
7

Composite Events

For certain applications, the expressiveness of subscriptions used by the local
notification matching algorithms introduced in Chap. 3 is not sufficient. As a
remedy, a service for composite event detection facilitates the management of
a large volume of events by enabling subscribers to specify their interest more
precisely. The composite event service supports the advanced correlation of
events through the detection of complex event patterns. In this chapter we
describe composite event detection services for publish/subscribe systems.

We start with two application scenarios that benefit from composite event
detection in the next section. After that, we list the requirements for such a
detection service (Sect. 7.2) and introduce composite events in more detail in
Sect. 7.3. We then give an example of composite event detectors based on finite
state automata (Sect. 7.4.1) and a corresponding language (Sect. 7.4.2). Com-
posite events (CE) are detected by automata that support distribution and a
flexible time model for composite events. Event subscribers of the composite
event service use a core composite event language to specify event patterns
using a series of operators. We also gave examples for three higher-level spec-
ification languages for composite events that are domain-specific. Section 7.5
has a discussion of centralized and distributed architectures for composite
event detection. We also explain how distribution is controlled by distribution
and detection polices. The design space for distribution polices gives rise to
a variety of different strategies for distributing composite event expressions.
We conclude the chapter with an overview of other composite event detection
services in Sect. 7.6.

7.1 Application Scenarios

Many application scenarios for a publish/subscribe service benefit from a
general-purpose composite event service that enhances the expressiveness of
subscriptions. In the following we will consider how composite events can be



232 7 Composite Events

used in a ubiquitous computing environment and for network systems moni-
toring. For each application scenario, we provide two examples of composite
event subscriptions.

Office 1 Office 2

Meeting Room 1 Meeting Room 2

Office 3

A

A

A

A

A

A

A

A

A

A

TT

T T

T

T

T

Location Sensor (Active Bat)

Temperature Sensor

W

W

W

Whiteboard Sensor

L

L

L

L

L L

L

Lighting Sensor

DDD

D

D

D D

Door Sensor

Fig. 7.1. The Active Office with different sensors

The Active Office

One example of a ubiquitous computing environment is theActive Office, a
sensor-rich environment inside a computerized building (Fig. 7.1). In this
building, sensors that are installed in offices provide information about the
environment to interested devices, applications, and users. The Active Office
is aware of its inhabitants’ behavior and enables them to interact with it in a
natural way. The large number of sensors potentially produce a vast amount
of data. Building users wear Active Bats [5] that publish location information,
and static sensors gather data about doors, lighting, equipment usage, and en-
vironmental conditions. However, information consumers prefer a high-level
view of the primitive sensor data. Thus, a middleware used in this applica-
tion scenario has to cope with high-volume data and be able to aggregate and
transform it before dissemination. Composite event detection can help process
the primitive events produced by the large number of sensors and provide a
higher-level abstraction to users of the Active Office.

1. A user may subscribe to be notified when a meeting with at least three
people working in the messaging department takes place during working
hours in one of the meeting rooms.

2. Building services may be interested in composite events about a drop in
temperature by 15 degrees for at least 15 min in any occupied office.



7.1 Application Scenarios 233

P

P

P

P

SSS

P

P

P
P

P

P

P

P

P

P

Fig. 7.2. A system for monitoring faults in a network

Network Systems Monitoring

When monitoring the operation of networks [49], network entities publish
notifications that are related to fault conditions in the network, such as that
shown in Fig. 7.2. In practice, millions of events may be published daily in
respect of fewer than a hundred real faults that require human intervention.
The task of network systems monitoring can thus be simplified by expressing
patterns associated with real problems as composite event subscriptions.

1. The network management center may want to be notified when at least
five workstations in different parts of the network detect a degradation in
network bandwidth.

2. A network customer may be interested in composite events when none of
its load-balanced Web servers are available to the outside world unless the
downtime is part of scheduled maintenance work.

The XenoTrust Framework

Recent efforts, such as the XenoServer project [30], are building large-scale,
public infrastructures for general-purpose, distributed computing with re-
source management and sharing. In such environments, reputation informa-
tion about participants must be disseminated in a timely and scalable fashion
so that entities can make trust-dependent decisions. Composite events can
help participants receive notifications about changes in reputation of their re-
source providers or consumers, thus creating a global-scale trust management
system [225].

1. A user may want to be notified when the reputation of any of its currently
active resource providers drops below a certain threshold and there is an
alternative provider that is capable of taking over the current resource
contract.



234 7 Composite Events

2. A resource provider may submit a subscription causing a composite event
when a new client receives a low reputation rating from at least three
other providers within three days while requesting significant resources.

7.2 Requirements

From the above application scenarios for composite event detection, we derive
several requirements for a composite event detection service.

� The composite event service must be expressive enough when it comes to
the specification of composite events. Depending on the application do-
main, users will describe event patterns of varying complexity. The com-
posite event service must naturally capture common use patterns.

� The composite event service must be usable. From a user’s perspective,
it must be easy to express complex event patterns in the composite event
service. A too-expressive language for the specification of composite events
may lead to poorly usability.

� The composite event service must be efficient in terms of the user’s per-
formance goals, such as low detection delay or bandwidth consumption. In
particular, there must exist an efficient implementation technique for com-
posite event detectors in the service. Often, a distributed implementation
improves the service.

Obviously, there is a tension between these requirements: A very expressive
composite event service may not result in an efficient or usable system. In
contrast, a very efficient implementation of composite event detector may
lead to a limited system with low expressiveness. In the following, we will
describe a composite event service based on extended finite state automata
that attempts to balance these trade-offs.

7.3 Composite Events

A composite event service is based on the notion of a composite event. Com-
posite events prevent subscribers from being overwhelmed by a large number
of primitive event publications by providing them with a higher-level abstrac-
tion. A composite event is published whenever a certain pattern of events
occurs in the publish/subscribe system. This means that subscribers can sub-
scribe directly to complex event patterns, as opposed to having to subscribe
to all the primitive events that make up the pattern and then performing the
detection themselves.

Often a subscriber is interested in the primitive events that caused a com-
posite event. Therefore, when a composite event has been detected by the
composite event service, it is published and contains all primitive events that



7.4 Composite Event Detection 235

contributed to its occurrence. Since composite events are build from primitive
ones according to a well-defined set of rules, every composite event can be as-
signed a composite event type. It is built from the types of the included events
and the relation between them in the composite event subscription. Note that
primitive events can also be considered degenerate composite events, thus
unifying primitive and composite event types within the publish/subscribe
system.

Definition 7.1 (Composite Event). Every composite event c has a com-
posite event type τc and belongs to the composite event space C,

(c : τc) ∈ C,

A composite event type τc corresponds to a valid expression C in a composite
event language,

τc ≡ C.

A composite event c consists of an interval timestamp tc and a set of composite
subevents {c1, c2, . . . , ck},

c : τc = (tc, {c1, c2, . . . , ck}).

A composite event is associated with a timestamp tc that states when it
has occurred. In a distributed system, there is no concept of global time [227],
which is why the timestamps of composite events caused by distributed
sources can be captured more accurately using partially ordered interval
timestamps [238]. An interval timestamp has a start and end time so that
it can express the local clock uncertainty at an event broker and also the
duration associated with a composite event from the first contributing event
to the last. To capture the temporal relations between composite events, we
define a partial and a total order over interval timestamps that will be used
by the weak and strong transitions in the detection automata described in the
next section.

Definition 7.2 (Interval Timestamp). An interval timestamp tc,

tc = [tlc; t
h
c ],

has a start time tlc and an end time thc with tlc ≤ thc . Interval timestamps are
partially-ordered (<) and totally-ordered (≺) as follows,

tc1 < tc2 � thc1
< tlc2

,

tc1 ≺ tc2 � (thc1
< thc2

) ∨ (thc1
= thc2

∧ tlc1
<tlc2

).



236 7 Composite Events

Higher-

Level

Languages

Core Composite

Event Language

Composite Event

Detection Automata

Expressiveness

Human

Specification

Decomposition

and Distribution

Execution

and Detection

Fig. 7.3. The components of the composite event detection service

7.4 Composite Event Detection

From the description of the application scenarios, it becomes clear that it
is challenging to design a single language for composite events that is both
expressive and intuitive to use by, say, a human user in the Active Office
environment. Therefore, an alternative approach is shown in Fig. 7.3, with
several specification layers that have different powers of expressiveness. At
the bottom layer, composite event detection automata provide maximum ex-
pressiveness and perform the actual detection of composite events described in
the next section. Composite event subscriptions specified in the core compos-
ite event language presented in Sect. 7.4.2 can be decomposed for distributed
detection. Finally, domain-specific higher-level languages constitute the top
layer and only expose a subset of the core language—supporting a simpler
definition of composite events for a given application domain. Expressions in
higher-level languages are automatically compiled down to composite event
detection automata by the composite event service.

7.4.1 Composite Event Detectors

In this section, we describe a composite event service that uses composite
event detection automata, which are finite state automata [193] that are ex-
tended with support for temporal relationships and concurrent events, to
analyze event streams. Basing composite event detection on extended finite
state automata has several advantages. First, finite state automata are a well-
understood computational model with a simple implementation. Second, their
restricted expressive power has the benefit of limited, predictable resource us-
age, which is important for the safe distribution of detectors in the publish/
subscribe system. Third, regular expression languages have operators that are
tailored toward the detection of patterns, which avoids the risk of redundancy
or incompleteness when defining a new composite event language. Finally,



7.4 Composite Event Detection 237

complex expressions in a regular language may easily be decomposed for dis-
tributed detection.

A detection automaton consists of a finite number of states and transitions
between them. To ensure that each state only has to consider certain events
for transitions, it is associated with an input domain Σ, which is a generaliza-
tion of the concept of an input alphabet in traditional finite state automata.
An input domain is a collection of describable event sets A, B, C, . . ., which
correspond to sets of events that are matched by a primitive or composite
event subscriptions. In a given state, only these events need to be considered
by the automaton because other events are not relevant for the composite
event being detected. In practice, the automaton issues subscriptions for all
describable event sets in the input domain of a state. The resulting incoming
events are ordered according to the total timestamp order (≺) (see Def. 7.2)
into an event input sequence and are consumed by the automaton sequentially.

S0

Σ0

Initial state

S1

Σ1

Ordinary state

A;B

Σ2

Generative state

T1

Σ3

Generative
time state

(1min)

Fig. 7.4. The states in a composite event detection automaton

As shown in Fig. 7.4, a detection automaton has four types of state. Detec-
tion starts in a unique initial state and continues through a series of ordinary
states. A generative state is an accepting state that also publishes the com-
posite event that has been detected by the automaton.Generative time states
deal with timing by publishing an internal time event when a timer (e.g.,
1min) associated with the state expires. The automaton treats time events
like regular events, but they are not visible externally.

S1

Σ1

S2

Σ2

S3
A B C

Fig. 7.5. The transitions in a composite event detection automaton

Each state can have two forms of outgoing transition that are labeled with
the describable event sets of the events that trigger them. Note that since
describable event sets can be defined by composite event subscriptions, our
automata support the detection of event patterns involving concurrency. In
the sample automaton in Fig. 7.5, the transition between states S1 and S2 is



238 7 Composite Events

a weak transition that requires the timestamps of the events from the describ-
able event sets A and B to be partially ordered (<). A strong transition, such
as between states S2 and S3, mandates a total ordering (≺) between events
from B and C. Strong and weak transitions therefore allow the expression
of different temporal orderings between events. When an event that is part
of the input domain but without a matching outgoing transition is received,
the detection in the automaton fails. Several matching transitions and empty
ε-transitions are followed nondeterministically. Although the following presen-
tation of the detection automata uses nondeterminism, standard techniques
can be used to convert them into deterministic automata [193].

S0

A ∪B

S1

ε

S2

ε

S3

(5min)

C ∪ {t}
S4

A

B

ε

ε

C

Fig. 7.6. A composite event detection automaton

In Fig. 7.6, we give an example of a composite event detection automaton.
This automaton starts in state S0 with an input domain of A∪B. A strongly
followed event from A causes a transition to state S1; a weakly followed event
from B leads to state S2. Once the generative time state S3 is reached, a timer
starts that will expire after 5 min, publishing time event t. Since this event is
part of the input domain for state S3 but there is no corresponding outgoing
transition, detection will fail unless an event from C is received before the
timer expires, triggering a transition to state S4. The generative state S4

signals the successful detection of a composite event with a composite event
publication.

7.4.2 Composite Event Language

In a composite event detection service, composite event subscriptions are ex-
pressed in a composite event language. Expressions in this language define the
set of composite events in which an event client is interested. In this section
we describe a core composite event language that corresponds to the extended
finite state automata introduced in the previous section. We present the lan-
guage’s operators and the construction of corresponding composite event de-
tection automata from subautomata. Some operators in this language, namely
concatenation, alternation, and iteration, are influenced by those found in
regular languages. However, other operators reflect the special features of our
detection automata. We finish with examples of core language expressions



7.4 Composite Event Detection 239

and discuss three higher-level languages that can be built on top of the core
language for domain-specific composite event specification.

Atoms. [A, B, C, . . . ⊆ Σ0]

S0

Σ0

A,B, C, . . .

Atoms detect individual events in the input stream of all events that are
in the input domain Σ0. Here only events in the describable event sets A ∪
B ∪ C ∪ . . . are matched and cause a transition to a generative state. Other
events in Σ0 result in failed detection, and events outside Σ0 are ignored. The
trivial atom [A ⊆ A] is abbreviated as [A].

Negation. [¬E ⊆ Σ] � [Σ\E ⊆ Σ]

Negation is shorthand for an atom that matches all events in the input do-
main Σ except for events in the negated describable event set E. Note that
this semantics differs from more powerful negation operators found in other
event algebras.

Concatenation. C1C2

S0 S0 S0

C1 C2

εε ε
C1 C2 C1C2

The concatenation operator detects a composite event matching expres-
sion C1 with a timestamp that weakly follows the timestamp of a composite
event matching C2. The detection automaton for concatenation is constructed
by connecting the generative state of C1 with a weak ε-transition to the initial
state of C2.

Sequence. C1; C2

S0 S0 S0

C1 C2

εε ε
C1 C2 C1;C2

The sequence operator detects an event of type C1 strongly followed by
an event of type C2. Unlike concatenation, this means that the interval time-
stamps of the events matching C1 and C2 must not overlap. The construction of
the sequence detection automaton uses a strong transition for the ε-transition
between the two subautomata.



240 7 Composite Events

Iteration. C ∗
1

S0 S0
ε

ε

C1

Any number of occurrences of C1 are matched by the iteration operator. Its
detection automaton creates a loop from the generative state of C1 back to its
initial state. If C1 receives an event that causes it to fail, then the composite
expression C ∗

1 also fails.

Alternation. C1 |C2

S0

S0

S0

ε

ε

ε

ε

C2

C1

C2

C1

C1|C2

This composite event expression matches if either C1 or C2 is detected.
The new automaton has an initial and a generative state with ε-transitions to
both of the two subautomata introducing nondeterministic behavior.

Timing. (C1, C2)T1=tspec

S0 S0 S0

Σ0∪{T1} Σ1∪{T1}

C1 C2

εε ε
T1

Timing relationships between composite events are supported by the tim-
ing operator that can detect event combinations within, or not within, a given
time interval. This operator generates an event of type T1 at the relative
or absolute time specification tspec after a composite event of type C1 has
been detected. The second expression C2 may then use T1 in its specifica-
tion for atoms and input domains. Since time events are only locally visible,
automata C1 and C2 must reside on the same node.



7.4 Composite Event Detection 241

Parallelization. C1 ‖C2

S0

C1‖C2
C1

C2

C2

C1

S0 S0

C1 C2

The final operator is parallelization and allows detection of two composite
events C1 and C2 in parallel, only succeeding if both are detected. Unlike alter-
nation, any interleaving of the two composite events is permitted. The detec-
tion automaton for parallelization is constructed by creating a new automaton
that uses the composite events detected by C1 and C2 for its transitions.

Examples

The following examples illustrate valid expressions in the core composite event
language. Let the describable event set A represent events corresponding to
the subscription that “Alice is in the office”, let Ā be “Alice has left the
office”, let B be “Bob is in the office”, and let P be “anyone is in the office”,
as detected by an Active Bat.

1. [A];[B]. Alice enters the office followed by Bob.
2. [A ⊆ {A, B}]. Alice enters the office before Bob.
3. ([A], [B⊆{B, T1}])T1=1h. Alice enters, and Bob follows within 1 h.
4. [Ā] [¬A⊆P ] [A]. Someone else enters the office when Alice is away.

Higher-Level Composite Event Languages

We can now use the core composite language as a basic building block for
other composite event detection languages. In general, when designing a lan-
guage for composite event detection, we have two conflicting requirements. On
one hand, the language should be machine processable so that it supports the
efficient creation of composite event detection automata and the automatic
decomposition of expressions for distributed detection. On the other hand,
the syntax and semantics of the language should be high-level and intuitive,
facilitating the task of writing expressions by programmers or end users. This
means that the language should be human processable. To unify these two
requirements, one can define higher-level composite event languages for the
specification of composite events in a natural and domain-specific way. Expres-
sions from higher-level languages are then translated automatically into the
core language described above. The following are three possible higher-level
composite event languages.



242 7 Composite Events

Pretty Language

The “pretty” language has a more verbose syntax compared to the core lan-
guage and resembles rule-based specification languages found in active data-
base systems. It has a redundant set of operators, and its specifications are
close to English language statements. A composite event specification, such
as

Event A followed by Event B within 1 hour,

makes it easier for nonprogrammers to use composite events.

Programming Language Binding

This binding provides programming language-specific access to composite
event specification. It avoids having to deal with a special composite event
language by allowing the construction of composite event expressions from
method calls, such as

eventA.after(eventB.repeated(3)).

At runtime these method calls are translated into core composite event lan-
guage expressions for detector construction.

Graphical Composition Model

In a ubiquitous computing environment, a user-friendly way for composite
event specification is needed that makes it easy for users to interact with the
system at runtime. Composite events, such as “Turn the office light out after
7 pm when the office is empty”, can be described using a graphical composition
tool that is based on a simple model familiar to users. For example, composite
event streams could be visualized as water flows with different forms of piping
for the construction of composite event expressions [194].

7.5 Detection Architectures

In this section we present an architecture for a composite event service. The
design requirements for the service can be derived from the above application
scenarios. In general, the service should be applicable to a wide range of pub-
lish/subscribe designs and therefore should make few assumptions about the
underlying publish/subscribe implementation. Ideally, it should only rely on
standard interfaces provided by the publish/subscribe system and not require
special extensions to the event model. For example, content-based routing
and filtering support should be exploited for the dissemination of composite
events. To satisfy the requirement of scalability, composite event detection
can be distributed, decomposing complex composite event subscriptions into
subexpressions and detecting them at different nodes in the system.



7.5 Detection Architectures 243

Network Transport

Event-based Middleware

Composite Event Service

Application

sub

sub(CE)

pubnotifysub pubnotify

Fig. 7.7. The architecture for the composite event detection service

CED

Wide-Area
Network

P1

P2
P3

P4

P5

S1 S2 S3

Low-Bandwidth 
Network Link

High-Bandwidth 
Network Link

Fig. 7.8. Illustration of centralized composite event detection

The architecture for a general composite event service is shown in Fig. 7.7.
The service uses the event client API of the publish/subscribe system so that
composite event detectors can subscribe to primitive events and detect the
occurrence of composite events. The publish/subscribe system is also used
to coordinate the detection of decomposed composite event expressions and
publish detected composite events. Note that the publish/subscribe system
does not need to be aware of composite event types because composite event
publications can be disguised using new primitive event types. Content-based
routing and filtering of events is carried out by the publish/subscribe system.
An application with event clients can either use the composite event service to
submit composite event subscriptions and cause the instantiation of detectors,
or interact directly with the publish/subscribe system for normal middleware
functionality.

7.5.1 Centralized Detection

The most straightforward architecture for a composite event detection service
is centralized, as shown in Fig. 7.8. In a centralized architecture, a single
composite event detector (CED) is subscribes to all primitive events that may
contribute toward the detection of composite events. When a composite event



244 7 Composite Events

CED1

CED2

CED3

CED4

Wide-Area
Network

P1

P2 P3 P4 P5

S1 S2 S3

Low-Bandwidth 
Network Link

High-Bandwidth 
Network Link

Fig. 7.9. Illustration of distributed composite event detection

has been detected, a new composite event notification is published by the
detectors.

An obvious disadvantage of a such an approach is that the centralized
event detector can become in a bottleneck in a large-scale system. This may
happen if the network bandwidth or processing resources at the detection
site are insufficient to keep up with the stream of incoming primitive events.
In addition, a centralized detector wastes network bandwidth because many
primitive events are sent to the detector over the network only to be discarded
there. A distributed implementation of the composite event detection service
is more complex but has the advantage that primitive events can be discarded
close to event publishers.

7.5.2 Distributed Detection

A composite event service can also implement the detection of composite
events in a distributed fashion. This is achieved by decomposing expressions
from the composite event language into subexpressions that are detected by
separate detectors distributed throughout the system. The support for the
decomposition of composite event expressions allows popular subexpressions
to be reused among event subscribers, thus saving computational effort and
network bandwidth. In particular, the amount of communication is reduced
because detectors for subexpressions can be positioned close to primitive event
publishers that produce the events necessary for detection. Subexpressions can
also be replicated for load balancing and increased availability, and compu-
tationally expensive expressions can be decomposed to prevent any detector
from becoming overloaded.

A system that benefits from distributed composite event detection is shown
in Fig. 7.9. The composite event detectors CED1−4 for subexpressions are lo-
cated close to the primitive event publishers P1−5 that publish events at a
high rate and therefore must be connected through high-bandwidth network



7.5 Detection Architectures 245

links. Low-bandwidth links in a wide-area network are used to connect the
composite event subscribers S1−3. The traffic on these network links is signif-
icantly lower because fewer event publications need to be transmitted after
composite event detection. Since each detector subscribes to at most two event
streams, no detector can get overwhelmed by the event rate.

S0

{B} {P}

B; P
B P

C1

S0

{[B];[P ], M}

C1|M
[B];[P ], M

C2

[B];[P ]

Fig. 7.10. Two cooperating composite event detectors for distributed detection

The detection automata described earlier directly support distribution be-
cause they can subscribe to composite events detected by other automata in
the publish/subscribe system. In Fig. 7.10 the two automata C1 and C2 co-
operate in order to detect the composite event expression ([B];[P ]) | [M ]. The
subautomaton C1 detects the expression [B];[P ], which is then used by C2 in
the event input domain and transition of state S0. When this composite event
is received, it causes a transition to the generative state S1. Next we present
the capabilities of mobile composite event detectors.

Mobile Composite Event Detectors

A mobile composite event detector implements the distributed detection of
composite events. Mobile composite event detectors are agentlike entities co-
hosted at event brokers that encapsulate one or more composite event detec-
tion automata for expressions from the core composite event language. They
can subscribe to event publishers (and other mobile detectors) and publish the
composite events detected by their automata. In addition, a mobile detector
can move from one event broker to another in order to optimize the detection
of composite events in the system.

When an event subscriber submits a new composite event subscription,
a mobile detector is instantiated at an event broker and is then responsible

Construction DestructionControl

Fig. 7.11. The life cycle of a mobile composite event detector



246 7 Composite Events

for the detection of the new expression. The life cycle of a mobile compos-
ite event detector is summarized in Fig. 7.11. In the construction phase, the
mobile detector establishes the detection of the new composite event sub-
scription by cooperating with other existing mobile detectors. It then enters
a control phase, during which the detection is optimized by adapting to dy-
namic changes in the environment and ensuring that it maintains compliance
with distribution and detection policies described below. Finally, a destruction
phase is reached when the mobile detector is no longer required because all
event clients have unsubscribed or other detectors have made it redundant.

While in its control phase, a mobile detector can carry out several actions
that are governed by distribution policies explained in the next section.

1. It can instantiate new automata for the detection of new composite event
expressions or any subexpressions.

2. For distributed detection, it can decompose composite event expressions
and delegate detection to other, already existing mobile detectors.

3. The mobile detector can migrate to another event broker that, for ex-
ample, is closer to the event publishers that the detector has subscribed
to.

4. Finally, it can destroy any of its composite event detection automata that
are no longer required.

Distribution Policies

A remaining difficulty is the decision on an optimal strategy for the decom-
position of composite event expressions and the placement of composite event
detectors in the system. This is complicated by the fact that the require-
ments for distributing detectors are potentially conflicting. For example, to
minimize usage of network bandwidth, existing detectors should be reused
for subexpressions as much as possible. However, if low notification latency
is important, detectors should be replicated in various parts of the network,
thus leading to increased bandwidth consumption. An optimal solution is a
trade-off that takes the static and dynamic characteristics of the application
and the network into account.

To make these trade-offs explicit, we introduce the notion of a distribution
policy, which is a set of heuristics that governs the actions of mobile compos-
ite event detectors in the control phase. Each composite event subscription
submitted to the composite event service includes its own distribution policy
for detection, depending on the application requirements of the event sub-
scriber. During their lifetime, mobile composite event detectors attempt to
comply with their distribution policy. Some distribution policies may require
the aggregation of network or event broker statistics by mobile composite
event detectors, such as communication latency or computational load. When
defining distribution policies, three independent dimensions can be identified
that help restrict the design space, as shown in Fig. 7.12.



7.5 Detection Architectures 247

D
e
c
o
m

p
o
s
it
io

n

N
o
n
e

F
u
ll

None Full

S
u
b
sc

ri
b
e
r

P
u
b
lis

h
e
r

N
o
n
e

Reuse
L
o
ca

lit
y

Fig. 7.12. The design space for distribution policies

Decomposition. The degree of decomposition of the composite event expres-
sion must be stated in the policy (with optional hints from the applica-
tion). In order to reuse existing detectors in the system, an expression may
have to be decomposed into subexpressions. Decomposition may increase
the reliability of detection if multiple detectors are detecting overlapping
expressions. For load-balancing reasons, a complex expression may be de-
composed into manageable subexpressions. The degree of decomposition
ranges from no decomposition to full decomposition, where every possi-
ble subexpression is factored out. Some policies allow decomposition only
when there already exist detectors that can be reused for a subexpression.

Reuse. This dimension specifies to what extent already existing detectors are
reused for a new composite event expression or any of its subexpressions.
Not reusing existing detectors can result in more reliability, whereas max-
imum reuse will save bandwidth and computational effort. In situations
in which detection latency is important, only local detectors that are in
close proximity should be reused.

Locality. The location of new mobile composite event detectors must be
determined. For certain scenarios, bandwidth usage can be reduced by
moving detectors as close to primitive event sources as possible. Primitive
events that constitute a composite event may be of interest only to the CE
detector and should therefore not be widely disseminated throughout the
entire system unnecessarily. This is called publisher locality. The opposite
approach is to put new CE detectors close to application components that
subscribe to them to improve reliability and detection latency. This leads
to a policy with subscriber locality.



248 7 Composite Events

Table 7.1. Example of five distribution policies

Policy Name Decomposition Reuse Locality

Minimum Latency None With locality only Subscribers
Minimum Bandwidth For reuse only Max Publishers
Minimum Impact For reuse only Max None
Minimum Load Max Max None
Maximum Reliability For reuse only At least 2 None

In practice, only certain combinations of these three dimensions will result
in useful distributions policies. Table 7.1 summarizes five example policies that
each attempt to optimize a different metric in the composite event framework.

Minimum Latency Policy. The detection latency is minimized by placing
new detectors as close to subscribers as possible. Composite event expres-
sions should not be decomposed into subexpressions as this would increase
the detection latency. Similarly, an existing detector should only be reused
if it is close to the subscriber and detects exactly the required composite
events.

Minimum Bandwidth Policy. Bandwidth consumption is minimized by
placing the detectors close to the primitive event publishers, leveraging
the filtering aspect of composite event detectors. In addition, existing
detectors should be used as much as possible so that no new traffic is
generated. The reuse of subexpressions may lead to decomposition.

Minimum Impact Policy. This policy minimizes the impact that new de-
tectors have on the entire system. This involves minimizing bandwidth,
as before, but also means that computational load should be spread out
evenly among detectors. Therefore, new detectors do not have locality,
but existing detectors should be maximally reused.

Minimum Load Policy. The fourth policy minimizes the load on composite
event detectors by decomposing an expression into the smallest possible
subexpressions and distributing them evenly among detectors in the sys-
tem. It attempts to reuse already existing detectors.

Maximum Reliability Policy. The last policy makes the composite event
detection more resistant to node failure by instantiating redundant de-
tectors for extra reliability. Old detectors are reused only when at least
two already exist; new detectors are created otherwise. (This “at least 2”
partial reuse policy lies between no reuse and full reuse in Fig. 7.12). To
limit extra points of failure, detectors are decomposed for reuse only, and
no locality restrictions are imposed on new detectors.

Note that a distribution policy is associated with a particular CE expres-
sion, so that every mobile CE detector can have its own policy. This enables
event subscribers to specify a desired distribution policy at subscription time
depending on application requirements. The effectiveness of distribution poli-



7.5 Detection Architectures 249

cies can be enhanced when mobile CE detectors are able to obtain network-
and system-specific parameters such as the current load of a broker node or the
communication latency to a particular publisher. A mobile CE detector may
use this information to optimize detection in compliance with its distribution
policy.

Detection Policies

In a distributed system, events from different event sources travel along sep-
arate network routes to a mobile CE detector. Even if we assume that the
network itself does not reorder events, out-of-order arrival of events at the de-
tector can occur because of the different associated network delays. Whenever
a new event arrives, it has to be inserted at the correct position in the totally
ordered event input stream before the stream is fed into the automaton.

The problem is to decide when the next event in the event input stream can
be safely consumed by the automaton without risking that an event with an
older timestamp is still being delayed by the network. Premature consumption
could lead to an incorrect detection or nondetection of a composite event.
Thus, each CE subscription is annotated with a detection policy that specifies
when a detector can consume an event from an event input stream.

Best-Effort Detection. A best-effort detection policy states that events are
consumed from event input streams without delay. Whenever an event is
available, it will cause a state transition (or failure) in the automaton.
Although this policy may lead to incorrect detection, it can be applied by
applications that are sensitive to detection delay and are willing to ignore
false positives.

Guaranteed Detection. Under a guaranteed detection policy, an event is
consumed from an event input stream only once it has become sta-
ble1 [238]. The consumption of only stable events ensures that no spurious
composite events are detected. In our model, we assume that the network
itself does not reorder events autonomously so that events coming from
the same event source can be expected to arrive in chronological order at
a detector. A detector knows that an event is stable and can be consumed
after another event with a later timestamp from the same event source has
been inserted in the event input stream. An event source that does not
publish events at a high enough frequency can publish dummy heartbeat
events that are used to “flush the network”.

In an asynchronous distributed system, a guaranteed detection policy po-
tentially introduces an unbounded delay at the detector. For instance, an
event source might fail or decide not to cooperate by not sending heartbeat
events. This could prevent the detector from consuming any events of that
1 An event is stable if there is no other event with an earlier timestamp in the system

that should be part of this event input stream and should thus be consumed
instead.



250 7 Composite Events

type. To avoid this problem, we are currently investigating a probabilistic sta-
bility metric. As opposed to a simple binary stability measure, a detector
attempts to model the probability that a particular event in an event input
stream is stable and the event is only consumed if its stability metric is above
a given threshold.

7.6 Further Reading

In this section we provide an overview of related work on composite event de-
tection. A more detailed description of distributed composite event detection
can be found in [314]. Composite event detection first arose in the context
of triggers in active database systems. Other related application areas are
network systems monitoring and the interaction with ubiquitous computing
environments. In general, distributed publish/subscribe systems leave the de-
tection of composite events to the application programmer. An exception is
Siena (described in Sect. 9.3.2), which includes restricted event patterns with-
out defining their precise semantics or giving a complete pattern language. A
service for the detection of composite events using Corba is presented by
Liebig [238]. Similar to the described composite event service, it uses interval
timestamps to make the uncertainty of timestamps in a distributed system
explicit. The notion of event stability is introduced to handle communication
delays. A system and language for complex event processing is proposed by
Luckham [242]. The Rapide language [243] supports the specification of event
patterns in areas such as process management, network monitoring, and enter-
prise management. Event patterns are detected using event processing agents
that have access to event histories and mine the event stream.

Active Database Systems

Composite event detection in active database systems is usually not dis-
tributed. Early languages for triggers follow an event–condition–action (ECA)
model [105, 304] and resemble database query algebras with an expressive,
yet complex, syntax. In the Ode object database [173], composite events are
specified with a regular language and detected using finite state automata.
Equivalence between the language and regular expressions is shown. Since
a composite event has a single timestamp—that of the last primitive event
that led to its detection—a total event order is established that does not deal
with time issues. Composite event detectors based on Petri nets [307] are used
in the SAMOS database [170]. Colored Petri nets can represent concurrent
behavior and store complex event data during execution. A disadvantage is
that even for simple composite event expressions, Petri nets quickly become
complicated. SAMOS does not support distributed detection and has a sim-
ple time model. The motivation for Snoop [74] was to design an expressive
composite event language with temporal support. A detector in Snoop is a



7.6 Further Reading 251

tree that mirrors the structure of the composite event expression. Its nodes
implement language operators and conform to a given consumption policy. A
consumption policy determines the semantics of operators by resolving the
order in which events are consumed from an event history. For example, un-
der a recent consumption policy only the event that most recently occurred
is considered and others are ignored. Detection then propagates up the tree
with the leaves being primitive event detectors. A drawback of this approach
is that detectors are Turing-complete, which makes it difficult to estimate
their resource usage in advance. In addition, consumption policies influence
the semantics of operators in a nonintuitive and operator-dependent way. For
simplicity we have decided to only support a chronicle consumption policy.

Distributed Systems Monitoring

Similar to network systems monitoring in Sect. 7.1, composite events can
be used for the monitoring of distributed systems. Schwiderski presents a
distributed composite event monitoring architecture [339] based on the 2g-
precedence time model. This model makes strong assumptions about the clock
granularity that are not valid in large-scale, loosely coupled distributed sys-
tems. The composite event language and detectors are similar to Snoop and
suffer from the same shortcomings. The work addresses the issue of delayed
events in distributed detection by evaluation policies. Asynchronous evalua-
tion allows a detector to consume an event without delay, whereas synchronous
evaluation forces it to wait until all earlier events have arrived, as indicated by
a heartbeat infrastructure. Although the detection can be made distributed,
the placement of detectors in the system is left to the user. The GEM sys-
tem [250] has a rule-based event monitoring language. It also follows a tree-
based approach and assumes a total time order. Communication latency is
handled by annotating rules with tolerable delays, which may not be feasible
in an environment with unpredictable delays, such as a large-scale distributed
system.

Ubiquitous Systems

Research efforts in ubiquitous computing have resulted in composite event
languages that are intuitive to use by users of environments such as the Ac-
tive Office. The work by Hayton [189] on composite events in the Cambridge
Event Architecture defines a language that is targeted at nonprogrammers.
Push-down finite state automata are used to detect composite events, but
the semantics of some of the operators is nonintuitive. Although detection
automata can use composite events for input, distributed detection is not
handled explicitly and only scalar timestamps are used in the time model.



http://www.springer.com/978-3-540-32651-9


