2 (A−AT ).
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2.5 Matrix Inverses

Definitions

We have seen that if we could make sense of “1/A,” then we could write the
solution to the linear system Ax = b as simply x = (1/A)b. We are going
to tackle this problem now. First, we need a definition of the object that we
are trying to uncover. Notice that “inverses” could work only on one side. For
example, [

1 2
] [

−1
1

]
= [1] =

[
2 3

] [
−1

1

]
,

which suggests that both
[
1 2

]
and

[
2 3

]
should qualify as left inverses of the

matrix
[−1

1

]
], since multiplication on the left by them results in a 1×1 identity

matrix. As a matter of fact, right and left inverses are studied and do have
applications. But they have some unusual properties such as nonuniqueness.
We are going to focus on a type of inverse that is closer to the familiar inverses
in fields of numbers, namely, two-sided inverses. These make sense only for
square matrices, so the nonsquare example above is ruled out.

Definition 2.15. Let A be a square matrix. Then a (two-sided) inverse for Invertible
MatrixA is a square matrix B of the same size as A such that AB = I = BA. If such

a B exists, then the matrix A is said to be invertible.

Of course, any nonsquare matrix is noninvertible. Square matrices are classi-
fied as either “singular,” i.e., noninvertible, or “nonsingular,” i.e., invertible. Nonsingular

MatrixSince we will mostly be concerned with two-sided inverses, the unqualified
term “inverse” will be understood to mean a “two-sided inverse.” Notice that
this definition is actually symmetric in A and B. In other words, if B is an
inverse for A, then A is an inverse for B.

Examples of Inverses

Example 2.34. Show that B =
[

1 1
1 2

]
is an inverse for A =

[
2 −1

−1 1

]
.

Solution. All we have to do is check the definition. But remember that there
are two multiplications to confirm. (We’ll show later that this isn’t necessary,
but right now we are working strictly from the definition.) We have

AB =
[

2 −1
−1 1

] [
1 1
1 2

]
=

[
2 · 1 − 1 · 1 2 · 1 − 1 · 2
−1 · 1 + 1 · 1 −1 · 1 + 1 · 2

]
=

[
1 0
0 1

]
= I

and similarly

BA =
[

1 1
1 2

] [
2 −1

−1 1

]
=

[
1 · 2 + 1 · (−1) 1 · (−1) + 1 · 1
1 · 2 + 2 · (−1) 1 · (−1) + 2 · 1

]
=

[
1 0
0 1

]
= I.

Therefore the definition for inverse is satisfied, so that A and B work as
inverses to each other. ��
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Example 2.35. Show that the matrix A =
[

1 1
1 1

]
cannot have an inverse.

Solution. How do we get our hands on a “noninverse”? We try an indirect
approach. If A had an inverse B, then we could always find a solution to the
linear system Ax = b by multiplying each side on the left by B to obtain that
BAx = Ix = x = Bb, no matter what right-hand-side vector b we used. Yet
it is easy to come up with right-hand-side vectors for which the system has
no solution. For example, try b = (1, 2). Since the resulting system is clearly
inconsistent, there cannot be an inverse matrix B, which is what we wanted
to show. ��

The moral of this last example is that it is not enough for every entry of a
matrix to be nonzero for the matrix itself to be invertible. Our next example
contains a gold mine of invertible matrices, namely any elementary matrix we
can construct.

Example 2.36. Find formulas for inverses of all the elementary matrices.

Solution. Recall from Corollary 2.1 that left multiplication by an elementary
matrix is the same as performing the corresponding elementary row operation.
Furthermore, from the discussion following Theorem 1.2 we see the following:

• Eij : The elementary operation of switching the ith and jth rows is undone
by applying Eij . Hence

EijEij = EijEijI = I,

so that Eij works as its own inverse. (This is rather like −1, since (−1) ·
(−1) = 1.)Elementary

Matrix
Inverses

• Ei(c): The elementary operation of multiplying the ith row by the nonzero
constant c, is undone by applying Ei(1/c). Hence

Ei(1/c)Ei(c) = Ei(1/c)Ei(c)I = I.

• Eij(d): The elementary operation of adding d times the jth row to the ith
row is undone by applying Eij(−d). Hence

Eij(−d)Eij(d) = Eij(−d)Eij(d)I = I. �

More examples of invertible matrices:

Example 2.37. Show that if D is a diagonal matrix with nonzero diagonal
entries, then D is invertible.Diagonal

Matrix Inverse
Solution. Suppose that

D =

⎡
⎢⎢⎢⎣

d1 0 · · · 0
0 d2 0 0
... 0

. . .
...

0 0 · · · dn

⎤
⎥⎥⎥⎦ .
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For a convenient shorthand, we write D = diag {d1, d2, . . . , dn} . It is easily Diagonal
Matrix
Shorthand

checked that if E = diag {e1, e2, . . . , en}, then

DE = diag {d1e1, d2e2, . . . , dnen} = diag {e1d1, e2d2, . . . , endn} = ED.

Therefore, if di �= 0, for i = 1, . . . , n, then

diag {d1, d2, . . . , dn} diag {1/d1, 1/d2, . . . , 1/dn} = diag {1, 1, . . . , 1} = In,

which shows that diag {1/d1, 1/d2, . . . , 1/dn} is an inverse of D. ��

Laws of Inverses

Here are some of the basic laws of inverse calculations.

Let A,B,C be matrices of the appropriate sizes so that the following
multiplications make sense, I a suitably sized identity matrix, and c
a nonzero scalar. Then
(1) (Uniqueness) If the matrix A is invertible, then it has only one

inverse, which is denoted by A−1.
(2) (Double Inverse) If A is invertible, then

(
A−1

)−1 = A.
(3) (2/3 Rule) If any two of the three matrices A, B, and AB are

invertible, then so is the third, and moreover, (AB)−1 = B−1A−1.
(4) If A is invertible, then (cA)−1 = (1/c)A−1.
(5) (Inverse/Transpose) If A is invertible, then (AT )−1 = (A−1)T and

(A∗)−1 = (A−1)∗.
(6) (Cancellation) Suppose A is invertible. If AB = AC or BA = CA,

then B = C.

Laws of
Matrix
Inverses

Notes: Observe that the 2/3 rule reverses order when taking the inverse of
a product. This should remind you of the operation of transposing a product.
A common mistake is to forget to reverse the order. Secondly, notice that the
cancellation law restores something that appeared to be lost when we first
discussed matrices. Yes, we can cancel a common factor from both sides of an
equation, but (1) the factor must be on the same side and (2) the factor must
be an invertible matrix.

Verification of Laws: Suppose that both B and C work as inverses to the
matrix A. We will show that these matrices must be identical. The associative
and identity laws of matrices yield

B = BI = B(AC) = (BA)C = IC = C.

Henceforth, we shall write A−1 for the unique (two-sided) inverse of the square Matrix Inverse
Notationmatrix A, provided of course that there is an inverse at all (remember that

existence of inverses is not a sure thing).
The double inverse law is a matter of examining the definition of inverse:
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AA−1 = I = A−1A

shows that A is an inverse matrix for A−1. Hence, (A−1)−1 = A.
Now suppose that A and B are both invertible and of the same size. Using

the laws of matrix arithmetic, we see that

AB(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and that

(B−1A−1)AB = B−1(A−1A)B = B−1IB = B−1B = I.

In other words, the matrix B−1A−1 works as an inverse for the matrix AB,
which is what we wanted to show. We leave the remaining cases of the 2/3
rule as an exercise.

Suppose that c is nonzero and perform the calculation

(cA)(1/c)A−1 = (c/c)AA−1 = 1 · I = I.

A similar calculation on the other side shows that (cA)−1 = (1/c)A−1.
Next, apply the transpose operator to the definition of inverse (equa-

tion (2.15)) and use the law of transpose products to obtain that

(A−1)T AT = IT = I = AT (A−1)T .

This shows that the definition of inverse is satisfied for (A−1)T relative to AT ,
that is, that (AT )−1 = (A−1)T , which is the inverse/transpose law. The same
argument works with conjugate transpose in place of transpose.

Finally, if A is invertible and AB = AC, then multiply both sides of this
equation on the left by A−1 to obtain that

A−1(AB) = (A−1A)B = B = A−1(AC) = (A−1A)C = C,

which is the cancellation that we want. ��
We can now extend the power notation to negative exponents. Let A be

an invertible matrix and k a positive integer. Then we writeNegative
Matrix Power

A−k = A−1A−1 · · ·A−1,

where the product is taken over k terms.
The laws of exponents that we saw earlier can now be expressed for

arbitrary integers, provided that A is invertible. Here is an example of how
we can use the various laws of arithmetic and inverses to carry out an inverse
calculation.

Example 2.38. Let

A =

⎡
⎣1 2 0

0 1 1
0 0 1

⎤
⎦ .

Show that (I − A)3 = 0 and use this to find A−1.
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Solution. First we calculate that

(I − A) =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ −

⎡
⎣1 2 0

0 1 1
0 0 1

⎤
⎦ =

⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦

and check that

(I − A)3 =

⎡
⎣ 0 −2 0

0 0 −1
0 0 0

⎤
⎦

⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦

⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦

=

⎡
⎣ 0 0 2

0 0 0
0 0 0

⎤
⎦

⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦ =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ .

Next we do some symbolic algebra, using the laws of matrix arithmetic:

0 = (I − A)3 = (I − A)(I2 − 2A + A2) = I − 3A + 3A2 − A3.

Subtract all terms involving A from both sides to obtain that

3A − 3A2 + A3 = A · 3I − 3A2 + A3 = A(3I − 3A + A2) = I.

Since A(3I − 3A + A2) = (3I − 3A + A2)A, we see from definition of inverse
that

A−1 = 3I − 3A + A2 =

⎡
⎣1 −2 2

0 1 −1
0 0 1

⎤
⎦ . �

Notice that in the preceding example we were careful not to leave a “3”
behind when we factored out A from 3A. The reason is that 3+3A+A2 makes
no sense as a sum, since one term is a scalar and the other two are matrices.

Rank and Inverse Calculation

Although we can calculate a few examples of inverses such as the last example,
we really need a general procedure. So let’s get right to the heart of the
matter. How can we find the inverse of a matrix, or decide that none exists?
Actually, we already have done all the hard work necessary to understand
computing inverses. The secret is in the notions of reduced row echelon form
and rank. (Remember, we use elementary row operations to reduce a matrix
to its reduced row echelon form. Once we have done so, the rank of the matrix
is simply the number of nonzero rows in the reduced row echelon form.) Let’s
recall the results of Example 2.24:

[
1 0 2
0 1 3

]
= E12(−1)E2(−1/3)E21(−2)E1(1/4)E12

[
2 −1 1
4 4 20

]
.
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Now remove the last column from each of the matrices at the right of each
side and we have this result:[

1 0
0 1

]
= E12(−1)E2(−1/3)E21(−2)E1(1/4)E12

[
2 −1
4 4

]
.

This suggests that if A =
[

2 −1
4 4

]
, then

A−1 = E12(−1)E2(−1/3)E21(−2)E1(1/4)E12.

To prove this, we argue in the general case as follows: let A be an n×n matrix
and suppose that by a succession of elementary row operations E1, E2, . . . , Ek,
we reduce A to its reduced row echelon form R, which happens to be I. In
the language of matrix multiplication, what we have obtained is

I = EkEk−1 · · ·E1A.

Now let B = EkEk−1 · · ·E1. By repeated application of the 2/3 rule, we see
that a product of any number of invertible matrices is invertible. Since each
elementary matrix is invertible, it follows that B is. Multiply both sides of
the equation I = BA by B−1 to obtain that B−1I = B−1 = B−1BA = A.
Therefore, A is the inverse of the matrix B, hence is itself invertible.

Here’s a practical trick for computing this product of elementary matri-
ces on the fly: form what we term the superaugmented matrix [A | I]. If weSuperaug-

mented
Matrix

perform the elementary operation E on the superaugmented matrix, we have
the same result as

E[A | I] = [EA | EI] = [EA | E].

So the matrix occupied by the I part of the superaugmented matrix is just the
product of the elementary matrices that we have used so far. Now continue
applying elementary row operations until the part of the matrix originally
occupied by A is reduced to the reduced row echelon form of A. We end up
with this schematic picture of our calculations:[

A | I
]−−−−−−−−−−→

E1, E2, . . . , Ek

[
R | B

]
,

where R is the reduced row echelon form of A and B = EkEk−1 · · ·E1 is the
product of the various elementary matrices we used, composed in the correct
order of usage. We can summarize this discussion with the following algorithm:

Given an n × n matrix A, to compute A−1:
(1) Form the superaugmented matrix Ã = [A | In].
(2) Reduce the first n columns of Ã to reduced row echelon form by

performing elementary operations on the matrix Ã resulting in the
matrix [R | B].

(3) If R = In then set A−1 = B, otherwise, A is singular and A−1 does
not exist.

Inverse
Algorithm
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Example 2.39. Use the inverse algorithm to compute the inverse of Exam-
ple 2.8,

A =

⎡
⎣1 2 0

0 1 1
0 0 1

⎤
⎦ .

Solution. Notice that this matrix is already upper triangular. Therefore, as
in Gaussian elimination, it is a bit more efficient to start with the bottom
pivot and clear out entries above in reverse order. So we compute

[A | I3] =

⎡
⎣ 1 2 0 1 0 0

0 1 1 0 1 0
0 0 1 0 0 1

⎤
⎦−−−−−→

E23(−1)

⎡
⎣1 2 0 1 0 0

0 1 0 0 1 −1
0 0 1 0 0 1

⎤
⎦−−−−−−→

E1,2(−2)

⎡
⎣1 0 0 1 −2 2

0 1 0 0 1 −1
0 0 1 0 0 1

⎤
⎦ .

We conclude that A is indeed invertible and

A−1 =

⎡
⎣1 −2 2

0 1 −1
0 0 1

⎤
⎦ . �

There is a simple formula for the inverse of a 2×2 matrix A =
[

a b
c d

]
. Set

D = ad − bc. It is easy to verify that if D �= 0, then Two by Two
Inverse

A−1 =
1
D

[
d −b

−c a

]
.

Example 2.40. Use the 2×2 inverse formula to find the inverse of the matrix

A =
[

1 −1
1 2

]
, and verify that the same answer results if we use the inverse

algorithm.

Solution. First we apply the inverse algorithm:
[

1 −1 1 0
1 2 0 1

]−−−−−−→
E21(−1)

[
1 −1 1 0
0 3 −1 1

]−−−−−→
E3(1/3)

[
1 −1 1 0
0 1 −1/3 1/3

]

−−−−→
E12(1)

[
1 0 2/3 1/3
0 1 −1/3 1/3

]
.

Thus we have found that[
1 −1
1 2

]−1

= 1
3

[
2 1

−1 1

]
.

To apply the inverse formula, calculate D = 1 ·2−1 · (−1) = 3. Swap diagonal
entries of A, negate the off-diagonal entries, and divide by D to get the same
result as in the preceding equation for the inverse. ��

The formula of the preceding example is well worth memorizing, since we
will frequently need to find the inverse of a 2× 2 matrix. Notice that in order
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for it to make sense, we have to have D nonzero. The number D is called the
determinant of the matrix A. We will have more to say about this number in
the next section. It is fairly easy to see why A must have D �= 0 in order for
its inverse to exist if we look ahead to the next theorem. Notice in the above
elementary operation calculations that if D = 0 then elementary operations
on A lead to a matrix with a row of zeros. Therefore, the rank of A will be
smaller than 2. Here is a summary of our current knowledge of the invertibility
of a square matrix.

Theorem 2.7. The following are equivalent conditions on the square n × nConditions for
Invertibility matrix A:

(1) The matrix A is invertible.
(2) There is a square matrix B such that BA = I.
(3) The linear system Ax = b has a unique solution for every right-hand-side

vector b.
(4) The linear system Ax = b has a unique solution for some right-hand-side

vector b.
(5) The linear system Ax = 0 has only the trivial solution.
(6) rankA = n.
(7) The reduced row echelon form of A is In.
(8) The matrix A is a product of elementary matrices.
(9) There is a square matrix B such that AB = I.

Proof. The method of proof is to show that each of conditions (1)–(7) implies
the next, and that condition (8) implies (1). This connects (1)–(8) in a circle,
so that any one condition will imply any other and therefore all are equivalent
to each other. Finally, we show that (9) is equivalent to (1)–(8). Here is our
chain of reasoning:

(1) implies (2): Assume A is invertible. Then the choice B = A−1 certainly
satisfies condition (2).

(2) implies (3): Assume (2) is true. Given a system Ax = b, we can
multiply both sides on the left by B to get that Bb = BAx = Ix = x.
So there is only one solution, if any. On the other hand, if the system were
inconsistent then we would have rankA < n. By Corollary 2.2, rankBA < n,
contradicting the fact that rank In = n. Hence, there is a solution, which
proves (3).

(3) implies (4): This statement is obvious.
(4) implies (5): Assume (4) is true. Say the unique solution to Ax = b is

x0. If the system Ax = 0 had a nontrivial solution, say z, then we could add
z to x0 to obtain a different solution x0 + z of the system Ax = b (check:
A(z + x0) = Az + Ax0 = 0 + b = b). This is impossible since (4) is true, so
(5) follows.

(5) implies (6): Assume (5) is true. We know from Theorem 1.5 that the
consistent system Ax = 0 has a unique solution precisely when the rank of A
is n. Hence (6) must be true.
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(6) implies (7): Assume (6) is true. The reduced row echelon form of A is
the same size as A, that is, n×n, and must have a row pivot entry 1 in every
row. Also, the pivot entry must be the only nonzero entry in its column. This
exactly describes the matrix In, so that (7) is true.

(7) implies (8): Assume (7) is true. We know that the matrix A is reduced
to its reduced row echelon form by applying a sequence of elementary opera-
tions, or what amounts to the same thing, by multiplying the matrix A on the
left by elementary matrices E1, E2, . . . , Ek, say. Then E1E2 · · ·EkA = I. But
we know from Example 2.36 that each elementary matrix is invertible and
that their inverses are themselves elementary matrices. By successive multi-
plications on the left we obtain that A = E−1

k E−1
k−1 · · ·E

−1
1 I, showing that A

is a product of elementary matrices, which is condition (8).
(8) implies (1): Assume (8) is true. Repeated application of the 2/3 rule

shows that the product of any number of invertible matrices is itself invertible.
Since elementary matrices are invertible, condition (1) must be true.

(9) is equivalent to (1): Assume (1) is true. Then A is invertible and the
choice B = A−1 certainly satisfies condition (9). Conversely, if (9) is true, then
IT = I = (AB)T = BT AT , so that AT satisfies (2), which is equivalent to (1).
However, we already know that if a matrix is invertible, so is its transpose (Law
(5) of Matrix Inverses), so

(
AT

)T = A is also invertible, which is condition
(1). ��

Notice that Theorem 2.7 relieves us of the responsibility of checking that a
square one-sided inverse of a square matrix is a two-sided inverse: this is now
automatic in view of conditions (2) and (9). Another interesting consequence
of this theorem that has been found to be useful is an either/or statement, so
it will always have something to say about any square linear system. This type
of statement is sometimes called a Fredholm alternative. Many theorems go by
this name, and we’ll state another one in Chapter 5. Notice that a matrix is
not invertible if and only if one of the conditions of the theorem fails. Certainly
it is true that a square matrix is either invertible or not invertible. That’s all
the Fredholm alternative really says, but it uses the equivalent conditions (3)
and (5) of Theorem 2.7 to say it in a different way:

Corollary 2.3. Given a square linear system Ax = b, either the system has Fredholm
Alternativea unique solution for every right-hand-side vector b or there is a nonzero

solution x = x0 to the homogeneous system Ax = 0.

We conclude this section with an application to the problem of solving non-
linear equations. Although we focus on two equations in two unknowns, the
same ideas can be extended to any number of equations in as many unknowns.

Recall from calculus that we could solve the one-variable equation f(x) = 0
for a solution point x1 at which f(x1) = 0 from a given “nearby” point x0 by
setting dx = x1 − x0, and assuming that the change in f is
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∆f = f(x1) − f(x0) = 0 − f(x0)
≈ df = f ′(x0) dx = f ′(x0)(x1 − x0).

Now solve for x1 in the equation −f(x0) = f ′(x0)(x1−x0) and get the equation

x1 = x0 −
f(x0)
f ′(x0)

.

Replace 1 by n + 1 and 0 by n to obtain the famous Newton formula

xn+1 = xn − f(xn)
f ′(xn)

. (2.2)

The idea is to start with x0,use the formula to get x1 and if f(x1) is not
close enough to 0, then repeat the calculation with x1 in place of x0, and so
forth until a satisfactory value of x = xn is reached. How does this relate to
a two-variable problem? We illustrate the basic idea in two variables.

Example 2.41. Describe concisely an algorithm analogous to Newton’s meth-
od in one variable to solve the two-variable problemNewton’s

Method for
Systems x2 + sin (πxy) = 1

x + y2 + ex+y = 3.

Solution. Our problem can be written as a system of two (nonlinear) equa-
tions in two unknowns, namely

f (x, y) = x2 + sin (πxy) − 1 = 0

g (x, y) = x + y2 + ex+y − 3 = 0.

Now we can pull the same trick with differentials as in the one-variable prob-
lem by setting dx = x1−x0, dy = y1−y0, where f (x1, y1) = 0, approximating
the change in both f and g by total differentials, and recalling the definition
of these total differentials in terms of partial derivatives. This leads to the
system

fx (x0, y0) dx + fy (x0, y0) dy = −f ((x0, y0))
gx (x0, y0) dx + gy (x0, y0) dy = −g ((x0, y0)) .

Next, write everything in vector style, say

F (x) =
[

f (x)
g (x)

]
, x(0) =

[
x0

y0

]
, x(1) =

[
x1

y1

]
.

Now we can write the vector differentials in the forms

dF =
[

df
dg

]
and dx =

[
dx
dy

]
=

[
x1 − x0

y1 − x0

]
= x(1) − x(0).
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The original Newton equations now look like a matrix multiplication involving
dx, F, and a matrix of derivatives of F, namely the so-called Jacobian matrix

JF (x0, y0) =
[

fx ((x0, y0)) fy ((x0, y0))
gx ((x0, y0)) gy ((x0, y0))

]
.

Specifically, we see from the definition of matrix multiplication that the New-
ton equations are equivalent to the vector equations

dF = JF(x0) dx = −F
(
x(0)

)
.

If the Jacobian matrix is invertible, then

x(1) − x(0) = JF

(
x(0)

)−1

F
(
x(0)

)
,

whence by adding x0 to both sides we see that

x(1) = x(0) − JF

(
x(0)

)−1

F
(
x(0)

)
.

Now replace 1 by n + 1 and 0 by n to obtain the famous Newton formula in
vector form: Newton’s

Formula in
Vector Form

x(n+1) = x(n) − JF

(
x(n)

)−1

F
(
x(n)

)
.

This beautiful analogy to the Newton formula of (2.2)needs the language and
algebra of vectors and matrices. One can now calculate the Jacobian for our
particularF ([ x

y ]) and apply this formula. We leave the details as an exercise.
��

2.5 Exercises and Problems

Exercise 1. Find the inverse or show that it does not exist.

(a)

⎡
⎣ 1 −2 1

0 2 0
−1 0 1

⎤
⎦ (b)

[
1 i
0 4

]
(c)

⎡
⎣ 2 −2 1

0 2 0
2 0 1

⎤
⎦ (d)

⎡
⎢⎢⎣

2 1 0 0
0 1 −2 1
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦ (e)

[
cos θ − sin θ
sin θ cos θ

]

Exercise 2. Find the inverse or show that it does not exist.

(a)

⎡
⎣ 1 3 0

0 4 10
9 3 0

⎤
⎦ (b)

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ (c)

⎡
⎣ 1 1 1

0 1 1
−1 0 1

⎤
⎦ (d)

[
1 a
a 1

]
(e)

[
i + 1 0

1 i

]

Exercise 3. Express the following systems in matrix form and solve by inverting
the coefficient matrix of the system.

(a) 2x + 3y = 7 (b) 3x1 + 6x2 − x3 = −4 (c) x1 + x2 = −2
x + 2y = −2 −2x1 + x2 + x3 = 3 5x1 + 2x2 = 5

x3 = 1
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Exercise 4. Solve the following systems by matrix inversion.

(a) 2x1 + 3x2 = 7 (b) x1 + 6x2 − x3 = 4 (c) x1 − x2 = 2
x2 + x3 = 1 x1 + x2 = 0 x1 + 2x2 = 11
x2 − x3 = 1 x2 = 1

Exercise 5. Express inverses of the following matrices as products of elementary
matrices using the notation of elementary matrices.

(a)

⎡
⎣ 1 0 0

3 1 0
0 0 1

⎤
⎦ (b)

[
1 0
0 −2

]
(c)

⎡
⎣ 0 0 1

1 1 0
1 0 0

⎤
⎦ (d)

⎡
⎣ 1 −1 0

0 1 −1
0 0 1

⎤
⎦ (e)

[
−1 0

i 3

]

Exercise 6. Show that the following matrices are invertible by expressing them
as products of elementary matrices.

(a)
[

2 0
0 2

]
(b)

⎡
⎣ 1 0 2

0 1 1
0 0 1

⎤
⎦ (c)

⎡
⎣ 1 0 1

1 1 0
1 0 0

⎤
⎦ (d)

[
−1 0

3 3

]
(e)

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦

Exercise 7. Find A−1C if A =

⎡
⎣ 1 2 −3

0 −1 1
2 5 −6

⎤
⎦ and C =

⎡
⎣1 0 0 2

0 −1 1 1
2 0 −6 0

⎤
⎦.

Exercise 8. Solve AX = B for X, where A =
[

1 2
2 5

]
and B =

[
1 1 0 −2
2 −1 1 1

]
.

Exercise 9. Verify the matrix law
(
AT

)−1 =
(
A−1

)T with A =

⎡
⎣1 2 0

1 0 1
0 2 1

⎤
⎦.

Exercise 10. Verify the matrix law (A∗)−1 =
(
A−1

)∗ with A =
[

2 1 − 2i
0 i

]
.

Exercise 11. Verify the matrix law (AB)−1 = B−1A−1 in the case that A =⎡
⎣ 1 2 −3

1 0 1
2 4 −2

⎤
⎦ and B =

⎡
⎣ 1 0 2

0 −3 1
0 0 1

⎤
⎦ .

Exercise 12. Verify the matrix law (cA)−1 = (1/c) A−1 in the case that A =⎡
⎣ 1 2 − i 0

1 0 0
0 0 2

⎤
⎦ and c = 2 + i.

Exercise 13. Determine for what values of k the following matrices are invert-
ible and find the inverse in that case.

(a)
[

1 k
0 −1

]
(b)

⎡
⎣ 1 0 1

0 1 1
k 0 1

⎤
⎦ (c)

⎡
⎢⎢⎣

1 0 0 1
0 −1 0 0
0 0 −6 0
0 0 0 k

⎤
⎥⎥⎦
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Exercise 14. Determine the inverses for the following matrices in terms of the
parameter c and conditions on c for which the matrix has an inverse.

(a)
[

1 2
c −1

]
(b)

⎡
⎣ 1 2 c + 1

0 1 1
0 0 c

⎤
⎦ (c)

⎡
⎣ 1 0 c + i

0 −1 0
0 c c

⎤
⎦

Exercise 15. Give a 2× 2 example showing that the sum of invertible matrices
need not be invertible.

Exercise 16. Give a 2 × 2 example that the sum of singular matrices need not
be singular.

Exercise 17. Problem 26 of Section 2.2 yields a formula for the inverse of the
matrix I−N, where N is nilpotent, namely, (I − N)−1 = I+N+N2+· · ·+Nk.

Apply this formula to matrices (a)

⎡
⎣ 1 −1 2

0 1 1
0 0 1

⎤
⎦ and (b)

⎡
⎣1 0 0

0 1 0
1 0 1

⎤
⎦.

Exercise 18. If a matrix can be written as A = D (I − N), where D is diagonal
with nonzero entries and N is nilpotent, then A−1 = (I − N)−1

D−1. Use this
fact and the formulas of Exercise 17 and Example 2.37 to find inverses of the

matrices (a)

⎡
⎣ 2 2 4

0 2 −2
0 0 3

⎤
⎦ and (b)

[
2 0
i 3

]
.

Exercise 19. Solve the nonlinear system of equations of Example 2.41 by using
nine iterations of the vector Newton formula (2.5), starting with the initial
guess x(0) = (0, 1). Evaluate F

(
x(9)

)
.

Exercise 20. Find the minimum value of the function F (x, y) =
(
x2 + y + 1

)2+
x4 + y4 by using the Newton method to find critical points of the function
F (x, y), i.e., points where f (x, y) = Fx (x, y) = 0 and g(x, y) = Fy(x, y) = 0.

*Problem 21. Show from the definition that if a square matrix A satisfies the
equation A3 − 2A + 3I = 0, then the matrix A must be invertible.

Problem 22. Verify directly from the definition of inverse that the two by two
inverse formula gives the inverse of a 2 × 2 matrix.

Problem 23. Assume that the product of invertible matrices is invertible and
deduce that if A and B are invertible matrices of the same size and both B
and AB are invertible, then so is A.

*Problem 24. Let A be an invertible matrix. Show that if the product of ma-
trices AB is defined, then rank (AB) = rank (B), and if BA is defined, then
rank (BA) = rank (B).
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Problem 25. Prove that if D = ABC, where A, C, and D are invertible
matrices, then B is invertible.

Problem 26. Given that C =
[

A 0
0 B

]
in block form with A and B square,

show that C is invertible if and only if A and B are, in which case C−1 =[
A−1 0
0 B−1

]
.

Problem 27. Let T be an upper triangular matrix, say T = D + M , where D
is diagonal and M is strictly upper triangular.
(a) Show that if D is invertible, then T = D(I − N), where N = D−1M is
strictly upper triangular.
(b) Assume that D is invertible and use part (a) and Exercise 26 to obtain a
formula for T−1 involving D and N.

Problem 28. Show that if the product of matrices BA is defined and A is
invertible, then rank(BA) = rank(B).

*Problem 29. Given the matrix M =
[

A B
0 C

]
, where the blocks A and C are

invertible matrices, find a formula for M−1 in terms of A, B, and C.

2.6 Basic Properties of Determinants

What Are They?

Many students have already had some experience with determinants and may
have used them to solve square systems of equations. Why have we waited
until now to introduce them? In point of fact, they are not really the best tool
for solving systems. That distinction goes to Gaussian elimination. Were it
not for the theoretical usefulness of determinants they might be consigned to
a footnote in introductory linear algebra texts as a historical artifact of linear
algebra.

To motivate determinants, consider Example 2.40. Something remarkable
happened in that example. Not only were we able to find a formula for the

inverse of a 2 × 2 matrix A =
[

a b
c d

]
, but we were able to compute a single

number D = ad − bc that told us whether A was invertible. The condition
of noninvertibility, namely that D = 0, has a very simple interpretation: this
happens exactly when one row of A is a multiple of the other, since the example
showed that this is when elementary operations use the first row to zero out
the second row. Can we extend this idea? Is there a single number that will
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tell us whether there are dependencies among the rows of the square matrix
A that cause its rank to be smaller than its row size? The answer is yes. This
is exactly what determinants were invented for. The concept of determinant
is subtle and not intuitive, and researchers had to accumulate a large body of
experience before they were able to formulate a “correct” definition for this
number. There are alternative definitions of determinants, but the following
will suit our purposes. It is sometimes referred to as “expansion down the first
column.”

Definition 2.16. The determinant of a square n × n matrix A = [aij ] is the Determinant
scalar quantity detA defined recursively as follows: if n = 1 then det A = a11;
otherwise, we suppose that determinants are defined for all square matrices
of size less than n and specify that

det A =
n∑

k=1

ak1(−1)k+1Mk1(A)

= a11M11(A) − a21M21(A) + · · · + (−1)n+1an1Mn1(A),

where Mij(A) is the determinant of the (n−1)×(n−1) matrix obtained from
A by deleting the ith row and jth column of A.

Caution: The determinant of a matrix A is a scalar number. It is not a matrix
quantity.

Example 2.42. Describe the quantities M21(A) and M22 (A), where

A =

⎡
⎣2 1 0

1 1 −1
0 1 2

⎤
⎦ .

Solution. If we erase the second row and first column of A we obtain some-
thing like ⎡

⎣ 1 0

1 2

⎤
⎦ .

Now collapse the remaining entries together to obtain the matrix
[

1 0
1 2

]
.

Therefore

M21(A) = det
[

1 0
1 2

]
.

Similarly, erase the second row and column of A to obtain
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⎡
⎣2 0

0 2

⎤
⎦ .

Now collapse the remaining entries together to obtain

M22(A) = det
[

2 0
0 2

]
. �

Now how do we calculate these determinants? Part (b) of the next example
answers the question.

Example 2.43. Use the definition to compute the determinants of the follow-
ing matrices.

(a) [−4] (b)
[

a b
c d

]
(c)

⎡
⎣2 1 0

1 1 −1
0 1 2

⎤
⎦

Solution. (a) From the first part of the definition we see that

det[−4] = −4.

For (b) we set A =
[

a b
c d

]
=

[
a11 a12

a21 a22

]
and use the formula of the definition

to obtain that

det
[

a b
c d

]
= a11M11 (A) − a21M21 (A) = adet [d] − cdet [b] = ad − cb.

This calculation gives a handy formula for the determinant of a 2× 2 matrix.
For (c) use the definition to obtain that

det

⎡
⎣ 2 1 0

1 1 −1
0 1 2

⎤
⎦ = 2det

[
1 −1
1 2

]
− 1 det

[
1 0
1 2

]
+ 0det

[
1 0
1 −1

]

= 2(1 · 2 − 1 · (−1)) − 1(1 · 2 − 1 · 0) + 0(1 · (−1) − 1 · 0)
= 2 · 3 − 1 · 2 + 0 · (−1)
= 4.

A point worth observing here is that we didn’t really have to calculate the
determinant of any matrix if it is multiplied by a zero. Hence, the more zeros
our matrix has, the easier we expect the determinant calculation to be! ��

Another common symbol for detA is |A|, which is also written with respect
to the elements of A by suppressing matrix brackets:

det A = |A| =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
.
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This notation invites a certain oddity, if not abuse, of language: we some-
times refer to things like the “second row” or “(2, 3)th element” or the “size”
of the determinant. Yet the determinant is only a number and in that sense
doesn’t really have rows or entries or a size. Rather, it is the underlying ma-
trix whose determinant is being calculated that has these properties. So be
careful of this notation; we plan to use it frequently because it’s handy, but
you should bear in mind that determinants and matrices are not the same
thing! Another reason that this notation can be tricky is the case of a one-
dimensional matrix, say A = [a11]. Here it is definitely not a good idea to
forget the brackets, since we already understand |a11| to be the absolute value
of the scalar a11, a nonnegative number. In the 1 × 1 case use |[a11]| for the
determinant, which is just the number a11 and may be positive or negative.

The number Mij (A) is called the (i, j)th minor of the matrix A. If we Minors and
Cofactorscollect the sign term in the definition of determinant together with the minor

we obtain the (i, j)th cofactor Aij = (−1)i+j
M (A) of the matrix A. In the

terminology of cofactors,

det A =
n∑

k=1

ak1Ak1.

Laws of Determinants

Our primary goal here is to show that determinants have the magical property
we promised: a matrix is singular exactly when its determinant is 0. Along
the way we will examine some useful properties of determinants. There is
a lot of clever algebra that can be done here; we will try to keep matters
straightforward (if that’s possible with determinants). In order to focus on
the main ideas, we place most of the proofs of key facts in the last section for
optional reading. Also, a concise summary of the basic determinantal laws is
given at the end of this section. Unless otherwise stated, we assume throughout
this section that matrices are square, and that A = [aij ] is an n × n matrix.

For starters, let’s observe that it’s very easy to calculate the determinant
of upper triangular matrices. Let A be such a matrix. Then ak1 = 0 if k > 1,
so

det A =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

0 a22 · · · a2n

...
...

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

0 a33 · · · a3n

...
...

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣
= · · · = a11 · a22 · · · ann.

Hence we have established our first determinantal law:
D1: If A is an upper triangular matrix, then the determinant of A is the

product of all the diagonal elements of A.
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Example 2.44. Compute D =

∣∣∣∣∣∣∣∣

4 4 1 1
0 −1 2 3
0 0 2 3
0 0 0 2

∣∣∣∣∣∣∣∣
and |In| = det In.

Solution. By D1 we can do this at a glance: D = 4 · (−1) · 2 · 2 = −16. Since
In is diagonal, it is certainly upper triangular. Moreover, the entries down the
diagonal of this matrix are 1’s, so D1 implies that |In| = 1. ��

Next, suppose that we notice a common factor of the scalar c in a row,
say for convenience, the first one. How does this affect the determinantal
calculation? In the case of a 1 × 1 determinant, we could simply factor it out
of the original determinant. The general situation is covered by this law:

D2: If B is obtained from A by multiplying one row of A by the scalar c,
then det B = c · det A.

Here is a simple illustration:

Example 2.45. Compute D =

∣∣∣∣∣∣
5 0 10
5 5 5
0 0 2

∣∣∣∣∣∣.

Solution. Put another way, D2 says that scalars may be factored out of
individual rows of a determinant. So use D2 on the first and second rows and
then use the definition of determinant to obtain∣∣∣∣∣∣
5 0 10
5 5 5
0 0 2

∣∣∣∣∣∣ = 5 ·

∣∣∣∣∣∣
1 0 2
5 5 5
0 0 2

∣∣∣∣∣∣ = 5 · 5 ·

∣∣∣∣∣∣
1 0 2
1 1 1
0 0 2

∣∣∣∣∣∣ = 25 ·
(

1 ·
∣∣∣∣ 1 1
0 2

∣∣∣∣ − 1 ·
∣∣∣∣ 0 2
0 2

∣∣∣∣ + 0 ·
∣∣∣∣ 0 2
1 1

∣∣∣∣
)

= 50.

One can easily check that this is the same answer we get by working the
determinant directly from the definition. ��

Next, suppose we interchange two rows of a determinant.
D3: If B is obtained from A by interchanging two rows of A , then detB =

−det A.

Example 2.46. Use D3 to show the following handy fact: if a determinant
has a repeated row, then it must be 0.

Solution. Suppose that the ith and jth rows of the matrix A are identical,
and B is obtained by switching these two rows of A. Clearly B = A. Yet,
according to D3, detB = −det A. It follows that detA = −det A, i.e., if we
add det A to both sides, 2 · det A = 0, so that detA = 0, which is what we
wanted to show. ��

What happens to a determinant if we add a multiple of one row to another?
D4: If B is obtained from A by adding a multiple of one row of A to

another row of A, then detB = det A.
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Example 2.47. Compute D =

∣∣∣∣∣∣∣∣

1 4 1 1
1 −1 2 3
0 0 2 3
0 0 1 2

∣∣∣∣∣∣∣∣
.

Solution. What D4 really says is that any elementary row operation Eij(c)
can be applied to the matrix behind a determinant and the determinant will
be unchanged. So in this case, add −1 times the first row to the second and
−1

2 times the third row to the fourth, then apply D1 to obtain
∣∣∣∣∣∣∣∣

1 4 1 1
1 −1 2 3
0 0 2 3
0 0 1 2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 4 1 1
0 −5 1 2
0 0 2 3
0 0 0 1/2

∣∣∣∣∣∣∣∣
= 1 · (−5) · 2 · 1

2
= −5. �

Example 2.48. Use D3 to show that a matrix with a row of zeros has zero
determinant.

Solution. Suppose A has a row of zeros. Add any other row of the matrix A
to this zero row to obtain a matrix B with repeated rows. ��

We now have enough machinery to establish the most important property
of determinants. First of all, we can restate laws D2–D4 in the language of
elementary matrices as follows:

• D2: det(Ei(c)A) = c ·det A (remember that for Ei(c) to be an elementary Determinant
of Elementary
Matrices

matrix, c �= 0).
• D3: det(EijA) = −det A.
• D4: det(Eij(s)A) = detA.

Apply a sequence of elementary row operations on the n × n matrix A to
reduce it to its reduced row echelon form R, or equivalently, multiply A on
the left by elementary matrices E1, E2, . . . , Ek and obtain

R = E1E2 · · ·EkA.

Take the determinant of both sides to obtain

det R = det(E1E2 · · ·EkA) = ±(nonzero constant) · det A.

Therefore, detA = 0 precisely when det R = 0. Now the reduced row echelon
form of A is certainly upper triangular. In fact, it is guaranteed to have zeros
on the diagonal, and therefore have zero determinant by D1, unless rankA =
n, in which case R = In. According to Theorem 2.7 this happens precisely
when A is invertible. Thus:

D5: The matrix A is invertible if and only if detA �= 0.
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Example 2.49. Determine whether the following matrices are invertible with-
out actually finding the inverse.

(a)

⎡
⎣ 2 1 0

1 1 −1
0 1 2

⎤
⎦ (b)

⎡
⎣2 1 0

1 1 −1
0 −1 2

⎤
⎦

Solution. Compute the determinants:∣∣∣∣∣∣
2 1 0
1 1 −1
0 1 2

∣∣∣∣∣∣ = 2
∣∣∣∣ 1 −1
1 2

∣∣∣∣ − 1
∣∣∣∣ 1 0
1 2

∣∣∣∣ = 2 · 3 − 2 = 4,

∣∣∣∣∣∣
2 1 0
1 1 −1
0 −1 2

∣∣∣∣∣∣ = 2
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ − 1
∣∣∣∣ 1 0
−1 2

∣∣∣∣ = 2 · 1 − 1 · 2 = 0.

Hence by D5, matrix (a) is invertible and matrix (b) is not invertible. ��
There are two more surprising properties of determinants that we now

discuss. Their proofs involve using determinantal properties of elementary
matrices (see the next section for details).

D6: Given matrices A,B of the same size,

det AB = det A det B.

Example 2.50. Verify D6 in the case that A =
[

1 0
1 1

]
and B =

[
2 1
0 1

]
. How

do det(A + B) and detA + det B compare in this case?

Solution. We have easily that det A = 1 and detB = 2. Therefore, detA +
det B = 1 + 2 = 3, while detA · det B = 1 · 2 = 2. On the other hand,

AB =
[

1 0
2 1

] [
2 1
0 1

]
=

[
2 1
4 3

]
,

A + B =
[

1 0
1 1

]
+

[
2 1
0 1

]
=

[
3 1
1 2

]
,

so that det AB = 2 · 3 − 4 · 1 = 2 = detA · det B, as expected. On the other
hand, we have that det(A + B) = 3 · 2 − 1 · 1 = 5 �= det A + det B. ��

This example raises a very important point.

Caution: In general, detA+det B �= det(A+B), though there are occasional
exceptions.

In other words, determinants do not distribute over sums. (It is true, how-
ever, that the determinant is additive in one row at a time. See the proof of
D4 for details.)

Finally, we ask how detAT compares to det A. Simple cases suggest that
there is no difference in determinant. This is exactly what happens in general.

D7: For all square matrices A, detAT = det A.
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Example 2.51. Compute D =

∣∣∣∣∣∣∣∣

4 0 0 0
4 1 0 0
1 2 −2 0
1 0 1 2

∣∣∣∣∣∣∣∣
.

Solution. By D7 and D1 we see immediately that D = 4 · 1 · (−2) · 2 = −16.
��

D7 is a very useful fact. Let’s look at it from this point of view: trans-
posing a matrix interchanges the rows and columns of the matrix. Therefore,
everything that we have said about rows of determinants applies equally well
to the columns, including the definition of determinant itself ! Therefore, we
could have given the definition of determinant in terms of expanding across
the first row instead of down the first column and gotten the same answers.
Likewise, we could perform elementary column operations instead of row ope-
rations and get the same results as D2–D4. Furthermore, the determinant
of a lower triangular matrix is the product of its diagonal elements thanks
to D7+D1. By interchanging rows or columns then expanding by first row
or column, we see that the same effect is obtained by simply expanding the
determinant down any column or across any row. We have to alternate signs
starting with the sign (−1)i+j of the first term we use.

Now we can really put it all together and compute determinants to our
heart’s content with a good deal less effort than the original definition spec-
ified. We can use D1–D4 in particular to make a determinant calculation no
worse than Gaussian elimination in the amount of work we have to do. We
simply reduce a matrix to triangular form by elementary operations, then take
the product of the diagonal terms.

Example 2.52. Calculate D =

∣∣∣∣∣∣∣∣

3 0 6 6
1 0 2 1
2 0 0 1

−1 2 0 0

∣∣∣∣∣∣∣∣
.

Solution. We are going to do this calculation two ways. We may as well use
the same elementary operation notation that we have employed in Gaussian
elimination. The only difference is that we have equality instead of arrows,
provided that we modify the value of the new determinant in accordance with
the laws D1–D3. So here is the straightforward method:

D = 3

∣∣∣∣∣∣∣∣

1 0 2 2
1 0 2 1
2 0 0 1

−1 2 0 0

∣∣∣∣∣∣∣∣
=

E21(−1)
E31(−2)
E41(1)

3

∣∣∣∣∣∣∣∣

1 0 2 2
0 0 0 −1
0 0 −4 −3
0 2 2 2

∣∣∣∣∣∣∣∣
=

E24

−3

∣∣∣∣∣∣∣∣

1 0 2 2
0 2 2 2
0 0 −4 −3
0 0 0 −1

∣∣∣∣∣∣∣∣
= −24.

Here is another approach: let’s expand the determinant down the second col-
umn, since it is mostly 0’s. Remember that the sign in front of the first minor
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must be (−1)1+2 = −1. Also, the coefficients of the first three minors are 0,
so we need only write down the last one in the second column:

D = +2

∣∣∣∣∣∣
3 6 6
1 2 1
2 0 1

∣∣∣∣∣∣ .

Expand down the second column again:

D = 2
(
−6

∣∣∣∣ 1 1
2 1

∣∣∣∣ + 2
∣∣∣∣ 3 6
2 1

∣∣∣∣
)

= 2(−6 · (−1) + 2 · (−9)) = −24. �

An Inverse Formula

Let A = [aij ] be an n × n matrix. We have already seen that we can expand
the determinant of A down any column of A (see the discussion following
Example 2.51). These expansions lead to cofactor formulas for each column
number j:

det A =
n∑

k=1

akjAkj =
n∑

k=1

Akjakj .

This formula resembles a matrix multiplication formula. Consider the slightly
altered sum

n∑
k=1

Akiakj = A1ia1j + A2ia2j + · · · + Anianj .

The key to understanding this expression is to realize that it is exactly what
we would get if we replaced the ith column of the matrix Aby its jth column
and then computed the determinant of the resulting matrix by expansion
down the ith column. But such a matrix has two equal columns and therefore
has a zero determinant, which we can see by applying Example 2.46 to the
transpose of the matrix and using D7. So this sum must be 0 if i �= j. We can
combine these two sums by means of the Kronecker delta (δij = 1 if i = j andKronecker

Delta 0 otherwise) in the formula

n∑
k=1

Akiakj = δij det A.

In order to exploit this formula we make the following definitions:

Definition 2.17. The matrix of minors of the n × n matrix A = [aij ] is theAdjoint,
Minor, and

Cofactor
Matrices

matrix M(A) = [Mij(A)] of the same size. The matrix of cofactors of A is the
matrix Acof = [Aij ] of the same size. Finally, the adjoint matrix of A is the
matrix adj A = AT

cof.
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Example 2.53. Compute the determinant, minors, cofactors, and adjoint

matrices for A =

⎡
⎣ 1 2 0

0 0 −1
0 2 1

⎤
⎦ and compute A adj A.

Solution. The determinant is easily seen to be 2. Now for the matrix of
minors:

M(A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣0 −1
2 1

∣∣∣∣
∣∣∣∣ 0 −1
0 1

∣∣∣∣
∣∣∣∣ 0 0
0 2

∣∣∣∣∣∣∣∣2 0
2 1

∣∣∣∣
∣∣∣∣ 1 0
0 1

∣∣∣∣
∣∣∣∣ 1 2
0 2

∣∣∣∣∣∣∣∣2 0
0 −1

∣∣∣∣
∣∣∣∣ 1 0
0 −1

∣∣∣∣
∣∣∣∣ 1 2
0 0

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 2 0 0

2 1 2
−2 −1 0

⎤
⎦ .

To get the matrix of cofactors, simply overlay M(A) with the following

“checkerboard” of +/−’s

⎡
⎣+ − +
− + −
+ − +

⎤
⎦ to obtain the matrix Acof =

⎡
⎣ 2 0 0
−2 1 −2
−2 1 0

⎤
⎦.

Now transpose Acof to obtain

adj A =

⎡
⎣2 −2 −2

0 1 1
0 −2 0

⎤
⎦ .

We check that

A adj A =

⎡
⎣ 1 2 0

0 0 −1
0 2 1

⎤
⎦

⎡
⎣2 −2 −2

0 1 1
0 −2 0

⎤
⎦ =

⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦ = (detA)I3. �

Of course, the example simply confirms the formula that preceded it since
this formula gives the (i, j)th entry of the product (adjA)A. If we were to
do determinants by row expansions, we would get a similar formula for the
(i, j)th entry of A adj A. We summarize this information in matrix notation
as the following determinantal property:

D8: For a square matrix A, Adjoint
Formula

A adj A = (adjA)A = (det A)I.

What does this have to do with inverses? We already know that A is invertible
exactly when det A �= 0, so the answer is staring at us! Just divide the terms
in D8 by detA to obtain an explicit formula for A−1:

D9: For a square matrix A such that det A �= 0, Inverse
Formula

A−1 =
1

detA
adj A.
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Example 2.54. Compute the inverse of the matrix A of Example 2.53 by the
inverse formula.

Solution. We already computed the adjoint matrix of A, and the determinant
of A is just 2, so we have that

A−1 =
1

det A
adj A =

1
2

⎡
⎣2 −2 −2

0 1 1
0 −2 0

⎤
⎦ . �

Example 2.55. Interpret the inverse formula in the case of the 2 × 2 matrix

A =
[

a b
c d

]
.

Solution. We have M(A) =
[

d c
b a

]
, Acof =

[
d −c

−b a

]
and adjA =

[
d −b

−c a

]
,

so that the inverse formula becomes

A−1 =
1

det A

[
d −b

−c a

]
.

As you might expect, this is exactly the same as the formula we obtained in
Example 2.40. ��

Cramer’s Rule

Thanks to the inverse formula, we can now find an explicit formula for solving
linear systems with a nonsingular coefficient matrix. Here’s how we proceed.
To solve Ax = b we multiply both sides on the left by A−1 to obtain that
x = A−1b. Now use the inverse formula to obtain

x = A−1b =
1

det A
adj(A)b.

The explicit formula for the ith coordinate of x that comes from this fact is

xi =
1

det A

n∑
j=1

Ajibj .

The summation term is exactly what we would obtain if we started with the
determinant of the matrix Bi obtained from A by replacing the ith column of
A by b and then expanding the determinant down the ith column. Therefore,
we have arrived at the following rule:

Theorem 2.8. Let A be an invertible n×n matrix and b an n×1 column vec-
tor. Denote by Bi the matrix obtained from A by replacing the ith column of A
by b. Then the linear system Ax = b has unique solution x = (x1, x2, . . . , xn),
whereCramer’s Rule

xi =
det Bi

det A
, i = 1, 2, . . . , n.
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Example 2.56. Use Cramer’s rule to solve the system

2x1 − x2 = 1
4x1 + 4x2 = 20.

Solution. The coefficient matrix and right-hand-side vectors are

A =
[

2 −1
4 4

]
and b =

[
1

20

]
,

so that
det A = 8 − (−4) = 12,

and therefore

x1 =

∣∣∣∣2 1
4 20

∣∣∣∣∣∣∣∣2 −1
4 4

∣∣∣∣
=

36
12

= 3 and x2 =

∣∣∣∣ 1 −1
20 4

∣∣∣∣∣∣∣∣ 2 −1
4 4

∣∣∣∣
=

24
12

= 2. �

Summary of Determinantal Laws

Now that our list of the basic laws of determinants is complete, we record
them in a concise summary. Laws of

Determinants
Let A,B be n × n matrices.
D1: If A is upper triangular, detA is the product of all the diagonal

elements of A.
D2: det(Ei(c)A) = c · det A.
D3: det(EijA) = −det A.
D4: det(Eij(s)A) = detA.
D5: The matrix A is invertible if and only if detA �= 0.
D6: det AB = detAdet B.
D7: det AT = det A.
D8: A adj A = (adjA)A = (detA)I.

D9: If det A �= 0, then A−1 =
1

det A
adj A.

2.6 Exercises and Problems

Exercise 1. Compute all cofactors for these matrices.

(a)
[

1 2
2 −1

]
(b)

[
1 3
0 1

]
(c)

⎡
⎣1 0 −1

0 0 0
0 0 4

⎤
⎦ (d)

[
1 1 − i
0 1

]
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Exercise 2. Compute all minors for these matrices.

(a)
[

2 2
2 2

]
(b)

⎡
⎣ 1 −3 0
−2 1 0
0 −2 0

⎤
⎦ (c)

[
1 i + 1
i 1

]
(d)

⎡
⎣3 1 −1

0 2 −2
0 0 1

⎤
⎦

Exercise 3. Compute these determinants. Which of the matrices represented
are invertible?

(a)
∣∣∣∣2 −1
1 1

∣∣∣∣ (b)

∣∣∣∣∣∣
1 −1 0
0 1 1
0 0 1 + i

∣∣∣∣∣∣ (c)

∣∣∣∣∣∣
1 1 0
1 0 1
2 1 1

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣∣∣

1 −1 4 2
0 1 0 3
0 0 2 7

−2 3 4 6

∣∣∣∣∣∣∣∣
(e)

∣∣∣∣−1 −1
1 1 − 2i

∣∣∣∣

Exercise 4. Use determinants to determine which of these matrices are invert-
ible.

(a)

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
2 0 2 0

−2 3 4 6

⎤
⎥⎥⎦ (b)

⎡
⎣ 0 1 0

1 0 −1
0 1 1

⎤
⎦ (c)

⎡
⎢⎢⎣

1 1 0 1
1 2 1 1
0 0 1 3
1 1 2 7

⎤
⎥⎥⎦ (d)

⎡
⎣1 0 1

2 1 1
0 1 3

⎤
⎦ (e)

[
cos θ sin θ
− sin θ cos θ

]

Exercise 5. Verify by calculation that determinantal law D7 holds for the fol-
lowing choices of A.

(a)

⎡
⎣−2 1 0

1 2 1
0 0 1

⎤
⎦ (b)

⎡
⎣ 1 −1 1

1 2 0
−1 0 1

⎤
⎦ (c)

⎡
⎢⎢⎣

1 1 0 1
1 2 0 1
0 0 1 3
0 0 2 7

⎤
⎥⎥⎦ (d)

[
1 3
1 4

]

Exercise 6. Let A = B and verify by calculation that determinantal law D6
holds for the following choices of A.

(a)

⎡
⎣−2 1 0

1 2 1
0 0 1

⎤
⎦ (b)

⎡
⎣ 1 −1 1

1 2 0
−1 0 1

⎤
⎦ (c)

[
1 3

−1 2

]
(d)

⎡
⎢⎢⎣

1 1 0 1
1 2 0 1
0 0 1 3
0 0 2 7

⎤
⎥⎥⎦

Exercise 7. Use determinants to find conditions on the parameters in these
matrices under which the matrices are invertible.

(a)
[

a 1
ab 1

]
(b)

⎡
⎣ 1 1 −1

1 c 1
0 0 1

⎤
⎦ (c)

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦

Exercise 8. Find conditions on the parameters in these matrices under which
the matrices are invertible.

(a)

⎡
⎢⎢⎣

a b 0 0
0 a 0 0
0 0 b a
0 0 −a b

⎤
⎥⎥⎦ (b)

⎡
⎣λ − 1 0 0

1 λ − 2 1
3 1 λ − 1

⎤
⎦ (c) λI2 −

[
0 1

−c0 −c1

]
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Exercise 9. For each of the following matrices calculate the adjoint matrix and
the product of the matrix and its adjoint.

(a)

⎡
⎣ 2 1 0
−1 1 2

1 2 2

⎤
⎦ (b)

⎡
⎣ 1 0 3

0 1 0
1 0 −1

⎤
⎦ (c)

[
1 3

−1 2

]
(d)

⎡
⎢⎢⎣

1 2 0 0
1 2 0 0
0 0 1 3
0 0 2 6

⎤
⎥⎥⎦

Exercise 10. For each of the following matrices calculate the adjoint matrix
and the product of the adjoint and the matrix.

(a)

⎡
⎣−1 1 1

0 0 2
0 0 2

⎤
⎦ (b)

⎡
⎣ 2 −1 0
−1 2 0

0 0 −1

⎤
⎦ (c)

[
1 1 + i

1 − i 2

]
(d)

⎡
⎢⎢⎣

1 1 0 3
0 2 0 0
0 0 1 1
0 0 0 −3

⎤
⎥⎥⎦

Exercise 11. Find the inverse of following matrices by adjoints.

(a)
[

1 1
3 4

]
(b)

⎡
⎣ 1 0 0

2 2 1
1 0 1

⎤
⎦ (c)

⎡
⎣ 1 −2 2
−1 2 −1

1 −3 1

⎤
⎦ (d)

[
1 i

−2i 1

]

Exercise 12. For each of the following matrices, find the inverse by superaug-
mented matrices and by adjoints.

(a)
[

1 0
2 2

]
(b)

⎡
⎣ 1 −1 3

2 2 −4
1 1 1

⎤
⎦ (c)

⎡
⎢⎣

1
2

√
3

2 0
−

√
3

2
1
2 0

0 0 1

⎤
⎥⎦ (d)

[
1 2
2 2

]

Exercise 13. Use Cramer’s Rule to solve the following systems.

(a)
x − 3y = 2
2x + y = 11 (b)

2x1 + x2 = b1

2x1 − x2 = b2
(c)

3x1 + x3 = 2
2x1 + 2x2 = 1

x1 + x2 + x3 = 6

Exercise 14. Use Cramer’s Rule to solve the following systems.

(a)
x + y + z = 4

2x + 2y + 5z = 11
4x + 6y + 8z = 24

(b)
x1 − 2x2 = 2
2x1 − x2 = 4 (c)

x1 + x2 + x3 = 2
x1 + 2x2 = 1
x1 − x3 = 2

Problem 15. Verify that

∣∣∣∣∣∣∣∣

a b 0 0
c d 0 0
0 0 e f
0 0 g h

∣∣∣∣∣∣∣∣
=

∣∣∣∣a b
c d

∣∣∣∣
∣∣∣∣ e f
g h

∣∣∣∣ .

Problem 16. Confirm that the determinant of the matrix A =

⎡
⎣1 0 2

2 1 1
1 0 1

⎤
⎦ is −1.

We can now assert without any further calculation that the inverse matrix of
A has integer coefficients. Explain why in terms of laws of determinants.
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*Problem 17. Let

V =

⎡
⎣1 x0 x2

0

1 x1 x2
1

1 x2 x2
2

⎤
⎦ .

(Such a matrix is called a Vandermonde matrix.) Express det V as a product
of factors (xj − xk).

Problem 18. Show by example that detA∗ �= det A and prove that in general
det A∗ = det A.

*Problem 19. Use a determinantal law to show that det (A) det
(
A−1

)
= 1 if

A is invertible.

Problem 20. Use the determinantal laws to show that any matrix with a row
of zeros has zero determinant.

*Problem 21. If A is a 5× 5 matrix, then in terms of det(A), what can we say
about det(−2A)? Explain and express a law about a general matrix cA, c a
scalar, that contains your answer.

Problem 22. Let A be a skew-symmetric matrix, that is, AT = −A. Show that
if A has odd order n, i.e., A is n × n, then A must be singular.

*Problem 23. Show that if

M =
[

A B
0 C

]

then det M = det A · detC.

*Problem 24. Let Jn be the n×n counteridentity, that is, Jn is a square matrix
with ones along the counterdiagonal (the diagonal that starts in the lower left
corner and ends in the upper right corner), and zeros elsewhere. Find a formula
for detJn. (Hint: show that J2

n = In, which narrows down detJn.)

Problem 25. Show that the companion matrix of the polynomial f(x) = c0 +
c1x + · · · + cn−1x

n−1 + xn, which is defined to be

C (f) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1

−c0 −c1 · · · −cn−2 −cn−1

⎤
⎥⎥⎥⎥⎥⎦

,

is invertible if and only if c0 �= 0.
Prove that if the matrix A is invertible, then det(AT A)̇ > 0.

Problem 26. Suppose that the square matrix A is singular. Prove that if the
system Ax = b is consistent, then (adjA)b = 0.
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2.7 *Computational Notes and Projects

LU Factorization

Here is a problem: suppose we want to solve a nonsingular linear system
Ax = b repeatedly, with different choices of b. A perfect example of this kind
of situation is the heat flow problem Example 1.3, where the right-hand side
is determined by the heat source term f(x). Suppose that we need to exper-
iment with different source terms. What happens if we do straight Gaussian
elimination or Gauss–Jordan elimination? Each time we carry out a complete
calculation on the augmented matrix Ã = [A | b] we have to resolve the whole
system. Yet, the main part of our work is the same: putting the part of Ã corre-
sponding to the coefficient matrix A into reduced row echelon form. Changing
the right-hand side has no effect on this work. What we want here is a way
to somehow record our work on A, so that solving a new system involves very
little additional work. This is exactly what the LU factorization is all about.

Definition 2.18. Let A be an n × n matrix. An LU factorization of A is a
pair of n × n matrices L,U such that LU

Factorization
(1) L is lower triangular.
(2) U is upper triangular.
(3) A = LU.

Even if we could find such beasts, what is so wonderful about them? The
answer is that triangular systems Ax = b are easy to solve. For example, if A
is upper triangular, we learned that the smart thing to do was to use the last
equation to solve for the last variable, then the next-to-last equation for the
next-to-last variable, etc. This is the secret of Gaussian elimination! But lower
triangular systems are just as simple: use the first equation to solve for the
first variable, the second equation for the second variable, and so forth. Now
suppose we want to solve Ax = b and we know that A = LU. The original
system becomes LUx = b. Introduce an intermediate variable y = Ux. Now
perform these steps:

1. (Forward solve) Solve lower triangular system Ly = b for the variable y.
2. (Back solve) Solve upper triangular system Ux = y for the variable x.

This does it! Once we have the matrices L,U , we don’t have to worry about
right-hand sides, except for the small amount of work involved in solving two
triangular systems. Notice, by the way, that since A is assumed nonsingular,
we have that if A = LU , then detA = det Ldet U �= 0. Therefore, neither
triangular matrix L or U can have zeros on its diagonal. Thus, the forward
and back solve steps can always be carried out to give a unique solution.
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Example 2.57. You are given that

A =

⎡
⎣ 2 1 0
−2 0 −1

2 3 −3

⎤
⎦ =

⎡
⎣ 1 0 0
−1 1 0

1 2 1

⎤
⎦

⎡
⎣2 1 0

0 1 −1
0 0 −1

⎤
⎦ .

Use this fact to solve Ax = b, where b = [1, 0, 1]T or b = [−1, 2, 1]T .

Solution. Set x = [x1, x2, x3]T and y = [y1, y2,y3]T . For b = [1, 0, 1]T , forward
solve ⎡

⎣ 1 0 0
−1 1 0

1 2 1

⎤
⎦

⎡
⎣ y1

y2

y3

⎤
⎦ =

⎡
⎣1

0
1

⎤
⎦

to get y1 = 1, then y2 = 0 + 1y1 = 1, then y3 = 1 − 1y1 − 2y2 = −2. Then
back solve ⎡

⎣ 2 1 0
0 1 −1
0 0 −1

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 1

1
−2

⎤
⎦

to get x3 = −2/(−1) = 2, then x2 = 1 + x3 = 3, then x1 = (1− 1x2)/2 = −1.
For (b) forward solve ⎡

⎣ 1 0 0
−1 1 0

1 2 1

⎤
⎦

⎡
⎣ y1

y2

y3

⎤
⎦ =

⎡
⎣−1

2
1

⎤
⎦

to get y1 = −1, then y2 = 0 + 1y1 = −1, then y3 = 1 − 1y1 − 2y2 = 4. Then
back solve ⎡

⎣ 2 1 0
0 1 −1
0 0 −1

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣−1
−1

4

⎤
⎦

to get x3 = 4/(−1) = −4, then x2 = 1 + x3 = −3, then x1 = (1− 1x2)/2 = 2.
��

Notice how simple the previous example was, given the LU factorization.
Now how do we find such a factorization? In general, a nonsingular matrix
may not have such a factorization. A good example is the matrix [ 0 1

1 0 ] How-
ever, if Gaussian elimination can be performed on the matrix A without row
exchanges, then such a factorization is really a by-product of Gaussian elim-
ination. In this case let [a(k)

ij ] be the matrix obtained from A after using the

kth pivot to clear out entries below it (thus A = [a(0)
ij ]). Remember that in

Gaussian elimination we need only two types of elementary operations, namely
row exchanges and adding a multiple of one row to another. Furthermore, the
only elementary operations of the latter type that we use are of this form:
Eij(−a

(k)
jj /a

(k)
ij ), where [a(k)

ij ] is the matrix obtained from A from the various

elementary operations up to this point. The numbers mij = −a
(k)
jj /a

(k)
ij , where

i > j, are sometimes called multipliers. In the way of notation, let us call aMultipliers
triangular matrix a unit triangular matrix if its diagonal entries are all 1’s.
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Theorem 2.9. If Gaussian elimination is used without row exchanges on the
nonsingular matrix A, resulting in the upper triangular matrix U , and if L
is the unit lower triangular matrix whose entries below the diagonal are the
negatives of the multipliers mij , then A = LU.

Proof. The proof of this theorem amounts to noticing that the product of
all the elementary operations that reduces A to U is a unit lower triangular
matrix L̃ with the multipliers mij in the appropriate positions. Thus L̃A = U.
To undo these operations, multiply by a matrix L with the negatives of the
multipliers in the appropriate positions. This results in

LL̃A = A = LU

as desired. ��
The following example shows how one can write an efficient program to

implement LU factorization. The idea is this: as we do Gaussian elimination,
the U part of the factorization gradually appears in the upper parts of the
transformed matrices A(k). Below the diagonal we replace nonzero entries with
zeros, column by column. Instead of wasting this space, use it to store the
negative of the multipliers in place of the element it zeros out. Of course, this
storage part of the matrix should not be changed by subsequent elementary
row operations. When we are finished with elimination, the diagonal and upper
part of the resulting matrix is just U , and the strictly lower triangular part on
the unit lower triangular matrix L is stored in the lower part of the matrix.

Example 2.58. Use the shorthand of the preceding discussion to compute an
LU factorization for

A =

⎡
⎣ 2 1 0
−2 0 −1

2 3 −3

⎤
⎦ .

Solution. Proceed as in Gaussian elimination, but store negative multipliers:

⎡
⎣ 2 1 0

−2 0 −1
2 3 −3

⎤
⎦
−−−−−−→
E21(1)

E31(−1)

⎡
⎣ 2 1 0
−1 1 −1

1 2 −3

⎤
⎦ −−−−−−→

E32(−2)

⎡
⎣ 2 1 0
−1 1 −1

1 2 −1

⎤
⎦ .

Now we read off the results from the last matrix:

L =

⎡
⎣ 1 0 0

1 1 0
−1 2 1

⎤
⎦ and U =

⎡
⎣2 1 0

0 1 −1
0 0 −1

⎤
⎦ . ��

What can be said if row exchanges are required (for example, we might
want to use a partial pivoting strategy)? Take the point of view that we could
see our way to the end of Gaussian elimination and store the product P of all Permutation

Matrixrow-exchanging elementary operations that we use along the way. A product of
such matrices is called a permutation matrix ; such a matrix is invertible, since
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it is a product of invertible matrices. Thus if we apply the correct permutation
matrix P to A we obtain a matrix for which Gaussian elimination will succeed
without further row exchanges. Consequently, we have a theorem that applies
to all nonsingular matrices. Notice that it does not limit the usefulness of
LU factorization since the linear system Ax = b is equivalent to the system
PAx = Pb. The following theorem could be called the “PLU factorization
theorem.”

Theorem 2.10. If A is a nonsingular matrix, then there exists a permutation
matrix P , upper triangular matrix U , and unit lower triangular matrix L such
that PA = LU.

There are many other useful factorizations of matrices that numerical analysts
have studied, e.g., LDU and Cholesky. We will stop at LU, but there is one last
point we want to make. The amount of work in finding the LU factorization
is the same as Gaussian elimination itself, which is approximately 2n3/3 flops
(see Section 1.5). The additional work of back and forward solving is about 2n2

flops. So the dominant amount of work is done by computing the factorization
rather than the back and forward solving stages.

Efficiency of Determinants and Cramer’s Rule in Computation

The truth of the matter is that Cramer’s Rule and adjoints are good only forComputa-
tional

Efficiency of
Determinants

small matrices and theoretical arguments. For if you evaluate determinants in
a straightforward way from the definition, the work in doing so is about n ·n!
flops for an n × n system. (Recall that a “flop” in numerical linear algebra is
a single addition or subtraction, or multiplication or division.) For example,
it is not hard to show that the operation of adding a multiple of one row
vector of length n to another requires 2n flops. This number n · n! is vast
when compared to the number 2n3/3 flops required for Gaussian elimination,
even with “small” n, say n = 10. In this case we have 2 · 103/3 ≈ 667, while
10 · 10! = 36, 288, 000.

On the other hand, there is a clever way to evaluate determinants that
requires much less work than the definition: use elementary row operations
together with D2, D6, and the elementary operations that correspond to these
rules to reduce the determinant to that of a triangular matrix. This requires
about 2n3/3 flops. As a matter of fact, it is tantamount to Gaussian elimina-
tion. But to use Cramer’s Rule, you will have to calculate n+1 determinants.
So why bother with Cramer’s Rule on larger problems when it still will take
about n times as much work as Gaussian elimination? A similar remark ap-
plies to computing adjoints instead of using Gauss–Jordan elimination on the
superaugmented matrix of A.

Proofs of Some of the Laws of Determinants

D2: If B is obtained from A by multiplying one row of A by the scalar c,
then det B = c · det A.
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To keep the notation simple, assume that the first row is multiplied by c,
the proof being similar for other rows. Suppose we have established this for all
determinants of size less than n (this is really another “proof by induction,”
which is how most of the following determinantal properties are established).
For an n × n determinant we have

detB =

∣∣∣∣∣∣∣∣∣

c · a11 c · a12 · · · c · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣

= c · a11

∣∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

a32 a33 · · · a3n

...
...

...
an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
+

n∑
k=2

ak1(−1)k+1Mk1(B).

But the minors Mk1(B) all are smaller and have a common factor of c in the
first row. Pull this factor out of every remaining term and we get that

∣∣∣∣∣∣∣∣∣

c · a11 c · a12 · · · c · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= c ·

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
.

Thus we have shown that property D2 holds for all matrices.
D3: If B is obtained from A by interchanging two rows of A , then detB =

−det A.
To keep the notation simple, assume we switch the first and second rows. In

the case of a 2×2 determinant, we get the negative of the original determinant
(check this for yourself). Suppose we have established that the same is true
for all matrices of size less than n. For an n × n determinant we have

det B =

∣∣∣∣∣∣∣∣∣∣∣

a21 a22 · · · a2n

a11 a12 · · · a1n

a31 a32 · · · a3n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
= a21M11(B) − a11M21(B) +

n∑
k=3

ak1(−1)k+1Mk1(B)

= a21M21(A) − a11M11(A) +
n∑

k=3

ak1(−1)k+1Mk1(B).

But all the determinants in the summation sign come from a submatrix of A
with the first and second rows interchanged. Since they are smaller than n,



134 2 MATRIX ALGEBRA

each is just the negative of the corresponding minor of A. Notice that the first
two terms are just the first two terms in the determinantal expansion of A,
except that they are out of order and have an extra minus sign. Factor this
minus sign out of every term and we have obtained D3. ��

D4: If B is obtained from A by adding a multiple of one row of A to
another row of A, then detB = det A.

Actually, it’s a little easier to answer a slightly more general question:
what happens if we replace a row of a determinant by that row plus some
other row vector r (not necessarily a row of the determinant)? Again, simply
for convenience of notation, we assume that the row in question is the first.
The same argument works for any other row. Some notation: let B be the
matrix that we obtain from the n × n matrix A by adding the row vector
r = [r1, r2, . . . , rn] to the first row and C the matrix obtained from A by
replacing the first row by r. The answer turns out to be that |B| = |A|+ |C|.
So we can say that the determinant function is “additive in each row.” Let’s
see what happens in the one dimensional case:

|B| = |[a11 + r1]| = a11 + r1 = |[a11]| + |[r1]| = |A| + |C|.

Suppose we have established that the same is true for all matrices of size less
than n and let A be n× n. Then the minors Mk1(B), with k > 1, are smaller
than n, so the property holds for them. Hence we have

det B =

∣∣∣∣∣∣∣∣∣

a11 + r1 a12 + r2 · · · a1n + rn

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= (a11 + r1)M11(A) +

n∑
k=2

ak1(−1)k+1Mk1(B)

= (a11 + r1)M11(A) +
n∑

k=2

ak1(−1)k+1(Mk1(A) + Mk1(C))

=
n∑

k=1

ak1(−1)k+1Mk1(A) + r1M11(C) +
n∑

k=2

ak1(−1)k+1Mk1(C)

= detA + det C.

Now what about adding a multiple of one row to another in a determinant?
For notational convenience, suppose we add s times the second row to the first.
In the notation of the previous paragraph,

detB =

∣∣∣∣∣∣∣∣∣

a11 + s · a21 a12 + s · a22 · · · a1n + s · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
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and

det C =

∣∣∣∣∣∣∣∣∣

s · a21 s · a22 · · · s · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= s ·

∣∣∣∣∣∣∣∣∣

a21 a22 · · · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= 0,

where we applied D2 to pull the common factor s from the first row and the
result of Example 2.46 to get the determinant with repeated rows to be 0.
But |B| = |A| + |C|. Hence we have shown D4. ��

D6: Given matrices A,B of the same size, det AB = det Adet B.
The key here is that we now know that determinant calculation is inti-

mately connected with elementary matrices, rank, and the reduced row ech-
elon form. First let’s reinterpret D2–D4 still one more time. First of all take
A = I in the discussion of the previous paragraph, and we see that

• detEi(c) = c
• detEij = −1
• detEij(s) = 1

Therefore, D2–D4 can be restated (yet again) as

• D2: det(Ei(c)A) = detEi(c) · det A (here c �= 0.)
• D3: det(EijA) = detEij · detA
• D4: det(Eij(s) = detEij(s) · det A

In summary: For any elementary matrix E and arbitrary matrix A of the same
size, det(EA) = det(E) det(A).

Now let’s consider this question: how does det(AB) relate to det(A) and
det(B)? If A is not invertible, rankA < n by Theorem 2.7 and so rankAB < n
by Corollary 2.2. Therefore, det(AB) = 0 = det A · det B in this case. Next
suppose that A is invertible. Express it as a product of elementary matrices,
say A = E1E2 · · ·Ek, and use our summary of D1–D3 to disassemble and
reassemble the elementary factors:

det(AB) = det(E1E2 · · ·EkB) = (det E1 det E2 · · · det Ek) det B

= det(E1E2 · · ·Ek) det B = det A · det B.

Thus we have shown that D6 holds. ��
D7: For all square matrices A, detAT = det A.
Recall these facts about elementary matrices:

• detET
ij = det Eij

• detEi(c)T = det Ei(c)
• detEij(c)T = detEji(c) = 1 = detEij(c)
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Therefore, transposing does not affect determinants of elementary matrices.
Now for the general case observe that since A and AT are transposes of each
other, one is invertible if and only if the other is by the Transpose/Inverse
law. In particular, if both are singular, then detAT = 0 = det A. On the
other hand, if both are nonsingular, then write A as a product of elementary
matrices, say A = E1E2 · · ·Ek, and obtain from the product law for transposes
that AT = ET

k ET
k−1 . . . ET

1 , so by D6

det AT = det ET
k det ET

k−1 · · · det ET
1 = det Ek det Ek−1 · · · det E1

= det E1 det E2 · · · det Ek = det A. �

Tensor Product of Matrices

How do we solve a system of equations in which the unknowns can be organized
into a matrix X and the linear system in question is of the form

AX − XB = C, (2.3)

where A,B,C are given matrices? We call this equation the Sylvester equa-Sylvester
Equation tion. Such systems occur in a number of physical applications; for example,

discretizing certain partial differential equations in order to solve them nu-
merically can lead to such a system. Of course, we could simply expand each
system laboriously. This direct approach offers us little insight as to the nature
of the resulting system.

We are going to develop a powerful “bookkeeping” method that will re-
arrange the variables of Sylvester’s equation automatically. The first basic idea
needed here is that of the tensor product of two matrices, which is defined as
follows:

Definition 2.19. Let A = [aij ] be an m × p matrix and B = [bij ] an n × qTensor
Product matrix. Then the tensor product of A and B is the mn × pq matrix A ⊗ B

that can be expressed in block form as

A ⊗ B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11B a12B · · · a1jB · · · a1pB
a21B a22B · · · a2jB · · · a2pB

...
...

...
...

ai1B ai2B · · · aijB · · · aipB
...

...
...

...
am1B am2B · · · amjB · · · ampB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Example 2.59. Let A =
[

1 3
2 1

]
and B =

[
4

−1

]
. Exhibit A⊗B, B ⊗A, and

I2 ⊗ A and conclude that A ⊗ B �= B ⊗ A.
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Solution. From the definition,

A ⊗ B =
[

1B 3B
2B 1B

]
=

⎡
⎢⎢⎣

4 12
−1 −3

8 4
−2 −1

⎤
⎥⎥⎦ , B ⊗ A =

[
4A

−1A

]
=

⎡
⎢⎢⎣

4 12
−8 −2
−1 −3
−2 −1

⎤
⎥⎥⎦ ,

and I2 ⊗ A =
[

1A 0A
0A 1A

]
=

⎡
⎢⎢⎣

1 3 0 0
2 1 0 0
0 0 1 3
0 0 2 1

⎤
⎥⎥⎦ . �

The other ingredient that we need to solve equation (2.3) is an operator
that turns matrices into vectors. It is defined as follows.

Definition 2.20. Let A be an m × n matrix. Then the mn × 1 vector vec A Vec Operator
is obtained from A by stacking the n columns of A vertically, with the first
column at the top and the last column of A at the bottom.

Example 2.60. Let A =
[

1 3
2 1

]
. Compute vec A.

Solution. There are two columns to stack, yielding vecA = [1, 2, 3, 1]T . ��
The vec operator is linear (vec (aA + bB) = a vec A + b vec B). We leave

the proof, along proofs of the following simple tensor facts, to the reader.

Theorem 2.11. Let A,B,C,D be suitably sized matrices. Then

(1) (A + B) ⊗ C = A ⊗ C + B ⊗ C
(2) A ⊗ (B + C) = A ⊗ B + A ⊗ C
(3) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)
(4) (A ⊗ B)T = AT ⊗ BT

(5) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
(6) (A ⊗ B)−1 = A−1 ⊗ B−1

The next theorem lays out the key bookkeeping between tensor products and
the vec operator.

Theorem 2.12. If A,X,B are matrices conformable for multiplication, then Bookkeeping
Theorem

vec (AXB) =
(
BT ⊗ A

)
vec X.

Corollary 2.4. The following linear systems in the unknown X are equivalent.

(1) A1XB1 + A2XB2 = C
(2)

((
BT

1 ⊗ A1

)
+

(
BT

2 ⊗ A2

))
vec X = vec C
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For Sylvester’s equation, note that AX − XB = IAX + (−I)XB.
The following is a very basic application of the tensor product. Suppose

we wish to model a two-dimensional heat diffusion process on a flat plate that
occupies the unit square in the xy-plane. We proceed as we did in the one-
dimensional process described in the introduction. To fix ideas, we assume that
the heat source is described by a function f(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
that the temperature is held at 0 at the boundary of the unit square. Also, the
conductivity coefficient is assumed to be the constant k. Cover the square with
a uniformly spaced set of grid points (xi, yj), 0 ≤ i, j ≤ n + 1, called nodes,
and assume that the spacing in each direction is a width h = 1/(n + 1). Also
assume that the temperature function at the (i, j)th node is uij = u(xi, yj)
and that the source is fij = f(xi, yj). Notice that the values of u on boundary
grid points is set at 0. For example, u01 = u20 = 0. By balancing the heat
flow in the horizontal and vertical directions, one arrives at a system of linear
equations, one for each node, of the form

−ui−1,j − ui+1,j + 4uij − ui,j−1 − ui,j+1 =
h2

k
fij , i, j = 1, . . . , n. (2.4)

Observe that values of boundary nodes are zero, so these are not unknowns,
which is why the indexing of the equations starts at 1 instead of 0. There are
exactly as many equations as unknown grid point values. Each equation has
a “molecule” associated with it that is obtained by circling the nodes that
occur in the equation and connecting these circles. A picture of a few nodes
is given in Figure 2.7.

x1x0 x2 x3 x4

y2

y3

y4

y0

y1

Fig. 2.7. Molecules for (1, 1)th and (3, 2)th grid points.

Example 2.61. Set up and solve a system of equations for the two-dimensional
heat diffusion problem described above.

Solution. Equation (2.4) gives us a system of n2 equations in the n2 unknowns
uij , i, j = 1, 2, . . . , n. Rewrite equation (2.4) in the form

(−ui−1,j + 2uij − ui+1,j) + (−ui,j−1 + 2uij − ui,j+1) =
h2

k
fij .
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Now form the n × n matrices

Tn =

⎡
⎢⎢⎢⎢⎣

2 −1 0 0

−1 2
. . . 0

0
. . . . . . −1

0 0 −1 2

⎤
⎥⎥⎥⎥⎦ .

Set U = [uij ] and F = [fij ], and the system can be written in matrix form as

TnU + UTn = TnUIn + InUTn =
h2

k
F.

However, we can’t as yet identify a coefficient matrix, which is where Corol-
lary 2.4 comes in handy. Note that both In and Tn are symmetric and apply
the corollary to obtain that the system has the form

(In ⊗ Tn + Tn ⊗ In) vec U = vec
h2

k
F.

Now we have a coefficient matrix, and what’s more, we have an automatic
ordering of the doubly indexed variables uij , namely

u1,1, u2,1, . . . , un,1, u1,2, u2,2, . . . , un,2, . . . , u1,n, u2,n, . . . , un,n.

This is sometimes called the “row ordering,” which refers to the rows of the
nodes in Figure 2.7, and not the rows of the matrix U. ��

Here is one more example of a problem in which tensor notation is an
extremely helpful bookkeeper. This is a biological model that gives rise to an
inverse theory problem. (“Here’s the answer, what’s the question?”)

Example 2.62. Refer to Example 2.20, where a three-state insect (egg, juve-
nile, adult) is studied in stages spaced at intervals of two days. One might ask
how the entries of the matrix were derived. Clearly, observation plays a role.
Let us suppose that we have taken samples of the population at successive
stages and recorded our estimates of the population state. Suppose we have
estimates of states x(0) through x(4). How do we translate these observations
into transition matrix entries?

Solution. We postulate that the correct transition matrix has the form

A =

⎡
⎣ P1 0 F

G1 P2 0
0 G2 P3

⎤
⎦ .

Theoretically, we have the transition equation x(k+1) = Ax(k) for k = 0, 1, 2, 3.
Remember that this is an inverse problem, where the “answers,” population
states x(k), are given, and the question “What are populations given A?” is
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unknown. We could simply write out each transition equation and express
the results as linear equations in the unknown entries of A. However, this
is laborious and not practical for problems involving many states or larger
amounts of data.

Here is a better idea: assemble all of the transition equations into a single
matrix equation by setting

M =
[
x(0),x(1),x(2),x(3)

]
= [mij ] and N =

[
x(1),x(2),x(3),x(4)

]
= [nij ] .

The entire ensemble of transition equations becomes AM = N with M and
N known matrices. Here A is 3× 3 and both M,N are 3× 4. Next, write the
transition equation as I3AM = N and invoke the bookkeeping theorem to
obtain the system

vec (I3AM) =
(
MT ⊗ I3

)
vec A = vec N.

This is a system of 12 equations in 9 unknowns. We can simplify it a bit by
deleting the third, fourth, and eighth entries of vecA and the same columns
of the coefficient matrix, since we know that the variables a31, a12, and a23

are zero. We thus end up with a system of 12 equations in 6 unknowns, which
will determine the nonzero entries of A. ��

Project Topics

Project: LU Factorization
Write a program module that implements Theorem 2.10 using partial pivot-
ing and implicit row exchanges. This means that space is allocated for the
n × n matrix A = [a[i, j]] and an array of row indices, say indx[i]. Initially,
indx should consist of the integers 1, 2, . . . , n. Whenever two rows need to be
exchanged, say the first and third, then the indices indx[1] and indx[3] are
exchanged. References to array elements throughout the Gaussian elimina-
tion process should be indirect: refer to the (1, 4)th entry of A as the ele-
ment a [indx[1], 4]. This method of reference has the same effect as physically
exchanging rows, but without the work. It also has the appealing feature
that we can design the algorithm as though no row exchanges have taken
place provided we replace the direct reference a[i, j] by the indirect reference
a[indx[i], j]. The module should return the lower/upper matrix in the format
of Example 2.58 as well as the permuted array indx[i]. Effectively, this index
array tells the user what the permutation matrix P is.

Write an LU system solver module that uses the LU factorization to solve
a general linear system. Also write a module that finds the inverse of an n×n
matrix A by first using the LU factorization module, then making repeated
use of the LU system solver to solve Ax(i) = ei, where ei is the ith column of
the identity. Then we will have

A−1 = [x(1),x(2), . . . ,x(n)].
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Be sure to document and test your code and report on the results.

Project: Markov Chains
Refer to Example 2.18 and Section 2.3 for background. Three automobile
insurance firms compete for a fixed market of customers. Annual premiums
are sold to these customers. Label the companies A, B, and C. You work for
Company A, and your team of market analysts has done a survey that draws
the following conclusions: in each of the past three years, the number of A
customers switching to B is 20%, and to C is 30%. The number of B customers
switching to A is 20%, and to C is 20%. The number of C customers switching
to A is 30%, and to B is 10%. Those who do not switch continue to use their
current company’s insurance for the next year. Model this market as a Markov
chain. Display the transition matrix for the model. Illustrate the workings of
the model by showing what it would predict as the market shares three years
from now if currently A, B, and C owned equal shares of the market.

The next part of your problem is as follows: your team has tested two
advertising campaigns in some smaller test markets and are confident that
the first campaign will convince 20% of the B customers who would otherwise
stay with B in a given year to switch to A. The second advertising campaign
would convince 20% of the C customers who would otherwise stay with C
in a given year to switch to A. Both campaigns have about equal costs and
would not change other customers’ habits. Make a recommendation, based on
your experiments with various possible initial state vectors for the market.
Will these campaigns actually improve your company’s market share? If so,
which one do you recommend? Write up your recommendation in the form of
a report, with supporting evidence. It’s a good idea to hedge on your bets a
little by pointing out limitations to your model and claims, so devote a few
sentences to those points.

It would be a plus to carry the analysis further (your manager might ap-
preciate that). For instance, you could turn the additional market share from,
say B customers, into a variable and plot the long-term gain for your company
against this variable. A manager could use this data to decide whether it was
worthwhile to attempt gaining more customers from B.

Project: Affine Transforms in Real-Time Rendering
Refer to the examples in Section 2.3 for background. Graphics specialists
find it important to distinguish between vector objects and point objects in
three-dimensional space. They simultaneously manipulate these two kinds of
objects with invertible linear operators, which they term transforms. To this
end, they use the following clever ruse: identify three-dimensional vectors in
the usual way, that is, by their coordinates x1, x2, x3. Do the same with three-
dimensional points. To distinguish between the two, embed them in the set
of 4 × 1 vectors x = (x1, x2, x3, x4), called homogeneous vectors, with the Homogeneous

Vectorunderstanding that if x4 = 0, then x represents a three-dimensional vector
object, and if x4 �= 0, then the vector represents a three-dimensional point
whose coordinates are x1/x4, x2/x4, x3/x4.
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Transforms (invertible linear operators) have the general form

TM (x) =

⎡
⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ .

If m44 = 1 and the remaining entries of the last row and column are zero, the
transform is called a homogeneous transform. If m44 = 1 and the remaining
entries of the last row are zero, the transform is called affine. If the transformHomogeneous

and Affine
Transforms

matrix M takes the block form M =
[

I3 t
0 1

]
, the transform TM is called a

translation by the vector t. All other operators are called nonaffine.
In real-time rendering it is sometimes necessary to invert an affine trans-

form. Computational efficiency is paramount in these calculations (after all,
this is real time!). So your objective in this project is to design an algorithm
that accomplishes this inversion with a minimum number of flops. Preface
discussion of your algorithm with a description of affine transforms. Give a
geometrical explanation of what homogeneous and translation transforms do
to vectors and points. You might also find it helpful to show that every affine
transform is the composition of a homogeneous and a translation transform.
Illustrate the algorithm with a few examples. Finally, you might discuss the
stability of your algorithm. Could it be a problem? If so, how would you
remedy it? See the discussion of roundoff error in Section 1.5.

Project: Modeling with Directed Graphs I
Refer to Example 2.21 and Section 2.3 for background. As a social scien-
tist you have studied the influence factors that relate seven coalition groups.
For simplicity, we will label the groups as 1, 2, 3, 4, 5, 6, 7. Based on empiri-
cal studies, you conclude that the influence factors can be well modeled by a
dominance-directed graph with each group as a vertex. The meaning of the
presence of an edge (i, j) in the graph is that coalition group i can dominate,
i.e., swing coalition group j its way on a given political issue. The data you
have gathered suggest that the appropriate edge set is the following:

E = {(1, 2), (1, 3), (1, 4), (1, 7), (2, 4), (2, 6), (3, 2), (3, 5), (3, 6),
(4, 5), (4, 7), (5, 1), (5, 6), (5, 7), (6, 1), (6, 4), (7, 2), (7, 6)}.

Do an analysis of this power structure. This should include a graph. (It might
be a good idea to arrange the vertices in a circle and go from there.) It should
also include a power rating of each coalition group. Now suppose you were an
adviser to one of these coalition groups, and by currying certain favors, this
group could gain influence over another coalition group (thereby adding an
edge to the graph or reversing an existing edge of the graph). In each case, if
you could pick the best group for your client to influence, which would that
be? Explain your results in the context of matrix multiplication if you can.
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2.7 Exercises and Problems

Exercise 1. Use LU factorization of A =

⎡
⎣2 −1 1

2 3 −2
4 2 −2

⎤
⎦ to solve Ax = b, where

(a) b = (6,−8,−4) (b) b = (2,−1, 2) (c) b = (1, 2, 4)) (d) b = (1, 1, 1).

Exercise 2. Use PLU factorization of A =

⎡
⎣0 −1 1

2 3 −2
4 2 −2

⎤
⎦ to solve Ax = b,

(a) b = (3, 1, 4) (b) b = (2,−1, 3) (c) b = (1, 2, 0)) (d) b = (1, 0, 0).

Exercise 3. Let A =

⎡
⎣ 1 0 0

2 2 1
1 0 1

⎤
⎦ and B =

[
2 −1
1 0

]
. Calculate the following.

(a) A ⊗ B (b)B ⊗ A (c)A−1 ⊗ B−1 (d)(A ⊗ B)−1

Exercise 4. Let A =
[

1 0 −1
1 2 1

]
and B =

[
3 −3
3 0

]
. Calculate the following.

(a) A ⊗ B (b)B ⊗ A (c)AT ⊗ BT (d)(A ⊗ B)T

Exercise 5. With A and B as in Exercise 3, C =

⎡
⎣2 −1

1 0
1 3

⎤
⎦, and X = [xij ] a

3 × 2 matrix of unknowns, use tensor products to determine the coefficient
matrix of the linear system AX + XB = C in matrix–vector form.

Exercise 6. Use the matrix A and methodology of Example 2.62 with x(0) =
(1, 2, 3), x(0) = (0.9, 1.2, 3.6), and x(0) = (1, 1.1, 3.4) to express the resulting
system of equations in the six unknown nonzero entries of A in matrix–vector
form.

*Problem 7. Show that if A is a nonsingular matrix with a zero (1, 1)th entry,
then A does not have an LU factorization.

Problem 8. Prove that if A is n × n, then det(−A) = (−1)n det A.

Problem 9. Let A and B be invertible matrices of the same size. Use determi-
nantal law D9 to prove that adjA−1 = (adjA)−1 and adj(AB) = adjA adj B.

Problem 10. Verify parts 1 and 4 of Theorem 2.11.

Problem 11. Verify parts 5 and 6 of Theorem 2.11.
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Problem 12. If heat is transported with a horizontal velocity v as well as dif-
fused in Example 2.61, a new equation results at each node in the form

−ui−1,j − ui+1,j + 4uij − ui,j−1 − ui,j+1 −
vh

2k
(ui+1,j − ui−1,j) =

h2

k
fij

for i, j = 1, . . . , n. Vectorize the system and use tensor products to identify
the coefficient matrix of this linear system.

*Problem 13. Prove the Bookkeeping Theorem (Theorem 2.12).

Problem 14. Determine the cost of the LU factorization of an invertible n× n
matrix A, ignoring row exchanges.


