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Atomic Collisions and
Backscattering Spectrometry

2.1 Introduction

The model of the atom is that of a cloud of electrons surrounding a positively
charged central core—the nucleus—that contains Z protons and A − Z neutrons,
where Z is the atomic number and A the mass number. Single-collision, large-angle
scattering of alpha particles by the positively charged nucleus not only established
this model but also forms the basis for one modern analytical technique, Ruther-
ford backscattering spectrometry. In this chapter, we will develop the physical con-
cepts underlying Coulomb scattering of a fast light ion by a more massive stationary
atom.

Of all the analytical techniques, Rutherford backscattering spectrometry is perhaps
the easiest to understand and to apply because it is based on classical scattering in a
central-force field. Aside from the accelerator, which provides a collimated beam of
MeV particles (usually 4He+ ions), the instrumentation is simple (Fig. 2.1a). Semicon-
ductor nuclear particle detectors are used that have an output voltage pulse proportional
to the energy of the particles scattered from the sample into the detector. The technique
is also the most quantitative, as MeV He ions undergo close-impact scattering colli-
sions that are governed by the well-known Coulomb repulsion between the positively
charged nuclei of the projectile and target atom. The kinematics of the collision and
the scattering cross section are independent of chemical bonding, and hence backscat-
tering measurements are insensitive to electronic configuration or chemical bonding
with the target. To obtain information on the electronic configuration, one must employ
analytical techniques such as photoelectron spectroscopy that rely on transitions in the
electron shells.

In this chapter, we treat scattering between two positively charged bodies of atomic
numbers Z1 and Z2. The convention is to use the subscript 1 to denote the incident
particle and the subscript 2 to denote the target atom. We first consider energy transfers
during collisions, as they provide the identity of the target atom. Then we calculate
the scattering cross section, which is the basis of the quantitative aspect of Rutherford
backscattering. Here we are concerned with scattering from atoms on the sample surface
or from thin layers. In Chapter 3, we discuss depth profiles.
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Figure 2.1. Nuclear particle detector with respect to scattering angle courtesy of MeV He+

electron beam.

2.2 Kinematics of Elastic Collisions

In Rutherford backscattering spectrometry, monoenergetic particles in the incident
beam collide with target atoms and are scattered backwards into the detector-analysis
system, which measures the energies of the particles. In the collision, energy is trans-
ferred from the moving particle to the stationary target atom; the reduction in energy of
the scattered particle depends on the masses of incident and target atoms and provides
the signature of the target atoms.

The energy transfers or kinematics in elastic collisions between two isolated par-
ticles can be solved fully by applying the principles of conservation of energy and
momentum. For an incident energetic particle of mass M1, the values of the veloc-
ity and energy are v and E0(=1/2 M1v

2), while the target atom of mass M2 is at rest.
After the collision, the values of the velocities v1 and v2 and energies E1 and E2

of the projectile and target atoms are determined by the scattering angle θ and recoil
angle φ. The notation and geometry for the laboratory system of coordinates are given in
Fig. 2.1b.

Conservation of energy and conservation of momentum parallel and perpendicular
to the direction of incidence are expressed by the equations

1

2
M1v

2 = 1

2
M1v

2
1 + 1

2
M2v

2
2, (2.1)

M1v = M1v1 cos θ + M2v2 cos φ, (2.2)

0 = M1v1 sin θ − M2v2 sin φ. (2.3)
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Figure 2.2. Representation of the kinematic
factor KM2 (Eq. 2.5) for scattering angle θ =
170◦ as a function of the target mass M2 for
1H,4 He+,12 C,20 Ne, and 40Ar.

Eliminating φ first and then v2, one finds the ratio of particle velocities:

v1

v
=
[±(M2

2 − M2
1 sin2 θ )1/2 + M1 cos θ

M2 + M1

]
. (2.4)

The ratio of the projectile energies for M1 < M2, where the plus sign holds, is

E1

E0
=
[

(M2
2 − M2

1 sin2 θ )1/2 + M1 cos θ

M2 + M1

]2

. (2.5)

The energy ratio, called the kinematic factor K = E1/E0, shows that the energy
after scattering is determined only by the masses of the particle and target atom and the
scattering angle. A subscript is usually added to K, i.e., KM2 , to indicate the target atom
mass. Tabulations of K values for different M2 and θ values are given in Appendix 1
and are shown in Fig. 2.2 for θ = 170◦. Such tables and figures are used routinely in
the design of backscattering experiments. A summary of scattering relations is given in
Table 3.1.

For direct backscattering through 180◦, the energy ratio has its lowest value given by

E1

E0
=
(

M2 − M1

M2 + M1

)2

(2.6a)

and at 90◦ given by
E1

E0
= M2 − M1

M2 + M1
. (2.6b)

In collisions where M1 = M2, the incident particle is at rest after the collision, with
all the energy transferred to the target atom, a feature well known in billiards. For
θ = 180◦, the energy E2 transferred to the target atom has its maximum value given by

E2

E0
= 4M1 M2

(M1 + M2)2
, (2.7)

with the general relation given by

E2

E0
= 4M1 M2

(M1 + M2)2
cos2 φ. (2.7′)
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In practice, when a target contains two types of atoms that differ in their masses
by a small amount �M2, the experimental geometry is adjusted to produce as large a
change �E1 as possible in the measured energy E1 of the projectile after the collision.
A change of �M2 (for fixed M1 < M2) gives the largest change of K when θ = 180◦.
Thus θ = 180◦ is the preferred location for the detector (θ ∼= 170◦ in practice because
of detector size), an experimental arrangement that has given the method its name of
backscattering spectrometry.

The ability to distinguish between two types of target atoms that differ in their
masses by a small amount �M2 is determined by the ability of the experimental energy
measurement system to resolve small differences �E1 in the energies of backscattered
particles. Most MeV 4He+ backscattering apparatuses use a surface-barrier solid-state
nuclear-particle detector for measurement of the energy spectrum of the backscattered
particles. As shown in Fig. 2.3, the nuclear particle detector operates by the collection
of the hole–electron pairs created by the incident particle in the depletion region of
the reverse-biased Schottky barrier diode. The statistical fluctuations in the number of
electron–hole pairs produce a spread in the output signal resulting in a finite resolution.
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Figure 2.3. Schematic diagram of the operation of a gold surface barrier nuclear particle detector.
The upper portion of the figure shows a cutaway sketch of silicon with gold film mounted in
the detector housing. The lower portion shows an alpha particle, the He+ ion, forming holes
and electrons over the penetration path. The energy-band diagram of a reverse biased detector
(positive polarity on n-type silicon) shows the electrons and holes swept apart by the high electric
field within the depletion region.
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Energy resolution values of 10–20 keV, full width at half maximum (FWHM), for
MeV 4He+ ions can be obtained with conventional electronic systems. For example,
backscattering analysis with 2.0 MeV 4He+ particles can resolve isotopes up to about
mass 40 (the chlorine isotopes, for example). Around target masses close to 200, the
mass resolution is about 20, which means that one cannot distinguish among atoms
between 181Ta and 201Hg.

In backscattering measurements, the signals from the semiconductor detector elec-
tronic system are in the form of voltage pulses. The heights of the pulses are proportional
to the incident energy of the particles. The pulse height analyzer stores pulses of a given
height in a given voltage bin or channel (hence the alternate description, multichannel
analyzer). The channel numbers are calibrated in terms of the pulse height, and hence
there is a direct relationship between channel number and energy.

2.3 Rutherford Backscattering Spectrometry

In backscattering spectrometry, the mass differences of different elements and isotopes
can be distinguished. Figure 2.4 shows a backscattering spectrum from a sample with
approximately one monolayer of 63,65Cu, 107,109Ag, and 197Au. The various elements
are well separated in the spectrum and easily identified. Absolute coverages can be
determined from knowledge of the absolute cross section discussed in the following
section. The spectrum is an illustration of the fact that heavy elements on a light
substrate can be investigated at coverages well below a monolayer.

The limits of the mass resolution are indicated by the peak separation of the various
isotopes. In Fig. 2.4, the different isotopic masses of 63Cu and 65Cu, which have a
natural abundance of 69% and 31%, respectively, have values of the energy ratio, or
kinematic factor K, of 0.777 and 0.783 for θ = 170◦ and incident 4He+ ions (M1 = 4).
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Figure 2.4. Backscattering spectrum for θ = 170◦ and 2.5 MeV 4He+ ions incident on a target
with approximately one monolayer coverage of Cu, Ag, and Au. The spectrum is displayed as
raw data from a multichannel analyzer, i.e., in counts/channel and channel number.
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For incident energies of 2.5 MeV, the energy difference of particles from the two masses
is 17 keV, an energy value close to the energy resolution (FWHM = 14.8 keV) of the
semiconductor particle-detector system. Consequently, the signals from the two iso-
topes overlap to produce the peak and shoulder shown in the figure. Particles scattered
from the two Ag isotopes, 107Ag and 109Ag, have too small an energy difference, 6 keV,
and hence the signal from Ag appears as a single peak.

2.4 Scattering Cross Section and Impact Parameter

The identity of target atoms is established by the energy of the scattered particle after
an elastic collision. The number Ns of target atoms per unit area is determined by the
probability of a collision between the incident particles and target atoms as measured
by the total number QD of detected particles for a given number Q of particles incident
on the target in the geometry shown in Fig. 2.5. The connection between the number
of target atoms Ns and detected particles is given by the scattering cross section. For a
thin target of thickness t with N atoms/cm3, Ns = Nt .

The differential scattering cross section, dσ/d	, of a target atom for scattering an
incident particle through an angle θ into a differential solid angle d	 centered about θ

is given by

dσ(θ )

d	
d	 · Ns = Number of particles scattered into d	

Total number of incident particles
.

In backscattering spectrometry, the detector solid angle 	 is small (10−2 steradian
or less), so that one defines an average differential scattering cross section σ (θ ),

σ (θ ) = 1

	

∫
Ω

dσ

d	
· d	, (2.8)

where σ (θ ) is usually called the scattering cross section. For a small detector of area
A, at distance l from the target, the solid angle is given by A/ l2 in steradians. For the
geometry of Fig. 2.5, the number Ns of target atoms/cm2 is related to the yield Y or the
number Q D of detected particles (in an ideal, 100%-efficient detector that subtends a
solid angle 	) by

Y = Q D = σ (θ )	QNs, (2.9)

where Q is the total number of incident particles in the beam. The value of Q is

TARGET:  NS ATOMS/cm2

INCIDENT
PARTICLES

SCATTERED
PARTICLES

DETECTOR
Ω

SCATTERING ANGLE
θ

Figure 2.5. Simplified layout of a scatter-
ing experiment to demonstrate the concept of
the differential scattering cross section. Only
primary particles that are scattered within the
solid angle d	 spanned by the detector are
counted.
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Figure 2.6. Schematic illustrating the number of particles between b and b + db being de-
flected into an angular region 2π sin θ dθ . The cross section is, by definition, the proportionality
constant; 2πb db = −σ (θ )2π sin θ dθ .

determined by the time integration of the current of charged particles incident on the
target. From Eq. 2.9, one can also note that the name cross section is appropriate in
that σ (θ ) has the dimensions of an area.

The scattering cross section can be calculated from the force that acts during the
collision between the projectile and target atom. For most cases in backscattering
spectrometry, the distance of closest approach during the collision is well within the
electron orbit, so the force can be described as an unscreened Coulomb repulsion of
two positively charged nuclei, with charge given by the atomic numbers Z1 and Z2 of
the projectile and target atoms. We derive this unscreened scattering cross section in
Section 2.5 and treat the small correction due to electron screening in Section 2.7.

The deflection of the particles in a one-body formulation is treated as the scattering of
particles by a center of force in which the kinetic energy of the particle is conserved. As
shown in Fig. 2.6, we can define the impact parameter b as the perpendicular distance
between the incident particle path and the parallel line through the target nucleus.
Particles incident with impact parameters between b and b + db will be scattered
through angles between θ and θ + dθ . With central forces, there must be complete
symmetry around the axis of the beam so that

2πb db = −σ (θ ) 2π sin θ dθ. (2.10)

In this case, the scattering cross section σ (θ ) relates the initial uniform distribution
of impact parameters to the outgoing angular distribution. The minus sign indicates
that an increase in the impact parameter results in less force on the particle so that there
is a decrease in the scattering angle.

2.5 Central Force Scattering

The scattering cross section for central force scattering can be calculated for small
deflections from the impulse imparted to the particle as it passes the target atom. As
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Figure 2.7. Rutherford scattering geometry. The nucleus is assumed to be a point charge at the
origin O. At any distance r, the particle experiences a repulsive force. The particle travels along a
hyperbolic path that is initially parallel to line OA a distance b from it and finally parallel to line
OB, which makes an angle θ with OA. The scattering angle θ can be related to impact parameter
b by classical mechanics.

the particle with charge Z1e approaches the target atom, charge Z2e, it will experience
a repulsive force that will cause its trajectory to deviate from the incident straight line
path (Fig. 2.7). The value of the Coulomb force F at a distance r is given by

F = Z1 Z2e2

r2
. (2.11)

Let p1 and p2 be the initial and final momentum vectors of the particle. From Fig. 2.8,
it is evident that the total change in momentum �p = p2 − p1 is along the z′ axis. In
this calculation, the magnitude of the momentum does not change. From the isosceles
triangle formed by p1, p2, and �p shown in Fig. 2.8, we have

1
2�p

M1v
= sin

θ

2

or

�p = 2M1v sin
θ

2
. (2.12)

θ θ1
2

p1

p2 p

p1 M1v = 

p2 M1v = 

z′

Figure 2.8. Momentum diagram for Ruther-
ford scattering. Note that |p1| = |p2|, i.e., for
elastic scattering the energy and the speed of
the projectile are the same before and after the
collision.



20 2. Atomic Collisions and Backscattering Spectrometry

We now write Newton’s law for the particle, F = dp/dt , or

dp = F dt.

The force F is given by Coulomb’s law and is in the radial direction. Taking com-
ponents along the z′ direction, and integrating to obtain �p, we have

�p =
∫

(dp)z′ =
∫

F cos φ dt =
∫

F cos φ
dt

dφ
dφ, (2.13)

where we have changed the variable of integration from t to the angle φ. We can
relate dt/dφ to the angular momentum of the particle about the origin. Since the
force is central (i.e., acts along the line joining the particle and the nucleus at the
origin), there is no torque about the origin, and the angular momentum of the particle is
conserved. Initially, the angular momentum has the magnitude M1vb. At a later time,
it is M1r2 dφ/dt . Conservation of angular momentum thus gives

M1r2 dφ

dt
= M1vb

or

dt

dφ
= r2

vb
.

Substituting this result and Eq. 2.11 for the force in Eq. 2.13, we obtain

�p = Z1 Z2e2

r2

∫
cos φ

r2

vb
dφ = Z1 Z2e2

vb

∫
cos φ dφ

or

�p = Z1 Z2e2

vb
(sin φ2 − sin φ1). (2.14)

From Fig. 2.7, φ1 = −φ0 and φ2 = +φ0, where 2φ0 + θ = 180◦. Then sin φ2 −
sin φ1 = 2 sin(90◦ − 1/2θ ). Combining Eqs. 2.12 and 2.14 for �p, we have

�p = 2M1v sin
θ

2
= Z1 Z2e2

vb
2 cos

θ

2
. (2.15a)

This gives the relationship between the impact parameter b and the scattering angle:

b = Z1 Z2e2

M1v2
cot

θ

2
= Z1 Z2e2

2E
cot

θ

2
. (2.15b)

From Eq. 2.10, the scattering cross section can be expressed as

σ (θ ) = −b

sin θ

db

dθ
, (2.16)

and from the geometrical relations sinθ = 2 sin(θ/2) cos(θ/2) and d cot(θ/2) =
− 1

2 dθ/ sin2(θ/2),

σ (θ ) =
(

Z1 Z2e2

4E

)2
1

sin4 θ/2
. (2.17)
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This is the scattering cross section originally derived by Rutherford. The experiments
by Geiger and Marsden in 1911–1913 verified the predictions that the amount of
scattering was proportional to (sin4 θ/2)−1 and E−2. In addition, they found that the
number of elementary charges in the center of the atom is equal to roughly half the
atomic weight. This observation introduced the concept of the atomic number of an
element, which describes the positive charge carried by the nucleus of the atom. The
very experiments that gave rise to the picture of an atom as a positively charged nucleus
surrounded by orbiting electrons has now evolved into an important materials analysis
technique.

For Coulomb scattering, the distance of closest approach, d, of the projectile to the
scattering atom is given by equating the incident kinetic energy, E, to the potential
energy at d:

d = Z1 Z2e2

E
. (2.18)

The scattering cross section can be written as σ (θ ) = (d/4)2/ sin4 θ/2, which for
180◦ scattering gives σ (180◦) = (d/4)2. For 2 MeV He+ ions (Z1 = 2) incident on Ag
(Z2 = 47),

d = (2)(47) · (1.44 eV nm)

2 × 106 eV
= 6.8 × 10−5 nm,

a value much smaller than the Bohr radius a0 = h̄2/mee2 = 0.053 nm and the K-shell
radius of Ag, a0/47 ∼= 10−3 nm. Thus the use of an unscreened cross section is justified.
The cross section for scattering to 180◦ is

σ (θ ) = (6.8 × 10−5 nm)2/16 = 2.89 × 10−10 nm2,

a value of 2.89 × 10−24 cm2 or 2.89 barns, where the barn = 10−24 cm2.

2.6 Scattering Cross Section: Two-Body

In the previous section, we used central forces in which the energy of the incident
particle was unchanged through its trajectory. From the kinematics (Section 2.2), we
know that the target atom recoils from its initial position, and hence the incident particle
loses energy in the collision. The scattering is elastic in that the total kinetic energy
of the particles is conserved. Therefore, the change in energy of the scattered particle
can be appreciable; for θ = 180◦ and 4He+(M1 = 4) scattering from Si (M2 = 28),
the kinematic factor K = (24/32)2 = 0.56 indicates that nearly one-half the energy is
lost by the incident particle. In this section, we evaluate the scattering cross section
while including this recoil effect. The derivation of the center of mass to laboratory
transformation is given in Section 2.10.

The scattering cross section (Eq. 2.17) was based on the one-body problem of the
scattering of a particle by a fixed center of force. However, the second particle is not
fixed but recoils from its initial position as a result of the scattering. In general, the
two-body central force problem can be reduced to a one-body problem by replacing
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Figure 2.9. Scattering of two parti-
cles as viewed in the laboratory sys-
tem, showing the laboratory scattering
angle θ and the center of mass scatter-
ing angle θc.

M1 by the reduced mass µ = M1 M2/(M1 + M2). The matter is not quite that sim-
ple as indicated in Fig. 2.9. The laboratory scattering angle θ differs from the an-
gle θc calculated from the equivalent, reduced-mass, one-body problem. The two an-
gles would only be the same if the second remains stationary during the scattering
(i.e., M2 � M1).

The relation between the scattering angles is

tan θ = sin θC

cos θC + M1/M2
,

derived in Eq. 2.24. The transformation gives

σ (θ ) =
(

Z1 Z2e2

4E

)2
4

sin4 θ

({
1 − [(M1/M2) sin θ ]2

}1/2 + cos θ
)2

{
1 − [(M1/M2) sin θ ]2

}1/2 , (2.19)

which can be expanded for M1 � M2 in a power series to give

σ (θ ) =
(

Z1 Z2e2

4E

)2
[

sin−4 θ

2
− 2

(
M1

M2

)2

+ · · ·
]

, (2.20)

where the first term omitted is of the order of (M1/M2)4. It is clear that the leading
term gives the cross section of Eq. 2.17, and that the corrections are generally small.
For He+(M1 = 4) incident on Si (M2 = 28), 2(M1/M2)2 ∼= 4%, even though appre-
ciable energy is lost in the collision. For accurate quantitative analysis, this correction
should be included, as the correction can be appreciable for scattering from light atoms
such as carbon or oxygen. Cross section values given in Appendix 2 are based on
Eq. 2.19. A summary of scattering relations and cross section formulae are given in
Table 3.1.
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2.7 Deviations from Rutherford Scattering
at Low and High Energy

The derivation of the Rutherford scattering cross section is based on a Coulomb inter-
action potential V (r ) between the particle Z1 and target atom Z2. This assumes that the
particle velocity is sufficiently large so that the particle penetrates well inside the or-
bitals of the atomic electrons. Then scattering is due to the repulsion of two positively
charged nuclei of atomic number Z1 and Z2. At larger impact parameters found in
small-angle scattering of MeV He ions or low-energy, heavy ion collisions (discussed
in Chapter 4), the incident particle does not completely penetrate through the electron
shells, and hence the innermost electrons screen the charge of the target atom.

We can estimate the energy where these electron screening effects become important.
For the Coulomb potential to be valid for backscattering, we require that the distance of
closest approach d be smaller than the K-shell electron radius, which can be estimated
as a0/Z2, where a0 = 0.053 nm, the Bohr radius. Using Eq. 2.18 for the distance of
closest approach d, the requirement for d less than the radius sets a lower limit on the
energy of the analysis beam and requires that

E > Z1 Z2
2

e2

a0
.

This energy value corresponds to ∼ 10 keV for He+ scattering from silicon and ∼ 340
keV for He+ scattering from Au (Z2 = 79). However, deviations from the Rutherford
scattering cross section occur at energies greater than the screening limit estimate given
above, as part of the trajectory is always outside of the electron cloud.

In Rutherford-backscattering analysis of solids, the influence of screening can be
treated to the first order (Chu et al., 1978) by using a screened Coulomb cross section σsc

obtained by multiplying the scattering cross section σ (θ ) given in Eqs. 2.19 and 2.20
by a correction factor F,

σsc = σ (θ )F, (2.21)

where F = (1 − 0.049 Z1 Z4/3
2 /E) and E is given in keV. Values of the correction

factor are given in Fig. 2.10. With 1 MeV 4He+ ions incident on Au atoms, the correction
factor corresponds to only 3%. Consequently, for analysis with 2 MeV 4He+ ions, the
screening correction can be neglected for most target elements. At lower analysis
energies or with heavier incident ions, screening effects may be important.

At higher energies and small impact parameter values, there can be large departures
from the Rutherford scattering cross section due to the interaction of the incident
particle with the nucleus of the target atom. Deviations from Rutherford scattering due
to nuclear interactions will become important when the distance of closest approach of
the projectile-nucleus system becomes comparable to R, the nuclear radius. Although
the size of the nucleus is not a uniquely defined quantity, early experiments with alpha-
particle scattering indicated that the nuclear radius could be expressed as

R = R0 A1/3, (2.22)
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due to electron screening for He+ scattering from the atoms Z2, at a variety of incident kinetic
energies. [Courtesy of John Davies]

where A is the mass number and R0
∼= 1.4 × 10−13 cm. The radius has values from a

few times 10−13 cm in light nuclei to about 10−12 cm in heavy nuclei. When the distance
of closest approach d becomes comparable with the nuclear radius, one should expect
deviations from the Rutherford scattering. From Eqs. 2.18 and 2.22, the energy where
R = d is

E = Z1 Z2e2

R0 A1/3
.

For 4He+ ions incident on silicon, this energy is about 9.6 MeV. Consequently, nuclear
reactions and strong deviations from Rutherford scattering should not play a role in
backscattering analyses at energies of a few MeV.

One of the exceptions to the estimate given above is the strong increase (resonance)
in the scattering cross section at 3.04 MeV for 4He+ ions incident on 16O, as shown
in Fig. 2.11. This reaction can be used to increase the sensitivity for the detection of
oxygen. Indeed, many nuclear reactions are useful for element detection, as described
in Chapter 13.

2.8 Low-Energy Ion Scattering

Whereas MeV ions can penetrate on the order of microns into a solid, low-energy
ions (∼keV) scatter almost predominantly from the surface layer and are of consid-
erable use for first monolayer analysis. In low-energy scattering, incident ions are
scattered, via binary events, from the atomic constituents at the surface and are de-
tected by an electrostatic analyzer (Fig. 2.12). Such an analyzer detects only charged
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particles, and in this energy range (∼= 1 keV), particles that penetrate beyond a mono-
layer emerge nearly always as neutral atoms. Thus this experimental sensitivity to only
charged particles further enhances the surface sensitivity of low-energy ion scattering.
The main reasons for the high surface sensitivity of low-energy ion scattering is the
charge selectivity of the electrostatic analyzer as well as the very large cross section for
scattering.

The kinematic relations between energy and mass given in Eqs. 2.5 and 2.7 re-
main unchanged for the 1 keV regime. Mass resolution is determined as before by the
energy resolution of the electrostatic detector. The shape of the energy spectrum is,
however, considerably different than that with MeV scattering. The spectrum consists
of a series of peaks corresponding to the atomic masses of the atoms in the surface
layer.

Quantitative analysis in this regime is not straightforward for two primary reasons:
(1) uncertainty in the absolute scattering cross section and (2) lack of knowledge
of the probability of neutralization of the surface scattered particle. The latter factor
is minimized by use of projectiles with a low neutralization probability and use of
detection techniques that are insensitive to the charge state of the scattered ion.

Estimates of the scattering cross section are made using screened Coulomb potentials,
as discussed in the previous section. The importance of the screening correction is
shown in Fig. 2.13, which compares the pure Rutherford scattering cross section to
two different forms of the screened Coulomb potential. As mentioned in the previous
section, the screening correction for ∼1 MeV He ions is only a few percent (for He+

on Au) but is 2–3 orders of magnitude at ∼1 keV. Quantitative analysis is possible if
the scattering potential is known. The largest uncertainty in low-energy ion scattering
is not associated with the potential but with the neutralization probability, of relevance
when charge sensitive detectors are used.
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Figure 2.12. Schematic of self-contained electrostatic analyzer system used in low-energy ion
scattering. The ion source provides a beam of low-energy ions that are scattered (to 90◦) from
samples held on a multiple target assembly and analyzed in a 127◦ electrostatic energy analyzer.

Low-energy spectra for 3He and 20Ne ions scattered from an Fe–Re–Mo alloy are
shown in Fig. 2.14. The improved mass resolution associated with heavier mass pro-
jectiles is used to clearly distinguish the Mo from the Re. This technique is used in
studies of surface segregation, where relative changes in the surface composition can
readily be obtained.
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Figure 2.13. Energy dependence of the Rutherford, Thomas–Fermi, and Bohr cross sections for
a laboratory scattering angle of 135◦. The Thomas–Fermi and Bohr potentials are two common
approximations to a screened Coulomb potential: (a) He+ on Au and (b) Ar on Au. From J.M.
Poate and T.M. Buck, Experimental Methods in Catalytic Research, Vol. 3. [Academic Press,
New York, 1976, vol. 3.]
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Figure 2.14. Energy spectra for 3He+ scattering and 20Ne scattering from a Fe–Mo–Re alloy.
Incident energy was 1.5 keV. [From J.T. McKinney and J.A. Leys, 8th National Conference on
Electron Probe Analysis, New Orleans, LA, 1973.]
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Figure 2.15. The forward recoil structures of 1H and 2H (deuterium) from 3.0 MeV 4He+ ions
incident on a thin (≈200 nm) polystyrene film on silicon. The detector is placed so that the recoil
angle φ = 30◦. A mylar film 10 micron (µm) thick mylar film is mounted in front of the detector.

2.9 Forward Recoil Spectrometry

In elastic collisions, particles are not scattered in a backward direction when the mass
of the incident particle is equal to or greater than that of the target atom. The incident
energy is transferred primarily to the lighter target atom in a recoil collision (Eq. 2.7).
The energy of the recoils can be measured by placing the target at a glancing angle
(typically 15◦) with respect to the beam direction and by moving the detector to a
forward angle (θ = 30◦), as shown in the inset of Fig. 2.15. This scattering geometry
allows detection of hydrogen and deuterium at concentration levels of 0.1 atomic
percent and surface coverages of less than a monolayer.

The spectrum for 1H and 2H (deuteron) recoils from a thin polystyrene target are
shown in Fig. 2.15. The recoil energy from 3.0 MeV 4He+ irradiation and recoil angle φ

of 30◦ can be calculated from Eq. 2.7′ to be 1.44 MeV and 2.00 MeV for 1H and 2H,
respectively. Since 2H nuclei recoiling from the surface receive a higher fraction (∼2/3)
of the incident energy Eo than do 1H nuclei (∼1/2), the peaks in the spectrum are well
separated in energy. The energies of the detected recoils are shifted to lower values
than the calculated position due to the energy loss in the mylar film placed in front of
the detector to block out He+ ions scattered from the substrate.

The application of forward recoil spectrometry to determine hydrogen and deuterium
depth profiles is discussed in Chapter 3. The forward recoil geometry can also be used
to detect other light-mass species as long as heavy-mass analysis particles are used.

2.10 Center of Mass to Laboratory Transformation

The derivation of the Rutherford cross section assumes a fixed center of force. In
practice, the scattering involves two bodies, neither of which is fixed. In general, any
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illustrating the relationship between the velocity of particle 1 in the laboratory system, v1, and
the velocity in the center of mass system, v′

1.

two-body central force problem can be reduced to a one-body problem. However, since
actual measurements are done in the laboratory, one must be aware of the appropriate
transformation. The transformation equations yield finite and important corrections
that must be incorporated in careful analytical work. These corrections are most impor-
tant when the mass of the projectile, M1, becomes comparable to the mass of the target
M2. Under these conditions, the recoil effects (nonfixed scattering center) become
largest.

The relationship between the scattering angles in the laboratory system, namely, θ

and φ, and the angles in the center of mass (CM) system are illustrated in Fig. 2.16a.
The first step is to determine an analytical relation between the scattering angles in the
two systems.

We use the following notation: r1 and v1 are the position and velocity vectors of
the incident particle in the laboratory system; r1

′ and v1
′ are the position and velocity

vectors of the incident particle in the center-of-mass system; and R and Ṙ are the
position and velocity vectors of the center of mass in the laboratory system.

By definition,

r1 = R + r1
′,

so

v1 = Ṙ + v1
′.
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The geometrical relationship between vectors and scattering angles shown in
Fig. 2.16b indicates the relation

tan θ = v1
′ sin θc

v1
′ cos θc + ∣∣Ṙ∣∣ . (2.23)

The definition of the center-of-mass vector, R, is

(M1 + M2)R = M1r1 + M2r2,

so that

(M1 + M2)Ṙ = M1ṙ1 + M2ṙ2,

where M2, r2 refers to the target atom. From the vector diagram,

v1
′ = v1 − Ṙ,

or

v′
1 = M2

M1 + M2
(ṙ1 − ṙ2) .

Since the system is conservative, the relative velocity, ṙ1 − ṙ2, is the same before and
after the collision. Initially, ṙ2 = 0, so

v′
1 = M2

M1 + M2
v,

where v is the initial velocity of the particle. The constant velocity of the CM can also
be derived from the definition:

(M1 + M2)Ṙ = M1v.

Substituting the relations for Ṙ and v′
1 in Eq. 2.23, we have

tan θ = sin θc

cos θc + M1
M2

. (2.24)

When M1 � M2, the angles in the two systems are approximately equal; the massive
scatterer M2 suffers little recoil. A useful form of Eq. 2.24 is written as

cot θ = cot θc + x csc θc,

where x = M1/M2. This can be rearranged to yield

cot θ − cot θc = x csc θc,

or

sin θc cos θ − cos θc sin θ = x sin θ

so that

sin(θc − θ ) = x sin θ. (2.25)

For simplicity, we let ξ = θc − θ . From Eq. 2.25, we have

cos ξ dξ = x cos θ dθ
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and
dξ

dθ
= dθc

dθ
− 1 = x cos θ

cos ξ
,

or
dθc

dθ
= sin θc

sin θ cos ξ
.

Then

dσ

d	
=
(

Z1 Z2e2

2E

)2 [
(1 + x) sin θc

2 sin θ sin2 θc/2

]2/
cos ξ,

where E, the energy in lab coordinates, is given by

E = Ec(1 + x).

It is useful to derive an expression for the cross section simply in terms of θ and x. We
make use of the fact that

1 + x = (sin ξ + sin θ )/ sin θ,

sin
(
θc

/
2
)

sin2
(
θc

/
2
)

= cot
(
θc

/
2
)

,

sin θ + sin ξ

cos θ + cos ξ
= tan

θc

2
,

so that
(1 + x) sin ξc

2 sin2
(
θc

/
2
)

,
= cos θ + cos ξ

sin θ

and

dσ

d	
=
(

Z1 Z2e2

2E

)2
(cos θ + cos ξ )2

sin4 θ cos ξ
.

Noting that cos ξ = (1 − sin2 ξ )1/2 = (1 − x2 sin2 θ )1/2, we obtain

dσ

d	
=
(

Z1 Z2e2

2E

)2 [cos θ + (1 − x2 sin2 θ )1/2
]2

sin4 θ (1 − x2 sin2 θ )1/2
, (2.26)

which is the form given in Eq. 2.19.

Problems

2.1. 4He++ particles are scattered from a thin foil of an elemental material with atomic
number Z1, mass density ρ1, number A1, and thickness t1, and are observed at
some fixed angle θ . The first foil is replaced with a second one (Z2, ρ2, A2, t2).
What is the ratio of the number of particles observed at θ for the first and second
foils?

2.2. A beam of 2 MeV helium ions is incident on a silver foil 10−6 cm thick and
undergoes Coulomb scattering in accordance with the Rutherford formula.
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(a) What is the distance of closest approach?
(b) Find the impact parameter for He+ ions scattered through 90◦.
(c) What fraction of the incident 2 MeV He+ ions will be backscattered (i.e.,

θ > 90◦)?

The density of silver is 10.50 g/cm3, and its atomic weight is 107.88 g mol.
[Hint: The integrated cross section for scattering through angles 0◦ to 90◦ is∫ π/2

0 dσ.]
2.3. An α particle, 4He+, makes a head-on collision with (a) a gold nucleus, (b) a

carbon nucleus, (c) an α particle, and (d) an electron, each initially at rest. What
fraction of the α particle’s initial kinetic energy is transferred to the struck particle
in each instance?

2.4. (a) Using the formula for the Rutherford scattering cross section in center-of-mass
coordinates (CM) and the relations for the recoil energy (Eq. 2.7), and noting
that φ = π/2 − θc/2 (Fig. 2.16), calculate an expression for dσ/dE2, the cross
section for transferring an energy E2 to a nucleus. Hint:

dσ

dθc

dθc

d E2
= dσ

d E2
.

(b) Using the result of part (a), integrate dσ/d E2 from Emin to Emax to find the
total cross section for transferring an energy greater than Emin.

(c) Evaluate the result of part (b) in cm2 for the case of 1.0 MeV He ions bom-
barding Si. Use Emin = 14 eV, the displacement energy of a Si atom bound in
an Si lattice. Compare this cross section to σRuth(θ = 180◦).

(d) Use the result of (c) to calculate the fraction of atoms displaced (i.e., undergoing
an energy transfer greater than 14 eV) for 1 µC of He+ ions incident on a target
where the He+ beam diameter = 1 mm. This result is only a lower limit to the
displacements, since we have ignored displacements due to recoiling Si atoms.

2.5. A carbon film is known to contain surface contaminants of Au, Ag, and Si. Sketch
the backscattering spectrum, indicating the energies of the various peaks and their
relative heights.

2.6. An accelerator produces an He+ ion current of 50 nA at 1.0 MeV. Using a 1 cm2

detector 5 cm from the target at a scattering angle of 170◦, determine the smallest
amount of Au (atoms/cm2) that can be detected. Detectability is arbitrarily defined
as 100 counts in 1 hr. Under similar conditions, what is the detection limit for
oxygen? Compare these limits with the number of atoms/cm2 in a monolayer
(∼=1015 atoms/cm2).

2.7. Derive the expression for E2 (Eq. 2.7′), the energy transferred to the target atom
using conservation of energy and momentum relations. Give the expression for
E2/E0 for θ = 90◦.

2.8. Use the small angle approximation (sin θ = θ ) to show that the scattering cross
section can be expressed as σ (θ ) = (Z1 Z2e2/E)2(θ )−4. Derive this expression
using the impulse approximation in which the force of Z1 Z2e2/b2 acts on the
particle for an effective time t = l/v, where l = 2b. [Hint: An intermediate step
in the derivation is to show that b = Z1 Z2e2/Eθ.]
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