
ADO.NET Examples
and Best Practices
for C# Programmers

WILLIAM R. VAUGHN WITH PETER BLACKBURN

*120ch00_FINAL.qpx 3/14/02 4:14 PM Page i

ADO.NET Examples and Best Practices for C# Programmers
Copyright © 2002 by Beta V Corporation and Boost Data Limited

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-012-0
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, we use the names only in
an editorial fashion and to the benefit of the trademark owner, with no intention
of infringement of the trademark.

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,
Karen Watterson, John Zukowski

Managing Editor: Grace Wong
Copy Editor: Christina Vaughn
Production Editor: Kari Brooks
Compositor: Diana Van Winkle, Van Winkle Design Group
Artist: Kurt Krames, Kurt Krames Design
Indexer: Carol Burbo
Cover Designer: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York,
Inc., 175 Fifth Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr.
17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or
visit http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth St.,
Suite 219, Berkeley, CA 94710.
Email info@apress.com or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither
the author nor Apress shall have any liability to any person or entity with respect
to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work.

*120ch00_FINAL.qpx 3/14/02 4:14 PM Page ii

CHAPTER 1

Introducing ADO.NET

Hijacked by Bill Vaughn’s
Inquisitor Peter Blackburn

Ahem! Perhaps I should mention that I needed to tie up Bill Vaughn in order to
distill his world-class excellence on ADO.NET for the C# community. I am presently
helping with Bill’s rehabilitation. ...Now repeat after me, Bill, “C# is the bee’s knees!”
... “Hmmmmph! Hmmmmph!” Ah! well yes I can see that we need just a little more
assistance; I do hope I’ll be able to remove the gag eventually…Wind the rack up a
notch, Anders, would you please! ...

This book is all about using ADO.NET with C# (pronounced C sharp), .NET
Framework,1 and to some extent about how Visual Studio .NET helps you build
ADO.NET-based applications. The concepts and code discussed and illustrated
here apply (in most cases) to .NET Windows Forms and ASP Web Services and
other ADO.NET platforms.

To make the transition to .NET easier for you and to clarify how I view this
new technology, I start by helping you get familiar with .NET, its new terminology,
and the new ways it allows you to access your data. There are many tutorials on
.NET, most of which clearly describe the technology, albeit each from a unique
and distinct point of view. In this book, my intended target audience is the
experienced COM-based ADO developer. I focus strictly on my personal area of
.NET expertise: data access and especially, data access with SQL Server. You might
sense a bias in favor of Microsoft SQL Server (guilty) and the SqlClient namespace.
Perhaps that’s because I’ve had more experience coding, designing, implementing,
testing, and teaching SQL Server than any other DBMS system. Again, in most
cases, the OleDb and Odbc namespaces implement the System.Data classes
(Microsoft.Data classes in the case of Odbc) in much the same way.

1. For an in-depth analysis of the .NET Framework check out Dan Appleman’s Moving to
VB .NET: Strategies, Concepts and Code, (Apress) ISBN: 1893115-97-6.

1

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 1

The Odbc .NET Data Provider is not a part of the Visual Studio .NET initial
release—you’ll need to download it directly from Microsoft’s Web site. My informal
tests show that the Odbc data provider, which uses Platform Invoke (PI), is faster
than the OleDb data provider, which uses COM, although it is roughly twenty
percent slower than the SqlClient data provider, which uses Tabular Data Stream
(TDS). I talk a little more about this later. Before you decide to close your ears to
the OleDb data provider for being the tortoise of the pack, just note that at present
this is the only data provider that directly supports importing good ol’ ADO
Recordsets.

For differences and issues, check our Web sites or the Apress Web site2 for
updates sometime after this book hits the streets.

How We Got Here

A number of years ago, Microsoft found itself in yet another tough spot. Overnight
(or so it seemed), the Internet had become far more popular than expected and
Microsoft was caught without a viable development strategy for this new para-
digm. Developers all over the world clamored for ways to get their existing code
and skills to leverage Web technology. Even Microsoft’s own internal developers
wanted better tools to create cutting-edge Web content and server-side executa-
bles. These same developers also found that component object model (COM)
architectures didn’t work very well with or over the Internet—they were never
designed to. Sun Microsystems’ virtual stranglehold on Java and the ensuing fight
over this language made it imperative that Microsoft come up with another way to
create fast, light, language-neutral, portable, and scalable server-side executables.

Microsoft’s initial solution to this challenge was to reconfigure their popular
and well-known Visual Basic interpreter in an attempt to provide server-side (IIS)
functionality to the tool-hungry developer community. To this end, VB Scripting
Edition sprung to life, aimed at a subset of the four million Visual Basic developers
trying to create logic-driven Web content for this new beast called “eCommerce.”
As many of these developers discovered, an Active Server Page (ASP) created with
Visual Basic Script (VBScript) was relatively clunky when compared to “real”
Windows-based Visual Basic applications and components. The VBScript language
was confined to the oft-maligned Variant datatypes, copious late-binding issues,
and interminable recompiles. Despite these issues, a flood of Web sites were built
around this technology—probably because they were (loosely) based on a form of
a familiar language: Visual Basic.

2. http://www.betav.com, http://www.boost.net, and http://www.apress.com.

Chapter 1

2

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 2

Ahem! For those developers who had grown up using C and then its object
layer abstraction C++ (these are the scary, awkward languages to the VB commu-
nity—the ones with the curly braces {}, pointer things ->, and semicolons ;, and in
the case of C++, OOP),3 Microsoft offered JScript—a version of ECMAScript, which
from a syntactical viewpoint is closer to C++ and JavaScript than Visual Basic.
There were some advantages to be gained by using JScript over VBScript in client-
side code, one of which being that, in theory, many other browsers, other than just
those Microsoft offered, supported JScript, thereby potentially enabling the code
to be browser neutral.

However, Microsoft sought some better way to satiate the needs of millions of
Visual Basic developers and their ever-growing interest in the Web without
compromising performance or functionality, perhaps providing them, maybe
forcing them, to a new world of OOP without the need to learn JScript (or any
other curly-brace language)!

It wasn’t long before it became clear that Microsoft needed something new—
no less than a whole new paradigm, a landslide shift, a new reality with some old
familiar concepts, some new concepts, and some borrowed or adapted concepts—
in order to accomplish this goal. This was the birth of the .NET platform.

Anders Hejlsberg, a Microsoft Distinguished Engineer,4 crafted a brand new
programming language for this new world reality. This language is C#, which fits
with .NET hand in glove, horse and carriage, love and marriage, so to speak. Okay,
so I like C#, but it isn’t the only language that is now supported in .NET. Syntacti-
cally, C# is an OOP, curly-brace language, with semicolons, and thus a language
with which C++ and Java developers will quickly feel comfortable and “at home.”5

You see, Visual Basic just didn’t cut it when compared to the heavily object-
oriented Java applications with which it was competing. Before this, each new
version of VB had inherited language and user interface (UI) supported function-
ality features from its predecessor. Yes, each new version usually left some
unworkable functionality behind, but generally, these “forgotten” features were
minor—most developers learned to live without them. When designing VB .NET,
however, the Microsoft development team felt that too many of these “legacy”
features hobbled Visual Basic’s potential by preventing, or at least complicating,
easy implementation of more sophisticated features. Thus, the advent of VB .NET.

3. OOP: Object-Oriented Programming—IPHO: Many of those who develop without it (as in
totally unplanned and unstructured) tend to find that they have lots of places in their code at
which they frequently have to exclaim “OOPs!” or other expletives as their code falls over.

4. Not to be confused with “Microsoft Drudge Engineers” who do less theoretical thinking and
more real work trying to implement what the “Distinguished” engineers dream up.

5. Gary Cornell, co-founder of Apress and author (with Cay Horstmann) of the two-volume set,
Core Java 2 (Prentice Hall, ISBN: 0-13-089468-0), has been overheard saying that any Java
programmer who cannot program proficiently in C# within half an hour of starting C# was
probably not a Java programmer to begin with.

Introducing ADO.NET

3

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 3

Unfortunately, as I see it, more than a few BASIC and Visual Basic developers
really expect continued support for much of this “obsolete” functionality. Over the
years, VB developers have learned (for better or worse) to depend on a forgiving
language and an IDE that supports default properties, unstructured code, auto-
matic instantiation, morphing datatypes, wizards, designers, drag-and-drop
binding, and many more automatic or behind-the-scenes operations. More
importantly, VB developers pioneered and depended on “edit and continue”
development, which permitted developers to change their code after a breakpoint
and continue testing with the new code. This was a radical departure from other
development language interfaces and, for a decade, put Visual Basic in a class
by itself.

IPHO Microsoft’s top engineers tried to move heaven and earth to
get “edit and continue” functionality into Visual Basic .NET, but in
the end, they just could not get it to work properly; so, it was dropped
from the language. I expect that edit and continue is such a core part
of the development methodologies used by so many Visual Basic 6.0
developers that Microsoft will be including it—just as soon as they
can work out how to do it in a Garbage Collected world.

Microsoft expects “professional” Visual Basic developers (whoever they are) to
wholeheartedly embrace Microsoft’s new languages—including the new “Visual
Basic”—and (eventually) step away from Visual Basic as we know it today.
Consider that a Visual Basic “developer” can be as sophisticated as a front-line
professional who writes and supports thousands of lines of DNA code or as chal-
lenged as an elementary school student or part-time accountant creating a small
application against an Access database. Some of these developers will be skilled
enough and motivated enough to adapt to a new language—some will not. Some
have the formal training that permits them to easily step from language to
language—many (I would venture the majority) do not. Some professional devel-
opers, faced with this magnitude of change, will opt to find another language or
another seemingly simpler occupation, such as brain surgery.

IMHO Microsoft continues to complicate the situation by insisting
that VB .NET is really just another version of Visual Basic 6.0 and
that ADO.NET is just another version of COM-based ADO. They
clearly aren’t the same—not even close.

Chapter 1

4

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 4

IPHO Those “professional” Visual Basic developers might very well go
just that tiny bit further and take the opportunity to learn and then use
C# as their language of choice. The way I look at it, Visual Basic .NET is
almost a case-insensitive version of C# without the braces and semi-
colons (and an inbuilt default of go-slow…); and for me, alas not Bill
(yet), C# “feels” cleaner (more syntactically correct), the block structures
of the language are clearer, and I really like the cool automated self-
documentation of comments in the code to HTML Web pages.

I tested the performance of examples in Visual Basic .NET against similar
C# examples. If in Visual Basic .NET you remember to set “Option Strict
On” (that means take the go-slow default Off), then the MSIL (Microsoft
Intermediate Language) produced by the compilers for either language is
very, very similar—almost identical, but not quite. If you don’t set “Option
Strict On” and you leave Visual Basic .NET to its default of loose type
checking, then C# is always much faster. In my friendly sparring fights
with Dan Appleman, he was able to convince me that Visual Basic could
usually get very close to C# performance—at least in our tests to within
the region of “noise” (single figures of ticks apart over millions of
repetitions). I always found that there was always more “noise”
affecting Visual Basic .NET tests than C#.

I think the new Visual Basic .NET language is just that: new. (Ahem! V sharp?)
While it emulates the Visual Basic language in many respects, it’s really not the
same. As many of you have heard, I wanted to call it something else—anything
else—but my daughter, Fred, told me to keep my mouth shut to prevent her from
further embarrassment. I complied, as I don’t want to give anyone at Microsoft
apoplexy—again.

What Do These Changes Mean?

The Microsoft .NET Framework’s system of language(s), tools, interfaces, and
volumes of supporting code has been constructed from the ground up with an
entirely new architecture. For those of you who remember IBM 3270 technology,
you’ll find that the .NET Framework tracks many of the same wheel ruts laid into
the road during the 1960s. IBM 3270 systems were central processor (mainframe)–
driven “smart” (or “dumb”) terminal designs. They relied on a user-interface
terminal which supported very sparse functionality. The terminal’s only function
was to display characters at an x-y coordinate and return characters entered into
“fields.” There were no mice or graphics to complicate things, but a dozen
different keyboard layouts made life interesting.

Introducing ADO.NET

5

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 5

While the industry’s current browser technology includes far more intelli-
gence and flexibility at the client, the general design is very similar to the 3270
approach. .NET applications now expect code similar to a browser to render the
forms and frames and capture user input, even when creating a Windows Forms
application. This means .NET applications will behave and interact differently (at
least to some extent) than “traditional” Windows applications.

What’s new for server-side executables is the concept of a Web Service. I
discuss and illustrate Web Services in Chapter 10, “ADO.NET and XML.” This new
paradigm finds its roots in Visual Basic 6.0’s so-called IIS Applications—better
known as Web Classes. Web Services place executable code on your IIS server to be
referenced as ASP pages or from other executables such as WinForm applications
just as you would reference a COM component running in the middle tier. The big
difference is that Web Services do not require COM or DCOM to expose their
objects, methods, properties, or events—they are all exposed through SOAP.6

I explain what this means in Chapter 10.
For the C++ developer moving to C#, these .NET innovations mean that the

huge Rapid Application Development (RAD) advantages that Visual Basic devel-
opers had over C++ developers are no more, no longer, gone, zip; there is now a
level playing field. Previously, C++ Windows Application developers had to do
battle fighting with the Microsoft Foundation Classes (MFC), while their Visual
Basic developer cousins needed only to tinker with the facile “Ruby” Windows
Form Engine. They rarely bothered, cared, or needed to know what a Windows
handle or a device context was, but were by far more visibly productive.
This leveling of the playing field has been achieved in part by replacing Visual
Basic’s “Ruby” forms engine and the accompanying run-time library
(VBRUN.DLL) with a new run-time platform and forms engine, as well as a new
user interface and development IDE. (If I can use the word “replaced” to mean
that the new version does not implement the same functionality.) Saying the
Visual Basic run time has been replaced is like saying the diesel engine in a semi-
tractor-trailer rig was replaced with a cross-galaxy transport mechanism.

The Visual Basic 6.0 IDE, the Visual InterDev 6.0 IDE, and the Visual C++ 6.0
IDE have been replaced with a new “combined” system that integrates all of the
language front ends into one. From the looks of it, Microsoft used the Visual
Studio 6.0–era Visual InterDev shell as a base. These changes mean that Visual
Basic .NET is not just the newest version of Visual Basic. While Visual Basic .NET
is similar in some respects to Visual Basic 6.0, it’s really a lot more like C#
(pronounced C sharp) or C++ (pronounced C hard-to-learn). For the professional,
school-trained veterans out there, VB .NET and C# are just other languages. For
many, though, they’re a big, scary step away from their comfort zone.

6. Simple Object Access Protocol. See http://www.w3.org/TR/SOAP/#_Toc478383486.

Chapter 1

6

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 6

ADO.NET—A New Beginning

This section of the book introduces something Microsoft calls ADO.NET. Don’t
confuse this new .NET data access interface with what we have grown to know and
understand as ADO—I think it’s really very different. Yes, ADO.NET and ADOc
both open connections and fetch data, however, they do so in different ways using
different objects and with different limitations. No, they aren’t the same—no
matter what Microsoft names them. Yes, ADO.NET has a Connection object,
Command object, and Parameter objects (actually implemented by the SqlClient,
OleDb, and Odbc .NET Data Providers), however, they don’t have the same proper-
ties, methods, or behaviors as their ADOc counterparts. IMHO, this name simi-
larity does not help to reduce the confusion you’re likely to encounter when
transitioning from ADOc to ADO.NET.

NOTE To avoid confusion, I’ve coined a new term to help you
distinguish the two paradigms; henceforth “ADOc” refers to the
existing COM-based ADO implementation and “ADO.NET” refers
to the new .NET Framework implementation.

Actually, the name ADO.NET was not Microsoft’s first choice (nor is it mine)
for their new data access paradigm. Early in the development cycle (over three
years ago),7 their new data access object library was referred to as XDO (among
other things). To me, this made8 a lot of sense because ADO.NET is based on XML
persistence and transport—thus “XML Data Objects” seemed a good choice.
Because developers advised Microsoft to avoid the creation of yet another TLA
(three-letter acronym)–based data access interface, they were hesitant to use the
XDO moniker. I suspect there were other reasons too—mostly concerning the loss
of market product name recognition. So, XDO remains one of those words you
aren’t supposed to mention in the local bar. Later in the development cycle, XDO
evolved into ADO+ to match the new ASP+ technology then under construction.
It was not until early in 2001 that the name settled on ADO.NET to fit in with the
new naming scheme for Windows XP (Whistler) and the newly dubbed .NET
Framework.

Microsoft also feels that ADO.NET is close enough to ADOc to permit lever-
aging the name and making developers feel that ADO.NET is just another version
of ADOc. That’s where Microsoft and I differ in opinion. The documentation

7. Circa AD 1999.

8. I was opposed to another TLA at the time—for some reason that now escapes me.

Introducing ADO.NET

7

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 7

included ever since the first .NET betas assures developers that ADO.NET is
designed to “…leverage current ADO knowledge.” While the connection strings
used to establish connections are similar (even these are not exactly the same as
those used in ADOc), the object hierarchy, properties, methods, and base tech-
niques to access data are all very different. Over the past year I often struggled
with ADO.NET because I tried to approach solutions to my data access problems
using ADOc concepts and techniques. It took quite some time to get over this
habit (I joined a twelve-step program that worked wonders). Now my problem is
that when someone asks me an ADOc question, I have to flush my RAM and
reload all of the old concepts and approaches. I’m getting too old for this.

No matter what you call it, I think you’ll also discover that even though
ADO.NET is different from ADOc in many respects, it’s based on many (many)
years of development experience at Microsoft. It’s not really built from scratch. If
you look under the hood you’ll find that ADO.NET is a product of many (but not
all) of the lessons Microsoft has learned over the last decade in their designing,
creating, testing, and supporting of DB-Library, DAO, RDO, ODBCDirect, and
ADO, as well as ODBC and OLE DB. You’ll also find remnants of the FoxPro and Jet
data engines, shards from the Crystal report writer, as well as code leveraged from
the ADO Shape, ADOX, and ADOMD providers. Unfortunately, you’ll also find that
ADO.NET’s genes have inherited some of the same issues caused by these tech-
nologies—it also suffers from a few “DNA” problems; I discuss these as I go. Most
of these issues, however, are just growing pains. I expect there will be a lot of lights
left on at night trying to work them out—unless the energy crisis has us working
by candlelight by then.

That said, don’t assume that this “new” ADO.NET data access paradigm
implements all of the functionality you’re used to seeing in ADOc. Based on what
I’ve seen so far, there are lots of features—among them many important ones—left
behind. I discuss these further in the following chapters.

Comparing ADOc and ADO.NET

Data access developers who have waded into the (generally pretty good)
MSDN .NET documentation might have come across a topic that compares ADOc
with ADO.NET. IMHO, this topic leaves a lot to be desired; it slams ADOc pretty
hard. Generally, it ignores or glosses over features such as support for the Shape
provider (which exposes hierarchical data management), pooled connections and
intelligent connection management, disconnected Recordsets, serialization, XML
functionality, ADOMD, and ADOX. Yes, ADO.NET is a new and innovative data
access paradigm, but so is ADOc. In its defense, the documentation does say there
are still a number of situations where ADOc is the (only) solution. I suspect that

Chapter 1

8

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 8

the Microsoft .NET developers will make ADOc redundant over time—just not
right away.

Later in this and subsequent chapters I visit the concept of porting ADOc code
over to .NET applications. It’s a complex subject full of promise and some serious
issues—a few with no apparent resolution. Stay tuned.

IMHO The job of a technical writer at Microsoft is considerably
challenging. I worked on the Visual Basic user education team for
about five years and, while some changes have been made, there are
still many issues that make life tough for writers, editors, and devel-
opers alike—all over the world. One of the problems is that when
working with a product as new as .NET, there are few “reliable”
sources of information besides the product itself. Unfortunately, the
product is a moving target—morphing and evolving from week to
week, sometimes subtly, but just as often in radical ways as entire
concepts are lopped off or jammed in at the last minute for one
reason or another. This problem is especially frustrating when
outsiders work with beta versions. To add to Microsoft’s problems,
they have to “freeze” the documentation months (sometimes six or
more) in advance, so it can be passed to the “localizers.” These folks
take the documentation and translate into French, German, Texan,
and a number of other foreign languages. A lot can (and does)
happen in the last six months before the product ships. If the
product doesn’t ship—this has happened on more than one occa-
sion—it is also difficult to keep the documentation in sync.

Another factor you need to consider is your investment in ADOc training and
skills. Frankly, quite a bit of this will be left behind if you choose ADO.NET as your
data access interface. Why? Because ADO.NET is that different. This issue will be
clearer by the time you finish this book.

Understanding ADO.NET Infrastructure

Microsoft characterizes ADO.NET as being designed for a “loosely coupled, highly
distributed” application environment. I’m not sure that I wholly agree with this
characterization. I’ll accept the “loosely coupled” part, as ADO.NET depends on
XML—not proprietary binary Recordsets or user-defined structures—as its
persistence model and transport layer. No, ADO.NET does not store its in-memory
DataTable objects as XML, but it does expose or transport them as XML on
demand. As I see it, XML is one of ADO.NET’s greatest strengths, but also one of its

Introducing ADO.NET

9

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 9

weaknesses. XML gives ADO.NET (and the entire .NET Framework) significant
flexibility, which Visual Basic 6.0 applications have to go a long way to implement
in code—and C++ applications a little further still. However, XML is far more
verbose and more costly to store and transmit than binary Recordsets; granted,
with very small data sets, the difference isn’t that great. By passing XML instead of
binary, ADO.NET can pass intelligent information—data and schema and
extended properties, or any other attribute you desire—and pass it safely (and
securely) through firewalls. The only requirement on the receiving end is an ability
to parse XML—and that’s now built into the Windows OS.

Understanding ADO.NET’s Distributed Architecture

As far as the “highly distributed” part of the preceding ADO.NET characterization,
I think Microsoft means that your code for .NET applications is supposed to work
in a stand-alone fashion without requiring a persistent connection to the server.
While this is true, I expect the best applications for .NET will be on centralized
Web servers where the “client” is launched, constructed, and fed through a
browser pointing to a logic-driven Web page. I think that Microsoft intended to say
that ADO.NET is designed primarily for Web architectures.

On the other hand, ADO.NET (in its current implementation) falls short of a
universal data access solution—one of ADOc’s (and ODBC’s) major selling points.
The ODBC provider (Microsoft.Data.Odbc) is not included in the .NET Framework
but is to be made available through a Web update sometime after .NET is initially
released. I don’t think one can really interpret this as a policy to back away from
the universal data access paradigm—but it would not be hard to jump to that
conclusion. I’m disappointed that ODBC is not part of the initial release. But
better late than never.

In my opinion, the most important difference between ADO.NET and
any other Microsoft data access interface to date is the fact that ADO.NET is
multidimensional from the ground up. That is, ADO.NET:

• Is prepared to handle—with equal acuity—either single or multiple
related resultsets along with their relationships and constraints.

• Does not try to conjure the intratable relationships—it expects you to
define them in code. But it’s up to you to make sure these coded relation-
ships match those defined by your DBA in the database. It might be nice if
Visual Studio .NET could read these definitions from the server, but then
again, that would take another round trip. Be careful what you ask for…

• Permits you to (expects you to) define constraints in your application to
ensure referential integrity. But again, it’s up to you to keep these in sync
with the database constraints.

Chapter 1

10

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 10

• Does not depend on its own devices for the construction of appropriate
SQL statements to select or perform updates to the data—it expects you to
provide these. You (or the IDE) can write ad hoc queries or stored proce-
dures to fetch and update the data.

In some ways, this hierarchical data approach makes the ADO.NET discon-
nected architecture far more flexible and powerful than ADOc—even when
including use of the Shape provider in ADOc. In other ways, you might find it diffi-
cult to keep component-size relationships and constraints synchronized with
their equivalents in the database.

A Brief Look at XML

No, I’m not going to launch into a tutorial on XML, just as I found it unnecessary
to bury you in detail about the binary layout of the Recordset (not that I know
anything about it). I do, however, want to fill in some gaps in terminology so that
you can impress your friends when you start discussing ADO.NET.

XML is used behind the scenes throughout ADO.NET and you ordinarily won’t
have to worry about how it’s constructed until ADO.NET, or an application passing
XML to you, gets it wrong. Just remember that the ADO.NET DataSet object can be
constructed directly from XML; this includes XML generated by any application
that knows how to do it (correctly). The .NET architecture contains root services
that let you manage XML documents using familiar programming constructs.

As I said, when you transport your data from place to place (middle tier to
client, Web Service to browser), ADO.NET passes the data as XML. However, XML
does not describe the database schema by itself—at least not formally. ADO.NET
and the .NET IDE know how to define and persist your data’s schema using
another (relatively new) technology called Extensible Schema Definition (XSD).
Accepted as a standard by the W3C9 standards organization, XSD describes XML
data the same way database schemas describe the structure of database objects
such as tables. XSD provides a way to not only understand the data contained
within a document, but also to validate it. XSD definitions can include datatype,
length, minlength, maxlength, enumeration, pattern, and whitespace.10 Until
recently, XML schemas have been typically created in the form of Document Type
Definitions (DTDs), but Visual Studio .NET introduces XSD, which has the advan-
tage of using XML syntax to define a schema, meaning that the same parsers can
process both data and schemas.

9. See http://www.w3.org for more information.

10. I expect this list to change (expand, contract) as XSD is nailed down.

Introducing ADO.NET

11

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 11

IIRC,11 XSD has been W3C final recommendation status for several months.
Visual Studio .NET can generate XSD schemas automatically, based on an XML
document. You can then use it to edit the schema graphically to add additional
features such as constraints and datatypes. There are also .NET tools that can help
construct XSD from a variety of forms including Recordsets, XML data structures,
and others.

Later in the book (Chapter 10) I discuss how you can use the XML tools in
.NET to manage your data.

ADO.NET—The Fundamentals

For those developers familiar with ADOc and the disconnected Recordset,
ADO.NET’s approach to data access should be vaguely familiar. The way in
which you establish an initial connection to the database is very similar to the
technique you used in ADOc—at least on the surface. After that, the similarity
pretty much ends.

There are several base objects in ADO.NET. These objects are outlined and
briefly described several times in this chapter and discussed in depth in subse-
quent chapters. Each of the following objects are implemented from base classes
in the System.Data namespace by each of the .NET Data Providers:

• The Connection object: This works very much like the ADOc Connection
object. It’s not created in the same way nor is the ConnectionString property
exactly the same, but it’s close.

• The Command object: This works very much like an ADOc Command
object. It holds a SQL SELECT or action query and points to a specific
Connection object. The Command object exposes a Parameters collection
that works something like the ADOc Command object’s Parameters
collection.

• The DataReader object: This is used to provide raw data I/O to and from
the Connection object. It returns a bindable data stream for WebForm appli-
cations and is invoked by the DataAdapter to execute a specific Command.

• The DataAdapter object: There is no exact equivalent to this in ADOc; the
closest thing is the IDE-driven Visual Basic 6.0 Data Environment Designer.
The DataAdapter manages a set of Command objects used to fetch, update,
add, and delete rows through the Connection object.

11. IIRC: If I recall correctly.

Chapter 1

12

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 12

• The DataTable object: Again, there is not an ADOc equivalent, but it’s
similar in some respects to the Recordset. The DataTable object contains a
Rows collection to manage the data and a Columns collection to manage
the schema. No, DataTables do not necessarily (and should not) be thought
of as base tables in the database.

• The DataSet object: This is a set of (possibly) related DataTable objects. This
interface is bindable in Windows Forms or WebForms. The DataSet also
contains Relations and Constraints collections used to define the interrela-
tionships between its member DataTable objects.

A Typical Implementation of the ADO.NET Classes

One approach (there are several) calls for your application to extract some (or all)
of the rows from your database table(s) and create an ADO.NET DataTable. To
accomplish this, you create a Connection object and a DataAdapter object with its
SelectCommand set to an SQL query returning data from a single table (or from
several tables using separate SELECT statements in a single Command).

The DataAdapter object’s Fill method opens the connection, runs the query
through a DataReader (behind the scenes), constructs the DataTable objects, and
closes the connection. If you use individual queries, this process is repeated for
any related tables—each requiring a round trip, separate queries, and separate
DataTable objects. However, if you’re clever, you can combine the SELECT opera-
tions into a single query. ADO.NET is smart enough to build each resultset of a
multiple-resultset query as its own DataTable object. I show an example of this in
Chapter 5, “Using the DataTable and DataSet.”

After the DataTable objects are in place, your code can disconnect from the
data source. Actually, this was already done for you; ADO.NET opens and closes
the Connection object for you when you use the Fill method. Next, your code can
define the primary key/foreign key (PK/FK) relationships and any constraints you
want ADO.NET to manage for you. All work on the data takes place in client
memory (which could be in a middle-tier component, ASP, or distributed client’s
workstation).

When working with related (hierarchical) data, you can write a SELECT query to
extract all or a subset of the customer’s table rows into a DataTable object. You can
also create queries and code to construct additional DataTable objects that
contain rows in the related Orders and Items database tables. Code a single bind-
able DataSet object to manage all of these DataTable objects and the relationships
between them. Behind the scenes, ADO.NET “joins” these DataTable objects in
memory based on your coded relationships. This joining of DataTable objects
permits ADO.NET to navigate, display, manage, and update the DataSet object,
the DataTable objects, and ultimately, the database tables behind them when you

Introducing ADO.NET

13

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 13

use the Update method. After ADO.NET fetches the queried rows to construct the
DataSet, ADO.NET (or your code) closes the connection and no longer depends on
the database for any further information about the data or its schema.

When called upon to update the database, ADO.NET reopens the connection
and performs any needed UPDATE, INSERT, or DELETE operations defined in the
DataAdapter as separate Command objects. Your code handles any collisions or
problems with reconciliation.

The Visual Studio .NET IDE lets you use drag-and-drop and a number of
wizards to construct much of the code to accomplish this. As I discuss in later
chapters (see Chapter 4, “ADO.NET DataReader Strategies”) you might not choose
to avail yourself of this code—it’s kinda clunky. As with ADOc’s Shape provider,
ADO.NET can manage intertable relationships and construct a hierarchical data
structure that you can navigate and update at will—assuming you added code to
define the relationships and constraints. I show you how to do this in Chapter 5
and in Chapter 8, “ADO.NET Constraint Strategies.”

Based on my work with ADO.NET so far, I have a number of concerns
regarding the disconnected DataSet approach:

• The overhead involved in downloading high volumes of data and the
number of locks placed on the server-side data rows is problematic at
best. The ADO.NET disconnected DataSet approach might work for smaller
databases with few users, but you must be careful to reduce the number of
rows returned from each query when dealing with high volumes of data.
Sure, it’s fast when you test your stand-alone application, but does this
approach scale?

• Assumes that the base tables are exposed by the DBA; in many shops, this
is not the case, for security and stability reasons. While you can (and
should) construct DataSet objects from stored procedures, you also need to
provide stored procedures to do the UPDATE, DELETE, and INSERT opera-
tions. It’s not clear if this approach will permit ADO.NET to expose the same
functionality afforded to direct table queries—it does not appear to. I have
found, however, that it is possible to perform updates against complex table
hierarchies, but it requires more planning and work than the simplistic
table-based queries often illustrated in the documentation.

• The Visual Studio .NET drag-and-drop and wizards used to facilitate
ADO.NET operations generate (copious) source code. That’s the good
news. The bad news is that this source code has to change when the data
structures, relationships, or stored procedures used to manage the data
change—and this does not happen automatically. This means that you want
to make sure your schema is nailed down before you start generating a lot of
source code against it. Once inserted, it’s often tough to remove this code in
its entirety if you change your mind or the schema.

Chapter 1

14

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 14

• The disconnected approach makes no attempt to maintain a connection
to the data source. This means that you won’t be able to depend on
persisted server-side state. For example, server-side cursors, pessimistic
locks, temporary tables, or other connection-persisted objects are not
supported.

• When compared to ADOc, ADO.NET class implementation is fairly limited
in respect to update strategies. As you’ll see in Chapter 3, “ADO.NET
Command Strategies,” and Chapter 7, “ADO.NET Update Strategies,” the
options available to you are nowhere near those exposed by ADOc—
especially in regard to Update Criteria.

ADO.NET .NET Data Providers

A fundamental difference between ADOc and ADO.NET is the latter’s use of .NET
Data Providers. A .NET Data Provider implements the base System.Data classes to
expose the objects, properties, methods, and events. Each provider is responsible
for ADO.NET operations that require a working connection with the data source.
The .NET Data Providers are your direct portals to existing OLE DB providers
(System.Data.OleDb), ODBC drivers (Microsoft.Data.Odbc), or to Microsoft SQL
Server (System.Data.SqlClient). ADO.NET (currently) ships with two .NET Data
Providers:

• System.Data.OleDb: Used to access existing Jet 4.0 and Oracle OLE DB
providers via COM interop, but notably not the ODBC (MSDASQL)
provider—the default provider in ADOc.12

• System.Data.SqlClient: Used to access Microsoft (and just Microsoft) SQL
Server versions 7.0 and later.

NOTE The System.Data.SqlClient provider is designed to access
Microsoft SQL Server 7.0 or later. If you have an earlier version of
SQL Server, you should either upgrade (a great idea),or use the
OleDb .NET Data Provider with the SQLOLEDB provider or simply
stick with ADOc.

12. I expect that other .NET Data Providers will appear very soon after .NET ships.

Introducing ADO.NET

15

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 15

As I said earlier, the Microsoft.Data.Odbc provider was made available via Web
download not long after .NET was released to the public. It is used to access most
ODBC data sources. No, it’s not clear that all ODBC data sources will work with
ADO.NET. Initial tests show, however, that this new Odbc .NET Data Provider is
twenty percent faster than its COM interop brother, the OleDb .NET Data Provider.
This is to be expected because COM is very “chatty,” requiring more server round
trips than ODBC to get the same data. The Odbc .NET Data Provider uses the more
efficient Platform Invoke.

As I said, the ADO.NET OleDb provider uses COM interop to access most
existing OLE DB providers—but this does not include the ODBC provider
(MSDASQL). This also does not mean you can use any existing OLE DB providers
with System.Data.OleDb. Only the SQLOLEDB (Microsoft SQL Server), MSDAORA
(Oracle), and Microsoft Jet OLEDB.4.0 (Jet 4.0) providers are supported at RTM.13

Notably missing from this list is MSDASQL—the once-default ODBC provider. In
addition, none of the OLE DB 2.5 interfaces are supported, which means that
OLE DB providers for Exchange and Internet Publishing are also not (yet)
supported in .NET. But, remember that the .NET architecture lends itself to adding
additional functionality; I would not be surprised if additional providers appeared
before too long.

However, consider that these data access interfaces are very different from the
OLE DB or ODBC providers with which you might be accustomed. ADO.NET and
the .NET Data Providers implemented so far know nothing about keyset, dynamic,
or static cursors, or pessimistic locking as supported in ADOc. Sure, the ADO.NET
DataTable object looks something like a static cursor, but it does not share any of
the same ADOc adOpenStatic properties or behaviors with which you’re familiar.
They don’t leverage server-side state or cursors—regardless of the data source.
ADO.NET has its own hierarchical JOIN engine so it doesn’t need the server to do
anything except run simple (single-table) SELECT queries. Whether it makes sense
to let ADO.NET do these JOIN operations for you is another question.

A .NET Data Provider is responsible for far more functionality than the
low-level ODBC or more sophisticated (and complex/bulky/slow/troublesome)
OLE DB data providers in ADOc. A .NET Data Provider implements the
System.Data objects I described earlier that are fundamental in the
implementation of your ADO.NET application. For example:

• The Command object: SqlCommand, OleDbCommand, OdbcCommand

• The Connection object: SqlConnection, OleDbConnection, OdbcConnection

13. RTM: Release to manufacturing.

Chapter 1

16

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 16

• The DataAdapter object: SqlDataAdapter, OleDbDataAdapter,
OdbcDataAdapter

• The DataReader object: SqlDataReader, OleDbDataReader,
OdbcDataReader

.NET Data Providers also directly support and implement code to generate
Commands, and control the connection pool, procedure parameters, and excep-
tions. It’s clear that .NET Data Providers bear far more responsibility than their
ADOc predecessors did. I expect that this also means that the features exposed by
one provider might not be supported in the same way or with the same issues
(bugs) as another. Of course, this has always been the case with ADOc and its
predecessors. Anyone who’s worked with ODBC and transitioned to OLE DB in
ADOc can bore you with war stories about how “stuff” changed from one imple-
mentation to the next. I’m sure we’ll see some of the same in ADO.NET.

I think the fact that the .NET Data Provider for SQL Server speaks Tabular Data
Stream (TDS) is a very important innovation. Not only do I think this will help
performance (it will), but it also means Microsoft is not afraid of creating a
Microsoft SQL Server–specific interface (no, it does not work with Sybase SQL
Server). This opens the door for better, more intimate control of Microsoft SQL
Server systems from your code without having to resort to SQLDMO. It also
implies that native Oracle, Sybase, and other high-performance native .NET Data
Providers are possible. Your guess is as good as mine as to when these will actually
appear; for those players who want to stay in the game, I expect sooner rather
than later.

Leveraging Existing COM-based ADO Code

The .NET Framework is flexible enough to support more than just the three .NET
Data Providers I’ve mentioned. This adaptability is especially important in light of
ADO.NET’s architecture, which leaves out a number of data access paradigms that
you might find essential to your design. But up to this point, all of you have
invested many (many) hours/months/years of work on ADOc code imbedded in
all types of applications, middle-tier components, and Web-based executables.
The burning question most of you have is “Can I leverage this investment in ADOc
in my .NET executables?” The answer is not particularly clear. First, you’ll find that
you can imbed ADOc code in a .NET executable—while it might not behave the
same, .NET applications, components, and Web Services can execute most (but
not all) COM-based code.

Introducing ADO.NET

17

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 17

NOTE Visual Studio .NET includes an (excellent) conversion utility
to take existing ADOc code and convert it. However, it does not
convert it to ADO.NET code—it’s converted to COM interop-
wrapped ADOc code designed to run in a .NET application. While
this utility converts the code, it does not convert the architecture or
query strategy. These might not be appropriate for your new .NET
application.

Fundamentally, there are two approaches to access existing ADOc objects
from .NET executables. First, you can simply reference adodb (the COM interop
wrapper around MSADO15.DLL) and include “using adodb;” in your solution. In
this approach, you access the objects and their properties and methods directly.
The problem is that each and every time you reference an ADOc object (or any
COM object), property method, or event, the Common Language Runtime (CLR)
has to make the reference to and from the COM interop layer. This will slow down
the references to some degree and if the interop does not behave, it might impair
functionality. We already know this is the case when it comes to executing stored
procedures as methods of the ADODB.Connection object—it’s no longer
supported. There are other issues as well, as I discuss in Chapter 2, “ADO.NET—
Getting Connected.”

Another approach for accessing existing ADOc objects from .NET executables
is to encapsulate your ADOc (or other COM object reference) code in its own
wrapper. With this approach, you only access specific methods of the wrapper
object, which execute blocks of ADOc code. Few if any properties are exposed.
This approach resembles what you do to implement a middle-tier COM compo-
nent. It also means that you spend far less time in the interop layer—once when
you enter the wrapper DLL and once when you return. The problem here is that
you often have to reengineer your ADOc code, resulting in some loss of flexibility
in coding directly to the ADOc objects.

When importing ADOc code you have to instantiate your objects differently.
I walk through several ADOc examples in Chapter 2. There you’ll discover that
some of the methods work differently—for example, you can’t use the GetRows
method to return a Variant array, and your simple constants must now be fully
qualified—but for the most part, ADOc codes about the same, after all it’s just
another COM object with properties, methods, and events, and those remain just
the same. However, as I said before, you might notice a drop in performance or
somewhat different behavior due to COM interop.

Chapter 1

18

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 18

Creating DataSets from ADOc Recordset Objects

The .NET developers knew that some of you would want to import ADOc
Recordsets from existing COM components and create ADO.NET DataSets;
fortunately, this is easy in ADO.NET. The OleDbDataAdapter Fill method directly
recognizes ADOc Recordset and Record objects to populate a DataTable in a
DataSet. This functionality enables .NET developers to use existing COM objects
that return ADO objects without having to rewrite new objects using the .NET
Framework. But as of the release of Visual Studio .NET, only the OleDb .NET Data
Provider supports filling a DataSet from an ADO Recordset or Record object.
I illustrate this with an example in Chapter 4.

How COM Interop Affects .NET Applications

As I said before, all “unmanaged” code executed by the CLR must be handled
differently from “managed” code. Because of this stipulation between managed
and unmanaged code, all of the ADOc and the ADO.NET OleDb .NET Data
Provider data I/O operations are processed through a COM interop “wrapper.”
(The ADO.NET SqlClient .NET Data Provider does not use COM interop.) This
extra layer on legacy COM components makes the .NET application think it’s
communicating to a .NET component and the COM-based code thinks that it’s
communicating to a COM-based host. Figure 1-1 illustrates this extra layer of
protection wrapped around all COM components.

Figure 1-1. COM components access .NET via the COM interop layer.

Introducing ADO.NET

19

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 19

I suspect we’ll see a few side effects caused by this additional translation layer
that can’t help but hurt performance. COM interop is something like ordering a
hamburger from a Spanish-speaking clerk at your local burger palace through a
speakerphone. If you don’t speak Spanish, the result might have un poco más
cebolla14 than you planned on—but for me, that’s okay!

One of the major (that should be MAJOR) differences in the .NET Framework
is that your .NET application assembly is built using a specific version of ADOc
DLLs (msado15.dll) and all of the other COM DLLs and components it references.
In fact, these DLLs can be (should be?) copied from their common location to the
assembly’s disk directory. This means you could have the ADO run-time DLLs
installed any number of times on your disk—n copies of the same ADO DLLs or n
different versions of the ADO DLLs.

When you start a .NET application, the DLLs used and referenced at
design/test/debug/compile time are referenced at run time. This means your
application behaves (or misbehaves) the same way it did when you wrote and
tested it. Imagine that. If the version of ADO (or any other dependent DLL) gets
updated (or deprecated) later, or you deploy to a system with different DLLs, your
existing applications still install and load the “right” (older, newer, or the same)
version of ADO and your other DLLs. This means that “DLL hell” as we know it has
become a specter of the past—at least when all of your applications are based on
.NET. I expect DLL hell applications will still be haunting us for decades to come—
rattling their chains in the back corridors of our systems and playing evil tricks on
unsuspecting tourists.

I walk you through converting and accessing ADOc objects in the next
chapter.

ADO.NET and Disconnected Data Structures

ADO.NET constructs and manages DataSet and DataTable objects without the
benefit of server-side cursors or persisted state. These objects roughly parallel the
disconnected Recordset approach used in ADOc. Remember, ADO.NET provides
no support for pessimistic (or any other kind of) locking cursors—all changes to
the database are done via optimistic updates. ADO.NET does not include the
entire “connected” paradigm supported by every data access interface since
DB-Library. Microsoft suggests that developers simply use existing ADOc code
wrapped in a COM interop layer for these designs—or stick with Visual Basic 6.0
(Ahem! or Visual C++—especially for MTS/COM+ ADOc components that use
object pooling).

14. A little more onion.

Chapter 1

20

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 20

Behind the scenes, ADO.NET’s architecture is (apparently) built around its
own version of ADOc’s Shape provider. It expects the developer to download sepa-
rate resultsets (Tables) one at a time (or at least in sets). This can be done by using
separate round trips to the data source or through multiple-resultset queries. After
the DataTable is constructed, you’re responsible for hard coding the parent/child
relationships between these tables—that is, if you want ADO.NET to navigate, join,
manage, display, and update hierarchical data and eventually post batches of
updates to the back-end server. All of this is done in RAM with no further need of
the connection or the source database. I’m not sure what happens when the
amount of available RAM and swap space is exhausted using this approach. There
is some evidence to suggest that your system might try to order more from the
Web. Just don’t be surprised to get a package in the mail addressed to your CPU.
I expect that performance and functionality will also suffer to some degree—to say
the least. This “in-memory database” approach means that you developers will
have to be even more careful about designs and queries that extract too many
rows from the data source. But this is not a new rule; the same has always applied
to DAO, RDO, and ADOc as well, most especially in client/server circumstances.

The System.Data Namespace

Before I start burrowing any deeper into the details of the .NET System.Data
object hierarchy, I’ll define a term or two. For those of you who live and breathe
object-oriented (OO) concepts, skip on down. For the rest of you, I try to make this
as clear as I can despite being a person who’s been programming for three decades
without using “true” OO.

The .NET Framework is really a set of classes organized into related groups
called namespaces. See “Introduction to the .NET Framework Class Library” in
.NET Help for the long-winded definition. When you address the specific classes in
a namespace you use dot (.) notation—just as you do in COM and did in pre-COM
versions of Visual Basic. Thus, “System” is a namespace that has a number of
subordinate namespaces associated with it. System.Data.OleDb defines a specific
“type” within the System.Data namespace. Basically, everything up to the right-
most dot is a namespace—the final name is a type. The System.Data namespace
contains the classes, properties, methods, and events (what .NET calls
“members”) used to implement the ADO.NET architecture. When I refer to an
“object,” it means an instantiation of a class. For example, when I declare a
new OleDbConnection object, I do so by using the new constructor on the
OleDbConnection class.

System.Data.OleDbConnection myConnection = new System.Data.OleDbConnection();

Introducing ADO.NET

21

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 21

Clear? Don’t worry about it. I try to stay focused on the stuff you need to know
and leave the OO purists to bore you with the behind-the-scenes details. See
MSDN .NET15 for more detailed information on the System.Data namespace.

The ADO.NET DataSet Object

The System.Data.DataSet object sits at the center of the ADO.NET architecture.
While very different from an ADOc Recordset, it’s about as close as you’re going to
get with ADO.NET. As with the ADOc Recordset, the DataSet is a bindable object
supporting a wealth of properties, methods, and events. While an ADOc Recordset
can be derived from a resultset returned from a query referencing several database
tables, it’s really a “flat” structure. All of the hierarchal information that defines
how one data table is related to another is left in the database or in your head. Yes,
you can use the ADOc Shape provider to extract data from several related tables
and manage them in related ADOc-managed (Shape provider–managed)
Recordsets. Anyone familiar with the Shape provider will feel comfortable with
ADO.NET’s DataSet approach. I would characterize the DataSet as a combination
of an ActiveX Data Source control,16 due to its ability to bind data with controls;
a multidimensional Recordset, due to its ability to manage several resultsets
(DataTable objects) at one time; and the Data Environment Designer or Data
Object wizard, in that the DataSet can manage several Command objects used to
manage the SELECT and action queries.

In contrast to the ADO Recordset, the ADO.NET System.Data.DataSet object is
an in-memory data store that can manage multiple resultsets, each exposed as
separate DataTable objects. Each DataTable contains data from a single data
source—a single data query. No, the DataTable objects do not have to contain
entire database tables—as you know, that simply won’t work for larger databases
(or for smaller ones either if you ever expect to upscale). I suggest you code your
queries to contain a parameter-driven subset of rows that draw their data from
one or more related tables.

Each DataTable object contains a DataColumnCollection (Columns)—a
collection of DataColumn objects—that reflects or determines the schema of each
DataTable; and a DataRowCollection (Rows) that contains the row data. This is a
radical departure from DAO, RDO, and ADOc, where the data and schema infor-
mation are encapsulated in the same Recordset (or Resultset) object. Consider,
however, that the data in the DataTable is managed in XML and the schema in
XSD. I discuss and illustrate this layout in Chapter 2.

15. http://www.msdn.microsoft.com/library/en-us/cpref/html/cpref_start.asp

16. The ADO Data Control, the Jet Data Control, and your hard-coded data source controls fall
into this category.

Chapter 1

22

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 22

You can construct your own DataTable objects by query or by code—defining
each DataColumn object one-by-one and appending them to the DataColumn-
Collection, just as you appended Field objects to an unopened Recordset in
ADOc. The DataType property determines or reflects the type of data held by
the DataColumn. The ReadOnly and AllowNull properties help to ensure data
integrity, just as the Expression property enables you to build columns based on
computed expressions. The DataSet is designed to be data agnostic—not caring
where or how (or if) the data is sourced or retrieved; it leaves all of the data I/O
responsibilities up to the .NET Data Provider.

In cases where your DataSet contains related resultsets, ADO.NET can
manage these relationships for you—assuming you add code to define the rela-
tionships. For example, in the Biblio (or Pubs) database, the Authors table is
related to the TitleAuthor and Titles tables. When you build a DataSet against
resultsets based on these base (and many-to-many relationship) tables, and you
construct the appropriate DataRelation objects; at that point you can navigate
between authors and the titles they have written—all under control of ADO.NET.
I illustrate and explain this in detail in Chapters 4 and 8.

DataTable objects can manage resultsets drawn directly from base tables or
subset queries executed against base tables. The PK/FK relationships between the
DataTable objects are managed through the DataRelation object—stored in the
DataRelationCollection (Relations) collection. (Is there an echo in here?) When
you construct these relationships (and you must—ADO.NET won’t do it on its
own; but, you can get the Visual Studio IDE to do it for you), UniqueConstraint
and ForeignKeyConstraint objects are both automatically created depending on
the parameter settings for the constructor. The UniqueConstraint ensures that
values contained in a DataColumn are unique. The ForeignKeyConstraint deter-
mines what action is taken when a PK value is changed or deleted. I touch on
these details again in Chapter 8. No, ADO.NET and the .NET IDE do not provide
any mechanisms to construct these PK/FK relationships for you, despite
supporting functionality to graphically define these relationships.

The following diagram (Figure 1-2) provides a simplified view of how the
DataSet object is populated from a SqlClient .NET Data Provider. It illustrates
the role of the bindable DataSet object and the important role of the .NET
Data Provider. In this case, the diagram shows use of the Microsoft SQL
Server–specific SqlClient .NET Data Provider, which contains objects to connect
to the data source (SqlConnection), query the data (SqlDataAdapter), and retrieve
a data stream (DataReader). The DataSet object’s DataTable objects (Tables) are
populated by a single call to the DataSet Fill method.

The DataAdapter also plays a key role here. It contains from one to four
Command objects to (at least) fetch the data (SelectCommand) and (optionally)
change it (UpdateCommand, InsertCommand, and DeleteCommand). Each of
these Command objects are tied to specific Connection objects. When you execute

Introducing ADO.NET

23

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 23

the DataSet.Update method, the associated DataAdapter executes the appropriate
DataAdapter Command objects for each added, changed, or deleted row in each
of the DataTable objects.

Once constructed, the DataSet need not remain connected to the data source
because all data is persisted locally in memory—changes and all. I drill deeper
into DataSet topics in Chapter 4.

Figure 1-2. ADO.NET Data Access using the DataSet object.

The DataSet object supports a DataTableCollection (Tables) collection of
DataTable objects, which contain a DataRowCollection (Rows) collection of
DataRow objects. Each DataRow object contains the DataColumnCollection
(Columns) of DataColumn objects, which contain the data and all of the DDL
properties. Remember that, like the ADOc Recordset, the DataTable object can be
bound by assigning it to the DataSource property of data-aware (bindable)
controls.

Figure 1-3 illustrates the look of the System.Data.DataSet in a hierarchical
diagram. Note the difference in the .NET naming convention. In COM, we expect a
collection of objects to be named using the plural form of the object. For example,
a collection of Cat objects would be stored in the Cats collection. In .NET, most
(but not all) collections are named using the singular object name followed by
“Collection,” as in DataTableCollection. I found this very confusing until I started
to code. It did not take long to discover that ADO.NET uses different names for

Chapter 1

24

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 24

each of these collections. These “real” names are shown in parentheses in the
preceding paragraph and in Figure 1-3. I’m sure there’s a good OO reason for
this—I just have no idea what it is.

I explore each of these objects in more detail in subsequent chapters.

Figure 1-3. DataSet object hierarchy.

So, what should you know about this new ADO.NET structure? The DataSet:

• Is a memory-resident structure constructed by the DataAdapter Fill
method.

• Contains zero or more DataTable objects.

• Is logically tied to a DataAdapter object used to fetch and perform action
queries as needed.

Introducing ADO.NET

25

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 25

• Contains Constraints and Relations collections to manage
inter-DataTable relationships.

• Is data-source agnostic, stateless, and can function independently from
the data source. All data, schema, constraints, and relationships to other
tables in the DataSet are contained therein.

• Is transported through XML documents via HTTP. This means a DataSet
can be passed through firewalls and used by any application capable of
dealing with XML.

• Can be saved to XML or constructed from properly formatted XML.

• Can be created programmatically. DataTable by DataTable and
DataColumn by DataColumn—along with DataRelation objects and
Constraints.

It’s clear that the DataSet was designed to transport “smart” data (and
schema) between a Web host (possibly implemented as a Web Service) and a
client. In this scenario, a client application queries the Web Service for specific
information, such as the number of available rooms in hotels given a specific city.
The Web Service queries the database using parameters passed from the client
application and constructs a DataSet, which might contain a single DataTable
object or multiple DataTable objects. If more than one table is returned, the
DataSet can also specify the relationships between the tables to permit the client
to navigate the room selections from city to city. The client can display and modify
the data—possibly selecting one or more rooms—and pass back the DataSet to the
Web Service, which uses a DataAdapter to reconcile the changes with the existing
database.

Descending the System.Data Namespace Tree

I think pictures and drawings often make a subject easier to understand—
especially for subjects like object hierarchies. So, I’m going to begin this section
with a series of diagrams that illustrate the layout of the System.Data namespace.

Chapter 1

26

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 26

ADOc has a relatively easy-to-understand and easily diagrammed object hier-
archy. ADO.NET’s System.Data namespace, however, is far more complex. As it
currently stands, there are dozens upon dozens17 of classes and members in the
.NET Framework. Few of the complexities of the OO interfaces have been
hidden—at least not in the documentation. Fortunately, there is a fairly easy way
to climb through the object trees and get a good visual understanding of the hier-
archies—basically what goes where and with what: Use the object browser in
Visual Studio .NET. You can launch it from the View | Other Windows submenu.
Figure 1-4 illustrates how the object browser depicts the System.Data namespace
(unexploded). Throughout this section of the book, I walk through these object
trees one at a time. By the time I’m done, you should either be thoroughly familiar
with the System.Data namespace or thoroughly sick of it.

Figure 1-4. The System.Data namespace.

System.Data Namespace Exploded

The exploded System.Data namespace has over forty members—the top dozen or
so are shown in Figure 1-5. I hope that we won’t have to learn and remember how
to use all of these objects, properties, methods, and events to become productive
ADO.NET developers. Table 1-1 lists and describes the most important of these
objects—the ones you’ll use most often (at least at first).

17. I tried to count all of the objects in System.Data but lost count … sorry.

Introducing ADO.NET

27

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 27

Figure 1-5. System.Data objects.

Table 1-1. Selected Members of the System.Data Namespace

Object Description

Constraint and ConstraintCollection Represents referential integrity

(Constraints), ForeignKeyConstraint, constraints. Used to specify unique keys

UniqueConstraint or PK/FK constraints and what to do when

they change. Used to prevent duplicate

rows from being added to the current

dataset. No equivalent in ADOc. Hard

coded by your application.

DataColumn and Represents a single data column schema

DataColumnCollection (Columns) associated with a DataTable object and

the collection used to manage the

columns. Similar to the ADOc Field object

and Fields collection—but without the

Value property. Automatically generated

from the resultset.

DataException (and various Represents the various exceptions thrown

other exception objects) when an ADO.NET error is triggered.

Similar to the ADOc Error object.

(continued)

Chapter 1

28

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 28

Table 1-1. Selected Members of the System.Data Namespace (continued)

Object Description

DataRelation and Represents table/column/table relations.

DataRelationCollection (Relations) Hard coded by your application. Specifies

the tables and columns used to interrelate

parent/child tables. No equivalent in

ADOc.

DataRow and DataRowCollection (Rows) Represents the data in a table row.

Generated automatically.

DataRowView Permits customized views of data rows

based on changes applied during editing.

Original, Proposed, and Current versions

of a data row are exposed.

DataSet Represents an in-memory data store

consisting of DataTable, DataRelation,

and Constraint objects.

DescriptionAttribute Permits definition of code-specified

properties for properties, events, or

extenders.

DataTable and DataTableCollection Represents in-memory rows and columns

(Tables) of data returned from a data source or

generated in code.

DataView, DataViewManager, Permits viewing one or more subsets of a

DataViewSetting, DataTable. Similar to ADOc Recordsets

DataViewSettingCollection after the Filter property is applied. Several

(DataViewSettings) DataView objects can be created against

the same DataTable.

PropertyCollection (Properties) Permits definition and retrieval of code-

defined properties.

(and several others) There are several other objects, event

enumerations, and support objects

exposed by the System.Data namespace.

Introducing ADO.NET

29

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 29

Instantiating System.Data Objects

Your .NET application should be fairly specific about the libraries it expects to
reference. In .NET, the ADO.NET .NET Data Providers (roughly equivalent to the
ODBC and OLE DB providers accessed by ADOc) are built into the System.Data
namespace so you don’t have to add an explicit reference to use them. An excep-
tion is the Odbc .NET Data Provider that must be installed and registered sepa-
rately—and so it is not part of System.Data namespace, rather it’s part of the
Microsoft.Data namespace. The Solution Explorer is a handy way to see what
namespaces are already referenced for your application’s assembly, as shown in
Figure 1-6.

Figure 1-6. The Solution Explorer showing a newly created WinForm application.

Depending on the ADO.NET data access provider you choose, you’ll want to
use the using18 directive with either System.Data.OleDb or System.Data.SqlClient
(or in unusual situations, both), or Microsoft.Data.Odbc to make sure your code
correctly references these libraries. Actually, the CLR, which sits at the core of
.NET, won’t permit name collisions, but adding a namespace to the using list
makes coding easier by providing “shorthand” syntax for commonly used objects.
Although not required for ADO.NET, the using directive signals the compiler to

18. For Visual Basic developers converting from Visual Basic .NET, the using directive is
equivalent to the Imports directive in Visual Basic .NET and (very) loosely similar to the
inclusion of header files in C and C++.

Chapter 1

30

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 30

search the specified namespace referenced in your code to resolve any ambiguous
object names. Basically, using helps the compiler resolve namespace references
more easily. The using statement should be positioned first in your code—above
all other declarations. For example, to add the OleDb .NET Data Provider name-
space, place the following at the start of your code module:

using System.Data.OleDb;

Similarly for the SqlClient .NET Data Provider namespace, add the following
to your code module:

using System.Data.SqlClient;

Because you used the using directive with the System.Data.SqlClient .NET
Data Provider, you can code

SqlConnection cn = new SqlConnection();

However, the downside to this approach is potential object collisions and
failed compiles. Again, some pundits feel that it’s best to explicitly reference
declared objects. You can also reference your ADO.NET objects explicitly if you
don’t mind typing a lot (or if you are paid by the word). For example, you can
create a new ADO.NET Connection object this way:

System.Data.SqlClient.SqlConnection cn =

new System.Data.SqlClient.SqlConnection();

However, I try not to use this approach in my examples or sample code. I
provide more examples of object and variable declarations as I go—and there is a
long way yet to travel.

Introducing the ADO.NET DataAdapter

Think of the DataAdapter as a “bridge” object that links the data source (your
database) and a Connection object with the ADO.NET-managed DataSet object
through its SELECT and action query Commands. All of the .NET Data Providers
implement their version (instance) of the System.Data.DataAdapter class;
OleDbDataAdapter, OdbcDataAdapter, and SqlClientDataAdapter all inherit from
the base System.Data class. Each .NET Data Provider exposes a SelectCommand
property that contains a query that returns rows when the DataSet Fill method is
executed. The SelectCommand is typically a SELECT query or the name of a stored

Introducing ADO.NET

31

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 31

procedure. Each Command object managed by the DataAdapter references a
Connection19 object to manage the database connection through the Command
object’s Connection property. I discuss the Connection object in Chapter 2.

The invocation of the DataSet Update method triggers the execution of the
DataAdapter object’s UpdateCommand, InsertCommand, or DeleteCommand to
post changes made to the DataSet object. I discuss updating in Chapter 7. The
figure shown earlier (Figure 1-2) also illustrates the working relationship between
the DataSet and the DataAdapter.

Constructing DataAdapter Command Queries

If the query set in the SelectCommand is simple enough (references a single
table and not a stored procedure), you can (usually) ask ADO.NET to generate
the appropriate action queries for the DataAdapter UpdateCommand,
InsertCommand, and DeleteCommand using the CommandBuilder object. If
this does not produce suitable SQL syntax, you can manually fill in the action
queries using queries of your own design—even calling stored procedures to
perform the operations. I discuss the construction of these commands in Chapter 3.

Coding the DataAdapter

I expect you’d like to see some code that demonstrates how all of this is imple-
mented. Because I haven’t discussed the Connection object yet, this will be a little
tough, but let’s assume for a minute that you know how to get connected in
ADO.NET. Let me walk you through a small example.20 (Don’t worry about the
code I don’t explain here—I discuss many of these points again in the next
chapter.)

First, make sure that your application can see the SqlClient namespace. It’s
already part of the .NET Framework, but not part of your application’s namespace.

using System.Data.SqlClient;

Next, within the address range of your Form’s 21 class, define the objects and
variables to be used.

19. Actually, the name of the Connection object is SqlConnection, OleDbConnection,
OdbcConnection, or <ProviderSpecific>Connection in the case of other vendors’ .NET Data
Provider namespace’s Connection object.

20. Located in the “\Examples\Chapter 01\Data Adapter” folder on the CD.

21. The default architecture in most examples (before I get to Chapter 10) is Windows Forms.

Chapter 1

32

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 32

NOTE In C#, objects and variables have private scope by default. I
will have a little more to say on constructors later on—like where
and how best to deal with them—but those familiar with VB .NET
should just note here that strConnect is declared here as a const.
This means that it is effectively a read-only field—a constant. Why?
Well, we use this string in the constructor argument for the new
SqlConnection object. So what? Well in C#, non-static instance
fields cannot be used to initialize other instance fields outside of a
method, and this is quite different from VB .NET.

public class Form1 : System.Windows.Forms.Form

{

const string strConnect = "data source=.;database=biblio;uid=admin;pwd=pw";

string strQuery =

"Select Title, Price from Titles where Title like 'Hit%'";

SqlConnection cn = new SqlConnection(strConnect);

SqlDataAdapter da = new SqlDataAdapter();

DataSet ds = new DataSet();

……

}

In the Form1_Load event handler, you set the DataAdapter object’s
SelectCommand string to a SELECT query that returns a few rows from the Titles
table. Actually, you shouldn’t have to open the connection explicitly, because, if
the connection is not already open, the Fill method automatically opens it and
then closes it again. If you use this auto-open technique, you need to be prepared
for connection errors when you execute the Command. I’m using this approach
because it’s more familiar to ADOc developers. I illustrate how to get the Fill
method to manage connections in the next chapter and a simpler, more
ADO.NET-centric approach later in this chapter.

Notice the use of C#’s try and catch error handler.22 In the catch statement,
you reference the System.Data.SqlClient.SqlException object simply as
SqlException (remember that you placed the using System.Data.SqlClient; state-
ment in earlier so that you could make these “shorthand” references). SqlException
exposes a Message and Error number (and more) that can be used to figure out
what went wrong. The simplest way to provide all of the SqlException object
information to a developer during debugging is to cast it to a string with a call to
the ToString() method, sending this to the Debug output window via the

22. Error handling is discussed in Chapter 9, “ADO.NET Error Management Strategies.”
The ADO.NET concepts I use apply universally in most cases.

Introducing ADO.NET

33

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 33

Debug.WriteLine() method. To use the Debug object, you must reference the
System.Diagnostics namespace by using System.Diagnostics. This is helpful when
the intended recipient of an exception message is a developer, but not necessarily
so useful for your program to spew it all out to a user while committing hari-kari.
Fortunately, the Debug object is automatically stripped from release builds.
Your user doesn’t care much for which line in your code triggered the self-disem-
bowelment—but more on exceptions in Chapter 9.

So here, if the cn.Open(); statement does not work, the next statement is never
executed and the catch block will deal with the exception, depositing its remains
to the console/debug output window.

...

using System.Diagnostics;

...

private void Form1_Load(object sender, System.EventArgs e)

{

try

{

cn.Open();

da.SelectCommand = new SqlCommand(strQuery, cn);

}

catch(SqlException ex)

{

Debug.WriteLine(ex.ToString());

}

}

In the Button click-event (did I say there are both DataGrid and Button
controls on the form?) you use the DataAdapter Fill method to “run” the
SelectCommand query in the specified DataAdapter. The results are fed to
the DataSet object. By default, the Fill method names the DataSet “Table” (for
some reason). I would have preferred “Data” or “DataSet” to discourage confusion
with database tables. The Fill method is very (very) flexible as it can be invoked in
a bevy of ways, as I describe in Chapter 4. The options I chose in this example
name the resulting DataTable “TitlesandPrice.” In the next statement, I bind the
DataSet to the DataGrid control.

private void Button1_Click(object sender, System.EventArgs e)

{

da.Fill(ds, "Titles and Price"); // Defaults to "Table"

DataGrid1.DataSource = ds.Tables["Titles and Price"];

}

Chapter 1

34

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 34

The result? Well, this code opens a connection, runs a query, and fills a grid
with the resulting rows; but what’s missing? To start with: error handlers. This code
does not deal with bad connections (except to print a debug message), bad
queries, empty queries, or the fact that most applications will want to create a
parameter-based query instead of a hard-coded SELECT statement. However,
baby steps come before running—especially in this neighborhood.

As I wrote this example, I was reminded of a few lessons:

• The using System.Data.SqlClient directive helps. Statement completion did
not show the objects I was referencing nearly as quickly (if at all) until I
added the using directive.

• The DataSet object is suitable for binding. That is, it can be assigned to the
DataGrid or any bindable control for display. In my example, I bind the
DataSet to a DataGrid control’s DataSource property.

• It helps to bind to a specific DataTable. If you bind to the DataSet, the data
in the DataGrid isn’t immediately shown. This requires the user to drill
down into a selected DataTable. It’s better to bind to a specific DataTable in
the DataSet Tables collection.

• Use the form’s constructor method to initialize instance variables. It is not
a good idea to initialize instance variables at class level declaration since
they can’t be encapsulated in try/catch blocks to deal with any exceptions
arising in the initialization.

TIP This is a practice I picked up years ago: Install crude error
handlers from the very beginning. I encourage you to do the
same. The crudest, of course, is a simple catch and casting of
the exception object to a string that is sent to the debug output
window. This can save you an extra ten minutes as you try to
figure out what went wrong.

A Simpler Example

Okay, now that I have shown you an example based on how an ADOc developer
might code, take a look at the same problem using the new ADO.NET approach.
You should notice that there is no explicit call to open the connection—that is
taken care of here silently by the Fill() method; I talk more about this later.

Introducing ADO.NET

35

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 35

Also, I am specifying properties for the class’ constructors to use when instanti-
ating. Most .NET classes have one or several constructors used to set different
combinations of properties as the objects are being instantiated. After you under-
stand these, you’ll really appreciate how they make your code easier to write.

private void btnRunQuery_Click(object sender, System.EventArgs e)

{

try

{

SqlConnection cn =

new SqlConnection("data source=.;database=biblio;uid=admin;pwd=pw");

SqlDataAdapter da =

new SqlDataAdapter(

"Select Title, Price from Titles where Title like 'Hit%'", cn);

DataSet ds = new DataSet();

da.Fill(ds, "Titles and Price");

DataGrid1.DataSource = ds.Tables["Titles and Price"];

}

catch (SqlException ex)

{

Debug.WriteLine(ex.ToString());

}

}

ADO.NET’s Low-Level Data Stream

By this time you know that by default, ADOc Recordsets are created as RO/FO23

firehose data structures. This low-level data stream permits data providers to
return resultsets to the client as quickly as the LAN can carry them. While fast, the
default firehose ADOc Recordset does not support record count, cursors, scrolling,
updatability, caching, filters, sorting, or any costly overhead mechanism that
could slow down the process of getting data back to the client.

ADO.NET also supports this firehose functionality, but in a different way.
After you establish a connection, you can stream data back to your application
using the ADO.NET .NET Data Provider’s DataReader class (SqlDataReader,
OdbcDataReader, or OleDbDataReader) through the provider’s Command class
(SqlCommand, OleDbCommand, or OdbcCommand).

23. RO/FO: read-only/forward-only

Chapter 1

36

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 36

Although the ADO.NET data stream is RO/FO, the fundamental data access
technique is different from ADOc in a number of respects. Let’s walk through a
simple example24 as an illustration. The following section of code declares
Connection, DataAdapter, DataReader, and Command objects using the SqlClient
.NET Data Provider. As you’ll see throughout this section, C# permits you to
declare and initialize selected properties of the declared objects in a single line of
code; although, as I said earlier, departing from VB .NET, C# does not permit you
to initialize selected properties with other non-static instance fields outside of a
method.

If you look carefully at this code snippet you’ll notice that the SqlCommand cmd
object is declared in the Form1 class outside of a method. By default this gives the
cmd object private scope, ensuring that it is accessible to all methods within the
class. I have, however, placed the constructor code

cmd = new SqlCommand(strSQL, cn);

for the cmd object within Form1’s constructor method Form1() after the call to
InitializeComponent(); since this depends on other non-static instance fields
strSQL and cn.25

…

using System.Data.SqlClient;

…

public class Form1 : System.Windows.Forms.Form

{

…

SqlConnection cn =

new SqlConnection("data source=.;database=biblio;uid=admin;pwd=pw");

SqlDataAdapter da = new SqlDataAdapter();

string strSQL = "Select Title, PubID from Titles where Title like ";

SqlDataReader Dr;

SqlCommand cmd;

…

public Form1()

{

…

InitializeComponent();

…

cmd = new SqlCommand(strSQL, cn);

}

…

24. Located in the “\Examples\Chapter 01\Data Stream” folder on the CD.

25. Well I suppose we could declare strSQL and cn as static but then that would force them to be
common across all concurrent instances of Form1.

Introducing ADO.NET

37

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 37

This next routine is fired when a button is clicked on the form. The
ExecuteReader method is executed—instantiating a SqlClient.DataReader. When
first opened, the DataReader does not expose a row of the resultset because its
current row pointer is positioned before any rows (as in a Recordset when BOF =
True). To activate the first and each subsequent row one at a time, you have to use
the DataReader object’s Read method, which returns False when there are no
(additional) rows available. Once read, you can’t scroll back to previously read
rows—just as in the FO resultset in ADOc.

As each row is read, the code moves data from the columns exposed by the
DataReader to a ListBox control. Note that you have to use the Add() method to
add members to any collection—including the ListBox and ComboBox controls’
Items collections. You also have to be very careful about moving the data out of
the DataReader columns; each column must be specifically cast as you go—
converting each to a datatype suitable for the target. In order to code these
conversions correctly, your code will have to know what datatypes are being
returned by the resultset or use the GetValue method. .NET is pretty unforgiving
when it comes to automatically morphing datatypes.

TIP I use the ListBox BeginUpdate and EndUpdate methods to
prevent needless painting while I’m filling it.

private void Button1_Click(object sender, System.EventArgs e)

{

cn.Open(); //The connect string was defined when the object was created

cmd.CommandText = strSQL + "'" + TextBox1.Text + "%'";

Dr = cmd.ExecuteReader();

ListBox1.Items.Clear(); // clear the listbox

ListBox1.BeginUpdate(); // Prevent the listbox from painting

while (Dr.Read()) // get the first (or next) row

{

ListBox1.Items.Add(Dr.GetString(0) + " - " + Dr.GetInt32(1).ToString());

}

ListBox1.EndUpdate(); // Let the listbox paint again

Dr.Close(); // close the data reader.

}

Chapter 1

38

*120ch01_FINAL2.qpx 3/14/02 4:10 PM Page 38

Symbols
? parameter marker

lack of support for by SqlClient .NET
Data Provider, 85–86

support for in ADO.NET, 82–83
@ReturnValue parameter, creating and

adding to stored procedures,
125–126

+ operator, use of in .NET, 91

A
AcceptRejectRule, ForeignKeyConstraint,

290
action queries, using Visual Studio to

generate, 251–258
Add() method, using to construct

parameters, 115
Add Web Reference dialog, opening,

333–334
ad hoc queries, executing to perform

updates, 280
ADOc

comparing to ADO.NET, 7–9, 142–144
update strategies, 238–239

ADOc code
instantiation of objects when

importing, 18
leveraging existing in your .NET

executables, 17–18
ADOc connection objects

accessing from Visual Basic .NET, 77
establishing a connection with, 39

ADOc ConnectionString vs. ADO.NET
ConnectionString, 46

ADOc Field object, compared with
DataSet, 172

ADOc Fields collection vs. the ADO.NET
DataColumnCollection, 171

ADOc namespace, instantiating, 76–77
ADOc objects, accessing from .NET

executables, 18
ADOc properties vs. ADO.NET properties,

182–183
ADOc Recordset

vs. the ADO.NET DataReader
processing loop, 146

vs. ADO.NET DataTable structure, 170
vs. the DataTable, 157–196
importing into an ADO.NET data

structure, 168–172

ADOc Recordset objects, creating
DataSets from, 19

ADOc Recordsets, comparing to
DataTable objects, 169–172

ADO.NET
adding new DataRows to a DataTable,

224–225
vs. ADOc data stream, 36–38
capturing the SELECT-generated

rowsets in, 129–132
command strategies, 79–140
comparing to ADOc, 7–9, 142–144
Connection object properties, 53–54
connection pooling, 71–74
data access using the DataSet object,

24
DataReader strategies, 141–156
DataSet object hierarchy, 159
and disconnected data structures,

20–21
error management strategies, 301–311
establishing connections using

different providers, 39–77
forms of Find implemented by, 213
the fundamentals, 12–15
getting to manage a pessimistic

locking update, 222
handling of duplicate DataTable

columns by, 181
how it implements constraints,

285–295
how it passes data versions to update

parameters, 264
how we got here, 2–6
implementing foreign key constraints,

289–291
implementing unique constraints,

287–289
introduction to, 1–38
low-level data stream, 36–38
.NET Data Providers, 15–20
a new beginning, 7–9
vs. other Microsoft data access

interfaces, 10–11
possible problems with, 14–15
reviewing the generated stored

procedures, 251–254
and SOAP, 342
support of Parameter constructors,

112–114

345

Index

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 345

understanding its distributed
architecture, 10–11

understanding the infrastructure, 9–15
update strategies, 221–282
updating a DataView in, 210
using “O’Malley” rule with, 199
using the CommandBuilder class,

240–250
using to execute ad hoc queries, 84–85
and XML, 313–342
XML support in, 314–315

ADO.NET and ADO Examples and Best
Practices for VB Programmers, 2nd
Edition, discussion of Da Vinci Tools
in, 81

ADO.NET classes, a typical
implementation of, 13–15

ADO.NET CommandBuilder
how the Update() method manages

Command objects generated by,
242

using to construct commands, 81
ADO.NET commands, understanding,

79–136
ADO.NET Connection objects, creating,

42–51
ADO.NET connections

closing, 68–75
opening in code, 65–66

ADO.NET ConnectionString vs. ADOc
ConnectionString, 46

ADO.NET ConnectionString property,
building, 44–51

ADO.NET DataAdapter, introducing,
31–36

ADO.NET DataAdapter commands, 80
ADO.NET DataColumnCollection vs. the

ADOc Fields collection, 171
ADO.NET DataReader vs. the ADOc

Recordset processing loop, 146
ADO.NET DataSet

object hierarchy, 159
using with the DataTable, 157–196

ADO.NET DataSet object, 22–26
ADO.NET data structure, importing an

ADOc Recordset into, 168–172
ADO.NET DataTable structure vs. ADOc

Recordset, 170
ADO.NET garbage collector, managing,

68–69
ADO.NET .NET Data Provider, choosing

the right one, 41–42
ADO.NET .NET Data Providers.

See also .NET Data Provider, 40–42
use of XML by, 41
valid “name” arguments and how they

are used, 48–50

ADO.NET .NET Data Providers
CommandBuilder vs. Visual Studio’s,
253–254

ADO.NET parameter queries,
introduction to, 82–84

ADO.NET properties vs. ADOc properties,
182–183

Advanced SQL Generations Options
dialog, using to generate code for
UpdateCommand, 90–91

Application Name, Connection string
argument, 48

arguments
passing multiple to the DataView

object Find() method, 218
passing to the DataView object Find()

method, 217–218
ASP.NET security model, function of in

connection security, 70–71
AttachDBFilename, Connection string

argument, 48
Authors table, example of updating,

266–272
autonumber, identity, or GUIDs,

retrieving, 258–262

B
“before” block, for DiffGram, 320
BeginEdit() method, using, 228
BeginTransaction() method

Connection object, 55
creating a Transaction object with, 59

Biblio database
copying from the CD, 343–344
and its intertable relationships, 296

BiblioServiceException class, for Web
Service, 328

binding, to DataSets, 195–196
Boolean properties, setting using yes and

no instead of true or false, 50
bulk INSERT statement, using to improve

update performance, 264–265

C
C#

development of, 3
introduction to using ADO.NET with,

1–38
using constructors in declarations in,

43–44
CancelEdit() method, undoing changes

to DataRow or DataRowView objects
with, 227

Cascade action, understanding, 291
case sensitivity, of DataSets, 186
Caspol.exe, modifying security policy

with, 62

Index

346

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 346

ChangeDatabase() method, Connection
object, 55

ChangeDatabase() method, using, 46–47
ChangeState event, fired on the

Connection object, 56
check constraints, how ADO.NET

implements them, 285
Class View, of generated DataSet, 100–101
CloseConnection, ExecuteReader

CommandBehavior argument, 134
Close() method

Connection object, 55
for DataReader, 148

CLS. See Common Language
Specification (CLS)

Code Access Security Policy Tool
(Caspol.exe), modifying security
policy with, 62

Columns collection
accessing, 182–186
creating your own, 186

COM-based ADO, as a .NET Data
Provider, 75–77

COM Interop, how it affects .NET
applications, 19–20

CommandBuilder
in ADO.NET, 81
constructing the Parameters collection

in, 248–249
generating the DeleteCommand with,

245
generating the InsertCommand with,

243–244
generating the UpdateCommand with,

244–245
how it deals with concurrency issues,

249–250
how the Update() method manages

Command objects generated by,
242

CommandBuilder class (cb)
initiating, 243–248
rules and restrictions, 240–241
using, 240–250

Command constructor, code for in
ADO.NET, 80

Command Execute() DataReader
methods, exploring, 133–134

Command object, in ADO.NET, 12
Common Language Specification (CLS),

183
ComputeRowCounts subroutine, for

showing row counts, 270–272
Connection Lifetime (SqlClient)

Connection string argument, 48
ConnectionString keyword, 73

Connection object
in ADO.NET, 12
closing, 128–129
constructing a connection string for

opening, 65–66
importance of explicitly closing, 62

Connection object events, sinking, 56–58
Connection object methods, examining,

55
Connection object properties, ADO.NET,

53–54
Connection objects

ADO.NET vs. ADOc, 42–43
creating ADO.NET, 42–51

Connection.Open() method, acceptance
of arguments by, 44–45

connection pool
cleaning, 72
debugging, 75
monitoring with performance

counters, 74
connection pooling

ADO.NET, 71–74
OleDb and Odbc, 75
SqlClient .NET Data Provider, 71–72

Connection Reset
Connection string argument, 48
keyword for SqlClient.SqlConnection

object, 73
connections

adding to your project, 66–68
information and security issues, 69–71

ConnectionString, constructing and
assigning to a SqlConnection object,
107

Connection string arguments, list of valid
and their uses, 48–50

ConnectionString keywords, for
SqlClient.SqlConnection object,
73–74

ConnectionString property
ADO.NET, 54
building an ADO.NET, 44–51

Connection Timeout, Connection string
argument, 48

ConnectionTimeout property, ADO.NET,
54

Connect Timeout, Connection string
argument, 48

ConstraintCollection collection,
managing, 286

ConstraintException, reason thrown, 306
constraints

how ADO.NET implements, 285–295
postponing enforcement of, 228
types of, 285–286

Index

347

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 347

constraints collection, managing, 286
constructor methods, using in

declarations, 43–44
ContinueAfterError property, using,

274–275
ContinueUpdateOnError property, for

Update statements, 273–276
CreateCommand() method, Connection

object, 55
CTRL+ALT+5, opening the Server

Explorer window with, 66–67
Current Language, Connection string

argument, 48
current row pointer (CRP), positioning,

195

D
DACW. See DataAdapter Configuration

Wizard (DACW)
data, merging and transporting, 281–282
DataAdapter

coding, 32–36
Command objects contained in, 23
constructing command queries, 32
introduction to in ADO.NET, 31–36
lessons learned when coding, 35
properties for managing operational

queries, 239
DataAdapter Configuration Wizard

(DACW)
changing the DataAdapter created by,

92
generating stored procedures with,

93–95
information needed to construct a

DataAdapter, 87–88
renaming the DataAdapter or

Command objects created by, 97
reviewing the code generated by,

254–258
reviewing the stored procedures

generated by, 251–254
Update mapping of parameter to

source column, 97
using, 86–98
using existing stored procedures with,

95–98
using SQL statements with, 89–93
using stored procedures with, 93
using to set up a typical query, 87–88

DataAdapter Fill() method, using to build
DataTables, 173–177

DataAdapter object, in ADO.NET, 12
DataAdapter Update() methods, for

SqlClient .NET Data Provider, 263
Database (SqlClient only), Connection

string argument, 48

database connections, importance of
closing as soon as you can, 69

Database property, ADO.NET, 54
data binding, using the DataView in, 205
DataColumnCollection (Columns),

accessing, 182–186
DataColumn object

public properties, 182–183
supported DataType settings, 183–186

data constraints, postponing
enforcement of, 228

DataException, reason thrown, 306
Data|Generate DataSet menu, 99
DataGrid control

showing rows that failed to update,
273

working with an updatable, 268
DataReader

cleaning up after, 155–156
common methods inherited from

parent object, 148–149
creating to stream in a rowset, 128–129
FieldCount property, 147
Get methods common to all providers,

149–150
Get methods unique to SqlClient

provider, 150–151
implementation of by ADO.NET’s data

providers, 144–145
importance of closing as soon as you

can, 69
important difference from the

DataSet, 145
methods for instantiating and

executing a query, 145–146
operational methods, 147–148
RecordsAffected property, 147
vs. the Recordset processing loop, 146
understanding, 144–151
using Get methods to retrieve data,

151–155
using instead of a DataSet, 127–129

DataReader Get methods, using to
retrieve data, 151–155

DataReader methods, exploring, 133–134
DataReader object, in ADO.NET, 12
DataReader properties, typical, 147
DataReader strategies, in ADO.NET,

141–156
DataRelationCollection, 161
DataRelation objects, creating, 295–300
DataRow, RowState values, 233
DataRow.AcceptChanges() method, effect

on DataRowVersion, 237
DataRow.BeginEdit() method, effect on

DataRowVersion, 237

Index

348

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 348

DataRow.CancelEdit() method, effect on
DataRowVersion, 237

DataRowCollection (Rows), accessing,
187–191

DataRow.EndEdit() method, effect on
DataRowVersion, 237

DataRow errors, indicating, 193–194
DataRow Item, determining the data

version for, 234–237
DataRow object

BeginEdit() method, 228
dumping an array of to a TextBox

control, 202–203
Item property, 188–190
understanding, 187

DataRow properties, 187
DataRow.RejectChanges() method, effect

on DataRowVersion, 237
DataRow RowError() method, using to set

an error string, 193
DataRows

adding new to a ADO.NET DataTable,
224–225

undoing a delete operation, 227
DataRowVersion, impact of editing on,

237
DataRow versions, effect of data changes

on, 237
DataSet

Class View of generated, 100–101
compared with ADOc Field object, 172
creating a strongly typed, 102–105
creating with the .NET IDE, 98–101
important difference from the

DataReader, 145
object hierarchy, 159
undoing a delete operation, 227
using a DataReader instead of,

127–129
using with the DataTable, 157–196

DataSet and DataTable structure,
understanding, 159–168

DataSet Collections, 161
DataSet data, importing from an XML

document, 316–319
DataSet Fill() method, extracting rows

from the data source with, 106–107
DataSet Merge() method, merging

DataSets with, 281–282
DataSet objects

addressing data in, 163
ADO.NET, 13, 22–26
constructing directly from FOR XML

queries, 82
fetching and saving as XML, 321–323
hierarchy, 25
using for ADO.NET data access, 24

DataSet objects and XML, understanding,
316–325

DataSet rows, deleting from a DataTable,
226–227

DataSets
accessing data in, 194–195
addressing the Value property with

typed, 224
addressing the Value property with

untyped, 223–224
binding to, 195–196
building DataTable objects within,

177–179
case sensitivity of, 186
constructing and saving an existing

schema, 164
constructing strongly typed, 163–165
creating from ADOc Recordset objects,

19
creating updatable, 239–240
deleting a specific row from, 227
filtering, sorting, and finding data in,

197–219
generating using the XSD.exe

command-line tool, 164–165
implementing typed, 161
manually assembling strongly typed,

165–167
merging and transporting, 281–282
merging XML data with, 321
moving DataTable objects from one to

another, 178
passing updated back to a Web

Service, 336–337
typed vs. untyped, 161–168
using untyped, 167–168

DataSet XML methods, 322
DataSource property, ADO.NET, 54
Data Source, Server, Addr, Address, or

Network Address, Connection string
argument, 48

DataTable
adding new DataRows to in ADO.NET,

224–225
vs. the ADOc Recordset, 157–196
creating with its associated Rows

collection, 189–190
using with the DataSet, 157–196

DataTable.AcceptChanges() method,
effect on DataRowVersion, 237

DataTableCollection, 161
DataTable.Constraint, how it is used, 286

Index

349

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 349

DataTable objects
in ADO.NET, 13
building within a DataSet, 177–179
comparing to ADOc Recordsets,

169–172
contents of, 22–23
moving from one DataSet to another,

178
DataTableRow_Changed event handler,

coding example, 230–232
DataTables

accessing data in, 181–194
building, 172–181
building with the constructor, 173
creating from multiple resultsets,

178–179
the fundamentals of changing data in,

223–238
populating a DataSet with several at

once, 178–179
undoing a delete operation, 227
using the DataAdapter Fill() method to

build, 173–177
DataTable Select() method

additional DataView advantages over,
205

example code for using to filter and
sort, 199–203

filtering and sorting with, 198–204
filtering, sorting, and finding data

with, 197–219
sorting with, 199–203

DataTable.Update, effect on
DataRowVersion, 237

DataType properties, referencing in your
code, 185–186

DataType settings, supported by
DataColumn object, 183–186

data validation
building into the DataSet, 229
coding event handlers, 229–233

data versions
code for showing the available,

269–270
determining, 234–237

DataView
advantages vs. DataTable Select()

method, 205
sorting, 206–207
updating, 210

DataView filter properties, setting,
206–210

DataViewManager object
ADO.NET, 204–205
working with, 211–212

DataView object
adding to a form or component, 205
filtering and sorting with, 204–210
Find() method, 216–218
using the sort(), filter(), and find()

methods, 197–219
DataView object Find() method

passing arguments to, 217–218
passing multiple arguments to, 218

DataView objects, creating with Visual
Studio, 210

Da Vinci Tools, new version available in
the .NET IDE, 81

DBConcurrencyException, reason
thrown, 306

DBConcurrencyException trap, coding,
279–280

DDL query, example of, 242–243
declarations, using constructor methods

in, 43–44
DefaultView, example code for using,

207–210
DefaultViewManager property, creating

custom setting for DataTables with,
212

DeleteCommand
generated by the DACW, 257–258
generating with the CommandBuilder,

245
DeleteCommand object, ADO.NET

DataAdapter, 80
DeletedRowInaccessibleException,

reason thrown, 306
Delete() method, marking a selected row

for deletion with, 226–227
DeleteRule, ForeignKeyConstraint, 290
DELETE stored procedure, generated by

the DACW, 253
Depth property, of a DataReader, 147
DeriveParameters() method, using to

construct the Parameters collection,
248–249

DiffGram
“before” block, 320
function of, 319–321
InfoRequest block, 320
valid settings for hasChanges tag, 321
XML header, 319
XmlWriteMode option argument, 323

.disco XML discovery file, from creation
of example Web Service, 326–327

Dispose() method, Connection object, 55
dot (.) notation, using when addressing

specific classes in a namespace, 21

Index

350

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 350

drag-and-drop (D&D)
reason not to use for ADO.NET data

objects, 56–57
using with the .NET IDE, 102–105

Driver property, ADO.NET, 54
DSN=(Odbc only), Connection string

argument, 48
DuplicateNameException, reason

thrown, 307

E
EnforceConstraints property, postponing

constraint enforcement with, 228
Enlist (SqlClient only)

Connection string argument, 48
keyword for SqlClient.SqlConnection

object, 73
Environment.TickCount() method,

capturing tick values with, 137–140
Equals() method, inherited from parent

object, 148
error handlers, creating custom, 341–342
error handling, types supported by .NET

Framework, 301–302
error handling strategies, strategies when

executing the Update() method,
273–276

error management, strategies for in
ADO.NET, 301–311

error messages, displaying, 311
EvaluateException, reason thrown, 307
event handlers, coding to validate your

data as it is entered, 229–233
Exception class properties, 308
exception handling

trapping specific vs. general
exceptions, 306–310

for Update() methods, 277–280
ExecuteNoQuery() method, purpose of,

133
ExecuteReader CommandBehavior

arguments, 134–135
ExecuteReader() method, purpose of, 133
ExecuteScalar() method

purpose of, 133
using, 135–136

ExecuteXMLReader, purpose of, 133
ExtendedProperties, 161
Extensible Schema Definition (XSD),

11–12

F
FieldCount property, of a DataReader,

147
File name= (OleDb only), Connection

string argument, 48

Fill() method
extracting rows from the data source

with, 106–107
importing an ADOc Recordset into

ADO.NET with, 168–172
using to name a table, 176
using to populate a DataSet with

DataTables, 178–179
FillSchema() method

rules for configuring PrimaryKey and
Constraints properties, 180–181

using, 294–295
using to retrieve DDL, 180–181

FilterExpression argument, compared to
an SQL WHERE clause, 198–199

filtering, on RowState and version, 204
filter properties, setting for DataView

object, 206–210
Find() method, for DataView object,

216–218
Find() methods, using, 212–219
ForeignKeyConstraint

DeleteRule actions, 290–291
rule properties for, 290

ForeignKeyConstraint objects, creating,
293–294

foreign key constraints
how ADO.NET implements them, 286
implementing, 289–291

G
Gacutil.exe tool, 60
garbage collection, how .NET handles it,

55
garbage collector, managing the

ADO.NET, 68–69
Generate DataSet dialog, 99–100
Generate the SQL statements dialog,

Advanced Options ... button on, 89
GetBoolean() method, 149
GetByte() method, 149
GetChanges() method, using to manage

modified rows, 272
GetChar() method, 149
GetChars() method, 149
GetData() method, 149
GetDataTypeName() method, 149
GetDateTime() method, 149
GetDecimal() method, 149
GetDouble() method, 149
GetFieldType() method, 149
GetFloat() method, 150
GetGuid() method, 150
GetHashCode() method, inherited from

parent object, 148
GetInt16() method, 150

Index

351

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 351

GetInt32() method, 150
GetInt64() method, 150
GetLifetimeService() method, inherited

from MarshalByRefObject, 148
GetName() method, for DataReader, 148
GetOrdinal() method, for DataReader,

148
GetSchemaTable() method, for

DataReader, 148
GetSqlBinary() method, 150
GetSqlBoolean() method, 150
GetSqlByte() method, 150
GetSqlDateTime() method, 150
GetSqlDecimal() method, 150
GetSqlDouble() method, 150
GetSqlGuid() method, 150
GetSqlInt16() method, 150
GetSqlInt32() method, 151
GetSqlInt64() method, 151
GetSqlMoney() method, 151
GetSqlSingle() method, 151
GetSqlString() method, 151
GetSqlValue() method, 151
GetSqlValues() method, 151
GetString() method, 150
GetType() method, inherited from parent

object, 148
GetUpperBound() method, nuances of,

199
GetValue() method, 150
GetValues() method, 150

using to fetch a row, 154–155
GetXml, DataSet XML() method, 322
GetXml() method, writing a DataSet to a

string with, 322
GetXmlSchema, DataSet XML() method,

322
GetXmlSchema() method, extracting the

XML (XSD) schema with, 322–323
GetXXCommand() methods, using, 243

H
HasVersion property, determining

presence of data version values with,
234–237

Hejlsberg, Anders, C# crafted by, 3
HelpLink Exception class property, 308

I
IDE. See .NET IDE
identity values, retrieving, 258–261
IgnoreSchema option argument,

XmlWriteMode, 323
Indexer property, using to access

DataRow object data values, 188–190

inference rules, InferXmlSchema()
method, 325

InferXmlSchema, DataSet XML() method,
322

InferXmlSchema() method, 324–325
InfoMessage event, fired on the

Connection object, 56
InfoRequest block, for DiffGram, 320
Initial Catalog (OleDb and SqlClient

only), Connection string argument,
48

InitializeComponent() method, using,
56–57

InitializeLifetimeService() method,
inherited from MarshalByRefObject,
149

InnerException Exception class property,
308

InRowChangingEventException, reason
thrown, 307

InsertCommand
generated by the DACW, 255–256
generating with the CommandBuilder,

243–244
InsertCommand object, ADO.NET

DataAdapter, 80
INSERT stored procedure, generated by

the DACW, 252
Integrated Security or

Trusted_Connection, Connection
string argument, 48

IntelliSense. See Visual Studio
IntelliSense

InvalidExpressionException, reason
thrown, 307

IsClosed property, of a DataReader, 147
IsDBNull() method, for DataReader, 148
IsNull() method, using with the DataRow

or DataColumn objects, 192–193
Isolation Level (OleDb only), Connection

string argument, 49
ItemArray() method, using, 190–191
ItemArray property, assigning data values

to a row with, 191
Item property

of a DataReader, 147
using to access DataRow object data

values, 188–190

J
just-in-time connections, examples of,

107–108

K
KeyInfo, ExecuteReader

CommandBehavior argument, 134

Index

352

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 352

M
managed providers. See .NET Data

Provider; ADO.NET .NET Data
Providers

Master Detail Drill-Down sample, 300
information request example, 337

Max Pool Size (SqlClient only)
Connection string argument, 49
keyword for SqlClient.SqlConnection

object, 73
MDAC SDK, installing, 45
merging DataSets, 281–282
Message Exception class property, 308
Microsoft.Data.Odbc, establishing a

connection with, 39
Microsoft Jet ODBC Driver, compatible

with Odbc .NET Data Provider, 60
Microsoft ODBC Driver for Oracle,

compatible with Odbc .NET Data
Provider, 60

Microsoft SQL ODBC Driver, compatible
with Odbc .NET Data Provider, 60

Min Pool Size (SqlClient only)
Connection string argument, 49
keyword for SqlClient.SqlConnection

object, 74
MissingPrimaryKeyException, reason

thrown, 307
multiple-resultset queries, managing,

129–132
multiple-table queries, managing,

116–121

N
name arguments, list of valid, 48–50
.NET. See also ADO.NET

handling of garbage collection by, 55
.NET applications, how COM Interop

affects them, 19–20
.NET Cache object, 110
.NET constraints, understanding,

283–285
.NET constructors, initializing variables

with, 108–110
.NET Data Providers

ADO.NET, 15–20
choosing the right one, 41–42
COM-based ADO as, 75–77
currently shipped with ADO.NET, 15
establishing connections using

different, 39–77
use of XML by, 41
values passed for setting options,

42–43
.NET Framework system, what the

changes mean to programmers, 5–6

.NET IDE
creating a DataSet with, 98–101
using drag-and-drop with, 102–105
using to get connected, 66–68

.NET object reference performance,
comparing, 137–140

.NET Server Explorer. See Server Explorer

.NET Server Explorer window. See Server
Explorer window

Network Library or Net
Connection string argument, 49
default setting for, 51

New Project dialog, Visual Studio .NET,
328

NextResult() method, for DataReader, 148
NoNullAllowedException, reason thrown,

307
null constraints, how ADO.NET

implements them, 285
NULL values, working with, 192–193

O
object cleanup, how .NET handles, 55
OdbcCommand object, supported by

Odbc .NET Data Provider, 61
OdbcConnection instance object

variable, declaring, 63
OdbcConnection object

managing, 61–64
supported by Odbc .NET Data

Provider, 61
Odbc connection pooling, debugging the

connection pool, 75
ODBC connection strings, examples of

valid, 64
OdbcDataAdapter object, supported by

Odbc .NET Data Provider, 61
OdbcDataReader object, supported by

Odbc .NET Data Provider, 61
ODBC Driver Manager utility, tracing and

connection pooling handled by, 60
ODBC drivers, compatible with the Odbc

.NET Data Provider, 60
Odbc .NET Data Provider

connecting with, 59–64
downloading, 2
establishing a connection with, 39
installing, 40
objects supported by, 61
ODBC drivers compatible with, 60
use of Platform Invoke (PI) by, 59
using, 60–61
Web site address for downloading, 39

OdbcPermissionAttribute object,
verifying adequate code permissions
with, 62

Index

353

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 353

OdbcPermission object, creating security
demands with, 62

OleDb connection pooling, debugging
the connection pool, 75

OleDbDataAdapter Fill() method, using
to import an ADOc Recordset, 168

OleDbException class, 310
OleDb .NET Data Provider, establishing a

connection with, 39
“O’Malley” rule, using, 199
one-to-many relationships, database

diagram of, 292
Open() method, Connection object, 55
optimistic locking strategies

importance of designing systems to
support, 222

OUTPUT parameters
capturing for stored procedures,

123–127
creating, 126

P
Packet Size, Connection string argument,

49
PacketSize property, ADO.NET, 54
Parameter object constructors

reviewing, 112–114
using a datatype enumeration as

alternative, 113–114
Parameter object properties, constructor

for defining in a single line of code,
114

parameter queries
introduction to ADO.NET, 82–84
managing, 111–115

parameters
setting the correct version for, 237–238
using the Add() method to construct,

115
Parameters collection

constructing using the
DeriveParameters() method,
248–249

construction of, 111–112
parent/child primary key/foreign key

relationships, understanding,
292–294

Password, or Pwd, Connection string
argument, 49

performance counters, monitoring the
connection pool with, 74

Persist Security Info, Connection string
argument, 49

pessimistic locking, 221–222
using in your ADO.NET application,

249

Platform Invoke (PI), use of by Odbc .NET
Data Provider, 59

Pooling (SqlClient only)
Connection string argument, 50
keyword for SqlClient.SqlConnection

object, 74
primary key constraints, how ADO.NET

implements them, 285
PrimaryKey property, setting for Rows

collection Find() method, 213–214
Prompt (OleDb only), Connection string

argument, 50
Provider (OleDb only), Connection string

argument, 50
Provider property, ADO.NET, 54

Q
queries

constructing SQL for, 85–98
executing ad hoc to perform updates,

280
executing traditional, 105–110
managing for stored procedures,

121–129
managing multiple resultset, 129–132
managing multiple table, 116–121
testing for results, 191–194
using ADO.NET to execute ad hoc,

84–85
Query Analyzer, using to deal with

multiple resultsets, 119–120
Query Builder

building SQL text with in DACW, 89–93
improvements in Visual Studio .NET

IDE, 86
Query Builder window, opening in Visual

Studio, 262

R
Read() method

for DataReader, 148
importance of using with DataReader

objects, 146
ReadOnlyException, reason thrown, 307
ReadXml(), DataSet XML method, 322
ReadXML() method

of DataSet object, 316–319
XmlReadMode arguments, 317–319

ReadXmlSchema() method
DataSet XML, 322
extracting schema from an XML

document with, 324
RecordsAffected property, of a

DataReader, 147

Index

354

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 354

RecordsAffected value, capturing for
multiple-resultsets or stored
procedures, 132

Recordset vs. the DataReader processing
loop, 146

referential integrity constraints,
understanding, 283–285

RejectChanges() method, undoing a
delete operation with, 227

RemoveAt() method, deleting DataSet
rows with, 226

Resultset columns, binding to, 136–140
resultsets, construction of hierarchical, 90
Return Value, capturing for stored

procedures, 123–127
RO/FO (read-only/forward only), 33, 36
row counts, subroutine for showing,

270–272
RowError() method, using to set an error

string, 193
RowNotInTableException, reason

thrown, 307
Rows collection, testing the Count

property of, 192
Rows collection Contains() method,

using, 219
Rows collection Find() method, 213–216

setting the PrimaryKey property for,
213–214

Rows.Find() method, executing, 214–216
Rows.Remove() method, deleting a

specific Row object with, 226
RowStateFilter property, supported by

the DataView, 206
RowState property, checking the

RowState with, 233

S
Sceppa, David, 254, 283
SchemaOnly, ExecuteReader

CommandBehavior argument, 134
security issues, when working with

connections, 69–71
SelectCommand

creating for use in a DataAdapter,
63–64

executing individual, 116–118
generated by the DACW, 254
setting up in ADO.NET, 121–123

SelectCommand objects
ADO.NET DataAdapter, 80
executing multiple resultset, 118–121

SELECT-generated rowsets, capturing in
ADO.NET, 129–132

Select() method, filtering and sorting
with, 198–204

SELECT query, soliciting the SQL text for
in DACW, 89–93

SELECT stored procedure, generated by
the DACW, 251

SequentialAccess, ExecuteReader
CommandBehavior argument, 134

Server Explorer
adding a connection to, 66–68
extracting a known-working

ConnectionString from, 67–68
Server Explorer window, opening, 66–67
ServerVersion property, ADO.NET, 54
SetColumnError() method, saving an

error string associated with a specific
column with, 193–194

SingleResult, ExecuteReader
CommandBehavior argument, 135

SingleRow, ExecuteReader
CommandBehavior argument, 135

SOAP and ADO.NET, 342
Solution Explorer

showing a new WinForm application,
30

Update Web Reference drop-down in,
335

sorting
in ascending or descending order, 206
with the DataTable Select() method,

199–203
SourceColumn property, setting for

Parameter objects, 238
Source Exception class property, 308
SourceVersion property, setting for

Parameter objects, 238
SQL (Structured Query Language),

constructing for your queries, 85–98
SqlClient, ConnectionString keywords

for, 73–74
SqlClient connection pooling, 71–72
SqlClient .NET Data Provider

connecting with, 39, 51–53
lack of ? parameter marker support by,

85–86
speed of vs. OleDb or Odbc .NET Data

Providers, 52
SqlClient.SqlConnection object,

ConnectionString keywords for,
73–74

SqlCommand object properties, code for
setting up, 107–108

SqlConnection, code used to set up,
102–104

SqlConnection.State property, verifying
closure of, 45

SqlDataAdapter, code used to set up,
102–104

Index

355

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 355

SqlDataAdapter1 Properties page,
changing the names and properties
of a DataAdapter in, 97–98

SqlError class, severity levels and their
causes, 310

SqlException class, 308–309
SqlException namespace, properties

exposed in, 308–309
SqlParameter constructors

arguments passed to by DACW-
generated code, 255

using, 112–114
SQL punctuation, dealing with

imbedded, 247–248
SqlSelectCommand, code used to set up,

102–104
SQL Server, Tabular Data Stream (TDS)

language used by, 51–53
SQL Server 2000 instance (SS2K),

notation used to address, 65
SQL statements, using with the DACW,

89–93
SqlUpdateCommand, code used to set

up, 102–104
SQL WHERE clause, compared to a

FilterExpression argument, 198–199
SQLXML, release of, 314
StackTrace Exception class property, 308
State property, ADO.NET, 54
stored procedure queries, managing,

121–129
stored procedures

capturing the Return Value and
OUTPUT parameters for, 123–127

executing, 126–127
generating with the DACW, 93–95
previewing the command scripts, 95
selecting for SELECT and action

queries, 96
using existing with the DACW, 95–98
using with the DACW, 93

strongly typed DataSets
constructing, 163–165
manually assembling, 165–167

StrongTypingException, reason thrown,
307

structured exception handling, 301–302
SysntaxErrorException, reason thrown,

307
System.Data.DataSet object, ADO.NET,

22–26
System.Data exceptions, thrown by

ADO.NET, 306–307
System.Data namespace, 21–36

exploded view of, 27–28
the layout of, 26–29
selected members of, 28–29

System.Data objects
exploded view of, 28
fundamental in implementation of

ADO.NET applications, 16–17
instantiating, 30–31

System.Data.OleDb
currently shipping with ADO.NET, 15
establishing a connection with, 39

System.Data.SqlClient
currently shipping with ADO.NET, 15
establishing a connection with, 39
introducing, 51–53

T
Tabular Data Stream (TDS)

establishing a connection with, 39
low-level language used by SQL Server,

51–53
TargetSite Exception class property, 308
ToString() method, inherited from parent

object, 149
Transaction object, creating from

ADO.NET, 59
transactions

managing from your ADO.NET
application, 59

support for, 73
transmogrify, defined, 313
Trusted_Connection or Integrated

Security, Connection string
argument, 48

try/catch blocks
effect of cradling declaration

statements in, 109–110
variable scope in, 305

try/catch exception handlers
nesting, 305–306
standard exceptions, 303–304
syntax, 303
understanding, 303–306
use of in ADO.NET, 301–311

try/catch scope, exceptions that fire
outside of, 305

TypedDataSetGeneratorException,
reason thrown, 307

typed DataSets
built-in type checking, 162
implementing, 161
vs. untyped DataSets, 161–168

U
unique constraints

how ADO.NET implements them, 285
implementing, 287–289

unstructured exception handling, 301
untyped DataSets, using, 167–168

Index

356

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 356

UpdateCommand
generated by the DACW, 256–257
generating with the CommandBuilder,

244–245
understanding the plan, 246–247

UpdateCommand object, ADO.NET
DataAdapter, 80

Update exceptions, 278
Update() methods

data row changes fired by, 232–233
error handling strategies, 273–276
exception handling, 277–280
typical errors encountered, 278–279
understanding, 262–264
what happens when they are

executed, 250
what to do when they fail, 276

UpdateRule, ForeignKeyConstraint, 290
UPDATE stored procedure, generated by

the DACW, 252
update strategies, performance of,

264–266
UserID or UID, Connection string

argument, 50

V
Value property

addressing with typed DataSets, 224
addressing with untyped DataSets,

223–224
variables, using .NET constructors to

initialize, 108–110
VB .NET, development of, 3–4
VersionNotFoundException, reason

thrown, 307
Visual Basic .NET, accessing ADOc

objects from, 77
Visual Studio

creating DataView objects with, 210
opening a Query Builder window in,

262
using to create Command objects,

261–262
using to generate action queries,

251–258
Visual Studio IntelliSense, exposing

DataSet members, 162
Visual Studio .NET

New Project dialog, 328
test harness HTML page, 331

Visual Studio .NET Toolbox, Data tab, 87
Visual Studio’s CommandBuilder vs.

ADO.NET .NET Data Providers’,
253–254

VSDisco discovery file, example of
typical, 327

W
Web Reference, updating, 334–336
Web Service

AuthorByISBN parameter prompt, 332
BiblioServiceException class, 328
code for changing the namespace, 329
code to post changes to the database,

338–341
creating as an XML data source,

326–336
creating custom error handlers for,

341–342
debugging, 336
functions to expose AuthorByISBN()

and TitlesByAuthor() methods,
329–330

passing an updated DataSet back to,
336–337

testing, 331–336
Web site address

for downloading Odbc .NET Data
Provider, 2, 39

for information about SQLXML, 314
Windows 2000 Performance Monitor,

accessing performance counters in,
74

Workstation ID, Connection string
argument, 50

WorkstationID property, ADO.NET, 54
WriteSchema option argument,

XmlWriteMode, 323
WriteXml() method, DataSet XML, 322
WriteXmlSchema() method

DataSet XML, 322
exporting a DataSet objects schema

with, 325

X
XML (Extensible Markup Language)

and ADO.NET, 313–342
a brief look at, 11–12
fetching and saving DataSet objects

as, 321–323
loading schema from, 324–325
performing bulk INSERTs with,

265–266
support in ADO.NET, 314–315
use of by ADO.NET and .NET Data

Providers, 41
XML and DataSet objects, understanding,

316–325
XML data, merging with your DataSets,

321
XML DataSet, browser rendered for Web

Service, 333

Index

357

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 357

XML data source, creating a Web Service
as, 326–336

XML documents, importing DataSet data
from, 316–319

XML formats, standardizing, 315–316
XML header, for DiffGram, 319
XmlReadMode arguments, for

ReadXML() method, 317–319
XmlReadMode Auto argument, function

of, 317
XmlReadMode DiffGram option, function

of, 318
XmlReadMode Fragments option,

function of, 318–319
XmlReadMode IgnoreSchema option,

function of, 318
XmlReadMode InferSchema option,

function of, 318
XmlReadMode ReadSchema option,

function of, 318
XML schema, persisting, 325
XmlWriteMode option arguments, 323
XSD. See Extensible Schema Definition

(XSD)
XSD.exe, creating a XSD-specific DataSet

class with, 164
XSD schemas, automatic generation of by

Visual Studio .NET, 12

Index

358

*120ch12_Index_cmp1.qpx 3/13/02 6:12 PM Page 358

