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Geometry of Riemann Spaces

The fact that the geometry of the space in which we live is Euclidean is a very
basic daily experience. This may explain why it took so long before it was
realised that this may actually not be correct, and that the question of the
geometry of the space around us is a matter of empirical assessment. Early in
the 19th century Gauss studied the geometry of curved surfaces, and showed
that all references to a flat embedding space could be eliminated. In the same
way Riemann formulated in 1854 the geometry of 3D spaces. He found that
Euclidean geometry is merely one possibility out of many. Riemann’s method
could be generalized to spaces of arbitrary dimension. The geometry of these
curved Riemann spaces is wholly described within the space itself, by the use
of co-ordinates and the metric tensor. No embedding is required. These geo-
metrical concepts gradually spread beyond the mathematical incrowd, and in
the last quarter of the 19th century the idea that a fourth (spatial) dimen-
sion might exist had mesmerized the public’s imagination, perhaps even more
so than black holes did a century later. One of the products of that period
was Abbott’s famous Flatland.1 The flatland analogy is nowadays a standard
technique of teachers to explain some of the intricacies of curved spaces.

The theoretical framework of Riemann spaces is also the starting point
for the mathematical formulation of GR. In this chapter we discuss the tools
that any student should master in order to be able to deal with GR be-
yond the level of handwaving. In doing so we have deliberately chosen to stay
close to intuition as that outweighs the merits of rigour, certainly on first
acquaintance.

2.1 Definition

A Riemann space has the following properties:
1 Abbott, E.A.: 1884, Flatland: A Romance of many Dimensions, by a Square,

Seeley & Co. (London).
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Fig. 2.1. A geometrical picture and the corresponding co-ordinate picture of the
space defined by (2.2). Co-ordinate pictures will be frequently used.

1. Any point can be identified by a set of co-ordinates {xµ}; the number of
independent xµ is called the dimension.

2. It is possible to define continuously differentiable functions of {xµ}, in
particular one-to-one co-ordinate transformations {xµ} ↔ {xν}.

3. There is a metric that specifies the distance ds2 between two nearby points
xµ and xµ + dxµ:

ds2 = gαβ dxαdxβ ; gαβ = gβα . (2.1)

An antisymmetric part of gαβ does not contribute to ds2. Example: a spherical
surface with radius 1 and co-ordinates θ, ϕ:

ds2 = dθ2 + sin2 θ dϕ2 . (2.2)

Notation: dθ2 ≡ (dθ)2, dϕ2 ≡ (dϕ)2, but ds2 = (ds)2 only if ds2 > 0 as in
(2.2). But the metric is in general not positive definite! In this simple case the
geometrical structure may be visualised through embedding in an Euclidean
space of one higher dimension, but for Riemann spaces of higher dimension
this is no longer possible. Moreover, a Riemann space of dimension D cannot
always be embedded in a flat space of dimension D + 1. It is often useful
to draw a co-ordinate picture of a suitably chosen subspace, even though it
contains no information on the geometry, see Fig. 2.1.

An important point is that the metric determines the local structure of the
space, but reveals nothing about its global (topological) structure. A plane,
a cone and a cylinder all have the same metric ds2 = dx2 + dy2, but entirely
different global structures.
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Fig. 2.2. Co-ordinate lines and base vectors spanning the tangent space. The choice
of the co-ordinates is entirely free, and in practice dictated by the question which
co-ordinates are the most expedient to use.

2.2 The tangent space

In each point we construct a set of base vectors tangent to the co-ordinate
lines, as in Fig. 2.2. The arrow points towards increasing xi. The base vec-
tors span the flat tangent space, which has the same dimension as Riemann
space. This construction evidently requires the existence of a flat embed-
ding space, but that can be avoided as follows. Consider the curves {xα(p)}
through a point P in Riemann space (p = curve parameter), and construct
Aσ = [dxσ/dp]P . These vectors Aσ span the abstract tangent space of P ,
which exists independent of any embedding. Usually, however, the abstract
tangent space may be identified with the tangent space constructed in Fig. 2.2.
For our discussion there is no real advantage in making the distinction and
we shall work with the intuitive picture of Fig. 2.2.

We may use any metric we like in the tangent space, but there exists a
preferred metric. Consider an infinitesimal section of Riemann space. This sec-
tion is flat and virtually coincides with the tangent space. To an infinitesimal
vector ds = dxαeα in the tangent space we may therefore assign the length of
the line element ds in Riemann space, i.e. we require ds · ds = ds2 :

ds · ds = (dxαeα) · (dxβeβ) = eα · eβ dxαdxβ

= gαβ dxαdxβ , (2.3)

and it follows that
gαβ ≡ eα · eβ . (2.4)

Here · represents the vector inner product. This may be the usual inner
product, for example when we deal with 2D surfaces embedded in a flat R3.
But in case of the Minkowski spacetime of SR, and in GR, the inner product is
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not positive definite, and we may have that A ·A < 0 (for spacelike vectors).
By taking dxα = 1 in (2.3) and all other dxβ = 0 we see that eα ·eα = ds ·ds
(no summation). It follows that the ‘length’ of eα corresponds to a jump
∆xα = 1, at constant value of the other co-ordinates. Due to the curvature
this is of course only approximately correct. These base vectors are called a
co-ordinate basis because they are defined entirely by the co-ordinates and
the metric. The length of the base vectors depends on the choice of the co-
ordinates, and is in general a function of position. Consider for example polar
co-ordinates in a plane, Fig. 2.3. The length of er is constant, while |eϕ| ∝ r :

ds2 = 1 · dr2 + r2dϕ2 . (2.5)
↑ ↑

er · er eϕ · eϕ

Now that we have defined the basis we may construct finite vectors A = Aαeα

in the tangent space through the usual parallelogram construction. These so
called contravariant components Aα are the components of A along the basis.

The next step is to define another (covariant) representation Aα of A by
demanding that A · A = AαAα, for every A:

A · A = (Aαeα) · (Aβeβ) = gαβ AβAα ≡ AαAα , (2.6)

which leads to:
Aα = gαβAβ . (2.7)

In a more advanced treatment a distinction is made between tensors as geo-
metrical objects, their contravariant representation located in an abstract tan-
gent space, and the dual tangent space, in which the covariant representations
reside. In the current, more primitive context the following interpretation sug-
gests itself. Since Aγ = gγβAβ = eγ · eβAβ = (Aβeβ) · eγ = A · eγ , it follows
that Aγ is the projection of A on eγ . Hence, the contravariant components
Aβ are the components of A along the base vectors eβ (parallelogram con-
struction), while the covariant component Aα is the projection of A on the
base vector eα, Fig. 2.3, right:

contravariant (Aβ) : A = Aβeβ , (2.8)

covariant (Aα) : Aα = A · eα . (2.9)

Finally, the concept of index raising and lowering. We can lower an index
with the help of (2.7). The inverse operation of raising is defined as:

Aγ = gγαAα . (2.10)

The meaning of gγα can be gleaned from:

Aγ = gγαAα = gγαgανAν , (2.11)
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Fig. 2.3. Left: polar co-ordinates and the base vectors er and eϕ. Right: interpre-
tation of the contravariant and covariant representation of a vector A.

so that gγαgαν = δγ
ν , i.e. {gγα} is the inverse of {gαν}. In summary:

index lowering : Aα = gαβAβ ,

index raising : Aγ = gγνAν ,

{gγν} = {gαβ}−1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

We have silently adopted the summation convention: if an index occurs twice,
once as a lower and once as an upper index, summation over that index is
implied. Note that the rules for index raising and lowering are always valid,
and have nothing to do with the question whether one is dealing with a tensor
or not. The tensor concept is related to behaviour under co-ordinate transfor-
mations, which was not an issue above, and to which we turn our attention
now.

2.3 Tensors

We are now in a position to do linear algebra in the tangent space, but we
leave that aside and study the effect of co-ordinate transformations. Consider
two overlapping sets of co-ordinates {xµ} and {xµ′}. The notation is sloppy
– it would be more appropriate to write {xµ} instead of {xµ′}, but {xµ′} is
much more expedient if used with care. A displacement δxµ′

is related to a
displacement δxν through:

δxµ′
=

∂xµ′

∂xν
δxν ≡ xµ′

,ν δxν . (2.13)
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Notation:

X,ν ≡ ∂X

∂xν
; X,νρ ≡ ∂2X

∂xν∂xρ
, etc. (2.14)

where X can be anything (Aα, gαβ , ...). We may freely interchange indices
behind the comma: X,αβγ = X,αγβ = X,γαβ etc.

Any set Aµ transforming according to (2.13) is called a contravariant ten-
sor of rank 1:

Aµ′
= xµ′

,ν Aν ↔ Aν contravariant. (2.15)

Hence δxν is a contravariant tensor. Tensors of rank 1 are often referred to
as vectors, and henceforth we shall use the word vector in this sense only. A
function such as the temperature distribution T (x) is called a scalar, a tensor
of rank zero. Its value in a point is independent of the co-ordinate system, i.e.
invariant for co-ordinate transformations: T ′(x′) = T (x), where T ′ is the new
function prescription. The derivative of a scalar Q,

Bµ =
∂Q

∂xµ
≡ Q,µ (2.16)

transforms like Bµ′ = Q′
,µ′ = Q,ν xν

,µ′ = xν
,µ′ Bν . Every Bν that transforms

in this way is called a covariant vector or tensor of rank 1:

Bµ′ = xν
,µ′ Bν ↔ Bν covariant. (2.17)

From two covariant vectors we can form Tµν = AµBν , a covariant tensor of
rank 2. More general tensors can be constructed through summation, Tµν =
AµBν + CµDν + ... This process may be continued: TαβCγ and AµCνBρ are
mixed tensors of rank 3 (provided T,A,B and C are tensors themselves). The
indices of tensors of higher rank transform according to (2.15) resp. (2.17),
for example:

Tα′
β′γ′δ

′
= xα′

,µ xν
,β′ xσ

,γ′ xδ′

,τ Tµ
νσ

τ . (2.18)

There is no other choice because (2.18) must hold for the special tensor
Tα

βγ
δ = PαQβRγSδ, and the transformation rules for vectors have already

been fixed! Note that we get a glimpse here of how the Lorentz transforma-
tions of SR will be generalised in GR: relation (1.7) of SR will be replaced by
(2.15). This transformation is still locally linear, but different in each point
of Riemann space as the {xµ′

,ν} are functions of position. The single global
Lorentz transformation will be replaced by a mesh of local Lorentz transfor-
mations.

The horizontal position of the indices is important: Tµ
ν is different from

Tν
µ ! The summation over double indices is called contraction. It lowers the

rank by two. For example Tµ
µ, Tα

βα
γ , Pαβ Qβγ , Tα

βα
β (double contraction).

Double indices are dummies: Tα
α = Tµ

µ, dummies may occur only twice, once
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as an upper and once as a lower index. If you encounter expressions like Cµµ,
PαβQα

γ or Pαβ Qαγ Rδα then you have made a mistake somewhere!

Index raising and lowering, finally, is done by factors gαβ or gµν for each
upper/lower index, e.g.:

Tµν = gµα Tα
ν ,

Tα
β

γδ = gαµ gβν gδσ Tµ
νγ

σ , etc.

⎫⎬
⎭ (2.19)

Again, like in (2.18), we have hardly any other choice here, because (2.19)
must hold for the special tensors Tµν = PµQν and Tα

β
γδ = PαQβRγSδ, and

the rules for index raising and lowering for vectors have already been fixed.
We are now in a position that we can raise and lower indices at liberty. We
emphasise once more that the rules (2.12) and (2.19) for index gymnastics are
generally valid, also for non-tensors. For example, Qµν = Aµ,ν is not a tensor
(exercise 2.4), and yet Qµ

ν = gµαQαν .

Exercise 2.1: The unit tensor is defined as δα
β = 1 for α = β, otherwise

0. Prove that δα
β is a tensor, and that δα

β = δβ
α, so that we may write δα

β

without risk of confusion. Show that δαβ = gαβ . Is ηαβ a tensor? And gαβ?
One could define δαβ = 1 for α = β, and 0 otherwise, but then δαβ is not a
tensor.

Hint: δα′

β′ must be equal to xα′
,ν xµ

,β′ δν
µ, or δα′

β′ = xα′
,ν xν

,β′ = xα′

,β′ (chain
rule) = 1 for α′ = β′ otherwise 0. Hence δα

β is tensor. And δβ
α =

gβµ gανδµ
ν = gβµ gαµ = gαµgµβ = 1 for α = β, otherwise 0, i.e. identical

to δα
β ; δαβ = gανδν

β = gαβ ; ηαβ is a tensor in SR only, i.e. under Lorentz
transformations; gαβ tensor: use (2.1), require that ds2 is also tensor in GR
(invariant scalar), and dxα is tensor, then exercise 2.3. Other definition δαβ :
δα′β′ = xν

,α′ xµ
,β′ δνµ? No, because the chain rule can no longer be used.

Exercise 2.2: If Tαβ and Pµ
ν are tensors then Pµ

µ is a scalar, but Tαα is
not. The inner product AνBν of two vectors is a scalar.

Hint: Pµ′
µ′ = xµ′

,α xβ
,µ′ Pα

β , then the chain rule.

Exercise 2.3: Quotient theorem: If AλPλµν is a tensor for arbitrary vector
Aλ, then Pλµν is a tensor; µν may be replaced with an arbitrary sequence of
upper / lower indices.
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Hint: AλPλµν is a tensor, i.e. Aλ′
Pλ′µ′ν′ = xα

,µ′ xβ
,ν′ AσPσαβ (λ′ and σ are

dummies!), then substitute Aσ = xσ
,λ′ Aλ′

, etc.

Exercise 2.4: The derivative Aµ,ν of a covariant vector Aµ is not a tensor,
as it transforms according to:

Aµ′,ν′ = Aα,β xα
,µ′ xβ

,ν′ + Aα xα
,µ′ν′ . (2.20)

The problem is in the second term of (2.20). In SR only linear (Lorentz)
transformations are allowed. In that case the second term is zero and Aµ,ν is
a tensor.

Hint: Start from Aµ′,ν′ = (xα
,µ′ Aα),ν′ , then use the product rule.

Exercise 2.5: Prove Tα
νAν = TανAν ; Tα

α = Tα
α ; gν

ν = 4 ; ην
ν =

g00 − g11 − g22 − g33.

Hint: We know that gν
ν = gναgαν = δν

ν = 4. The following may be illuminat-
ing: the scalar gν

ν is invariant, compute in a freely falling frame: gν
ν = ην

ν ,
SR holds in that frame: ην

ν = ηναηαν = 4. But in GR: ην
ν = gναηαν = etc.

2.4 Parallel transport and Christoffel symbols

Consider a particle at position P in Riemann space, Fig. 2.4. The vectors
associated with it (velocity, spin, ..) reside in the tangent space of P . At some
later time the particle has moved to position Q, but the tangent space of Q
does not coincide with that of P . To be able to do dynamics, we must develop
a way to compare vectors in the different tangent spaces along the worldline
of the particle. In other words, we need something against which to gauge the
concept of ‘change’. This is what parallel transport in GR is about.

Fig. 2.4 shows the curve xσ(p) in Riemann space. The vector A is always
in the tangent space, but the tangent spaces of P, Q, R, .. are disjunct, and
comparison of A(P ) with A(Q) or A(R) is not possible. To this end we define
a connection between tangent spaces, that is, a mathematical prescription
telling us how a vector A(P ) lies in the tangent space of Q if we ‘transport’
it along a given path from P to Q. This can be done in a variety of ways, but
much of the mathematical freedom that we have is eliminated by the physical
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Projection onto tangent space

{x a} {x a + d xa}

A'(S)

A'(R)
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Fig. 2.4. Conceptual definition of parallel displacement of a vector along a curve
xσ(p) in Riemann space: first an ordinary parallel displacement in the flat embedding
space (resulting in the dashed arrows) followed by projection on the local tangent
space. The process is repeated in infinitesimal steps.

requirement that we recover what we ordinarily do when we transport a vector
parallel to itself in a flat space. Imagine the Riemann space embedded in a
flat space of higher dimension. We know how to move A(P ) around parallel
to itself in this embedding space, because it is flat. Having arrived in Q, the
result is projected onto the local tangent space. To order O(dxα) projection
does not change the length of the vector: the projection angle γ is O(dxα),
but cos γ = 1 up to O(dxα). This process is now repeated with infinitesimal
steps, and generates the coloured vector field A′ in Fig. 2.4, starting from
A(P ). In this way we have generalized the concept of parallel transport to
curved spaces, in such a way that it reduces to normal parallel transport for
flat spaces. Not surprisingly, it is also the definition that turns out to work in
GR. The result of the transport operation depends on the path, see Fig. 2.5.
However, when e in Fig. 2.5 is parallel-transported along a small curve on the
sphere there is virtually no change, because there is hardly any curvature felt
(exercise 2.17).

We now formalise our intuitive approach. The difference dA = A(Q) −
A(P ) is not defined, but up to order O(dxα) we have that dA 	 A(Q)−A′(Q),
and this is useful as both vectors lie in the same tangent space. The vector
dA may be interpreted as the intrinsic change of A, after correction for the
‘irrelevant’ change in the orientation of the tangent space:

dA 	 A(Q) − A′(Q) (2.21)

= d(Aµeµ) = (dAµ)eµ + Aµ(deµ) . (2.22)
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Fig. 2.5. Left: Parallel displacement of the vector e along PNQ and along PQ
produces entirely different results. To the right, the geodesic precession of a top in
orbit around a central mass, see text.

Here, dA has been split into two contributions: the change dAµ ≡ Aµ(Q) −
Aµ(P ) of the contravariant components of A, and a contribution from the
change of the base vectors. On general grounds we anticipate deµ to be pro-
portional to both {dxβ} and {eα}:

deµ = Γα
µβ dxβ eα . (2.23)

Γα
µβ is called the Christoffel symbol of the second kind, and as may be expected

it is intimately related to the metric tensor:

Γµ
νσ = 1

2gµλ (gλν,σ + gλσ,ν − gνσ,λ) ≡ gµλ Γλνσ . (2.24)

The = sign is proved in § 2.5. The ≡ sign defines the Christoffel symbol of
the first kind, simply by raising one index with gµλ. According to (2.23) the
Christoffel symbols define the connection between the base vectors of the
tangent spaces at different positions. As pointed out above, there exist more
general connection coefficients than (2.24), but these play no role in GR.

Insert (2.23) in (2.22) and rename the dummy-indices:

dA = (dAµ + Γµ
νσ Aν dxσ)eµ ≡ (DAµ)eµ . (2.25)

The right hand side defines the intrisic change DAµ, which apparently obeys
the following equation:

DAµ

Dp
=

dAµ

dp
+ Γµ

νσ Aν dxσ

dp
(contravariant); (2.26)

DAµ

Dp
=

dAµ

dp
− Γν

µσ Aν
dxσ

dp
(covariant). (2.27)
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For the second relation (2.27) see exercise 2.8. We may apply these equations
in two ways. For a given vector field we may compute DAµ or DAµ for a
displacement dp along xσ(p). On the other hand, one may solve DAµ/Dp = 0
or DAµ/Dp = 0 starting from an initial value Aµ(P ) or Aµ(P ), and construct
a vector field along xσ(p) for which dA = A − A′ = 0. Parallel transport of
a vector along xσ(p) is therefore described by the differential equation

DAµ

Dp
= 0 or

DAµ

Dp
= 0 . (2.28)

We mention a few properties of the Christoffel symbols. They are symmetrical
in the last two indices:

Γµ
νσ = Γµ

σν ; Γλνσ = Γλσν . (2.29)

By interchanging the indices in (2.24) we may infer Γνλσ, and on adding that
to Γλνσ one obtains

Γλνσ + Γνλσ = gλν,σ . (2.30)

The Christoffel symbol transforms according to

Γµ′

ν′σ′ = Γρ
αβ xµ′

,ρ xα
,ν′ xβ

,σ′ + xµ′

,ρ xρ
,ν′σ′ . (2.31)

The proof is for diehards (see literature). The first term is what we would
expect if the Christoffel symbol were a tensor, but the second term makes
that it is actually not a tensor. The concept of parallel transport will be used
in § 2.5 to define geodesics.

In SR the velocity and spin vector of a particle on which no forces are
exerted are constant. They are transported parallel along the ‘straight’ orbit
of the particle. The idea of GR is that a particle under the influence of gravity
moves freely in a curved spacetime. A natural generalisation is that velocity
and spin vector of the particle can be found by parallel transport along the
orbit in spacetime. In this way we are able to understand the geodesic preces-
sion of a top. Fig. 2.5 shows a co-ordinate picture, with x0 = ct on the vertical
axis and polar co-ordinates x1 = r and x3 = ϕ in the horizontal plane. The
worldline of the top orbiting the central object (vertical bar) is a spiral. The
spin 4-vector (whose spatial part is directed along the spin axis) is parallel-
transported along the worldline. After one revolution the top has returned
to same spatial position, but because spacetime is not flat – not visible in a
co-ordinate picture – the spin vector has changed its direction. At this point
one may wonder how the effect is related to the Thomas precession. We refer
to Ch. 8 for a more general treatment, from which both Thomas precession
and geodesic precession emerge in the appropriate limit.
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Exercise 2.6: The length of a vector remains constant under parallel trans-
port:

dAνAν = d (gµνAµAν) = 0 .

Hint: First attempt: d = D = intrinsic change: DAνAν = (DAν)Aν +
Aν(DAν) = 0, because DAν = (DAν/Dp) dp = 0, etc. But (2.27) must still be
proven, and for that we need dAνAν = 0. Second attempt: d = total change:
d gµνAµAν = 2AνdAν + AµAν gµν,σ dxσ; (2.26): dAν = −Γν

µσ Aµdxσ; exer-
cise 2.5 and (2.30): 2AνdAν = −2Γνµσ AνAµdxσ = −gνµ,σ AνAµdxσ.

Exercise 2.7: Prove that dAνBν = 0 under parallel transport.

Hint: The length of Aν + Bν is constant.

Exercise 2.8: For parallel transport of a covariant vector:

dBµ = Γν
µσ Bν dxσ . (2.32)

Hint: 0 = dAµBµ = Aµ dBµ + Bµ dAµ, and dAµ is known.

Exercise 2.9: Prove that

Γµ
νµ = g,ν/2g = 1

2

(
log |g|

)
,ν

; g = det {gαβ} . (2.33)

Hint: (2.24): Γµ
νµ = 1

2gλµgλµ,ν . For a matrix M we have that Tr (M−1M,ν) =
(Tr log M),ν = (log detM),ν . Take M = {gαβ}.

2.5 Geodesics

Intuitively, a geodesic is a line that is ‘as straight as possible’ on a curved
surface. We say that a curve xµ(p) is a geodesic when the tangent vector
dxµ/dp remains a tangent vector under parallel transport along xµ(p). There-
fore ẋµ ≡ dxµ/dp must satisfy (2.28), and we arrive at the geodesic equation:

D
Dp

(
dxµ

dp

)
= 0 → ẍµ + Γµ

νσ ẋν ẋσ = 0 , (2.34)
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Fig. 2.6. A timelike geodesic connecting events A and B is the curve with the
maximum possible interval length between A and B, see text.

with ˙ = d/dp. For timelike geodesics2 the parameter p in (2.34) is propor-
tional to the interval length s. Proof: according to exercise 2.6 the length of
ẋα = dxα/dp is constant along xµ(p), i.e. ẋαẋα = gαβ ẋα ẋβ ≡ (ds/dp)2 is
constant. For timelike geodesics ds2 > 0, and we may take the square root to
conclude that ds = const · dp. Later, when GR is cast into the geometrical
framework developed here, this result will be connected to proper time (a
physical concept that does not yet exist here): ds = cdτ , so that

dp ∝ ds ∝ dτ for timelike geodesics. (2.35)

This is important as it implies that we may, for timelike geodesics, replace
the curve parameter p in (2.34) by the interval length s or the proper time τ .

Intuitively, a geodesic is also the shortest possible route between two
points. For a positive definite metric this is indeed the case, but ds2 can be
positive as well as negative in GR. Assuming that the interval

∫
ds =

∫
ṡdp of

a timelike geodesic is an extremum (see below), it is easy to see that it should
be a maximum: there always exists an arbitrarily nearby worldline that has a
smaller

∫
ds, by letting it jump more or less from light-cone to light-cone, as

in Fig. 2.6 (see e.g. Wald (1984) § 9.3). The construction of Fig. 2.6 fails for
spacelike geodesics.

2 In an analogy with (1.4) we speak of a timelike (spacelike) worldline or geodesic
when ds2 > 0 (ds2 < 0). A null worldline or null geodesic has ds2 = 0. For
spacelike and null geodesics p can no longer be interpreted as an interval length.
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Eq. (2.34) may also be derived from a variational principle.3 The sim-
plest is δ

∫
ṡdp = 0, and this is equivalent to δ

∫
F (ṡ) dp = 0 provided F is

monotonous, F ′ �= 0. We choose δ
∫

ṡ2 dp = 0 , or

δ
∫

Ldp = 0 ; L(xα, ẋβ) = (ds/dp)2 = gαβ ẋα ẋβ . (2.36)

The solution is determined by the Euler-Lagrange equations (Appendix C)

∂L

∂xλ
=

d
dp

(
∂L

∂ẋλ

)
. (2.37)

Now, ∂L/∂xλ = gαβ,λ ẋαẋβ because only gαβ depends on {xµ}. By using
∂ẋα/∂ẋλ = δα

λ one gets ∂L/∂ẋλ = 2gαλ ẋα. Substitute this in (2.37):

gαβ,λ ẋα ẋβ = 2(gαλ ẋα)˙

= 2(gαλ,β ẋβ ẋα + gαλ ẍα) ,

or
gαλ ẍα + 1

2 (2gλα,β − gαβ,λ) ẋα ẋβ = 0 . (2.38)

Now comes a frequently used trick: renaming of dummy indices: 2gλα,β ·
ẋα ẋβ = gλα,β ẋα ẋβ + gλβ,α ẋβ ẋα = (gλα,β + gλβ,α) ẋα ẋβ . Substitution in
(2.38) and multiplication with gµλ gives:

ẍµ + 1
2gµλ (gλα,β + gλβ,α − gαβ,λ) ẋα ẋβ = 0 . (2.39)

This is of the form of (2.34) and the factor multiplying ẋα ẋβ must be equal to
Γµ

αβ , which proves (2.24). Variational calculus is a very efficient tool for this
type of problem. Without much difficulty, it permits us to find the geodesic
equation directly from the metric, and from this equation one may just read
the Christoffel symbols Γµ

νσ. This is usually a lot faster than calculating them
from (2.24), and this method is therefore highly recommended.

The following result is very helpful when analysing the dynamics of a test
particle in GR (assuming that its orbit is a geodesic), because it allows us to
find constants of the motion. From the text below (2.37) we see that ∂L/∂xλ

vanishes if gαβ,λ = 0. And then eq. (2.37) says that ∂L/∂ẋλ = 2gαλẋα is
constant. In terms of the 4-velocity uµ = dxµ/dp we have found that the
covariant 4-velocity uλ = gλαuα is constant:

gαβ,λ = 0 → uλ = gλν ẋν = constant (2.40)

with ˙ = d/dp. The fact that uλ is a constant along a geodesic if the metric is
independent of xλ – doesn’t that ring a bell?
3 Here we switch to another definition of geodesics without proving its equivalence

with (2.34).
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Exercise 2.10: Show that the geodesics of the Lorentz metric (gαβ = ηαβ)
are straight lines.

Exercise 2.11: Show that the variational problem (2.36) is equivalent to
δ
∫

F (L) dp = 0 if F is monotonous, F ′ �= 0.

Hint: Write down (2.37) with L → F (L); use ∂F (L)/∂xλ = F ′ ∂L/∂xλ, and
(F ′ ∂L/∂ẋλ)˙ = (F ′)˙ ∂L/∂ẋλ + F ′(∂L/∂ẋλ)˙. But (F ′)˙ = F ′′dL/dp = 0 (L
is constant on xµ(p) because ẋαẋα is).

2.6 The covariant derivative

For a given vector field Aµ that is not restricted to the curve xσ(p) we can
elaborate dAµ/dp in (2.26) as dAµ/dp = Aµ

,σ ẋσ, because we are able to
compute derivatives in other directions than along the curve. This leads to
the introduction of the covariant derivative

DAµ

Dp
=

(
Aµ

,σ + Γµ
νσ Aν

)
ẋσ ≡ Aµ

:σ uσ , (2.41)

where uσ = ẋσ = dxσ/dp and

Aµ
:σ ≡ Aµ

,σ + Γµ
νσ Aν (2.42)

is the covariant derivative of Aµ. It may be regarded as the ‘intrinsic deriva-
tive’, the derivative after correction for the meaningless change in orientation
of the base vectors. In a similar way we may obtain the covariant derivative
of a covariant vector from (2.27):

Aµ:σ = Aµ,σ − Γν
µσ Aν . (2.43)

Important is that both Aµ
:σ and Aµ:σ are tensors if Aµ is a vector, even

though neither of the two terms on the right hand sides of (2.42) and (2.43)
are tensors themselves. The proof is a matter of combining relations (2.20)
and (2.31), and is left to the reader.

Next follow a few definitions. The covariant derivative of a product XY
of two tensors is:

(XY ):σ = X:σ Y + X Y:σ . (2.44)

For example:
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(AµBν):σ = (Aµ,σ − Γα
µσ Aα)Bν + Aµ(Bν,σ − Γα

νσ Bα)

= (AµBν),σ − Γα
µσ AαBν − Γα

νσ AµBα . (2.45)

Accordingly, we define the covariant derivative of a covariant second rank
tensor as:

Tµν:σ = Tµν,σ − Γα
µσ Tαν − Γα

νσ Tµα . (2.46)

The recipe for tensors of higher rank should be clear by now. For example, if we
need an expression for Tα

β
γ:σ, then we merely have to work out (PαQβRγ):σ

as in (2.44) and (2.45). The general pattern is T ∗
∗:σ = T ∗

∗,σ ±Γ-term for every
index. For a scalar:

Q:σ = Q,σ . (2.47)

Covariant derivatives do not commute, unlike normal derivatives (X,αβ =
X,βα for every X). We calculate Bµ:ν:σ by substituting Tµν = Bµ:ν in (2.46):

Bµ:ν:σ = Bµ:ν,σ − Γα
µσ Bα:ν − Γα

νσ Bµ:α , (2.48)

which should be elaborated further with (2.43). After that, interchange ν and
σ and subtract. The result of a somewhat lengthy calculation is:

Bµ:ν:σ − Bµ:σ:ν = Bα Rα
µνσ (2.49)

with
Rα

µνσ = Γα
µσ,ν − Γα

µν,σ + Γτ
µσ Γα

τν − Γτ
µν Γα

τσ . (2.50)

Rα
µνσ is called the RIEMANN tensor. It is a tensor because (2.49) is valid

for every vector Bα and because the left hand side is a tensor. Then ap-
ply the quotient theorem. Apparently, covariant derivatives commute only if
Rα

µνσ = 0. The Riemann tensor plays a crucial role in GR because it con-
tains all information about the curvature of space. Note the remarkable fact
that according to (2.49) the difference of two consecutive covariant differenti-
ations is proportional to the vector itself. The explanation is given in the next
section.

Exercise 2.12: Show that

Tµν
:σ = Tµν

,σ + Γµ
ασ Tαν + Γν

ασ Tµα . (2.51)

Great care is needed in using these relations. For example, let Tµν be di-
agonal. Then it seems evident that T 1µ

:µ = T 11
:1, but that is not the case.

Why not?

Hint: Write out (AµBν):σ as in (2.45). It is due to the action of the invisible



2.7 Riemann tensor and curvature 35

dummy index α.

Exercise 2.13: An important property is that the metric tensor behaves as
a constant under covariant differentiation:

gµν:σ = 0 . (2.52)

Hint: Use (2.46) and (2.30).

Exercise 2.14: Prove the following compact form of the geodesic equation:

uσuµ:σ = 0 or uσuµ
:σ = 0 . (2.53)

Hint: The last relation is just 0 = Duµ/Dp = (2.41); the first relation with
(2.52): 0 = gλµuµ

:σuσ = (gλµuµ):σuσ = etc.

Exercise 2.15: A reminder of the linear algebra aspects of tensor calculus.
Given a 2D Riemann space with co-ordinates x, y, a metric and two vectors
in the tangent space of the point (x, y):

ds2 = dx2 + 4dxdy + dy2 ; Aα =
(

1
4

)
; Bα =

(
y
x

)
.

Write down gµν and gµν and show that all Christoffel symbols are zero. Com-
pute Aν and Bν

:ν .

Hint: g11 = g22 = 1; g12 = g21 = 2, use (2.24) for the Christoffel symbols;

gµν =
1
3

(
−1 2

2 −1

)
; Aµ =

(
9
6

)
; Bν

:ν =
4
3

.

The Γ’s being zero we have Bν
:ν = Bν

,ν .

2.7 Riemann tensor and curvature

The metric tensor does not tell us whether a space is flat, because the use
of ‘strange’ co-ordinates is not prohibited. For example ds2 = dr2 + r2dϕ2
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(planar polar co-ordinates) defines a flat space, but (2.2) defines a curved
space. The metric tensor contains apparently a mix of information on co-
ordinates and curvature. The intrinsic curvature properties are determined
by the Riemann tensor. We shall illustrate this by transporting a vector
Aµ parallel to itself along two different paths to the same final position, see
Fig. 2.7. According to (2.26), dAµ = −fσ(x)dxσ with fσ(x) = Γµ

νσAν (the
upper index µ is omitted for brevity as it does not change). The difference of
the two final vectors is:

dAµ = Aµ
1 − Aµ

2

= −fσ(x)dξσ − fσ(x + dξ)dησ + fσ(x)dησ + fσ(x + dη)dξσ

	 −fσdξσ − fσdησ − fσ,λ dξλdησ + fσdησ + fσdξσ + fσ,λ dηλdξσ

= (fσ,λ − fλ,σ) dξσdηλ . (2.54)

Now substitute fσ = Γµ
νσAν = Aµ

:σ − Aµ
,σ. The terms Aµ

,σ cancel, and after
some index gymnastics we arrive at (exercise 2.16):

dAµ = (Aµ
:σ,λ − Aµ

:λ,σ) dξσdηλ

= gµν(Aν:σ,λ − Aν:λ,σ) dξσdηλ

= gµν(Aν:σ:λ − Aν:λ:σ) dξσdηλ

= gµνRανσλ Aα dξσdηλ

= gµνRναλσ Aα dξσdηλ

= Rµ
αλσ Aα dξσdηλ . (2.55)

On account of (2.24) the Christoffel symbols vanish identically in a flat space
with rectangular co-ordinates, since gµν has only constant elements. Therefore
the Riemann tensor (2.50) is zero as well. The transformation properties of
a tensor then ensure that Rα

µνσ is zero in a flat space for any choice of the
co-ordinates.4 In that case parallel transport along a closed path leaves a vec-
tor unchanged.5 But in a curved space the orientation of the vector will have
4 Contrary to the Christoffel symbols, which are not tensors. For example, the

Christoffel symbols vanish in rectangular co-ordinates in a plane, but not in polar
co-ordinates.

5 Conversely, if the Riemann tensor is zero, it can be proven that there exist co-
ordinates so that gµν is constant which implies that the space is flat, see e.g. Dirac
(1975) § 12.
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{ xa } dxa

Fig. 2.7. Parallel transport of the vector A from P to R along path 1 (PQR) and
path 2 (PSR) produces a different result.

changed. Once this is accepted intuitively, it is clear that the difference dAµ

must be proportional to the length of the vector, which explains the factor
Aα in (2.55). The derivation in (2.55) shows that the difference dAµ is also
proportional to the difference of two consecutive covariant differentiations,
and this explains why this difference is proportional to the vector itself, as in
(2.49).

There are several other ways to illustrate the relation between the Rie-
mann tensor and curvature. One is the equation for the geodesic deviation,
see exercise 2.18. Another is the relation between Gaussian curvature and the
Riemann tensor. Gaussian curvature refers to surfaces embedded in a flat 3D
space. The curvature κ in a point P of a curve on the surface is defined as
the inverse radius of the osculating circle at P . Each point has two principal
curvatures κ1 and κ2, and the Gaussian curvature K ≡ κ1κ2 is an invariant
determined by the geometry of the surface, which has several interesting prop-
erties.6 Turning now to Riemann spaces, take two orthogonal unit vectors e1

and e2 in the tangent space of a point P which are not null. Now consider
those geodesics in Riemann space that are tangent in P to the plane spanned
by e1 and e2. These geodesics subtend, locally around P , a 2D curved sub-
space of Riemann space. The Gaussian curvature of this 2D space at P is
Rαµνσeα

1 eµ
2eν

1eσ
2 , apart from the sign.7

The Riemann tensor obeys several symmetry relations that reduce the
number of independent components from n4 to n2(n2 −1)/12 (see literature).
In 4 dimensions Rα

νρσ has only 20 independent components, and all con-
tractions of Rα

νρσ are either zero or equal, apart from the sign. We choose

6 E.g. Gauss’s theorem on integral curvature: the sum of the three interior angles
of a geodesic triangle (bounded by 3 geodesics) equals π plus the surface integral
of K.

7 For a proof of these statements see e.g. Robertson and Noonan (1969) p. 216.
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the Ricci tensor : 8

Rµν ≡ Rα
µνα (RICCI). (2.56)

The explicit expression follows from (2.50):

Rµν = Γα
µα,ν − Γα

µν,α − Γα
µν Γβ

αβ + Γα
µβ Γβ

να . (2.57)

We infer from (2.33) that Γα
µα,ν = 1

2

(
log |g|

)
,µν

so that all terms in (2.57)
are symmetric in µ and in ν. Hence Rµν is symmetric:

Rµν = Rνµ . (2.58)

We may contract once more:

R ≡ Rν
ν = gνµRµν = Rαβ

βα . (2.59)

R is called the total curvature. Finally we introduce the Einstein tensor Gµν :

Gµν = Rµν − 1
2gµνR (EINSTEIN). (2.60)

The Einstein tensor will be useful later because its divergence is zero:

Gµν
:ν = (Rµν − 1

2gµνR):ν = 0 . (2.61)

Riemann, Ricci en Einstein tensor contain at most second derivatives of gαβ .
By substituting (2.24) in (2.50) we get:

Rα
µνσ = 1

2gαβ
(
gβσ,µν − gµσ,βν − gβν,µσ + gµν,βσ

)
+ gαβ

(
Γτβσ Γτ

µν − Γτβν Γτ
µσ

)
. (2.62)

The corresponding expressions for Rµν and for Gµν can be found from this
by contraction. The first term contains all second-order derivatives. The first-
order derivatives are in the second term. The proofs of (2.61) and (2.62) can
be found in the literature, but are not important here.

Exercise 2.16: Provide the missing details of the derivation of (2.55).

Hint: Second = sign: Aµ
:σ,λ = (gµνAν):σ,λ = (gµνAν:σ),λ = gµν

,λ Aν:σ +
gµνAν:σ,λ, but Aµ is parallel transported, hence Aν:σ = 0, etc. Third = sign:
Aν:σ:λ = Aν:σ,λ from (2.48). Fifth = sign: Rανσλ = Rναλσ is a symmetry
relation of the Riemann tensor.

8 Other authors define Rµν = Rα
µαν , another source of sign differences. For a

complete classification of all sign conventions see the red pages in Misner et al.
(1971). In terms of this classification we follow the − + − convention.
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Fig. 2.8. Parallel transport of a vector A over the surface of a sphere with radius
r = 1, see exercise 2.17.

Exercise 2.17: Consider a 2D spherical surface with radius r = 1, see Fig. 2.8.
Calculate the Christoffel symbols and the total curvature R. Convince your-
self that R ∝ r−2. Show that a vector A will rotate in the tangent space as
it is parallel-transported along a circle θ = θ0. Try to understand this with
the intuitive definition of parallel transport in § 2.4. Start in (θ, ϕ) = (θ0, 0)
with (Aθ, Aϕ) = (0, 1/ sin θ0). Show that AiAi is always 1, i.e. |A| ≡ 1, and
that after one full revolution A has rotated over an angle 2π cos θ0. Discuss
the limiting cases θ0 = π/2 (geodesic!) and θ0 � 1.

Hint: (2.2): g11 = 1, g22 = sin2 θ (θ = 1, ϕ = 2). Do not use (2.24), but rather
(2.37) with L(θ, θ̇, ϕ̇) = θ̇2 + sin2 θ ϕ̇2 :

∂L

∂θ
=

(∂L

∂θ̇

)
˙ → θ̈ − sin θ cos θ ϕ̇2 = 0 ;

∂L

∂ϕ
=

(∂L

∂ϕ̇

)
˙ → ϕ̈ + 2 cot θ θ̇ϕ̇ = 0 .

By comparing with (2.34) we may just read the Γ’s: Γ1
22 = − sin θ cos θ ;

Γ2
12 = cot θ (double product!). All other Γ’s are zero. (2.33) → Γα

µα,ν =
(log sin θ),µν → Γα

1α,1 = −1/ sin2 θ . And Γα
11,α = 0 ; Γα

22,α = −(sin θ ·
cos θ),θ = sin2 θ − cos2 θ. Algebra: R11 = −1 and R22 = − sin2 θ. Finally
R = gµνRµν = g11R11 + g22R22 = R11 + (1/ sin2 θ)R22 = −2. For a sphere
with radius r: R = −2/r2 (minus sign due to sign convention).
Parallel transport: p is proportional to the arc length (why?), so choose p = ϕ;
(2.28)+(2.26): Aµ

,ϕ + Γµ
νσ Aνxσ

,ϕ = 0 with x1
,ϕ = dθ/dϕ = 0 and x2

,ϕ =
dϕ/dϕ = 1:
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Fig. 2.9. The geodesic deviation.

Aθ
,ϕ = sin θ0 cos θ0 Aϕ ; Aϕ

,ϕ = − cot θ0 Aθ .

Eliminate Aϕ: Aθ
,ϕϕ + cos2 θ0 Aθ = 0, same equation holds for Aϕ. Harmonic

oscillator with frequency cos θ0. Solution for given initial value:

Aθ = sin(ϕ cos θ0) ; Aϕ = cos(ϕ cos θ0)/ sin θ0 .

A rotates clockwise when looking down on the tangent space from outside;
θ0 = π/2: Aθ ≡ 0 and Aϕ ≡ 1/ sin θ0 = 1, therefore A remains a tangent
vector; θ0 � 1 (small circle around the north pole): in that case the tangent
space is always almost parallel to the equatorial plane, with base vectors x en
y, and eθ 	 x cos ϕ + y sin ϕ and eϕ 	 (y cos ϕ−x sin ϕ) sin θ0. For θ0 � 1 it
follows that A = Aθeθ + Aϕeϕ 	 y, so that A remains virtually unchanged
with respect to a fixed frame.

Exercise 2.18: Given a set of geodesics xµ(p, λ) where p is the curve pa-
rameter and λ labels different geodesics (λ is constant along one geodesic).
Consider two neighbouring geodesics λ and λ + δλ. The points A and B are
connected by the vector ξµ = xµ(p, λ + δλ)− xµ(p, λ) 	 (∂xµ/∂λ)δλ ≡ eµδλ.
Prove that:

D2ξµ

Dp2
= Rµ

αβν uαuβξν ; uα = ẋα =
∂xα

∂p
. (2.63)

This is the equation for the geodesic deviation, that will play an important
role later. In a flat space the Riemann tensor is zero, and then ξµ is a linear
function of p, and for timelike geodesics also a linear function of the arc
length s, as expected. In a curved space however this is no longer the case.
For example, on a sphere ξµ(s) will be something like a sine-function.

Hint: The proof comes in three steps:



(a)
∂eµ

∂p
=

∂2xµ

∂p ∂λ
=

∂uµ

∂λ
= uµ

,α
∂xα

∂λ
= uµ

,α eα ;

(b) eµ
:α uα ≡ Deµ

Dp
=

∂eµ

∂p
+ Γµ

αβ eαuβ

= uµ
,α eα + Γµ

αβ eαuβ = uµ
:α eα ;

(c)
D2eµ

Dp2
≡ (eµ

:α uα):β uβ = (uµ
:α eα):β uβ

= uµ
:α eα

:β uβ + uµ
:α:β eαuβ

= uµ
:α uα

:β eβ + uµ
:α:β uαeβ +

(
uµ

:α:β − uµ
:β:α

)
uβeα

=
(
uµ

:α uα
)
:β

eβ + gµν
(
uν:α:β − uν:β:α

)
uβeα

= gµν uσ Rσ
ναβ uβeα

= Rσ
µ
αβ uσuβeα

= Rµ
σβα uσuβeα .

In (c) we have twice used (b), next uµ
:β:α eαuβ = uµ

:α:β eβuα is added and
substracted again, and then (2.53) and (2.49). The last = sign is a symme-
try relation of the Riemann tensor. Because δλ is constant, the equation also
holds for ξµ = eµδλ.

Exercise 2.19: Be aware of some inconsistencies in the notation. We encoun-
tered one in exercise 2.12. Meet two more here. In § 2.2 and § 2.3 it was
stressed that the rules for index raising and lowering are always valid. Does
that mean that

gµαgαλ,ν
?= gµ

λ,ν ; (2.64)

gµαu̇α ?= u̇µ . (2.65)

Hint: In exercise 2.12 the trouble was caused by a hidden index; here we
discover that the symbols without derivative had already been defined; one
way to see that (2.64) cannot be correct is to note that gµ

λ,ν ≡ δµ
λ,ν = 0, and

since det{gµα} �= 0 → gαλ,ν = 0 → gαλ = const. Instead, 0 = (gµαgαλ),ν =
gµα

,ν gαλ + gµαgαλ,ν , etc. Likewise, uµ is defined as gµαuα so that u̇µ =
(gµαuα)˙ = gµα,σ uσuα + gµαu̇α. Also correct is u̇µ = uµ,αẋα = uµ,αuα.




