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Introduction to the Theory of Anisotropic and
Inhomogeneous Materials

In this chapter, a very brief introduction to composite materials, the evalu-
ation of material properties and their homogenization techniques are given.
Also, a brief introduction is given to smart composites and the basic consti-
tutive models for composites, where a few standard smart materials can be
embedded. Towards the end of the chapter a brief description of how to obtain
constitutive models for inhomogeneous materials, such as functionally graded
materials, is presented.

2.1 Introduction to Composite Materials

As the name suggests, composite materials are obtained by combining two or
more materials at the macroscale to obtain a useful structural material. Al-
though these materials at the microscopic scale can be inhomogeneous, they
can be considered homogeneous at the macroscopic level. These materials
possess the qualities of each of the constituents and the choice of constituents
depends on the application for which these materials are required. These ma-
terials are normally preferred due to their light weight, high strength, and high
corrosion resistance properties. The two normal constituents of a composite
material are the Fiber and the Matrix. Depending upon how they are bound
together, different types of composite materials can be obtained. Owing to
the difference in the constitutive behavior of these two constituent materi-
als, the constitutive model of the compound material is normally anisotropic.
Composites can be classified into three different categories, namely fibrous
composites, particulate composites and laminated composites.

The fibrous composites consist of fibers or whiskers dispersed in a matrix
to form a structural element. The fibers are normally expected to take all the
load and all the fibers in the structural element are bound together by the
matrix. In addition to binding, the matrix helps in stress transfer and also
to protect the fibers from harmful environmental effects. The matrix material
normally has low stiffness, density and strength compared to the fibers. Some
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of the commonly used fibers are made of carbon, graphite, boron, E-glass etc.
while the most commonly used matrix material is epoxy, which is essentially
a polymer material.

The particulate composite consists of particles of one or more materials
suspended in a matrix of a different material. The particles and the matrix
can be metallic or non-metallic. Concrete is a very good example of a par-
ticulate composite wherein the sand and the granite are bound by a matrix
material (cement). Here the particles are non-metallic. Use of mica in glass
is yet another example of a particulate composite, which is used extensively
as an insulating material in electrical applications. For spacecraft, rocket pro-
pellents are used extensively as a fuel. These propellents consist of aluminum
powder and perchlorate oxidizers mixed in an organic binder. The normal
binder material is polyurethene. This is an example of metallic particles in a
non-metallic composite.

For structural applications, the above two forms of composite are seldom
used; here the common type is the laminated composite. Hence an entire
section is devoted to this form of composite.

2.2 Theory of Laminated Composites

Laminated composites have found extensive use as aircraft structural materi-
als due to their high strength to weight and stiffness to weight ratios. Their
popularity stems from the fact that they are extremely light-weight and the
laminate construction enables the designer to tailor the strength of the struc-
ture in any required direction depending upon the loading directions to which
the structure is subjected. In addition to aircraft structures, they have found
their way into many automobile and building structures. Apart from hav-
ing better strength, stiffness and lower weight properties, they have better
corrosion resistance, thermal and acoustic insulation properties than metallic
structures.

The laminated composite structure consists of many laminas (plies) stacked
together to form the structure. The number of plies or laminas depends on the
strength that the structure is required to sustain. Each lamina contains fibers
oriented in the direction where the maximum strength is required. These fibers
are bound together by a matrix material. The laminated composite structure
derives its strength from the fibers. The commonly used fibers are made of
carbon, glass, Kevler and boron. The most commonly used matrix material
is epoxy resin. These materials are orthotropic at the lamina level while at
the laminate level, they exhibit highly anisotropic properties. The anisotropic
behavior results in stiffness coupling, such as bending axial shear coupling in
beams and plates, bending axial torsion coupling in aircraft thin-walled struc-
tures, etc. These coupling effects make the analysis of laminated composite
structures very complex.
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2.2.1 Micromechanical Analysis of a Lamina

A lamina is a basic element of a laminated composite structure, constructed
from fibers that are bound together by the matrix resin. The strength of the
lamina, and hence the laminate, depends on the type of fiber, their orientation
and also the volume fraction of fiber in relation to the overall volume of lamina.
Since the lamina is a heterogeneous mixture of fibers dispersed in a matrix,
determination of the material properties of the lamina, which is assumed to
be orthotropic in character, is a very involved process. The method used in
the determination of lamina material properties is micromechanical analysis.
According to Jones [11], micromechanics is the study of composite material
behavior, wherein the interaction of the constituent materials is examined in
detail as part of the definition of the behavior of the heterogeneous composite
material.

Hence, the objective of micromechanics is to determine the elastic moduli
of a composite material in terms of the elastic moduli of the constituent ma-
terials, namely the fibers and the matrix. Thus, the property of a lamina can
be expressed as

Qij = Qij(Ef , Em, νf , νm, Vf , Vm) , (2.1)

where E, ν and V are the elastic moduli, Poisson’s ratio and the volume
fraction respectively, and f and m subscripts denote the fiber and the matrix,
respectively. The volume fraction of fiber is determined from the expression:
Vf = (volume of fiber)/(total volume of lamina) and Vm = 1 − Vf .

There are two basic approaches for the determination of material proper-
ties of the lamina. They can be grouped under the following heads: (1) the
strength of materials approach and (2) the theory of elasticity approach. The
first method gives an experimental way of determining the elastic moduli. The
second method gives upper and lower bounds on the elastic moduli and not
their actual values. In fact, there are many papers available in the literature
that deal with the theory of elasticity approach to determine the elastic mod-
uli of a composite. In this section, only the first method is presented. There
are many classic textbooks on composites such as Jones [11] and Tsai [12]
that cover this in detail.

2.2.2 Strength of Materials Approach to Determination of Elastic
Moduli

The material properties of a lamina are determined by making some assump-
tions concerning the behavior of its constituents. The fundamental assumption
is that the fiber is the strong constituent of a composite lamina and hence is
the main load bearing member, and the matrix is weak and its main function
is to protect the fibers from severe environmental effects. Also, the strains in
the matrix and the fiber are assumed to be the same. Hence, a plane section
before the application of bending stress remains plane after bending. In the
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present analysis, we consider a unidirectional, orthotropic composite lamina
to derive expressions for the elastic moduli. In doing so, we limit our analysis
to a small volume element, small enough to show the microscopic structural
details, yet large enough to represent the overall behavior of the composite
lamina. Such a volume is called the representative volume (RV). A simple RV
is a fiber surrounded by matrix as shown in Figure 2.1.
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Fig. 2.1. RV for the determination of longitudinal material properties

First, the procedure for determining the elastic modulus E1 is given. In Fig-
ure 2.1, the strain in the 1-direction is given by ε1 = ∆L/L, where this strain
is felt both by the matrix and the fiber, according to our basic assumption.
The corresponding stresses in the fiber and the matrix are given by

σf = Ef ε1 , σm = Emε1 . (2.2)

Here Ef and Em are the elastic modulus of the fiber and the matrix respec-
tively. The cross-sectional area A of the RV is made up of the area of the
fiber Af and the area of the matrix Am. If the total stress acting on the
cross-section of the RV is σ1, then the total load acting on the cross-section is

P = σ1A = E1ε1A = σfAf + σmAm . (2.3)

From the above expression, we can write the elastic moduli in the 1-direction
as

E1 = Ef
Af

A
+ Em

Am

A
. (2.4)

The volume fraction of the fiber and the matrix can be expressed in terms of
areas of the fiber and the matrix as

Vf = Af/A , Vm = Am/A . (2.5)

Using Equation (2.5) in Equation (2.4), we can write the modulus in the
1-direction as
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E1 = EfVf + EmVm . (2.6)

Equation 2.6 is the well known rule of mixtures for obtaining the equivalent
modulus of the lamina in the direction of the fibers.

The equivalent modulus E2 of the lamina is determined by subjecting the
RV to a stress σ2 perpendicular to the direction of the fiber as shown in
Figure 2.2. This stress is assumed to be the same in both the matrix and the
fiber.
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Fig. 2.2. RV for determination of transverse material property

The strains in the fiber and matrix due to this stress are given by

εf = σ2/Ef , εm = σ2/Em . (2.7)

If h is the depth of the RV (see Figure 2.2), then this total strain ε2 is dis-
tributed as a function of the volume fraction as

ε2h = (Vf εf + Vmεm)h . (2.8)

Substituting Equation (2.7) in Equation (2.8), we get

ε2 = Vf
σ2

Ef
+ Vm

σ2

Em
. (2.9)

However, we have

σ2 = E2ε2 = E2

(
Vf

σ2

Ef
+ Vm

σ2

Em

)
. (2.10)

From the above relation, the equivalent modulus in the transverse direction
is given by

E2 =
EfEm

VfEm + VmEf
. (2.11)
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The major Poissons ratio ν12 is determined as follows. If the RV of width W
and depth h is loaded in the direction of the fiber, then both strains ε1 and
ε2 will be induced in the 1 and 2 directions. The total transverse deformation
δh is the sum of the transverse deformation in the matrix and the fiber and
is given by

δh = δhf + δhm . (2.12)

The major Poissons ratio is also defined as the ratio of the transverse strain
to the longitudinal strain and expressed as

ν12 = −ε2/ε1 . (2.13)

The total transverse deformation can also be expressed in terms of the depth
h as

δh = −hε2 = hν12ε1 . (2.14)

Following the procedure adopted for the determination of the transverse mod-
ulus, the transverse displacement in the matrix and the fiber can be expressed
in terms of its respective volume fraction and the Poissons ratio as

δhf = hVfνf ε1 , δhm = hVmνmε1 . (2.15)

Using Equations (2.14) and (2.15) in Equation (2.12), we can write the ex-
pression for the major Poissons ratio as

ν12 = νfVf + νmVm . (2.16)

By adopting a similar procedure to that used in the determination of the trans-
verse modulus, we can write the shear modulus in terms of the constituent
properties as

G12 =
GfGm

VfGm + VmGf
. (2.17)

The next important property of the composite that requires determination is
the density. For this, we begin with the total mass of the lamina, which is the
sum of the masses of the fiber and the matrix. That is, the total mass M can
be expressed in terms of the densities (ρf and ρm) and the volume fractions
(Vf and Vm) as

M = Mf + Mm = ρfVf + ρmVm . (2.18)

The density of the composite can then be expressed as

ρ =
M

V
=

ρfVf + ρmVm

V
. (2.19)

Once the properties of the lamina are determined, then one can proceed to a
macromechanical analysis of the lamina to characterize the constitutive model
of the laminate.
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2.2.3 Stress–Strain Relations for a Lamina

Determination of the overall constitutive model for a lamina of a laminated
composite constitutes the macromechanical study of composites. Unlike the
micromechanical study, where the composite is treated as a heterogeneous
mixture, here the composite is presumed to be homogeneous and the effects
of the constituent materials are accounted for only as an averaged apparent
property of the composite. The following are the basic assumptions used in
deriving the constitutive relations:

• The composite material is assumed to behave in a linear (elastic) manner.
That is, Hookes law and the principle of superposition are valid.

• At the lamina level, the composite material is assumed to be homogeneous
and orthotropic. Hence the material has two planes of symmetry, one co-
inciding with the fiber direction and the other perpendicular to the fiber
direction.

• The state of the stress in a lamina is predominantly plane stress

Fibers 1

3

2

Fig. 2.3. Principal axes of a lamina

Consider the lamina shown in Figure 2.3 with its principal axes, which
we denote the 1-2-3 axes. That is, axis 1 corresponds to the direction of
the fiber and axis 2 is the axis transverse to the fiber. The lamina is as-
sumed to be in a 3-D state of stress with six stress components given by
{σ11, σ22, σ33, τ23, τ13, τ12}. For an orthotropic material in the 3-D state of
stress, nine engineering constants require to be determined. The macrome-
chanical analysis will begin from here. The stress–strain relationship for an
orthotropic material is given by [11]
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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⎫⎪⎪⎪⎪⎪⎪⎬
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=

⎡
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S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.20)

Here, Sij are the material compliances. Their relationship with the engineering
constants is given in Reference [11]. νij is Poissons ratio for the transverse
strain in the jth direction when the stress is applied in the ith direction, and
is given by

νij = −εjj/εii . (2.21)

The above condition is for σjj = σ and all other stresses equal to zero. Since
the stiffness coefficients Qij = Qji, it follows that the compliance matrix is
also symmetrical, that is, Sij = Sji. This condition enforces the following
relationship among Poissons ratio:

νij

Ei
=

νji

Ej
. (2.22)

Hence, for a lamina under a 3-D state of stress, only three Poissons ratios
namely ν12, ν23 and ν31, are required to be determined. Other Poissons ratio
can be obtained from Equation (2.22).

For most of our analysis, we assume the condition of plane stress. Here, we
derive the equations assuming that conditions of plane stress exist in the 1−2
plane (see Figure 2.3). However, if one has to do an analysis of a laminated
composite beam, which is essentially a 1-D member, the condition of plane
stress will exist in the 1 − 3 plane and a similar procedure could be followed.

For the plane stress condition in the 1-2 plane, we set the following stresses
equal to zero in Equation (2.20), σ33 = τ23 = τ13 = 0. The resulting constitu-
tive model under plane stress conditions can be written as

⎧⎨
⎩

ε11
ε22
γ12

⎫⎬
⎭ =

⎡
⎣ 1/E1 −ν12/E1 0
−ν21/E2 1/E2 0

0 0 1/G12

⎤
⎦
⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ . (2.23)

Note that the strain ε33 also exists, which can be obtained from the third
constitutive equation

ε33 = S13σ11 + S23σ22 . (2.24)

This equation indicates that Poissons ratios ν13 and ν23 should also exist.
Inverting Equation (2.23), we can express the stresses in terms of the strains:

⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ =

⎡
⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦
⎧⎨
⎩

ε11
ε22
γ12

⎫⎬
⎭ , (2.25)
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where Qij are the reduced stiffness coefficients, which can be expressed in
terms of the elastic constants as

Q11 =
E1

1 − ν12ν21
, Q12 = ν21Q11 , Q22 =

E2

1 − ν12ν21
, Q66 = G12 . (2.26)

2.2.4 Stress–Strain Relation for a Lamina with Arbitrary
Orientation of Fibers

In most cases, the orientation of the global axes, which we call the x− y axes
and are geometrically natural for the solution of the problem, do not coincide
with the lamina principle axes, which we have already designated as 1–2 axes.
The lamina principal axes and the global axes are shown in Figure 2.4. A
small element in the lamina of area dA is taken and the free body diagram
(FBD) is shown in Figure 2.5.
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Fig. 2.4. Principal material axes of a lamina and the global x − y axes

Consider the free body A. Summing all the forces in the 1-axis direction,
we get

σ11dA − σxx(cos θdA)(cos θ) − σyy(sin θdA)(sin θ)
− τxy(sin θdA)(cos θ) − τxy(cos θdA)(sin θ) = 0 . (2.27)

On simplification, the above equation can be written as

σ11 = σxx cos2 θ + σyy sin2 θ + 2τxy sin θ cos θ . (2.28)

Similarly, by summing all the forces along the 2-axis (free body A), we get

τ12dA − σxx(cos θdA)(sin θ) − σyy(sin θdA)(cos θ)
− τxy(sin θdA)(sin θ) − τxy(cos θdA)(cos θ) = 0 . (2.29)

Simplifying the above equation, we get
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Fig. 2.5. Lamina and laminate coordinate system and FBD of a stressed element

τ12 = −σxx sin θ cos θ + σyy sin θ cos θ + τxy(cos2 θ − sin2 θ) . (2.30)

Following the same procedure and summing all the forces in the 2-direction
in the free body B, we can write

σ22 = σxx sin2 θ + σyy cos2 θ − 2τxy sin θ cos θ . (2.31)

Equations (2.28), (2.31) and (2.30) can be written in matrix form as
⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ =

⎡
⎣ C2 S2 2CS

S2 C2 −2CS
−CS CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

σxx

σyy

τxy

⎫⎬
⎭ , C = cos θ , S = sin θ (2.32)

or
{σ}1−2 = [T ]{σ}x−y .

In a similar manner, the strains at the 1–2 axis, can be transformed to the x–y
axis by a similar transformation. Note that to have the same transformation,
the shear strains are divided by 2. They can be written as
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⎧⎨
⎩

ε11
ε22
γ12
2

⎫⎬
⎭ =

⎡
⎣ C2 S2 2CS

S2 C2 −2CS
−CS CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

εxx

εyy
γxy

2

⎫⎬
⎭ or {ε̄}1−2 = [T ]{ε̄}x−y . (2.33)

Inverting Equations (2.32) and (2.33), we can express the stresses and strains
in global coordinates as⎧⎨
⎩

σxx

σyy

τxy

⎫⎬
⎭ =

⎡
⎣ C2 S2 −2CS

S2 C2 2CS
CS −CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ , {σ}x−y = [T ]−1{σ}1−2 . (2.34)

⎧⎨
⎩

εxx

εyy
γxy

2

⎫⎬
⎭ =

⎡
⎣ C2 S2 −2CS

S2 C2 2CS
CS −CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

ε11
ε22
γ12
2

⎫⎬
⎭ , or, {ε̄}x−y = [T ]−1{ε̄}1−2 .

(2.35)
Actual strain vectors in both 1–2 and x–y axes {ε}1−2 and {ε}x−y are related
to {ε̄}1−2 and {ε̄}x−y through a transformation matrix as⎧⎨

⎩
ε11
ε22
γ12

⎫⎬
⎭ =

⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦
⎧⎨
⎩

ε̄11
ε̄22
γ̄12
2

⎫⎬
⎭ and

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ =

⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦
⎧⎨
⎩

ε̄xx

ε̄yy
γ̄xy

2

⎫⎬
⎭ , (2.36)

{ε}1−2 = [R]{ε̄}1−2 , {ε}x−y = [R]{ε̄}x−y .

Now the constitutive equation of a lamina in its principal directions (Equa-
tion (2.25)) can be written as

{σ}1−2 = [Q]{ε}1−2 . (2.37)

Substituting Equations (2.32), (2.33) and (2.36) in Equation (2.37), we get

[T ]{σ}x−y = [Q][R]{ε̄}1−2 = [Q][R][T ]{ε̄}x−y = [Q][R][T ][R]−1{ε}x−y .
(2.38)

Hence the constitutive relation in the global x–y axes can now be written as

{σ}x−y = [Q̄]{ε}x−y = [T ]−1[Q][R][T ][R]−1{ε}x−y . (2.39)

Here the matrix [Q̄] is fully populated. Hence, although the lamina in its own
principal direction is orthotropic, in the transformed coordinate, it represents
complete anisotropic behavior, that is the normal stresses are coupled to the
shear strains and vice versa. The elements of [Q̄] are given by

Q̄11 = Q11C
4 + 2(Q12 + 2Q66)S2C2 + Q22S

4 ,

Q̄12 = (Q11 + Q22 − 4Q66)S2C2 + Q12(S4 + C4) ,

Q̄16 = (Q11 − Q12 − 2Q66)SC3 + (Q12 − Q22 + 2Q66)S3C ,

Q̄22 = Q11S
4 + 2(Q12 + 2Q66)S2C2 + Q22C

4 ,

Q̄26 = (Q11 − Q12 − 2Q66)S3C + (Q12 − Q22 + 2Q66)SC3 ,

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66)S2C2 + Q66(S4 + C4) , (2.40)

which gives the constitutive equation of a lamina under plane stress in the
1–2 plane.
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2.3 Introduction to Smart Composites

Laminated composites provide numerous opportunities to tailor the strength
in the required direction and enable placement of embedded sensors and ac-
tuators at any critical location to monitor the performance of the structure.
This facility is not available in conventional metallic structures. Since many
smart materials are available in thin-film or powder form, embedding them
in a laminated composite structure does not pose any serious problem. Those
composites that have an embedded smart material patch are called smart
composite structures. Figure 2.6 shows how a piezoelectric material can be
embedded in a laminated composite.

Fiber Direction

Composite Material
Plies

Slots for leads

Leads

Piezoelectric

Fig. 2.6. Construction of a smart composite

Modeling systems with structures having embedded smart sensors and ac-
tuators is very similar to modeling conventional composite structures, wherein
numerical techniques such as FEM or spectral techniques can be used. How-
ever, the modeling has to take care of the additional complexities arising
due to the material properties of the smart materials. These are reflected in
the constitutive law in the form of electromechanical coupling as in the case
of piezo-ceramic or poly-vinylidine di-fluoride (PVDF) sensors or magneto-
mechanical coupling as in the case of magnetostrictive sensors/actuators such
as TERFENOL-D. From the modeling point of view, these complexities lead
to additional matrices in the FEM/SFEM approach.

Piezoelectric or magnetostrictive materials have two constitutive laws, one
of which is used for sensing and the other for actuation applications. For 2-D
problems, the constitutive model for piezoelectric material is of the form
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{σ}3x1 = [Q](E)
3x3{ε}3x1 − [e]3x2{E}2x1

{D}2x1 = [e]T2x3{ε}3x1 + [µ](σ)
2x2{E}2x1 (2.41)

The first part of this constitutive law is called the actuation law, while
the second is called the sensing law. Here, {σ}T =

{
σxx σyy τxy

}
is the

stress vector, {ε}T =
{

εxx εyy γxy

}
is the strain vector, [e] is the ma-

trix of piezoelectric coefficients of size 3 × 2, which has units of N/V-mm,
{E}T =

{
Ex Ey

}
=

{
Vx/t Vy/t

}
is the applied field in the two coordinate

directions. It has units of V/mm. [µ] is the permittivity matrix of size 2 × 2,
measured at constant stress and has units of N/V/V and {D}T =

{
Dx Dy

}
is the vector of electric displacement in the two coordinate directions. This
has units of N/V-mm. [Q] is the mechanical constitutive matrix measure at
constant electric field. Normally, Equation ( 2.41) is written in the form

{ε} = [S]{σ} + [d]{E} . (2.42)

In the above expression, [S] is the compliance matrix, which is the inverse of
the mechanical material matrix [Q] and [d] = [Q]−1[e] is the electromechanical
coupling matrix, where the elements of this matrix have units mm/V and are
direction dependent. In most analyses, it will be assumed that the mechanical
properties will change very little with the change in the electric field and
as a result, the actuation law (Equation (2.41) can be assumed to behave
linearly with the electric field, while the sensing law (Equation ( 2.41))) can
be assumed to behave linearly with the stress. This assumption considerably
simplifies the analysis process.

The first part of Equation (2.41) represents the stresses developed due to a
mechanical load, while the second part of the same equation gives the stresses
due to a voltage input. From these equations, it is clear that the structure
will be stressed due to the application of an electric field even in the absence
of mechanical load. Alternatively, when the mechanical structure is loaded, it
generates an electric field even in the absence of an applied electric field. In
other words, the above constitutive law demonstrates the electromechanical
coupling, which can be exploited for a variety of structural applications such as
vibration control, noise control, shape control or structural health monitoring.
Actuation using piezoelectric materials can be demonstrated using a plate of
length L, width W and thickness t. Thin piezoelectric electrodes are placed on
the top and bottom surface of the plate as shown in Figure 2.7. Such a plate
is called a bimorph plate. When a voltage is passed between the electrodes
as shown in the figure (which is normally referred to as the poling direction),
deformation in the length, width and thickness directions is given by

δL = d31E1L =
d31V L

t
, δW = d31E2W =

d31V W

t
, δt = d33V .(2.43)

Here, d31 and d33 are the electromechanical coupling coefficients in the di-
rections 1 and 3 respectively. Conversely, if a force F is applied in any of
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Fig. 2.7. Illustration of actuation effect in a piezoelectric plate

the length, width or thickness directions, the voltage V developed across the
electrodes in the thickness direction is given by

V =
d31F

µL
or V =

d31F

µW
or V =

d33F

µLW
. (2.44)

Here µ is the dielectric permitivity of the material. The reversibility between
strain and voltage makes piezoelectric materials ideal for both sensing and
actuation.

There are different types of piezoelectric material that are used for many
structural applications. The most commonly used material is PZT (lead zir-
conate titanate) material, which is extensively used as bulk actuator material
as it has a high electromechanical coupling factor. On the other hand, due to
the low electromechanical coupling factor, piezo-polymers (PVDF) are used
only as sensor material. More recently, a new form of materials called piezo-
fiber composite (PFC) has been found to be a very effective actuator material
for use in vibration/noise control applications.

The constitutive laws (both actuation and sensing) for a magnetostrictive
material such as TERFENOL-D are much more complex than those for piezo-
electric materials. They are highly non-linear in behavior although they have
a similar form to the piezoelectric material, which is given by

{ε} = [S](H){σ} + [d]T {H} , (2.45)
{B} = {d}{σ} + [µ](σ){H} . (2.46)

Here, [S] is the compliance matrix measured at a constant magnetic field H,
d is the magneto-mechanical coupling matrix, the elements of which have
units of m/A, B is the vector of magnetic flux density in the two coordinate
directions. It has units tesla, equal to weber/m3. H is the magnetic field
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intensity vector in the two coordinate directions and has unit oersted, equal
to A/m. It is related to the AC current (I(t)) through the relation H = nI,
where n is the number of turns in the actuator. [µ] is the matrix of magnetic
permeability measured at constant stress and has units of weber/A-m. As in
the case of piezoelectric material, the first equation (Equation (2.46)) is the
actuation constitutive law, while the second equation is the sensing law. The
stress strain relations are different for different magnetic field intensities. The
strain is proportional to stress only for small H. For higher magnetic field
intensities, both sensing and actuator equations require to be simultaneously
solved to arrive at the correct stress–strain relation. This is because changes
in the magnetic field cause changes in the stress, which in turn changes the
magnetic permeability. Hence, the characterization of the material properties
of TERFENOL-D is more difficult than for piezoelectric material.

In Chapter 11, we deal with the modeling of smart composites where we
will use these constitutive models extensively. However, only linear behavior
is assumed for most examples reported in this book. The constitutive model
for smart composites is obtained in a similar manner to that for laminated
composites, where the smart patches are also considered as a lamina to obtain
the averaged properties.
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Fig. 2.8. Variation of Young’s modulus for different models
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2.4 Modeling Inhomogeneous Materials

Several analytical and computational models are available in the literature (see
References [13] and [14]) that discuss the issue of finding suitable functions for
approximating the modulus variation in an inhomogeneous material. There are
several criteria for selecting them. They are desired to be continuous, simple
and should have the ability to exhibit curvature, both “concave upward” and
“concave downward” [14]. Here, two types of variations are considered, which
generally cover all the existing analytical models. The exponential law, which
is more common in fracture studies of functionally graded materials (FGM)
(see References [15] and [16]), and does not show curvature in both directions,
is given by

P(z) = Pt exp(−δ(1 − 2z/h)) , δ =
1
2

log
(
Pt

Pb

)
. (2.47)

The power law, for commonly adopted Voight-type estimates [14], having all
the desired properties and introduced by Wakashima et al. [17], is given by

P(z) = (Pt − Pb)
(

z

h
+

1
2

)n

+ Pb , (2.48)

where P(z) denotes a typical material property (E,G, α, �). Pt and Pb denote
values of the variables at the topmost and bottommost layer of the structure,
respectively, and n is a parameter, the magnitude of which determines the
curvature. The working range of n is taken as 1/3 to 3, as any value outside
this range will produce an inhomogeneous material having too much of one
phase (see [18]).

Another way of estimating material properties is by the rule-of-mixtures,
which is generally employed for composite materials. A summary of this
method can be found in References [11] and [12]. The concept of equivalent ho-
mogeneity results in different methods, namely, the composite sphere model,
the three phase model, the composite cylinder model and the self-consistent
scheme [19]. The composite sphere and cylinder models can be further im-
proved by the step-by-step (SBS) method as given in Reference [20]. The
method given for the particle reinforced composite material is best suited for
use in the present context. The details are omitted here. In short, inhomoge-
neous materials such as FGM can be treated as a matrix particle mixture of
different particle volume fractions, which vary smoothly vary throughout the
depth of the structure. The two different materials at the top and bottom of
the beam play the role of matrix and particle.

These different models for material property variations are compared in
Figure 2.8, where the variation of the Young’s modulus throughout the depth
is plotted. Top and bottom materials (particle and matrix, respectively for
the SBS method) are taken as steel and ceramic with a Young’s modulus
ratio of 1.857. The figure clearly shows the different trends of distribution
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for different models. In the SBS method, “constant area composition” is used
and the particle volume fraction Vp1, is taken as 0.001. Since, the SBS method
predicts only the elastic and thermal properties, in calculations the inertial
properties are evaluated using the power law model with a suitable value for
the exponent n.

In this chapter, we have presented a detailed introduction to the constitu-
tive laws of fiber reinforced composite laminate and a brief description of the
theory of smart composite. More detailed discussions on smart composite will
be given in Chapter 11. Further, the popular choices of the functional form of
material property variations for inhomogeneous materials are also provided.


