
1

Fixed-Parameter Tractability

In this chapter, we introduce parameterized problems and the notion of
fixed-parameter tractability. We start with an informal discussion that high-
lights the main issues behind the definition of fixed-parameter tractability. In
Sect. 1.2, we begin the formal treatment. In Sect. 1.3, we consider a larger ex-
ample that introduces some of the most fundamental parameterized problems
and the most basic technique for establishing fixed-parameter tractability,
the method of bounded search trees. In Sect. 1.4 and Sect. 1.5 we exemplify
how the parameterized approach may help to gain a better understanding
of the complexity of fundamental algorithmic problems by considering ap-
plications in two different areas, approximation algorithms and automated
verification. Finally, in Sect. 1.6, we give several equivalent characterizations
of fixed-parameter tractability.

1.1 Introduction

Before we start our formal development of the theory, in this section we in-
formally discuss a few motivating examples. All notions discussed informally
in this introduction will be made precise later in this book.

The first example is the problem of evaluating a database query, which
we have already mentioned in the preface. To be a bit more precise, let us
say that we want to evaluate a conjunctive query ϕ in a relational database
D.1 Conjunctive queries form the most fundamental class of database queries,

1If the reader has never heard of “conjunctive queries” or “relational databases”
before, there is no need to worry. All that is required here is some vague idea about
“database query” and “database.” (For example, a database might store flights be-
tween airports, and a conjunctive query might ask if there is connection from Berlin
to Beijing with two stopovers.) Of course, the query will be written in some formal
query language, such as the language SQL, and thus is a well-defined mathematical
object. Its size is simply the number of symbols it contains.

2 1 Fixed-Parameter Tractability

and many queries that occur in practice are conjunctive queries. Classical
complexity quickly tells us that this problem is intractable; it is NP-complete.

As a second example, we consider a central algorithmic problem in au-
tomated verification, the problem of checking that a finite state system, for
example, a circuit, has a certain property. The state space S of the system can
be described by a so-called Kripke structure, which is nothing but a vertex-
labeled directed graph. The property to be checked is typically specified as
a formula ϕ in a temporal logic, for example, linear temporal logic LTL.2

Then the problem is to decide whether the structure S satisfies the formula
ϕ. This problem is known as the LTL model-checking problem. Again, classical
complexity tells us that the problem is intractable; it is PSPACE-complete.

The two problems are fairly similar, and they both lend themselves natu-
rally to a parameterized complexity analysis. As we explained in the introduc-
tion, in parameterized complexity theory the complexity of a problem is not
only measured in terms of the input size, but also in terms of a parameter.
The theory’s focus is on situations where the parameter can be assumed to
be small. The inputs of both the query evaluation problem and the model-
checking problem consist of two parts, which typically have vastly different
sizes. The database and the state space are usually very large, whereas the
query and the LTL-formula tend to be fairly small. As parameters, we choose
the size of the query and the size of the formula. In the following discussion,
we denote the parameter by k and the input size by n. Note that the input
size n will usually be dominated by the size of the database and the size of
the state space, respectively.

It is easy to show that the query evaluation problem can be solved in
time O(nk). Furthermore, the model-checking problem can be solved in time
O(k · 22k · n). The latter result requires more effort; we will reconsider it in
Sect. 1.5 and again in Sect. 10.1. In both cases, the constants hidden in the
O(·) notation (“big-Oh notation”) are fairly small. At first sight, these results
look very similar: Both running times are exponential, and both are polyno-
mial for fixed k. However, there is an important difference between the two
results: Let us assume that n is large and k is small, say, k = 5. Then an
exponent k in the running time, as in O(nk), is prohibitive, whereas an expo-
nential factor 22k as in O(k ·22k ·n) may be unpleasant, but is acceptable for a
problem that, after all, is PSPACE-complete.3 In the terminology of parame-
terized complexity theory, the LTL model-checking problem is fixed-parameter
tractable.

Up to this point, except for the occasional use of the term “parameter,” the
discussion did not require any parameterized complexity theory. As a matter

2Again, there is no need to know about Kripke structures or temporal logic here.
A vague intuition of “systems” and “specification languages” is sufficient.

3Actually, in practice the dominant factor in the k · 22k · n running time of the
LTL model-checking algorithm is not the exponential 22k, but the size n of the state
space.

1.2 Parameterized Problems and Fixed-Parameter Tractability 3

of fact, researchers in database theory and automated verification were well
aware of the issues we discussed above before parameterized complexity was
first introduced. (The LTL model-checking algorithm due to Lichtenstein and
Pnueli was published in 1985.) But now we ask if the conjunctive query eval-
uation problem is also fixed-parameter tractable, that is, if it can be solved
by an algorithm with a similar running time as the LTL model-checking algo-
rithm, say, 2O(k) ·n or 2p(k) ·q(n) for some polynomials p(X), q(X), or at least

22k · q(n). Classical complexity provides us with no means to support a nega-
tive answer to this question, and this is where the new theory of parameterized
intractability is needed. To cut the story short, the conjunctive query evalua-
tion problem can be shown to be complete for the parameterized complexity
class W[1]. This result, which will be proved in Chap. 6, can be interpreted
as strong evidence that the problem is not fixed-parameter tractable.

As a third example of a parameterized problem we consider the satisfiabil-
ity problem for formulas of propositional logic. We parameterize this problem
by the number of variables of the input formula. Again denoting the parameter
by k and the size of the input by n, this problem can clearly be solved in time
O(2k · n) and hence is fixed-parameter tractable. However, this problem is of
a different nature from the parameterized problems we have discussed so far,
because here the parameter cannot be expected to be small in typical appli-
cations. If, in some specific application, we had to solve large instances of the
satisfiability problem with few variables, then the fixed-parameter tractabil-
ity would help, but such a scenario seems rather unlikely. The purpose of the
parameterization of the satisfiability problem by the number of variables is to
obtain a more precise measure for the “source of the (exponential) complex-
ity” of the problem, which is not the size of the input formula, but the number
of variables. The typical question asked for such parameterizations is not if
the problem is fixed-parameter tractable, but if it can be solved by (exponen-
tial) algorithms better than the trivial brute-force algorithms. Specifically,
we may ask if the satisfiability problem can be solved in time 2o(k) · n. Here
parameterized complexity theory is closely connected with exact exponential
(worst-case) complexity analysis. We will give an introduction into this area
in the last chapter of this book.

1.2 Parameterized Problems and Fixed-Parameter
Tractability

We start by fixing some notation and terminology: The set of all integers is
denoted by Z, the set of nonnegative integers by N0, and the set of natural
numbers (that is, positive integers) by N. For integers n,m with n ≤ m, we
let [n,m] := {n, n + 1, . . . ,m} and [n] := [1, n]. Unless mentioned explicitly
otherwise, we encode integers in binary.

As is common in complexity theory, we describe decision problems as lan-
guages over finite alphabets Σ. To distinguish them from parameterized prob-

4 1 Fixed-Parameter Tractability

lems, we refer to sets Q ⊆ Σ∗ of strings over Σ as classical problems. We
always assume Σ to be nonempty.

Definition 1.1. Let Σ be a finite alphabet.
(1) A parameterization of Σ∗ is a mapping κ : Σ∗ → N that is polynomial

time computable.
(2) A parameterized problem (over Σ) is a pair (Q, κ) consisting of a set Q ⊆

Σ∗ of strings over Σ and a parameterization κ of Σ∗. ⊣

Example 1.2. Let Sat denote the set of all satisfiable propositional for-
mulas, where propositional formulas are encoded as strings over some finite
alphabet Σ. Let κ : Σ∗ → N be the parameterization defined by

κ(x) :=





number of variables of x, if x is (the encoding of) a propositional

formula (with at least one variable)4,

1, otherwise,

for x ∈ Σ∗. We denote the parameterized problem (Sat, κ) by p-Sat. ⊣

If (Q, κ) is a parameterized problem over the alphabet Σ, then we call
strings x ∈ Σ∗ instances of Q or (Q, κ) and the numbers κ(x) the correspond-
ing parameters . Usually, we represent a parameterized problem (Q, κ) in the
form

Instance: x ∈ Σ∗.
Parameter: κ(x).

Problem: Decide whether x ∈ Q.

For example, the problem p-SAT would be represented as follows:

p-SAT
Instance: A propositional formula α.

Parameter: Number of variables of α.
Problem: Decide whether α is satisfiable.

As in this case, the underlying alphabet will usually not be mentioned explic-
itly.

As a second example, we consider a parameterized version of the classical
Independent-Set problem. Recall that an independent set in a graph is a set
of pairwise non-adjacent vertices. An instance of Independent-Set consists
of a graph G and a positive integer k; the problem is to decide if G has an
independent set of k elements.

4Our notation concerning propositional logic will be explained in detail in
Sect. 4.1. In particular, we will not admit Boolean constants in propositional formu-
las, so every formula has at least one variable.

1.2 Parameterized Problems and Fixed-Parameter Tractability 5

Example 1.3. A natural parameterization κ of Independent-Set is de-
fined by κ(G, k) = k. It yields the following parameterized problem:

p-Independent-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has an independent set of cardi-

nality k.
⊣

Before we define fixed-parameter tractability, let us briefly comment on the
technical condition that a parameterization be polynomial time computable.
For almost all natural parameterizations, the condition will obviously be sat-
isfied. In any case, we can always make the parameter an explicit part of the
input: If Q ∈ Σ∗ and K : Σ∗ → N is a function, then we can consider the
problem

Q′ := {(x, k) | x ∈ Q, and k = K(x)} ⊆ Σ∗ × N,

with the parameterization κ defined by κ(x, k) := k. Indeed, parameterized
problems are often defined as subsets of Σ∗×N, with the parameter being the
second component of the instance. A typical example is p-Independent-Set.

Fixed-Parameter Tractability

Recall that the motivation for the notion of fixed-parameter tractability is
that if the parameter is small then the dependence of the running time of an
algorithm on the parameter is not so significant. A fine point of the notion is
that it draws a line between running times such as 2k · n on one side and nk

on the other, where n denotes the size of the input and k the parameter.
The length of a string x ∈ Σ∗ is denoted by |x|.

Definition 1.4. Let Σ be a finite alphabet and κ : Σ∗ → N a parameteriza-
tion.
(1) An algorithm A with input alphabet Σ is an fpt-algorithm with respect to

κ if there is a computable function f : N → N and a polynomial p ∈ N0[X]
such that for every x ∈ Σ∗, the running time of A on input x is at most

f
(
κ(x)

)
· p
(
|x|
)
.

(2) A parameterized problem (Q, κ) is fixed-parameter tractable if there is an
fpt-algorithm with respect to κ that decides Q.
FPT denotes the class of all fixed-parameter tractable problems. ⊣

If the parameterization is clear from the context, we do not explicitly
mention it and just speak of fpt-algorithms. We often use a less explicit ter-
minology when bounding the running time of an algorithm or the complexity

6 1 Fixed-Parameter Tractability

of a problem. For example, we might say that an algorithm is an fpt-algorithm
if its running time is f(κ(x)) · |x|O(1) for some computable function f . For-
mally, nO(1) denotes the class of all polynomially bounded functions on the
natural numbers. The reader not familiar with the O(·) (“big-Oh”) and o(·)
(“little-oh”) notation will find its definition in the Appendix. Occasionally,
we also use the corresponding Ω(·) (“big-Omega”) and ω(·) (“little-omega”)
notation for the corresponding lower bounds and the Θ(·) (“big-Theta”) no-
tation for simultaneous upper and lower bounds, which all are explained in
the Appendix as well.

Example 1.5. The parameterized satisfiability problem p-Sat is fixed-para-
meter tractable. Indeed, the obvious brute-force search algorithm decides if a
formula α of size m with k variables is satisfiable in time O(2k ·m). ⊣

Clearly, if Q ∈ PTIME then (Q, κ) ∈ FPT for every parameterization κ.
Thus fixed-parameter tractability relaxes the classical notion of tractability,
polynomial time decidability.

Another trivial way of generating fixed-parameter tractable problems is
shown in the following example:

Example 1.6. Let Σ be a finite alphabet and κsize : Σ∗ → N the parameter-
ization defined by

κsize(x) := max{1, |x|}
for all x ∈ Σ∗. (Remember that parameterizations always take nonnegative
values.) Then for every decidable set Q ⊆ Σ∗, the problem (Q, κsize) is fixed-
parameter tractable. ⊣

The example can be generalized to the following proposition. A function
f : N → N is nondecreasing (increasing) if for all m,n ∈ N with m < n we
have f(m) ≤ f(n) (f(m) < f(n), respectively). A function f is unbounded if
for all n ∈ N there exists an m ∈ N such that f(m) ≥ n.

Proposition 1.7. Let g : N → N be a computable nondecreasing and un-
bounded function, Σ a finite alphabet, and κ : Σ∗ → N a parameterization
such that κ(x) ≥ g(|x|) for all x ∈ Σ∗.

Then for every decidable set Q ⊆ Σ∗, the problem (Q, κ) is fixed-parameter
tractable.

Proof: Let h : N → N be defined by

h(n) :=

{
max{m ∈ N | g(m) ≤ n}, if n ≥ g(1),

1, otherwise.

Since g is nondecreasing and unbounded, h is well-defined, and since g is
nondecreasing and computable, h is also computable. Observe that h is non-
decreasing and that h(g(n)) ≥ n for all n ∈ N. Thus for all x ∈ Σ∗ we have

1.2 Parameterized Problems and Fixed-Parameter Tractability 7

h(κ(x)) ≥ h(g(|x|)) ≥ |x|.

Let f : N → N be a computable function such that x ∈ Q is decidable in time
f(|x|). Without loss of generality we may assume that f is nondecreasing.
Then x ∈ Q is decidable in time f(h(κ(x)), and hence (Q, κ) is fixed-parameter
tractable. ⊓⊔

Thus every parameterized problem where the parameter increases mono-
tonically with the size of the input is fixed-parameter tractable. The following
example illustrates the other extreme of a parameterization that does not
grow at all:

Example 1.8. Let Σ be a finite alphabet and κone : Σ∗ → N the parameter-
ization defined by

κone(x) := 1.

for all x ∈ Σ∗.
Then for every Q ⊆ Σ∗, the problem (Q, κone) is fixed-parameter tractable

if and only if Q is polynomial time decidable. ⊣
The parameterizations κsize and κone introduced in Examples 1.6 and 1.8

will be quite convenient later to construct “pathological” examples of param-
eterized problems with various properties.

Exercise 1.9. Prove that the condition that g is nondecreasing is necessary
in Proposition 1.7. That is, construct a decidable problem Q and a param-
eterization κ such that (Q, κ) 6∈ FPT and κ(x) ≥ g(|x|) for all x and some
function g that is computable and unbounded, but not nondecreasing.
Hint: Let Q be a problem that only contains strings of even length and that
is decidable, but not decidable in polynomial time. Let κ(x) := κone(x) if |x|
is even and κ(x) := |x| if |x| is odd. ⊣

Parameterized complexity theory provides methods for proving problems
to be fixed-parameter tractable, but also gives a framework for dealing with
apparently intractable parameterized problems in a similar way as the theory
of NP-completeness does in classical complexity theory.

A very simple criterion for fixed-parameter intractability is based on the
observation that the slices of a fixed-parameter tractable problem are solvable
in polynomial time:

Definition 1.10. Let (Q, κ) be a parameterized problem and ℓ ∈ N. The ℓth
slice of (Q, κ) is the classical problem

(Q, κ)ℓ := {x ∈ Q | κ(x) = ℓ}. ⊣

Proposition 1.11. Let (Q, κ) be a parameterized problem and ℓ ∈ N. If
(Q, κ) is fixed-parameter tractable, then (Q, κ)ℓ ∈ PTIME.

We leave the simple proof to the reader (recall that κ is computable in poly-
nomial time).

8 1 Fixed-Parameter Tractability

Example 1.12. Recall that a graph G = (V,E) is k-colorable, where k ∈ N,
if there is a function C : V → [k] such that C(v) 6= C(w) for all {v, w} ∈ E.
We parameterize the colorability problem for graphs by the number of colors:

p-Colorability
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G is k-colorable.

The third slice of this problem is the classical 3-colorability problem, which
is well-known to be NP-complete. Hence, by the preceding proposition,
p-Colorability is not fixed-parameter tractable unless PTIME = NP. ⊣

Unfortunately, for most parameterized problems that are believed to be
intractable there is no such easy reduction to the classical theory of NP-
completeness. For example, it is widely believed that p-Independent-Set is
not fixed-parameter tractable, but all slices of the problem are decidable in
polynomial time.

Some remarks concerning the definition of fixed-parameter tractability are
in order. We allow an arbitrary computable function f to bound the depen-
dence of the running time of an fpt-algorithm on the parameter. While indeed
a running time such as

O(2k · n),

where k denotes the parameter and n the size of the instance, can be quite
good for small values of k, often better than the polynomial O(n2), a running
time of, say,

2222
22

k

· n,
cannot be considered tractable even for k = 1. The liberal definition of fixed-
parameter tractability is mainly justified by the following two arguments,
which are similar to those usually brought forward to justify polynomial time
as a model of classical tractability:

(1) FPT is a robust class that does not depend on any particular machine
model, has nice closure properties, and has a mathematically feasible the-
ory.

(2) “Natural” problems in FPT will have “low” parameter dependence.

While by and large, both of these arguments are valid, we will see later in
this book that (2) has some important exceptions. Indeed, we will see in
Chap. 10 that there are natural fixed-parameter tractable problems that can
only be solved by fpt-algorithms with a nonelementary parameter dependence.
In Chap. 15, we will investigate more restrictive notions of fixed-parameter
tractability.

1.2 Parameterized Problems and Fixed-Parameter Tractability 9

However, among the known fixed-parameter tractable problems, problems
that require a larger than exponential parameter dependence are rare excep-
tions. Furthermore, much of the theory is concerned with proving intractabil-
ity (more precisely, hardness results), and, of course, such results are even
stronger for our liberal definition.

Let us also mention that Downey and Fellows’ standard notion of fixed-
parameter tractability does not even require the parameter dependence of
an fpt-algorithm to be computable. However, the notion of fixed-parameter
tractability adopted here (called strongly uniform fixed-parameter tractability
in [83]) leads to a more robust theory, which for all natural problems is the
same anyway.

We want to clarify a possible source of ambiguity in our notation. Often
the instances of problems are taken from a certain class of instances, such as
the class of planar graphs. Suppose we have a parameterized problem (Q, κ)
over the alphabet Σ and then consider the restriction of Q to a class I ⊆ Σ∗

of instances. Formally, this restriction is the problem (I ∩ Q, κ). Informally,
we usually introduce it as follows:

Instance: x ∈ I.
Parameter: κ(x).

Problem: Decide whether x ∈ Q.

Let us emphasize that this notation specifies the same problem as:

Instance: x ∈ Σ∗.
Parameter: κ(x).

Problem: Decide whether x ∈ Q ∩ I.

Example 1.13. For every class A of propositional formulas, we consider the
following restriction of the problem p-Sat:

p-Sat(A)
Instance: α ∈ A.

Parameter: Number of variables in α.
Problem: Decide whether α is satisfiable. ⊣

We close this section with a technical remark that will frequently be used
tacitly. Many parameterized problems, for instance, p-Independent-Set,
have the following form:

Instance: x ∈ Σ∗ and k ∈ N.
Parameter: k.

Problem:

10 1 Fixed-Parameter Tractability

Note that the size of an instance of such a problem is of order |x| + log k.5

Nevertheless, a simple computation shows that the problem is fixed-parameter
tractable if and only if for some computable function f it can be decided in
time f(k) · |x|O(1) (instead of f(k) · (|x| + log k)O(1)).

Similarly, a problem of the form

Instance: x ∈ Σ∗ and y ∈ (Σ′)∗.
Parameter: |y|.

Problem:

is in FPT if and only if it can be solved in time f(|y|) · |x|O(1).

1.3 Hitting Sets and the Method of Bounded Search
Trees

Let us consider the following problem, which we may call the panel problem:
We have to form a small panel of leading experts in some research area A that
we do not know well. We only have a publication database for that area at
our disposal.6 Here are three ideas of approaching the problem:

(1) We could try to find a small panel of scientists such that every paper
in the area A is coauthored by some scientist of the panel. Clearly, the
members of such a panel must know the area very well.

(2) We could try to find a small panel such that everybody working in the
area has a joint publication with at least one panel member. Then the
panel members should have a good overview over the area (maybe not as
good as in (1), but still good enough).

(3) If neither (1) nor (2) works out, we could try to form a panel of scientists
working in the area such that no two of them have a joint publication. To
guarantee a certain breadth the panel should have a reasonable size.

But how can we find such a panel for either of the three approaches, given
only the publication database? As trained complexity theorists, we model the
problems we need to solve by the well-known hitting set, dominating set, and
independent set problems.

For approach (1), we consider the collaboration hypergraph of the publi-
cation database. A hypergraph is a pair H = (V,E) consisting of a set V
of vertices and a set E of hyperedges (sometimes also called edges), each of
which is a subset of V . Thus graphs are hypergraphs with (hyper)edges of
cardinality two. A hitting set in a hypergraph H = (V,E) is a set S ⊆ V

5If we write log n where an integer is expected, we mean ⌈log n⌉.
6If the reader feels the need for further motivation, here are two suggestions:

Think of being a publisher who wants to start a new book series in the area A and
is looking for an editorial board, or think of being a university official who wants to
evaluate the A department with the help of a panel of external experts.

1.3 Hitting Sets and the Method of Bounded Search Trees 11

of vertices that intersects each hyperedge (that is, S ∩ e 6= ∅ for all e ∈ E).
Hitting-Set is the problem of finding a hitting set of a given cardinality k
in a given hypergraph H. The vertices of the collaboration hypergraph are all
authors appearing in the publication database, and the hyperedges are all sets
of authors of publications in the database. Approach (1) to the panel problem
amounts to solving Hitting-Set for the collaboration hypergraph and the
desired panel size k.

For approaches (2) and (3), all the information we need is contained in the
collaboration graph. The vertices of this graph are again all authors, and there
is an edge between two authors if they have a joint publication.7 Recall that
a dominating set in a graph G = (V,E) is a set S ⊆ V of vertices such that
every vertex in V \ S is adjacent to a vertex in S. Dominating-Set is the
problem of finding a dominating set of a given cardinality k in a given graph
G. Approach (2) to the panel problem amounts to solving Dominating-Set
for the collaboration graph and panel size k. Finally, approach (3) to the panel
problem amounts to solving Independent-Set for the collaboration graph
and panel size k.

Unfortunately, all three problems are NP-complete. At first sight, this
suggests that unless the publication database is fairly small there is not much
hope for solving the panel problem with any of the three approaches. However,
we only have to solve the problem for a small panel size k. We parameterize
the problems by k and consider the following parameterized problems:

p-Hitting-Set
Instance: A hypergraph H and k ∈ N.

Parameter: k.
Problem: Decide whether H has a hitting set of k elements.

p-Dominating-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a dominating set of k ele-

ments.

We have already defined p-Independent-Set in Example 1.3.
If we assume the size of the panel to be small, a good fpt-algorithm for

any of the three problems would let us solve the panel problem with the
corresponding idea. Unfortunately, we will see later in this book that most
likely none of the three problems is fixed-parameter tractable.

A great strength of the parameterized approach to the design of algorithms
is its flexibility. If the first, obvious parameterization of a problem has been

7In hypergraph-theoretical terms, the collaboration graph is the primal graph of
the collaboration hypergraph.

12 1 Fixed-Parameter Tractability

classified as “intractable,” there is no need to give up. We can always look for
further, maybe “hidden,” parameters. In our example, we notice that we can
expect the hyperedges of the collaboration hypergraph, that is, the author
sets of publications in our database, to be fairly small. This suggests the
following more-refined parameterization of the hitting set problem (we denote
the cardinality of a finite set M by |M |):

p-card-Hitting-Set
Instance: A hypergraph H = (V,E) and k ∈ N.

Parameter: k + d, where d := max{|e| | e ∈ E}.
Problem: Decide whether H has a hitting set of k elements.

What we actually would like to do here is parameterize the problem by two
parameters, k and d. However, admitting several parameters would further
complicate the theory, and to avoid this we can use the sum of all intended
parameters as the only actual parameter. We do the same whenever we con-
sider problems with several parameters. This is sufficient for all our purposes,
and it keeps the theory feasible.

The size of a hypergraph H = (V,E) is the number

‖H‖ := |V | +
∑

e∈E
|e|,

this roughly corresponds to the size of a reasonable representation of H.8

Theorem 1.14. p-card-Hitting-Set is fixed-parameter tractable. More pre-
cisely, there is an algorithm solving Hitting-Set in time

O(dk · ‖H‖).

Proof: Without loss of generality, we always assume that d ≥ 2. For hyper-
graphs with hyperedges of cardinality at most 1, the hitting set problem is
easily solvable in linear time.

We apply a straightforward recursive algorithm. Let e be a hyperedge of the
input hypergraph H. We know that each hitting set of H contains at least one
vertex in e. We branch on these vertices: For v ∈ e, let Hv be the hypergraph
obtained from H by deleting v and all hyperedges that contain v. Then H has
a k-element hitting set that contains v if and only if Hv has a (k− 1)-element
hitting set. Thus H has a k-element hitting set if and only if there is a v ∈ e
such that Hv has a (k−1)-element hitting set. A recursive algorithm based on
this observation is displayed as Algorithm 1.1. The algorithm returns true if
the input hypergraph has a hitting set of cardinality k and false otherwise.

8As our machine model underlying the analysis of concrete algorithms we use
random access machines with a standard instruction set and the uniform cost mea-
sure (cf. the Appendix). The assumption underlying the definition of the size of a
hypergraph is that each vertex can be stored in one or a constant number of memory
cells. See p. 74 in Chap. 4 for a detailed discussion of the size of structures.

1.3 Hitting Sets and the Method of Bounded Search Trees 13

HS(H, k)
// H = (V,E) hypergraph, k ≥ 0
1. if |V | < k then return false
2. else if E = ∅ then return true
3. else if k = 0 then return false
4. else

5. choose e ∈ E
6. for all v ∈ e do

7. Vv ← V \ {v}; Ev ← {e ∈ E | v 6∈ e}; Hv ← (Vv, Ev)
8. if HS(Hv, k − 1) then return true
9. return false

Algorithm 1.1. A recursive hitting set algorithm

The correctness of the algorithms follows from the discussion above. To
analyze the running time, let T (k, n, d) denote the maximum running time
of HS(H′, k′) for H′ = (V ′, E′) with ‖H′‖ ≤ n, max{|e| | e ∈ E′} ≤ d, and
k′ ≤ k. We get the following recurrence:

T (0, n, d) = O(1) (1.1)

T (k, n, d) = d · T (k − 1, n, d) +O(n) (1.2)

(for n, k ∈ N). Here the term d · T (k − 1, n, d) accounts for the at most d
recursive calls in line 8. The hypergraph Hv can easily be computed in time
O(n), and all other commands can be executed in constant time. Let c ∈ N

be a constant such that the term O(1) in (1.1) and the term O(n) in (1.2) are
bounded by c · n. We claim that for all d ≥ 2 and k ≥ 0,

T (k, n, d) ≤ (2dk − 1) · c · n. (1.3)

We prove this claim by induction on k. For k = 0, it is immediate by the
definition of c. For k > 0, we have

T (k, n, d) ≤ d · T (k − 1, n, d) + c · n
≤ d · (2dk−1 − 1) · c · n+ c · n
= (2dk − d+ 1) · c · n
≤ (2dk − 1) · c · n.

This proves (1.3) and hence the theorem. ⊓⊔

Exercise 1.15. Modify algorithm HS(H, k) in such a way that it returns a
hitting set of H of size at most k if such a hitting set exists and nil otherwise
and that the running time remains O(dk · ‖H‖). ⊣

The recursive algorithm described in the proof exhaustively searches for
a hitting set of size at most k. Of course, instead of recursive, such a search

14 1 Fixed-Parameter Tractability

can also be implemented by explicitly building a search tree (which then
corresponds to the recursion tree of the recursive version). A nonrecursive
implementation that traverses the tree in a breadth-first manner rather than
depth-first (as the recursive algorithm) may be preferable if we are interested
in a hitting set of minimum cardinality (a minimum hitting set for short). The
important fact is that the search tree is at most d-ary, that is, every node has
at most d children, and its height is at most k. (The height of a tree is the
number of edges on the longest path from the root to a leaf.) Thus the size of
the tree is bounded in terms of the parameter k + d. This is why the method
underlying the algorithm is often called the method of bounded search trees .

The following example illustrates the construction of the search tree:

Example 1.16. Let

H :=
(
{a, b, c, d, e, f, g, h}, {e1, . . . , e5}

)
,

where e1 := {a, b, c}, e2 := {b, c, d}, e3 := {c, e, f}, e4 := {d, f}, and e5 :=
{d, g}. The hypergraph is displayed in Fig. 1.2.

ba

b

b

bc b

d

be bf b
g

bhe1

e2

e3 e4
e5

Fig. 1.2. The hypergraph of Example 1.16

The search tree underlying the execution of our algorithm on input (H, 3)
is displayed in Fig. 1.3. We assume that on all branches of the tree the edges
are processed in the same order e1, . . . , e5. Each inner node of the tree is
labeled by the hyperedge e processed at that node, and each edge of the tree
is labeled by the vertex v ∈ e that determines the next recursive call. We leave
it to the reader to compute the subhypergraphs Hv for which the recursive
calls are made. The color of a leaf indicates the return value: It is true for
black and gray leaves and false for white leaves. Each black or gray leaf

1.3 Hitting Sets and the Method of Bounded Search Trees 15

corresponds to a hitting set of H, which consists of the vertices labeling the
edges on the path from the root to the leaf. A leaf is black if this hitting set
is minimal with respect to set inclusion. ⊣

e1

e2

a

e3

b

c e f

e4

c

d f

e3

d

c e f

e3

b

e4

c

d f

e4

e

d f

e5

f

d g

e4

c

d

e5

f

d g

Fig. 1.3. A search tree

For later reference, we note that a slight modification of our hitting set
algorithm yields the following lemma.

Lemma 1.17. There is an algorithm that, given a hypergraph H and a nat-
ural number k, computes a list of all minimal (with respect to set inclusion)
hitting sets of H of at most k elements in time

O(dk · k · ‖H‖),

where d is the maximum hyperedge cardinality. The list contains at most dk

sets.

Proof: Consider the algorithm EnumerateHS displayed as Algorithm 1.4.

Claim 1. Let H = (V,E) be a hypergraph and k ∈ N0. Then

EnumerateHS(H, k, ∅)

returns a set S of hitting sets of H such that each minimal hitting set of H
of cardinality at most k appears in S.

Proof: By induction on the number |E| of hyperedges of H we prove the
slightly stronger statement that for all sets X disjoint from V ,

EnumerateHS(H, k,X)

returns a set S of sets such that:

16 1 Fixed-Parameter Tractability

EnumerateHS(H, k, X)
// H = (V,E) hypergraph, k ≥ 0, set X of vertices (not of H)
1. if E = ∅ then return {X}
2. else if k = 0 then return ∅
3. else

4. choose e ∈ E
5. S ← ∅
6. for all v ∈ e do

7. Vv ← V \ {v}; Ev ← {e ∈ E | v 6∈ e}; Hv ← (Vv, Ev)
8. S ← S ∪ EnumerateHS(Hv, k − 1, X ∪ {v})
9. return S

Algorithm 1.4. An algorithm enumerating hitting sets

(i) For all S ∈ S we have X ⊆ S, and the set S \X is a hitting set of H of
cardinality at most k.

(ii) For each minimal hitting set S of H of cardinality at most k the set S∪X
is contained in S.

This is obvious for |E| = 0, because the only minimal hitting set of a hyper-
graph with no hyperedges is the empty set.

So suppose that |E| > 0 and that the statement is proved for all hyper-
graphs with fewer hyperedges. Let S be the set returned by the algorithm. To
prove (i), let S ∈ S. Let e be the edge chosen in line 4 and v ∈ e such that
S enters the set S in the corresponding execution of line 8, that is, S ∈ Sv,
where Sv is the set returned by EnumerateHS(Hv, k − 1, X ∪ {v}). By the
induction hypothesis, X ∪ {v} ⊆ S and S \ (X ∪ {v}) is a hitting set of Hv.
Then e′ ∩ (S \X) 6= ∅ for all edges e′ ∈ Ev and also for all edges e′ ∈ E \Ev,
because v ∈ S and v /∈ X .

To prove (ii), let S be a minimal hitting set of H of cardinality at most k.
Note that the existence of such a set implies k > 0 because E 6= ∅. Let e be
the hyperedge chosen by the algorithm in line 4 and v ∈ S ∩ e, and let Sv be
the set returned by the recursive call EnumerateHS(Hv, k − 1, X ∪ {v}) in
line 8.

S \ {v} is a minimal hitting set of the hypergraph Hv. Hence by the
induction hypothesis,

S ∪X = (S \ {v}) ∪ (X ∪ {v}) ∈ Sv ⊆ S.

This proves (ii) and hence the claim. ⊣

The analysis of the algorithm is completely analogous to the analysis of
the algorithm HS in the proof of Theorem 1.14, only the constant c changes.
Hence the running time is O(dk · ‖H‖).

As the search tree traversed by the algorithm is a d-ary tree of height k,
it has at most dk leaves, which implies that the set S of hitting sets returned
by the algorithm has cardinality at most dk. But not all hitting sets in S are

1.3 Hitting Sets and the Method of Bounded Search Trees 17

necessarily minimal; we only know that all minimal hitting sets of cardinality
at most k appear in S. However, we can easily test in time O(k ·n) if a hitting
set of H of cardinality k is minimal. Thus we can extract a list of all minimal
hitting sets from S in time O(|S| · k · n) = O(dk · k · n). ⊓⊔

Before we give further applications of the method of bounded search trees,
let us briefly return to our panel problem. The reader may object that the
algorithm of Theorem 1.14, though an fpt-algorithm, is still not very efficient.
After all, there may be publications with ten authors or more, and if the panel
is supposed to have 10 members, this yields an unpleasantly large constant
factor of 1010. Note, however, that a simple heuristic optimization will improve
the algorithm considerably if most hyperedges of the input hypergraph are
small and only a few are a bit larger: We first sort the hyperedges of the
hypergraph by cardinality and then process them in this order. Then chances
are that the algorithm stops before it has to branch on the large hyperedges,
and even if it has to branch on them this will only happen close to the leaves
of the tree. In particular, in our collaboration hypergraph, probably only few
papers will have many authors.

For approach (1) to the panel problem, we have thus constructed a rea-
sonable algorithm. How about (2) and (3), that is, p-Dominating-Set and
p-Independent-Set on the collaboration graph? Note that the fact that
the maximum hyperedge cardinality d can be expected to be small has no
impact on the collaboration graph. To see this, observe that for every collab-
oration graph G there is a matching collaboration hypergraph with maximum
edge cardinality 2: the graph G itself viewed as a hypergraph. As we shall
see below, an important parameter for the Dominating-Set and Independ-
ent-Set problems is the degree of the input graph. Unfortunately, we cannot
expect the degree of the collaboration graph, that is, the maximum number
of coauthors of an author in the publication database, to be small.

An immediate consequence of Theorem 1.14 is that the hitting set problem
restricted to input hypergraphs of bounded hyperedge cardinality is fixed-
parameter tractable:

Corollary 1.18. For every d ≥ 1, the following problem is fixed-parameter
tractable:

p-d-Hitting-Set
Instance: A hypergraph H = (V,E) with max{|e| | e ∈ E} ≤

d and k ∈ N.
Parameter: k.

Problem: Decide whether H has a hitting set of k elements.

A vertex cover of a graph G = (V,E) is a set S ⊆ V of vertices such that
for all edges {v, w} ∈ E either v ∈ S or w ∈ S. The parameterized vertex
cover problem is defined as follows:

18 1 Fixed-Parameter Tractability

p-Vertex-Cover
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a vertex cover of k elements.

As graphs are hypergraphs of hyperedge cardinality 2, Theorem 1.14 yields:

Corollary 1.19. p-Vertex-Cover is fixed-parameter tractable. More pre-
cisely, there is an algorithm solving p-Vertex-Cover in time O(2k · ‖G‖).

The degree deg(v) of a vertex v in a graph G = (V,E) is the number of
edges incident with v. The (maximum) degree of G is deg(G) := max{deg(v) |
v ∈ V }. Consider the following refined parameterization of Dominating-Set:

p-deg-Dominating-Set
Instance: A graph G = (V,E) and k ∈ N.

Parameter: k + deg(G).
Problem: Decide whether G has a dominating set of k ele-

ments.

To prove the following corollary of Theorem 1.14, observe that the domi-
nating sets of a graph G = (V,E) are precisely the hitting sets of the hyper-
graph

(
V, {ev | v ∈ V }

)
, where ev := {v} ∪

{
w ∈ V

∣∣ {v, w} ∈ E
}

for v ∈ V.

Corollary 1.20. p-deg-Dominating-Set is fixed-parameter tractable. More
precisely, there is an algorithm solving Dominating-Set in time

O((d + 1)k · ‖G‖).

A different application of the method of bounded search trees shows that
the refined parameterization of Independent-Set by the degree is also fixed-
parameter tractable.

p-deg-Independent-Set
Instance: A graph G = (V,E) and k ∈ N.

Parameter: k + deg(G).
Problem: Decide whether G has an independent set of k ele-

ments.

Exercise 1.21. Prove that p-deg-Independent-Set is fixed-parameter trac-
table.
Hint: Construct the first k levels of a search tree that, if completed, describes
all maximal independent sets of the input graph. ⊣

1.4 Approximability and Fixed-Parameter Tractability 19

Exercise 1.22. A cover for a hypergraph H = (V,E) is a set X ⊆ V such
that |e \ X | ≤ 1 for all e ∈ E. Note that if |e| ≥ 2 for all e ∈ E then
every cover is a hitting set. Show that there is an algorithm that, given a
hypergraph H and a natural number k, computes a list of all minimal covers
of H of cardinality at most k in time O((k + 1)k · k · ‖H‖). ⊣

Exercise 1.23. Let
A = (aij)i∈[m]

j∈[n]

∈ {0, 1}m×n

be an m × n matrix with 0–1-entries. A dominating set for A is a set S ⊆
[m] × [n] such that
• aij = 1 for all (i, j) ∈ S,
• if aij = 1 for some i ∈ [m], j ∈ [n], then there is an i′ ∈ [m] such that

(i′, j) ∈ S, or there is a j′ ∈ [n] such that (i, j′) ∈ S.
That is, S is a set of 1-entries of the matrix such that each 1-entry is either
in the same row or in the same column as an element of S.

Prove that the following problem is fixed-parameter tractable:

p-Matrix-Dominating-Set
Instance: A matrix A ∈ {0, 1}m×n and k ∈ N.

Parameter: k.
Problem: Decide whether A has a dominating set of cardi-

nality k.

Hint: View A as the adjacency matrix of a bipartite graph. A dominating set
for the matrix corresponds to a set S of edges of the graph such that each
edge has an endpoint with an edge in S in common. Show that if the matrix
has a dominating set of cardinality k, then the graph has only few vertices
of degree larger than k. Build a bounded search tree whose leaves describe
minimal sets of edges that cover all edges except those that have an endpoint
of degree larger than k. Try to extend the covers at the leaves to covers of all
edges. ⊣

1.4 Approximability and Fixed-Parameter Tractability

In this section, we will show how the point of view of parameterized complexity
may provide a better understanding of certain complexity issues in the theory
of approximation algorithms for combinatorial optimization problems. First,
we recall the definition of optimization problems. A binary relation R ⊆ Σ∗

1 ×
Σ∗

2, for alphabets Σ1,Σ2, is polynomially balanced if there is a polynomial
p ∈ N0[X] such that for all (x, y) ∈ R we have |y| ≤ p(|x|).

Definition 1.24. Let Σ be a finite alphabet. An NP-optimization problem
(over Σ) is a triple O = (sol, cost, goal), where

20 1 Fixed-Parameter Tractability

(1) sol is a function defined on Σ∗ such that the relation

{(x, y) | x ∈ Σ∗ and y ∈ sol(x)}
is polynomially balanced and decidable in polynomial time. For every
instance x ∈ Σ∗, we call the elements of the set sol(x) solutions for x.

(2) cost is a polynomial time computable function defined on {(x, y) | x ∈
Σ∗, and y ∈ sol(x)}; the values of cost are positive natural numbers.

(3) goal ∈ {max,min}.
If goal = max (goal = min) we speak of a maximization (minimization)
problem. The function optO on Σ∗ is defined by

optO(x) := goal{cost(x, y) | y ∈ sol(x)}.
A solution y ∈ sol(x) for an instance x ∈ Σ∗ is optimal if cost(x, y) = optO(x).
The objective of an optimization problem O is to find an optimal solution for
a given instance. ⊣

Let us remark that for many problems O, finding an optimal solution for a
given instance x is polynomial time equivalent to computing the cost optO(x)
of an optimal solution. This, in turn, is often equivalent to deciding for a given
k if optO(x) ≥ k for goal = max or optO(x) ≤ k for goal = min.

Example 1.25. Recall that a complete graph is a graph in which all vertices
are pairwise adjacent. A clique in a graph is the vertex set of a complete
subgraph. The decision problem Clique asks whether a given graph G has
a clique of given cardinality k. It is derived from the maximization problem
Max-Clique, which asks for a clique of maximum cardinality.

We usually use an informal notation for introducing optimization problems
that is similar to our notation for parameterized problems. For example, for
the maximum clique problem we write:

Max-Clique
Instance: A graph G = (V,E).

Solutions: Nonempty cliques S ⊆ V of G.
Cost: |S|.
Goal: max.

(We only admit nonempty cliques as solutions because we require costs to be
positive integers.) ⊣
Example 1.26. The minimum vertex cover problem is defined as follows:

Min-Vertex-Cover
Instance: A graph G = (V,E).
Solutions: Nonempty vertex covers S ⊆ V of G.

Cost: |S|.
Goal: min. ⊣

1.4 Approximability and Fixed-Parameter Tractability 21

There is a canonical way to associate a parameterized problem with each
optimization problem:

Definition 1.27. Let O = (sol, cost, opt) be an NP-optimization problem
over the alphabet Σ. The standard parameterization of O is the following
parameterized problem:

p-O
Instance: x ∈ Σ∗ and k ∈ N.

Parameter: k.
Problem: Decide whether optO(x) ≥ k if goal = max or

optO(x) ≤ k if goal = min.
⊣

Example 1.28. The standard parameterization of Min-Vertex-Cover is
the following problem:

p-Min-Vertex-Cover
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a vertex cover of at most k

elements.

Observe that p-Min-Vertex-Cover is almost exactly the same problem as
p-Vertex-Cover introduced in the previous section, because a graph with
at least k vertices has a vertex cover of exactly k elements if and only if it has a
vertex cover of at most k elements. This is because vertex covers are monotone
in the sense that supersets of vertex covers are also vertex covers. The two
problems only differ on instances (G, k), where G has less than k vertices. For
both problems, such instances are trivial, though in different directions.

Similarly, p-Hitting-Set and p-Dominating-Set are essentially the
standard parameterizations of the minimization problems Min-Hitting-Set
and Min-Dominating-Set. For maximization problems, instead of mono-
tonicity we need antimonotonicity, which means that subsets of solutions are
still solutions. p-Independent-Set is essentially the standard parameteri-
zation of the antimonotone maximization problem Max-Independent-Set,
and the following problem p-Clique is essentially the standard parameteri-
zation of Max-Clique:

p-Clique
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a clique of k elements.

⊣

22 1 Fixed-Parameter Tractability

Note that for minimization problems that are not monotone and maxi-
mization problems that are not antimonotone, the standard parameterization
is not the same as the parameterized problem that asks for solutions of cardi-
nality exactly k. As a matter of fact, the two problems may have very different
complexities, as the following exercise shows:

Exercise 1.29. A propositional formula is in 3-disjunctive normal form (3-
DNF) if it is of the form

∨
i∈I(λi1 ∧ λi2 ∧ λi3), where the λij are literals. The

conjunctions (λi1 ∧ λi2 ∧ λi3) are called the terms of the formula. Consider
the following maximization problem:

Max-3-DNF-Sat
Instance: A propositional formula α in 3-DNF.

Solutions: Assignments to the variables of α.
Cost: 1 + number of terms satisfied.
Goal: max.

(a) Prove that the standard parameterization of Max-3-DNF-Sat is fixed-
parameter tractable.
Hint: Prove that the expected number of terms satisfied by a random
assignment is at least (1/8)m, where m is the total number of terms of the
input formula. Conclude that for m ≥ 8k, the formula has an assignment
that satisfies at least k terms.

(b) Show that unless PTIME = NP, the following parameterized problem
associated with Max-3-DNF-Sat is not fixed-parameter tractable:

Instance: A propositional formula α in 3-DNF and k ∈ N.
Parameter: k.

Problem: Decide whether there is an assignment that satis-
fies exactly k − 1 terms of α.

Hint: Prove that it is NP-complete to decide if a given formula in 3-
disjunctive normal form has an assignment that satisfies no term. ⊣

Let us now turn to approximability. Let O = (sol, cost, goal) be an opti-
mization problem over Σ. For any instance x of O and for any y ∈ sol(x), the
approximation ratio r(x, y) of y with respect to x is defined as

r(x, y) := max

{
optO(x)

cost(x, y)
,
cost(x, y)

optO(x)

}
.

For example, for minimization problems, we have cost(x, y) = r(x, y)·optO(x).
The approximation ratio is always a number ≥ 1; the better a solution is, the
closer the ratio is to 1.

Definition 1.30. Let O = (sol, cost, goal) be an NP-optimization problem
over the alphabet Σ.

1.4 Approximability and Fixed-Parameter Tractability 23

(1) Let ǫ > 0 be a real number. A polynomial time ǫ-approximation algorithm
for O is a polynomial time algorithm that, given an instance x ∈ Σ∗,
computes a solution y ∈ sol(x) such that r(x, y) ≤ (1 + ǫ).
Problem O is constant approximable if, for some ǫ > 0, there exists a
polynomial time ǫ-approximation algorithm for O.

(2) A polynomial time approximation scheme (ptas) for O is an algorithm A

that takes as input pairs (x, k) ∈ Σ∗ × N such that for every fixed k, the
algorithm is a polynomial time (1/k)-approximation algorithm. ⊣

Most of the known polynomial time approximation schemes have a run-
ning time of nΩ(k), which means that for reasonably close approximations the
running times quickly get infeasible on large instances. A ptas A is a fully
polynomial time approximation scheme (fptas) if its running time is polyno-
mial in |x| + k. Unfortunately, only few known optimization problems have
an fptas. However, if we do not need a very precise approximation and can
live with an error 1/k, say, of 10%, we are in the situation where we have a
small problem parameter k. We parameterize our approximation schemes by
this error parameter and obtain the following intermediate notion:

Definition 1.31. Let O = (sol, cost, goal) be an NP-optimization problem
over the alphabet Σ. An efficient polynomial time approximation scheme (ep-
tas) for O is a ptas A for O for which there exists a computable function
f : N → N and a polynomial p(X) such that the running time of A on input
(x, k) ∈ Σ∗ × N is at most f(k) · p(|x|). ⊣

Thus an eptas is an fpt-algorithm with respect to the parameterization
(x, k) 7→ k of Σ∗ × N. Clearly,

FPTAS ⊆ EPTAS ⊆ PTAS,

that is, if an optimization problem O has an fptas then it has an eptas, and
if it has an eptas then it has a ptas. The notion of an eptas seems to be a
reasonable intermediate notion of approximation schemes between the very
strict fptas and the general ptas. One well-known example of an eptas is
Arora’s approximation scheme for the Euclidean traveling salesman problem
[16]. We will see an example of an eptas for a scheduling problem in Sect. 9.4.

The following result establishes a connection between the existence of an
eptas for an optimization problem and the fixed-parameter tractability of its
standard parameterization. The result is simple, but interesting because it
connects two completely different parameterized problems derived from the
same optimization problem:

Theorem 1.32. If the NP-optimization problem O has an eptas then its stan-
dard parameterization p-O is fixed-parameter tractable.

Proof: Let us assume that O = (sol, cost,min) is a minimization problem
over the alphabet Σ. (The proof for maximization problems is similar.) Let

24 1 Fixed-Parameter Tractability

A be an eptas for O with running time f(k) · |x|O(1) for some computable
function f . The following algorithm A′ is an fpt-algorithm for p-O: Given an
instance (x, k), algorithm A′ computes the output y of A on input (x, k + 1).
If cost(x, y) ≤ k it accepts; otherwise it rejects.

Clearly, A′ is an fpt-algorithm, because A is an fpt-algorithm. To see
that A′ is correct, we distinguish between two cases: If cost(x, y) ≤ k, then
optO(x) ≤ k, and hence (x, k) is a “yes”-instance of p-O. If cost(x, y) ≥ k+1,
then

optO(x) =
cost(x, y)

r(x, y)
≥ cost(x, y)

1 + 1
k+1

≥ k + 1

1 + 1
k+1

=
k + 1

k + 2
· (k + 1) > k.

As optO(x) > k, the pair (x, k) is a “no”-instance of p-O. ⊓⊔
Together with hardness results from parameterized complexity theory,

Theorem 1.32 can be used to establish the nonexistence of efficient poly-
nomial time approximation schemes (under assumptions from parameterized
complexity). Let us remark that the converse of Theorem 1.32 does not hold.
It is known that Min-Vertex-Cover has no ptas unless PTIME = NP and
hence no eptas, while in Sect. 1.3 we saw that the standard parameterization
p-Vertex-Cover is in FPT.

1.5 Model-Checking Problems

The parameterized approach is particularly well-suited for a certain type of
logic-based algorithmic problems such as model-checking problems in auto-
mated verification or database query evaluation. In such problems one has to
evaluate a formula of some logic in a finite structure. Typically, the formula
(for example, a database query or a description of a system property) is small
and the structure (for example, a database or a transition graph of a finite
state system) is large. Therefore, a natural parameterization of such problems
is by the length of the formula.

In this section, we shall study the model-checking problem for linear tem-
poral logic in some more detail. In the model-checking approach to automated
verification, finite state systems are modeled as Kripke structures (or tran-
sition systems). Formally, a Kripke structure is a triple K = (V,E, λ) that
consists of a directed graph (V,E) together with a mapping λ that associates
a set of atomic propositions with each vertex. The vertices of the structure
represent the states of the system, the edges represent possible transitions be-
tween states, and the atomic propositions represent properties of the states,
such as “the printer is busy” or “the content of register R1 is 0.” Walks in the
graph describe possible computations of the system. (Throughout this book,
we distinguish between walks and paths in graphs. On a walk, vertices and
edges may be repeated, whereas on a path each vertex and hence each edge
may appear at most once.)

1.5 Model-Checking Problems 25

Linear temporal logic (LTL) is a language for specifying properties of
such systems. Besides static properties of the states, which can be specified
by Boolean combinations of the atomic propositions, the logic also allows
it to specify temporal properties of the computations, such as: “Whenever
the reset-button is pressed, eventually the system reboots.” Here “the reset-
button is pressed” and “the system reboots” are atomic propositions. If we
represent them by the symbols Reset and Reboot, an LTL-formula specifying
the property is

G(Reset → FReboot).

Here the G-operator says that the subformula it is applied to holds at all states
of the computation following and including the current state. The subformula
Reset → F Reboot says that if Reset holds at a state, then FReboot also holds.
The F-operator says that the subformula it is applied to holds at some state of
the computation after or equal to the current state. Thus FReboot says that
at some point in the future Reboot holds. We say that an LTL-formula ϕ holds
at a state v ∈ V in a Kripke structure K = (V,E, λ) (and write K, v |= ϕ) if
all walks of K starting at v satisfy ϕ. There is no need to give further details
or a formal definition of LTL here.

The LTL model-checking problem MC(LTL) asks whether a given Kripke
structure satisfies a given LTL-formula at a given state. We are mostly inter-
ested in the following parameterization:

p-MC(LTL)
Instance: A finite Kripke structure K = (V,E, λ), a state

v ∈ V , and an LTL-formula ϕ.
Parameter: Length of ϕ.

Problem: Decide whether K, v |= ϕ.

Theorem 1.33. p-MC(LTL) is fixed-parameter tractable. More precisely,
there is an algorithm solving MC(LTL) in time

2O(k) · n,

where k is the length of the input formula ϕ and n the size of the input
structure K.

It is known that the unparameterized problem MC(LTL) is PSPACE-complete
and thus intractable from the perspective of classical complexity. However,
the problem is solved on large instances in practice. Thus the parameterized
complexity analysis much better captures the “practical” complexity of the
problem.

While a full proof of the theorem would mean too much of a digression at
this point, it is useful to sketch the general strategy of the proof. The first
step is to translate the input formula ϕ into a Büchi automaton A. Büchi
automata are finite automata that run on infinite words. The second step is

26 1 Fixed-Parameter Tractability

to check if the Büchi automaton A accepts all walks in K starting at v. The
first step requires exponential time, as the size m of the automaton A may be
exponential in the length of ϕ. The second step can be carried out by a fairly
straightforward algorithm in time O(m · n), where n denotes the size of K.

The automata-theoretic approach, as laid out here, is one of the most suc-
cessful algorithmic techniques for solving logic-based problems. It has various
practical applications in automated verification, database systems, and other
areas. Often, the algorithms obtained by this approach are fpt-algorithms. We
will study the automata-theoretic approach in more detail in Chap. 10.

Model-checking problems for various fragments of first-order logic play
a very important role in the theory of parameterized intractability and will
re-occur at many places in this book.

1.6 Alternative Characterizations of Fixed-Parameter
Tractability

In this section we derive various characterizations of fixed-parameter tractabil-
ity that emphasize different aspects of this notion. The first result shows that
the standard “multiplicative” notion of fixed-parameter tractability is equiv-
alent to an “additive” notion.

Proposition 1.34. Let (Q, κ) be a parameterized problem. The following are
equivalent:
(1) (Q, κ) ∈ FPT.
(2) There is an algorithm deciding x ∈ Q in time

g
(
κ(x)

)
+ f

(
κ(x)

)
· p
(
|x| + κ(x)

)

for computable functions f, g and a polynomial p(X).
(3) There is an algorithm deciding x ∈ Q in time

g
(
κ(x)

)
+ p
(
|x|
)

for a computable function g and a polynomial p(X).

Proof: Clearly, (3) implies (2). We turn to the implication (2) ⇒ (1). We may
assume that the polynomial in (2) is a monomial, p(X) = Xd. Let Σ be the
alphabet of (Q, κ) and x ∈ Σ∗ an instance, n := |x| and k := κ(x). Using the
inequality a+ b ≤ a · (b+ 1) (for a, b ∈ N), we get

g(k) + f(k) · (n+ k)d ≤ (g(k) + f(k) · (k + 1)d) · (n+ 1)d ≤ h(k) · p(n),

where h(k) := g(k) + f(k) · (k + 1)d and p(n) := (n + 1)d. Finally, from the
inequality a · b ≤ a2 + b2 (for a, b ∈ N0), we get the implication (1) ⇒ (3),
since

1.6 Alternative Characterizations of Fixed-Parameter Tractability 27

f(k) · p(n) ≤ f(k)2 + p(n)2. ⊓⊔
A function f : N → N is time constructible if there is a deterministic

Turing machine that for all n ∈ N on every input of length n halts in exactly
f(n) steps. Note that if f is time constructible then f(n) can be computed in
O(f(n)) steps. The following simple lemma implies that if f(k) · p(n) bounds
the running time of an fpt-algorithm, then we can always assume the function
f to be increasing and time constructible. We will often apply this lemma
tacitly.

Lemma 1.35. Let f : N → N be a computable function. Then there exists a
computable function g : N → N such that:
(1) f(k) ≤ g(k) for all k ∈ N,
(2) g is increasing,
(3) g is time constructible.

Proof: Let g(k) be the running time of a Turing machine that, given k in
unary, consecutively computes f(1), f(2), . . . , f(k) in unary and then halts.

⊓⊔
We are now ready to give the two alternative characterizations of fixed-

parameter tractability, which form the main result of this section.

Definition 1.36. Let (Q, κ) be a parameterized problem over Σ.
(1) (Q, κ) is in PTIME after a precomputation on the parameter if there

exist an alphabet Π, a computable function π : N → Π∗, and a problem
X ⊆ Σ∗ ×Π∗ such that X ∈ PTIME and for all instances x of Q we have

x ∈ Q ⇐⇒
(
x, π(κ(x))

)
∈ X.

(2) (Q, κ) is eventually in PTIME if there are a computable function h :
N → N and a polynomial time algorithm A that on input x ∈ Σ∗ with
|x| ≥ h(κ(x)) correctly decides whether x ∈ Q. The behavior of A on
inputs x ∈ Σ∗ with |x| < h(κ(x)) is arbitrary. ⊣

Theorem 1.37. Let (Q, κ) be a parameterized problem. Then the following
statements are equivalent:
(1) (Q, κ) is fixed-parameter tractable.
(2) (Q, κ) is in PTIME after a precomputation on the parameter.
(3) Q is decidable and (Q, κ) is eventually in PTIME.

Proof: Let Σ be the alphabet of (Q, κ).
(1) ⇒ (2): Let AQ be an algorithm deciding x ∈ Q in time f(κ(x))·|x|c with

computable f and c ∈ N. Let Π be the alphabet {1, §} and define π : N → Π∗

by
π(k) := k§f(k)

28 1 Fixed-Parameter Tractability

where k and f(k) are written in unary. Let X ⊆ Σ∗ × Π∗ be the set of tuples
accepted by the following algorithm A.

Given (x, y) ∈ Σ∗ × Π∗, first A checks whether y = κ(x)§u for some
u ∈ {1}∗. If this is not the case, then A rejects, otherwise A simulates |u| · |x|c
steps of the computation of AQ on input x. If AQ stops in this time and
accepts, then A accepts, otherwise A rejects.

Since |u| ≤ |y|, one easily verifies that A runs in polynomial time; moreover:

x ∈ Q ⇐⇒ A accepts
(
x, κ(x)§f(κ(x))

)

⇐⇒
(
x, π(κ(x))

)
∈ X.

(2) ⇒ (3): Assume that (Q, κ) is in PTIME after a precomputation on the
parameter. Choose an alphabet Π, a computable function π : N → Π∗, and
a problem X ⊆ Σ∗ × Π∗ as in Definition 1.36(1). Furthermore let AX be an
algorithm deciding X in polynomial time. The equivalence

x ∈ Q ⇐⇒
(
x, π(κ(x))

)
∈ X

shows that Q is decidable. We fix an algorithm Aπ computing π and let f(k)
be the running time of Aπ on input k. We present an algorithm A showing
that (Q, κ) is eventually in PTIME.

Given x ∈ Σ∗, the algorithm A simulates |x| steps of the computation of
π(κ(x)) by Aπ. If the computation of Aπ does not stop in this time, then
A rejects, otherwise it simulates AX to check whether (x, π(κ(x))) ∈ X and
accepts or rejects accordingly. Clearly, A runs in polynomial time, and for
x ∈ Σ∗ with |x| ≥ f(κ(x)):

A accepts x ⇐⇒ x ∈ Q.

(3) ⇒ (1): Assume (3). Let AQ be an algorithm that decides x ∈ Q and
let h be a computable function and Ah a polynomial time algorithm correctly
deciding whether x ∈ Q for x ∈ Σ∗ with |x| ≥ h(κ(x)). We present an fpt-
algorithm A deciding Q: Given x ∈ Σ∗, first A computes h(κ(x)) and checks
whether |x| ≥ h(κ(x)). If |x| < h(κ(x)), then A simulates AQ on input x to
decide whether x ∈ Q. In this case the running time of A can be bounded in
terms of the parameter κ(x) and the time invested to compute this parameter,
that is, by f(κ(x)) + |x|O(1) for some computable f . If |x| ≥ h(κ(x)), then
A simulates Ah on input x to decide whether x ∈ Q. This simulation takes
time polynomial in |x|. Altogether, the running time of A can be bounded by
f(κ(x)) + |x|O(1). ⊓⊔

The equivalence between a problem being fixed-parameter tractable and
in polynomial time after a precomputation that only involves the parameter
may be a bit surprising at first sight, but the proof of Theorem 1.37 reveals
that it is actually based on a trivial padding argument. However, there is
a more meaningful concept behind the notion of being in polynomial time

1.6 Alternative Characterizations of Fixed-Parameter Tractability 29

after a precomputation. The instances of many natural parameterized prob-
lems have two parts, and the parameter is the length of the second part. An
example is the LTL model-checking problem, the LTL-formula being the sec-
ond part of an instance. Fpt-algorithms for such problems often proceed in
two steps. They first do a precomputation on the second part of the input
and then solve the problem using the first part of the input and the result
of the precomputation. Again, LTL model-checking is a good example: The
fpt-algorithm we outlined in Sect. 1.5 transforms the input formula into a
Büchi automaton in a precomputation and then runs the automaton on the
input structure. Another example is database query evaluation, with the first
part of the input being a database and the second part the query. A natural
approach to solving this problem is to first “optimize” the query, that is, to
turn it into an equivalent query that can be evaluated more efficiently, and
then evaluate the optimized query.

While such algorithms are not formally polynomial time after a precom-
putation on the parameter—they do a precomputation on the LTL-formula
and on the database query, hence on part of the input—they were the original
motivation for introducing the concept of a problem being in PTIME after a
precomputation.

We close this chapter with one more characterization of fixed-parameter
tractability. We will see in Chap. 9 that this characterization embodies a very
useful algorithmic technique.

Definition 1.38. Let (Q, κ) be a parameterized problem over Σ.
A polynomial time computable function K : Σ∗ → Σ∗ is a kernelization

of (Q, κ) if there is a computable function h : N → N such that for all x ∈ Σ∗

we have
(x ∈ Q ⇐⇒ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)).

If K is a kernelization of (Q, κ), then for every instance x of Q the image
K(x) is called the kernel of x (under K). ⊣

Observe that a kernelization is a polynomial time many-one reduction of a
problem to itself with the additional property that the image is bounded in
terms of the parameter of the argument.

Theorem 1.39. For every parameterized problem (Q, κ), the following are
equivalent:
(1) (Q, κ) ∈ FPT.
(2) Q is decidable, and (Q, κ) has a kernelization.

Proof: Let Σ be the alphabet of (Q, κ).
(2) ⇒ (1): Let K be a kernelization of (Q, κ). The following algorithm

decides Q: Given x ∈ Σ∗, it computes K(x) (in polynomial time) and uses a
decision algorithm for Q to decide if K(x) ∈ Q. Since |K(x)| ≤ h(κ(x)), the

30 1 Fixed-Parameter Tractability

running time of the decision algorithm is effectively bounded in terms of the
parameter κ(x).

(1) ⇒ (2): Let A be an algorithm solving (Q, κ) in time f(k) · p(n) for
some computable function f and polynomial p(X). Without loss of generality
we assume that p(n) ≥ n for all n ∈ N. If Q = ∅ or Q = Σ∗, then (Q, κ) has
the trivial kernelization that maps every instance x ∈ Σ∗ to the empty string
ǫ. Otherwise, we fix x0 ∈ Q and x1 ∈ Σ∗ \Q.

The following algorithm A′ computes a kernelization K for (Q, κ): Given
x ∈ Σ∗ with n := |x| and k := κ(x), the algorithm A′ simulates p(n)·p(n) steps
of A. If A stops and accepts (rejects), then A′ outputs x0 (x1, respectively).
If A does not stop in ≤ p(n) · p(n) steps, and hence n ≤ p(n) ≤ f(k), then
A′ outputs x. Clearly, K can be computed in polynomial time, |K(x)| ≤
|x0| + |x1| + f(k), and (x ∈ Q ⇐⇒ K(x) ∈ Q). ⊓⊔

Example 1.40. Recall that p-SAT is the satisfiability problem for proposi-
tional logic parameterized by the number of variables. The following simple
algorithm computes a kernelization for p-SAT: Given a propositional formula
α with k variables, it first checks if |α| ≤ 2k. If this is the case, the algo-
rithm returns α. Otherwise, it transforms α into an equivalent formula α′ in
disjunctive normal form such that |α′| ≤ O(2k). ⊣
Exercise 1.41. Prove that p-deg-Independent-Set has a kernelization such
that the kernel of an instance (G, k) with d := deg(G) has size O(d2 · k). More
precisely, if (G′, k′) with G′ = (V ′, E′) is the kernel of an instance (G, k), then
|V ′| ≤ (d+ 1) · k and hence |E′| ≤ d · (d+ 1) · k/2.

Hint: Prove by induction on k that every graph of degree d with at least
(d+ 1) · k vertices has an independent set of cardinality k. ⊣
Exercise 1.42. Let H = (V,E) be a hypergraph. A basis of H is a set S of
subsets of V such that each hyperedge e ∈ E is the union of sets in S. That
is, for all e ∈ E there are s1, . . . , sℓ ∈ S such that e = s1 ∪ . . . ∪ sℓ.

Prove that the following problem is fixed-parameter tractable:

p-Hypergraph-Basis
Instance: A hypergraph H and k ∈ N.

Parameter: k ∈ N.
Problem: Decide whether H has a basis of cardinality k.

⊣

Notes

The central notion of this book, fixed-parameter tractability, was introduced
by Downey and Fellows in [78], a preliminary version of [79].9 Earlier papers [2,
180] dealt with the asymptotic behavior of parameterized problems.

9Usually, we only refer to the full version of an article.

1.6 Alternative Characterizations of Fixed-Parameter Tractability 31

The method of bounded search trees in the context of parameterized com-
plexity theory goes back to Downey and Fellows [81]. Most of the results
presented in Sect. 1.3 (including the exercises) can be found in [83].

The notion of an efficient polynomial time approximation scheme was in-
troduced by Cesati and Trevisan [42]; Theorem 1.32 is due to Bazgan [21].

The model-checking algorithm for linear temporal logic mentioned in The-
orem 1.33 is due to Lichtenstein and Pnueli [154]. We refer the reader to
[55] for background on model-checking and linear temporal logic. Papadim-
itriou and Yannakakis [170] point out that parameterized complexity theory
yields a productive framework for studying the complexity of database query
languages, which is more realistic than the classical approach.

Theorem 1.37 is due to [100]; it builds on the advice view of Cai et al. [37].
The notion of kernelization in the context of parameterized complexity the-
ory goes back to Downey and Fellows [81]. Theorem 1.39 was shown by Nie-
dermeier [165]. Exercise 1.41 is due to Yijia Chen (private communication).
Exercise 1.42 is due to [83].

