
PREFACE

This volume carries the same flavor as Volume 1 in covering the theory, algorithms,
and applications of level sets and deformable models in medical image analysis.

Chapter 1 describes a new approach that integrates the T-Surfaces model and
isosurface generation methods within a general framework for segmentation and
surface reconstruction in 3D medical images.

Chapter 2 is a study of active contour models in medical image analysis.
Various issues with respect to implantation are discussed.

Chapter 3 also deals with active contours with a primary focus on the ap-
plication and performance of different types of deformable models for analyzing
microscopic pathology specimens.

Chapter 4 focuses on construction of the speed function of level sets as applied
to segmentation of tagged MR images.

Chapter 5 presents a parallel computational method for 3D image segmenta-
tion based on solving the Riemannian mean curvature flow of graphs. The method
is applied to segmentation of 3D echocardiographic images.

Chapter 6 provides a review of the level set method and shows the usage of
shape models for segmentation of objects in 2D and 3D within a level set framework
via regional information.

Chapter 7 also deals with basic application of deformable models to image
segmentation. Various applications of the method are presented.

Chapter 8 employs geometric deformable models/level sets to extract the
topology of the shape of breast tumors. Using this framework, several features
of breast tumors are extracted and subsequently used for classification of breast
disease.

Chapter 9 examines various theoretical and algorithmic details of active con-
tour models and their use for image segmentation.

Chapter 10 uses deformable models to devise a segmentation approach for
ultrasound images for the study of prostate cancer.
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Chapter 11 proposes a novel variational formulation for brain MRI segmenta-
tion that uses J-divergence (symmetrized Kullback-Leibler divergence) to measure
the dissimilarity between local and global regions.

Chapter 12 examines the use of shape transformations for morphometric
analysis in the brain. A shape transformation is a spatial map that adapts an
individual’s brain anatomy to that of another.

Chapter 13 proposes a nonlinear statistical shape model for level set segmen-
tation. Various algorithmic details are provided to show the effectiveness of the
approach.

Chapter 14 uses the level sets methods for structural analysis of brain white
and gray matter in normal and dyslexic people.

Chapter 15 describes an approach for estimating left- and right-ventricular
deformation from tagged cardiac magnetic resonance imaging using volumetric
deformable models constructed from nonuniform rational B-splines (NURBS).

Chapter 16 is a generalization of the methods presented in Chapter 14 with
an emphasis on autism. The 3D distance map is used as a shape descriptor of
the white matter, and a novel nonrigid registration approach is used to quantify
changes in the corpus callosum of normal and autistic individuals.

Overall, the thirty-one chapters in the two volumes provide an elegant cross-
section of the theory and application of variational and PDE approaches in medical
image analysis. Graduate students and researchers at various levels of familiarity
with these techniques will find the two volumes very useful for understanding
the theory and algorithmic implementations. In addition, the various case studies
provided demonstrate the power of these techniques in clinical applications.

The editors of the two volumes once again express their deep appreciation to
the staff at Springer who made this project a fruitful experience.

Jasjit Suri and Aly Farag
January 2007
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The model-based technique offers a unique and efficient approach toward medical image
segmentation and analysis due to its power to unify image information within a physical
framework. Of the model-based techniques, the deformable model is most effectively used
for its ability to unify image statistics — both local and global — in a geometrically con-
strained framework. The geometric constraint imparts a compact form of shape information.
This chapter reviews one of the most promising and highly used deformable approaches:
the active contour model in medical image analysis. The active contour model is one of
the most effective approaches due to its flexibility to adapt to various anatomical shapes
while constraining the local geometric shape constraint. Within the geometric paradigm,
local image statistics and regional information has been effectively used in segmentation
purposes. In addition, various forms of a-priori information can be incorporated into this
model. Active contour models are capable of accommodating a wide range of shape vari-
ability over time and space. The active contour also has to overcome the limitation of
topological adaptibility by introducing a topology adaptive model. This chapter details the
development and evolution of the active contour model with the growing sophistication of
medical images.
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1. INTRODUCTION

The rapid development and proliferation of medical imaging technologies is
revolutionizing medicine. Physicians and scientists noninvasively gather poten-
tially life-saving anatomical information using the images obtained from these
imaging devices. The need for identification and interaction with anatomical tis-
sues by physiologists has led to an immense research effort into a wide range of
medical imaging modalities. The intent of medical image analysis is manifold,
ranging from interpretation, analysis, and visualization to a means for surgical
planning and simulation, postoperative progression of the disease, and intraoper-
ative navigation. For example, ascertaining the detailed shape and organization
of the aortic arch in the abdomen for an aneurysm operation enables a surgeon
preoperatively to plan an optimal stent design and other characteristics for the
aorta.

Each of the imaging modalities captures a unique tissue property. Magnetic
resonance imaging (MRI) uses the heterogeneous magnetic property of tissue to
generate the image [1]. The response to an applied magnetic field is distinctive
for each tissue and is reflected in the image. Doppler ultrasound, on the other

computed tomography (CT) imaging [3] are based on absorption. Functional
imaging modalities like positron emission tomography (PET) and fMRI (functional
MRI) highlight metabolic activities in the region of interest [4–6].

Although modern imaging devices provide exceptional views of internal ana-
tomy as well as functional images, accurate quantification and analysis of the re-
gion of interest still remains a major challenge. Physicians manually segment and
analyze the images, which is highly time consuming and prone to inter-observer
variability. Accurate, reproducible quantification of medical images is required
in order to support biomedical investigations and clinical activities. As imaging
devices are moving toward higher-resolution images and the field of view (FOV)
is increasing, the size of datasets is exploding. Manual analysis is becoming
more challenging and nearly impossible. Thus, the need for computer-aided auto-
mated and semi-automated algorithms for segmenting and analyzing medical data
is gaining importance.

The variability of anatomic shapes makes it difficult to construct a unique and
compact geometric model for representation of an anatomic region. Furthermore,
many factors contribute to degradation of image quality, which makes the process
of segmentation even more challenging. Although the nature of artifacts may vary
with imaging modality and the tissue concerned, their effect on image quality
is nevertheless detrimental. Figures 1 and 2 the illustrate effects of two different
types of artifacts in the process of image acquisition. In Figure 1 the inhomogeneity
factor makes the middle region of the image darker compared to the top and lower
side. In this case the inhomogeneity factor is a slowly varying intensity gradient

hand, relies on the acoustic scattering property of each tissue [2]. X-ray and
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(a) (b)

Figure 1. Effects of inhomogeneity in MRI images of brain: (a) images without inhomo-
geneity; (b) with inhomogeneity effects.

Figure 2. Illustration of streak artifacts in CT images.

from the middle to the outer sides. Figure 2 shows the effect of metal in CT, where
radial streaks are observed from the metal sites (right region in the image).

The resolution of the imaging device also determines image quality. A low-
resolution device suffers from problems of fuzzification and occlusion of bound-
aries, giving rise to blurred and disconnected anatomical edges. But an increase
in image resolution is limited by factors like a low signal-to-noise ratio, expo-
sure to more radiation, extended imaging time, and increasing contrast dosages.
With all these factors affecting image quality, the challenge for the image analysis
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community is to find suitable algorithms to accurately and reproducibly segment
anatomical structures for clinical studies.

Traditional low-level image processing techniques perform operations using
local image statistics, producing localized patterns that need unification to form a
meaningful segmentation. However, in most cases it leads to incorrect connected

above-mentioned artifacts immensely bias the local statistics, making it impossible
to generate anatomically correct structures. As a result, these techniques require
a considerable amount of manual intervention to generate a meaningful structure,
making it a tedious process, and one prone to operator subjectivity.

On the other hand, the use of global properties like intensity values or compact
geometric models is also not always possible since these properties themselves do
not necessarily have a one-on-one mapping with an anatomical structure or a
desired region of interest. A methodology that can encapsulate local statistics in a
global framework might prove to be a better alternative in this respect. Deformable
models [7–11] comprise a step in that direction. The main idea of these models is
that of using local statistics to deform a global geometric model. Through the last
two decades, deformable models have been a promising and vigorously researched
approach to computer-assisted medical image analysis. The source of the immense
potential for the use of deformable models in segmentation, matching, and tracking
of anatomic structures in medical images lies in its bottom–up approach, which
exploits features derived from local image statistics along with a priori knowledge
about the location, size, and shape of these structures [12]. This allows a high range
of variability of these models to accommodate significant variation in biological
structures.

The active contour model, commonly known as the snakes model, proposed
by Kass et al. [10], defines a parametric framework for a curve that deforms under
the action of local image statistics to conform into the perceived boundary of
the structure in an image. For the last two decades, the active contour model
has found widespread application in many fields of medical image segmentation
and has undergone immense development in terms of its theoretical insight, as
well as making itself more flexible and adaptable. This chapter tries to capture the
evolution of this model and its use in medical image segmentation. Organization of
the chapter is as follows: Section 2 provides the basic theory of an active contour
and explains the underlying physics. The confluence of geometry and image
properties is also explained in this section and the effects of each of the properties
are explored. Section 3 describes the evolution of the snake model to address
the requirements of medical image analysis applications. Section 4 describes the
inclusion of a-priori information within the snake framework. Section 5 deals with
the topological adaptability of the snake. We conclude with some discussion in
Section 6.

boundaries due to a lack of sufficient statistics in most regions. Moreover, the
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2. ACTIVE CONTOUR MODEL: THEORY

This section will elaborate the theory of the active contour model. For easy
reference, the definitions and notations used here are defined in the next subsection.

2.1. Definitions and Notations

We use � is to denote a real number line, and �2 will denote the Euclidean
plane. An image is considered to be embedded on a rectangular subspaceR ⊂ �2.
OverR, intensity values are acquired at every point with integral coordinates com-
monly referred to as pixels. A point inR will be represented as a two-dimensional
position vector u = (x, y), where x, y denote the x- and y-coordinate values of u.
Let f : R→ [0, 1, 2, 3, ...,MaxIntensity] denote the intensity function for a given
image.

A parametric curve or spline is represented as a function τ : [0, 1]→ �2. A
curve is closed if the initial and terminal points are identical, i.e., τ (0) = τ (1). A
point on the curve will be denoted byτ (s) = (x(s), y(s)), where s ∈ [0, 1] denotes
the arc-length parameter, andx(s) and y(s) refer to its location in the xy-plane. Al-
though in a continuous space any real value in [0, 1] may be assigned to the parame-
ter s, in the digital world only discrete values can be used. The snake is an ordered
sequence of discrete points on a curve at a regular interval δ < 1.0, where δ is a fi-
nitely small positive number. The points ..., τ (−2δ), τ (−δ), τ (0), τ (δ), τ (2δ), ...
on a snake τ at an interval of δ will be referred to as control points.

Let a contiguous set of pixels belonging to the structure of interest, sharing
some similar attributes, be called the foreground and be denoted asO ⊂ R, where
R is the image space. Any pixel c ∈ O is called an object pixel. On the other
hand, any pixel c ∈ R−O, i.e., belonging to the image spaceR but not belonging
to the object spaceO, is a background pixel. The task of image segmentation is to
identify the foreground O from the image space R. This requires representation
of the foreground region into a compact geometric form.

2.2. Basic Snake Theory

Snakes are planar deformable contours that are useful in several image analysis
tasks. In many images, the boundaries are not well delineated due to degradation
by regional blurring, noise, and other artifacts. Despite these difficulties, human
vision and perception interpolate between missing boundary segments. An active
contour model is intended at inculcating this property of the human vision system.
So the snake framework is formulated such that it approximates the locations and
shapes of object boundaries in images based on the assumption that boundaries
are piecewise continuous or smooth.

The mathematical basis for active contour models owes its foundation to the
principle of unification of physics and optimization theory [12]. The laws of
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physics define the underlying principle of how a geometrical shape can vary over
space and time. An active contour model permits an arbitrary shape to evolve
to a meaningful shape guided by the image properties and constrained by the
physical laws. The physical laws provide the desired intuitive nature to the evolving
shape. In particular, for the snake, the points does not evolve independently but are
constrained by the motion of the two nearest points on either side, thus confining its
degrees of freedom, bringing an elastic model into the structure. Thus, it evolves
from the elastic theory paradigm, generally in a Lagrangian dynamics setting. It
stems from the theory of an elastic string deforming naturally to applied forces
and constraints defined by various sources.

Guided by the physical laws, the model is driven to deform toward a lower-
energy or equilibrium state monotonically. The local image statistics should be
formulated within the deformable paradigm in such a way that the model is guided
to delineate the desired anatomic structure. The optimization theory blends these
two different forms of constraints within the same framework. The local im-
age statistics-based features thus need to be defined within the framework of this
physics-based geometric model, such that the “equilibrium state” is achieved only
when the anatomic structure is delineated.

Definition of this physics-based model that governs the deformation property
of the string is the main essence that makes the deformable model an attractive

model, and in particular an active contour model, by definition optimally integrates
similar salient features within the geometric model.

The active contour model, or snake, proposed by Kass et al. [10] is an elastic
contour that deforms under the guidance of attributed geometric and image prop-
erties. This phenomenon of deformation, as guided by physical laws, is defined in
terms of an energy minimization framework. By definition, it is minimization of
the total energy over the entire shape, defined by

Esnake(τ ) = Eint(τ ) + Eext(τ ) (1)

where Esnake(τ ) is the total energy of the contour τ , composed of the internal
energy Eint(τ ) and external energy Eext(τ ). Internal energy is defined by the
physical constraints that describe the degrees of freedom of the contour τ (s), and
the external energy is defined by the image properties and other user constraints
(e.g., landmark).

As defined previously, the physical constraints of the active contour model
have their origin in the physics of an elastic body, which is described in the first
term of the functional in Eq. (1). The internal energy term can be expressed as

Eint(τ ) =

1∫
0

[
α(s)

∣∣∣∣∂τ (s)
∂s

∣∣∣∣2 + β(s)
∣∣∣∣∂2τ (s)
∂s2

∣∣∣∣
2
]
ds, (2)

proposition to capture the local statistics of the image globally. A deformable
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Figure 3. Illustration of computation of the surface tension and rigidity energies in the
parametric snake framework. See attached CD for color version.

where the first term simulates the tension of the contour and the second, which is
in essence the acceleration term, simulates the rigidity of the contour τ (s). α(s)
and β(s) (α(s), β(s) ∈ [0, 1]) are the controlling strengths associated with the
surface tension and rigidity terms. Although the strength factors are expressed
as functions of the parameter s, in most cases they remain constant throughout
the contour length. Thus, the term s will be dropped in future references to these
factors for simplification.

Let us see how these terms control the contour behavior as the total energy
functional tries to minimize itself. The first order derivative term in Eq. (2) can be
minimized by reducing the value of the numerator. Thus, the difference between
the two points ∂τ needs to be reduced (see Figure 3), which leads to shrinking the
length of the contour τ (s). On the other hand, the second term in the expression
is by definition the curvature term. Reduction of that term means the difference
between ∂τ 1 and ∂τ 2 in Figure 3 needs to be minimized. Thus, minimizing this
term leads to resistance to any bending and eventually straightening the contour
τ (s), leading to a smooth contour. In case the contour is a closed one, the effect
of these two terms will lead to a shrinking circle, in the absence of any other force.

Once the physical constraints are defined, the behavior of the contour is well
set in terms of its geometric properties. However, its behavior on the image domain
needs to be controlled by the image statistics-driven factors, such that the local
minima coincide with the image feature of interest. For example, when the snake
needs to converge onto image edges, then the external energy function needs to be
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defined as −γ |∇Gσ ∗ I(x, y)|2, where γ controls the magnitude of the potential,
∇ is the gradient operator, and Gσ ∗ I(x, y) denotes the image intensity I(x, y)
convolved with a (Gaussian) smoothing filter whose characteristic widthσ controls
the spatial extent of the local minima of the convolution kernel. Note here that
the expression for the edge operator has a negative sign associated with it. The
reason for this is that the local minima of the contour need to coincide with the

been used for the edge functional computation. A different approach is also used,
where the vector form of the gradient is used instead of the scalar information.
However, in the Lagrangian setting an energy expression is required for solving
the minimization problem. Thus, for the vector-based approach the dot product
of the contour normal with the gradient is used for defining the energy functional
and is expressed as (∇Gσ ∗ I(x, y)) ·N(τ (x(s), y(s))), where N(τ (x(s), y(s)))
is the normal to the contour τ (s) at location x(s), y(s). Similarly, image intensity
has been widely used along with edge information to formulate the external energy
functional. The total external energy of the contour can be defined as

Eext(τ ) =

1∫
0

Eext(τ (s))ds, (3)

where Eext(τ (s)) denotes the energy functional given by the image properties at
the point τ (s).

In summary, the basic definition of deformable parametric curve contains two
terms: (a) internal energy, which defines the geometric properties of the curve;
and (b) external energy, which combines all other forces that guide the curve to
delineate the desired structure. Once the basic energy formulation is done, the idea
is to find a methodology for energy minimization. A number of approaches have
been proposed so far for energy minimization of the contour. The most well known
is by solving the partial differential equation (PDE) for force (defined through an
Euler-Lagrangian) using a finite-difference [10] or finite-element method [13]. A
dynamic programming-based approach [14] and greedy snakes [15] are also used in
many applications. The next subsection will briefly touch upon these approaches.
Since these are quite standard ways of solving minimization problems, this chapter
gives only the basic idea behind each of the methodologies. The pseudocode for
the Euler-Lagrangian and greedy snakes are provided in Appendix 1.

2.3. Energy Minimization

According to the calculus of variations, the contour that minimizes the energy
Esnake(τ ) must satisfy the Euler-Lagrange equation [10]

∂

∂s

(
α
∂τ (s)
∂s

)
− ∂2

∂s2

(
β
∂2τ (s)
∂s2

)
−∇Eext(τ (s)) = 0. (4)

maxima of the gradient functional. Also, note that the squared magnitude has
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This can be viewed as a vector-valued partial differential equation balancing in-
ternal and external forces at equilibrium given by

Fint + Fext = 0, (5)

where Fint represents the internal force due to stretching and bending factors,
given by

Fint =
∂

∂s

(
α
∂τ (s)
∂s

)
− ∂2

∂s2

(
β
∂2τ (s)
∂s2

)
. (6)

The first term in Eq. (6) is the stretching force derived from the surface tension,
while the second term represents the bending force. The external forces couple the
contour to the image information in a way that equilibrium is accomplished when
it balances with the physical constraints on the contour. Thus, Fext is expressed
as

Fext = −∇Eext(τ (s)), (7)

which pulls the contour toward the salient image features of interest. Other forces
can be added to impose constraints defined by the user. We will make use of
additional forces.

To solve the energy minimization problem, it is customary to construct the
snake as a dynamical system that is governed by the functional to evolve the system
toward equilibrium. The snake is made dynamic by treating the evolving contour
τ as a function of both time t and arc-length s. This unifies the description of
shape and motion within the same framework of Lagrangian mechanics. Thus,
this formulation not only captures the shape of the contour but also quantifies its
evolution over time. The Lagrange equations of motion for a snake is given by

µ
∂2τ (s)
∂t2

+ν
∂τ (s)
∂t

+
∂

∂s

(
α
∂τ (s)
∂s

)
− ∂2

∂s2

(
β
∂2τ (s)
∂s2

)
= ∇Eext(τ (s)), (8)

whereµ is the mass constant and ν the damping density following Newton’s laws of
motion. The system achieves equilibrium when the internal stretching and bending
forces balance with the external forces and the contour ceases to move, i.e., both
the acceleration and velocity terms vanish; in other words, ∂

2τ
∂t2 = ∂τ

∂t = 0.
For numerical solution of the equation, discretization of the equation is re-

quired. This is in general accomplished using a finite difference for solving the
partial differential equation. In the discrete domain the energy equation can be
expressed as

E(v) =
1
2
vAv + Eext(v), (9)

where v is the discretized version of the contour τ (s), and A is the stiffness
matrix. For all practical purposes, in this text we will use the symbol τ (δ) for
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discrete representation of the contour. Minimum energy estimation is equivalent to
setting the gradient of Eq. (10) to 0, which results in the following linear equation:

Aτ = F, (10)

where A is the penta-diagonal stiffness matrix, and τ and F represent the position
vectorsτ i = τ (iδ) and the corresponding force at these pointsF(τ i), respectively.

As the energy-space cannot be ascertained to be convex, so there is a high
probability of getting local minima in the energy surface. In fact, finding the
global minimum of the energy is not necessarily meaningful. Indeed, the main
interest is finding a good contour that optimally fits to delineate the anatomic
structure of interest in the best possible manner.

A neighborhood around each control point is considered and the total energy
of the contour is computed for each neighborhood. Energy minimization continues
until the energy between two consecutive iterations changes. This dynamic pro-
gramming approach [14] searches for global minima in the image space. Greedy
snakes [15], on the other hand, searches for local minima for each of the control
points. The local motion of the points is considered in the neighborhood for en-
ergy minimization. In contrast to dynamic programming [14], greedy snakes [15]
minimizes the energy of each local control point. Figure 4 illustrates the neigh-
borhood search around a control point for dynamic programming and the greedy
snakes algorithm.

3. ACTIVE CONTOUR EVOLUTION

The image processing task can be broadly classified into two categories:
region-based and boundary based operations. Image processing techniques like
mathematical morphological operations, region growing, and other region-based
operations use regional homogeneity statistics to drive the task of image process-
ing. Boundary-based operations (e.g., edge detection, gradient computation) use
the statistics of variation in a local neighborhood. Low-level image processing
techniques, if used independently for the purpose of segmentation, require a high
level of manual intervention, rendering the result prone to inter- and intra-operator
variability.

This chapter will focus on gradient-based approaches that rely mostly on
image edges for convergence. Subsequent modifications for the gradient-based
approaches and challenges faced at various levels of medical image segmenta-
tion will be discussed. Eventually, incorporation of region-based forces within
the snake model help in providing a more compact model for the segmentation
process. Region-based information can be incorporated in many ways into the
energy minimization equation.

The active contour model allows user interaction at various stages. The main
intention of the active contour is to reduce the amount of user intervention in the
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Figure 4. Neighborhood search for the minimum energy configuration.

process of segmentation. In particular, ideally, the user has to provide an initial
contour near the desired edge. The snake deforms under the action of the local
image forces and geometric constraints until it conforms to the final edges of the
image.

The deformable model is in itself not free from limitations. In the original
proposition, the user needs to provide the initial contour very near the desired edges;
otherwise, the snake will not be able to deform to capture the desired anatomi-

different forms to allow the snake more evolution. Cohen et al. [13] proposed
a solution to propagate the contour faster toward the desired image edges. An
internal pressure force was introduced by regarding the curve or surface as an in-
flating balloon. This pressure pushes the contour boundary toward the edges, and
thus makes initialization of the snake a simpler process. However, the associated
limitation of the snake remains in its ability to balance the strength of the balloon
force with edge strength. As the balloon force is increased, there is a chance of
leakage at weak edges. The addition of balloon pressure, though, adds to the prop-
agation strength; however, this increases the instability of the snake framework.
Berger et al. [18] proposed a “snake-growing” algorithm, where the snake grows
based on the local contour information. Figure 6 shows the comparative result of
a snake-growing compared to a conventional snake.

cal structure. At the initial stage a number of solutions [17,18] were provided in
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Figure 5. Illustration of segmentation of cellular structure in an EM photomicrograph.
Reprinted with permission from [16]. Copyright c©1994, IEEE.

(a) (b) (c) (d)

Figure 6. Illustration of snake-growing algorithm in comparison to conventional snake. (a)
Initial contour shown in white dots. (b) Result of conventional snake. (c–e) Performance of
snake-growing algorithm. Reprinted with permission from [18]. Copyright c©1990, IEEE.

Leymarie and Levine [19] utilized a distance transform metric from the gradi-
ent information within the active contour framework to define a grassfire transform.
The main motivation of the work was to define shape through skeletonization. In
particular, an object’s boundary is taken as the initial firefront that propagates
within the interior of the object defined by the closed boundaries of the object.
Points where the firefronts meet are considered the skeleton points of the rep-
resentative object. The firefront propagation is accomplished using the active
contour framework guiding the propagation using the distance transform from the
boundaries. This work tries to bring in the gradient-based and regional informa-
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Figure 7. Example of grassfire propagation using an active contour model. The potential
surface shows the valley in the distance transform function. Other images show the evolution
of the snake toward the skeleton of the object. Reprinted with permission from [19].
Copyright c©1992, IEEE.

tion within the same framework to define the skeleton. However, this application
has the probability of suffering from situations where noise plays a dominant role

tonization using this technique. Clearly, this formulation requires well-defined
boundaries, which are absent in most medical images.

Lobregt et al. [20] tried to implicitly address the challenge due to fuzzy bound-
aries in medical images by controlling the local curvature of the contour in a local

coordinate system was taken into account. Thus, instead of global curvature varia-
tion, the contour deforms based on the variation in local and global curvature. This
in turn retains the length of the contour, which otherwise has a shrinking property.
It is important to mention that the curvature in this approach has been attributed
to a direction both globally and locally. The approach intends that internal forces
that act on the vertices should have the same (radial) direction as the curvature
vectors. This means that internal forces can be derived from the curvature vectors
by modifying only their lengths. Second, in order to reduce local curvature with-
out affecting areas of constant curvature, the lengths of the internal force vectors

coordinate system. In this work, a local coordinate system was defined with res-
pect to the vertex of the contour, and the change of curvatures in local and global

in determining the image gradient quality. Figure 7 depicts examples of skele-
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(a) (b) (c) (d)

Figure 8. Illustration of dynamic discrete contour evolution on a cropped region from an
MR image of brain. (a,c) Initial contour drawn manually. (b,d) Segmentation result from
the contours of (a) and (c), respectively. Reprinted with permission from [20]. Copyright
c©1995, IEEE.

should be zero for parts of the contour with constant curvature. To accomplish this,
the dot product of the local ri and global radial vectors ci at point i is computed
and convolved with a discrete filter f. The idea here is to reduce the high-frequency
component and rather retain only the DC component. Thus, the choice of filter
needs to be such that the result of convolution is zero. This approach results in
a smoother contour and also allows an open contour to evolve within the snake
framework. Figure 8 shows the results of deformation using the dynamic discrete
contour.

3.1. Gradient Orientation

A different problem arises when two strong disconnected edges come close
to each other. In these cases, the strong gradient acts independently to attract
the contour. The final result thus becomes dependent on a number of factors
like the contour’s relative location with respect to the participating edges, their
strengths, and possibly on all other force factors in the neighborhood. In many

˜

“live-wire” uses the gradient orientation information to detect the “true” boundary
and avoids the possibility of getting trapped by strong edges. Similarly, the gradient
orientation can be used in the snake framework [23]. Instead of using the gradient
force without any reference to the contour, the external energy due to the gradient
can be defined by the contour orientation and gradient direction. The idea is to
make the “false” boundary invisible to the contour, so that it does not snap onto the
“false” edge. Here, the direction of gradient is defined as whether it is a step-down
or a step-up gradient. Now, this direction depends on the point from which we
are looking at the gradient and the orientation of the contour. For example, in
Figure 9, if we observe the edge marked green from the blue point, it seems to be
a step-down gradient, while if it is observed from the red point, the gradient is a
step-up gradient.

 cases, the resulting contour alternates between the two strong edges. Falcao et al.
[21, 22] addressed this problem in their proposed “live-wire” framework. The
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Figure 9. Illustration showing step-up and step-down edges from the observer’s point of
view. See attached CD for color version..

Now, if the contour approaches from the region marked A, then to track the
interface between regions A and B it should latch onto a step-up edge along its outer
normal. On the other hand, if it approaches from region B to the same interface,
the contour point needs to snap at a step-down gradient inside the enclosed region
of the contour. In other words, in the latter case the inward normal should see a
step-down gradient. If the orientation of the contour is taken into account, then
the desired edge would either be on the right- or left-hand side of the contour
depending on whether it is considered in a clockwise or anticlockwise sense.

˜
that relates gradient direction with the unit vector orthogonal to the local contour
segment and directed from the “exterior” to the “interior”.

Let θG(τ (si)) = tan−1∇yf(τ (si))/∇xf(τ (si)) be the direction of the
intensity gradient at the point τ (si), where si indicates the ith control point on
contour τ . ∇yf(τ (si)) and ∇xf(τ (si)) are the gradients along the y- and x-
directions, respectively, at the point τ (si). As previously mentioned, f(x, y)
denotes the image intensity at the location (x, y). If θN (τ (si)) is the normal to
the contour at τ (si), then the energy due to the gradient field is defined as

Egradient(τ (si)) =
{ −Fgradient(τ (si)) •N if |θG(τ(si))− θN (τ(si))| ≤ π

2
0 otherwise

(11)

Falcao et al. [21, 22] proposed a solution using the concept of contour orientation
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Figure 10. Illustration of gradient orientation on snake deformation: (a) contour deforma-
tion without gradient orientation information; (b) segmentation of region when foreground
intensity is less than background and (c) when foreground intensity is greater than back-
ground intensity. In both (b) and (c) the contour has properly latched onto the desired

Copyright c©2004, SPIE.

The normal θN (τ (si)) at a point τ (si) on the contour τ at si is defined as

θN (τ(si)) = θC(τ (si)) + λ
π

2
, (12)

where θC(τ (si)) is the tangent at the point τ (si). The value of λ can be +1 or –1
depending on the desired direction of the normal. If the object intensity is greater
than the background, then for contour in the counterclockwise direction the value
of lambda should be 1, indicating an inward normal. This ensures that the contour
will only be able to see the gradient, which is in the direction of the inward normal.
But if it encounters a step-up gradient, then the difference between the two gradient
angles and the growing normal will be more than π

2 , so that the step-up gradient
will be invisible to the growing contour. The reverse is the case if the contrast is
changed. The effect of using the gradient orientation information within the snake
framework is shown in Figure 10b,c. Snake deformation without the orientation
information is illustrated in Figure 10a, which shows the final contour alternating
between the two disconnected strong edges [24].

3.2. Convergence to Concavities

One of the major challenges faced in the initial phases of snake formulation
was its inability to converge into concavities. Xu and Prince [25] designed a new
external static force field vector Fext(x, y) = v(x, y), called the gradient vector
flow field. This field originates from the edges and makes the snake converge to the
gradient concavities. The gradient vector flow field is the vector field v(x, y) =
[u(x, y), v(x, y)], which minimizes the energy functional

E =
∫∫

µ(u2
x + u2

y + v2
x + v2

y) + |∇g|2 |v −∇g|2dxdy, (13)

where g is the intensity gradient.

boundary. See attached CD for color version. Reprinted with permission from [24].

(a) (b) (c)
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(a) (b)

(c) (d)

Figure 11. Illustration for performance of gradient vector flow (GVF) snake in segmentation
of left ventricle from an MR image of heart: (a) original MR image showing left ventricle;
(b) gradient map derived from (a); (c) vector flow field of the gradient map; (d) segmentation
result using GVF snake. Reprinted with permission from [25]. Copyright c©1998, IEEE.

The basic nature of this force field is such that deformation near the nonho-
mogeneous regions of the image is governed by the gradient function, while in
the homogeneous region the first term dominates. This results in a flow vector
that converges into the edges of the image. Figure 11 illustrates the performance
of gradient vector flow-based active contour model in segmentation of the left
ventricle from MR images of the heart.

Anatomical structures vary widely in shape, size, and geometry. Segmentation
of this wide range of anatomical structures requires highly deformable models to
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Figure 12. Images showing the performance of the inertial snake on (a) computer-generated
phantom image and (b) ultrasound image of an artery of the lower limb [26]. See attached

fit into the process. As the contour itself is evolving under the effect of geometric
physical constraints, the framework in its very definition imposes a geometric
smoothness into it. Although this is effective in many situations, many other cases
require relaxation of the physical constraints for appropriate segmentation. While
in tracking geometric deformation in smooth structures the curvature is helpful,
in segmentation of structures like white matter or convex structures the effect of
curvature needs to be reduced. A study on the discrete computation and effect of
curvature is presented in [15].

A potential way of controlling snake movement to conform into image bound-
aries and to avoid leaking is by incorporating an adaptable propagation force that
modifies itself as it moves from a homogeneous to a nonhomogeneous region [26].
At this point, this is done by using an inertial snake, where the propagation term
of active contour deformation is controlled by its distance from the initial contour.
In that approach, the balloon force modifies itself and slows down at a rate directly
proportional to the deformation rate between the successive iterations. Thus, in
homogeneous region the force is higher, supporting faster propagation. But as the
contour approaches the high-gradient region, the force reduces itself, thus discour-
aging propagation. The uncontrolled motion of the balloon force is thus controlled
by the homogeneity and gradient information. Figure 12 illustrates the result of
the inertial snake on computer-generated phantoms and ultrasound images.

Other significant attempts to improve the snake model using gradient-based

However, the main limitation remained its dependence on local image statistics,
which is not reliable in many situations. Mostly for medical image analysis and

CD for color version.

information and internal energy has been pursued by other researchers [27, 28].

(a) (b)
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(a) (b)

(c) (d)

Figure 13. Images showing tracking of (a,b) endocardial boundary using the active contour
model and (c,d) the mitral valve leaflet boundary. Reprinted with permission from [28].
Copyright c©1998, IEEE.

segmentation problem, one of the major challenges lies in the occurrence of fuzzy
boundaries, as previously mentioned. Thus, transition from one region to another
remains occluded by a lack of strong edges. Visually the transition can be observed
by a change in other features and from the global information. Thus, where local
statistics proved to have limitations in making a clear distinction between two
regions, utilization of global statistics within the snake framework was found to
be helpful.

3.3. Regional Information

Deformable models attracted the attention of the medical image analysis com-
munity for its ability to conform to the same framework constraints for a geometric
shape and image information. In particular, after the introduction of regional en-
ergy that controls the propagation term, this model became more popular. The
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main motivation was to use global features and reduce reliance on local features.
The rationale behind this approach was the fact that the features derived from local

region with similar attributes. If the features of interest can be isolated, the region
connected by the similar features can be defined as the same structure. This gives
rise to an entirely new approach toward the deformable model and has been studied
in various forms by different researchers [29–32].

Region-based information is in general incorporated into the snake structure
through a probabilistic model. As mentioned earlier, regional information attempts
to capture the likelihood of a pixel (or point) belonging to any specified region. In
general, the “region” is defined using some feature parameter, namely intensity,
texture, etc. Based on the feature value, a pixel has a finite probability of belonging
to a region defined in the feature space. The most widely used measures for feature
space definition in snake-based segmentation is intensity. In some approaches,
spatial intensity correlation and connectivity are used. The homogeneity of a
space is normally defined as the cost function for traveling from a seed pixel to
another location in the spatial domain based on a feature value.

Poon et al. [29] introduced the concept of region-based energy, where the
homogeneity of a region is computed based on the intensity of a scalar image.
For a vector image like that obtained with multispectral MRI (i.e., homogeneity,
T1, T2, PD images), vector information from all the channels has been used for
computing regional features. Figure 14 shows the results at different stages of
snake deformation in delineation of the left ventricle from an MR image sequence
using regional information. Other researchers [33–37] have also integrated region-
based information into deformable contour models.

Region-based information is integrated along with the gradient into the snake
model using a probabilistic approach [35]. A parametric curve is defined using
a Fourier-based approach, where the idea is to use the number of harmonics de-
pending on the required smoothness of the resulting contour. Thus, if the desired
shape has more convexities, then higher Fourier harmonics are used, since the high
frequency is encouraged by the geometry. Thus, the contour is expressed as

v(t) =
(
x(t)
y(t)

)
=
[
a0
c0

]
+

∞∑
k=1

[
ak bk
ck dk

] [
cos(kt)
sin(kt)

]
, (14)

where v(t) is the contour and ak, bk, ck, and dk are the Fourier coefficients, with
k ranging from 1 to ∞. The smoothness of the desired contour determines the
number of harmonics to be used to define the geometry of the contour.

The contour can be deformed by changing the coefficients in the Fourier ex-
pression in Eq. (15). This is analogous to the internal energy of conventional
snakes. The external features that guide the final destiny of the contour are defined

the imaging process. Thus, a more global statistics would be helpful in detecting
 the region of interest. In fact, the basic definition of a structure can be stated as the

statistics are prone to errors due to noise and other artifacts that arise during
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Figure 14. Evolution of region information-based snake for left ventricle segmentation from
MR images. The homogeneity parameter is used in conjunction with the other standard
energy functions, like geometric and edge functional, to evolve to the final contour, as
shown by the white line in (g) from the initial contour in (a). See attached CD for color
version.. Reprinted with permission from [29]. Copyright c©1997, Institute of Physics.

by maximizing the probability that the contour traverses through a high-gradient
region and encloses a region having similar regional features. The regional fea-
ture can be defined in terms of the homogeneity of intensity or any other desired
attribute. The intensity feature was used in the work reported by Chakraborty and
colleagues [35], Thus, mathematically the work contour searches for minimizing
the entropy or maximizing the likelihood function, defined by

max
p
{P (p| Ig, Is)} = max

p
[lnP (p) + lnP (Ig |p) + lnP ( Is |p) ], (15)

where the first term on the right-hand side (RHS) defines the geometric shape
parameter, and the second term is defined by the gradient along the contour. This
term can be defined by computing the gradient, using the derivative of the Gaussian
convolved with the intensity. The integral is taken over the entire curve. Thus,
maximizing this function represents that for a given pattern of geometric shape the
maximum possible need of the contour to cover the high-gradient region. In most
medical images, due to the previously mentioned causes, the gradients in many

(a) (b) (c)

(d) (e) (f)
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(a) (b) (c)

Figure 15. Illustration delineation of endocardium of heart using different methodologies:
(a) manual segmentation by an expert; (b) semi-automated segmentation using only the
gradient information into the deformable model; (c) same as (b) but with the regional
information integrated along with geometric and gradient information. Reprinted with
permission from [35]. Copyright c©1994, IEEE.

regions are very weak. Thus, with relaxation in geometric shape the contour tends
to leak into other structures. Once the contour leaks, there is no force to stop this
leakage, and return the contour to the desired structure. The regional features come
to play in these regions of the image. The regional features are intended to prevent
leakage through fuzzy and weak boundaries, since they use attributes other than
simple local statistics. In a different form, these region-based approaches try to use
global information derived in some form or other. The contour tries to maximize
the homogeneous region enclosed by it. The region-based energy is thus defined
as [35]

lnP (Is| p) =
∫∫
A

Is(x, y)dA, (16)

where Is(x, y) is the intensity at the pixel location (x, y) in the image, and the
integral gives the total area A enclosed by the curve p.

The result of using regional information within a deformable model framework
as described in Eqs. (12) and (13) is shown in Figure 15 for segmentation of the
endocardium. As is evident, the region-based information visually improved the
segmentation quality compared to the one using only gradient information.

The homogeneity feature has also been used for segmentation of an ultrasound
image (see [32]). The external energy is defined using the homogeneity of the
region through which a control point is moving. As the curve moves from one
position to another while deforming, the position of the point also changes, and thus
the associated intensity value (provided it is not moving through a homogeneous
surface). Both the edge- and region-based energies have their own advantages and
disadvantages. Edge-based energy can give good localization of the contour near
the boundaries. Unfortunately, it has a small realm of attraction, thus requiring
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good initialization or a balloon force [13]. On the other hand, the region-based
energy has a large realm of attraction and can converge even if explicit edges are

energy at image boundaries. The region-based energy defined in [32] attempts to
ensure that in the region having maximum inhomogeneity the region-based force
factor approaches zero to complement the gradient force. Also, the region-based
energy is designed with the property that any control point will want to preserve
the “nearness” to the initial intensity value from where it started. Thus, the defined
force field has two factors — intensity difference from the initial location and local
edge strength — and is equated as follows:

γ(τ (sti)) =
(
1.0− ∥∥ψ(f(τ (sti))− ψ(f(τ (s0i ))

∥∥) ∗ (1.0− ψ (|∇Gσ ⊗ f |)) .
(17)

In Eq. (18) the term
∥∥ψ(f(τ (sti))− ψ(f(τ (s0i ))

∥∥ gives the difference of the nor-
malized feature image between the points τ (sti) and τ (s0i ), where τ (sti) and τ (s0i )
represent the ith point on the contour at the tth and 0th iterations, respectively.
f represents the feature image, which in this case is intensity. ψ represents a
normalized feature. The first term in Eq. (18) tends to reduce the force, while
the difference between the two feature values increases, i.e., tends to 1.0. On the
other hand, the second term vanishes as the point approaches a high-gradient re-
gion. This force field thus tends to balance between the region-based homogeneity
information and the local edge information [32]. Figure 16 illustrates the use of
the above-mentioned region-based force field for segmenting ultrasound images.
In both the cases the contour has been initiated outside the region of interest. It
is to be noted that the active contour models that have been discussed so far are
unidirectional in nature. Thus, they have the ability to either expand or contract
depending on how they are set. Thus, the major challenge of this framework is that
once the contour leaks through a boundary to the background, there is no force
to bring it back to the object region. This limitation is due to the fact that the
active contour does not have the knowledge of which region it belongs to. If this
information can be imparted a priori to the snake process, then the deformation
could be more controlled.

4. A-PRIORI INFORMATION

Use of factors like homogeneity provides better segmentation results com-
pared to the local statistics-based approach; however, as discussed previously,
they are limited by their inability to undertake bidirectional motion. The active
contour model has unidirectional motion because of its lack of knowledge about

distinguish between object class and background class, then once it leaks from
one structure to the other, the snake could go back to the desired interface. Thus,
the active contour needs to be intelligent enough to distinguish between object

not present. However, it does not as give good localization as the edge-based

object and background in any form of statistical information. If the snake can
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Figure 16. Illustration of homogeneity-induced inertial snake [32] in segmentation of
Doppler ultrasound images.

and background. This can be accomplished if only some form of information that
discriminates between object and background is known a priori.

4.1. Shape A Priori

Among other features, shape can be used to discriminate object from back-
ground. This is applicable where the target object has a well-defined shape, distinct
from most other structures in the image. Some work has been reported using shape

from a set of statistical distributions of object shapes, then a shape model can be
defined based on those available shapes. These shape models are usually defined
as probabilistic distributions, where a Gaussian distribution is defined for each of
the “modes” of the shape about a mean model. This “mode” can be represented in

form of expression. In each case, the underlying theory is to define a symmetric
model that captures the statistical variation of the a-priori shapes from a mean
shape defined as

x̄ =
1
N

N−1∑
i=0

xi, (18)

where x̄ is the mean shape, and xi is the ith shape vector defined by some form of
shape descriptor. N is the total number of shapes known a priori. The main moti-
vation is to represent a curve in using a shape descriptor and associate a probability
distribution on the parameters based a-priori knowledge about the shape. The prior
information available is a flexible bias toward more likely shapes. The parame-
terization itself should be expressive enough to represent any potential shape of

See attached CD for color version.

[38, 39] to identify object from background. If the shape pattern is known a priori

any form, like a Fourier [38] or point-wise representation [40, 41], or some other

(a) (b)
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a given geometric type, and the associated probability distribution will introduce
a bias toward an expected range of shapes. The spread in distributions is due to
the variability among instances of the object. If a particular distribution is known
to govern the parameters, it can be used as prior probability. On the other hand,
if the mean and standard deviation of the distribution is known, an independent
multivariate Gaussian can be used for all parameters:

P (p) =
N∏
i=0

P (pi) =
N∏
i=0

1
σi
√

2π
e

− (pi mi)
2

2σi , (19)

where N is the number of parameters, pi is the ith parameter value, and mi and
σi are the mean and standard deviation.

It is important to mention at this stage that a Gaussian distribution has certain
beautiful properties that make it the choice for most probabilistic distributions.
Among the probability densities with a given variance, the Gaussian is the one
with maximum entropy [38]. Moreover, the Gaussian is a symmetric distribution
about its mean. Thus, the Gaussian density follows directly from knowing no
information other than mean and variance. Since for most of the distribution
any bias is not desirable, the Gaussian distribution is the most effective choice in
approximating a probability density function.

Once the probabilistic model has been designed, to apply this a-priori knowl-
edge to the problem of boundary determination, a maximum a-posteriori criterion
has been formulated. Let I(x, y) be the image data and tp(x, y) an image template
corresponding to a particular value of the parameter vector. In terms of probability,
to decide which template tp and image I correspond with the probability of the
template, given the image given by P (tp |I) , the maximum over p needs to be
determined, which can be mathematically expressed as [38]

P (tmax|I) = max
p

P (tp|I) = max
p

P (tp|I)P (tp)
P (I)

. (20)

Maximizing a-posteriori probability gives the desired template fit in an image.
Figure 17 illustrates segmentation of synthetic images using a-priori shape infor-
mation within the deformable model framework.

4.1.1. Application and Discussion

Shape a priori was used within the snake framework for detection of brain
cortex in [39]. A cross-section of brain cortex is modeled as a ribbon, and a
constant speed mapping of its spine is sought. A variational formulation and
associated force balance conditions are used for convergence of the snake. The
model uses only elastic forces, and the curvature term is dropped from the force
balance equation. The external force is tailored for application into structures like

−



56 BIPUL DAS and SWAPNA BANERJEE

(a) (b) (c)

Figure 17. Illustration of using shape-based prior in the deformable model framework:
(a) shape priors with the mean shape and with a standard deviation around one parameter;
(b,c) results of [38] on synthetic images. Reprinted with permission from [38]. Copyright
c©1992, IEEE.

the cortex, which has a nearly constant width throughout its extent. The force field
is defined such that if a small disk centered at a point on the active contour rests
entirely within the ribbon, it experiences no external force; if, on the other hand, a
portion of the disk intersects adjacent tissue, the disk experiences a force drawing
it back toward the cortex.

These approaches showed some promise in the particular cases where the
shape distributions are known a priori or the solution was tailored for the specific
application and shape [39]. However, the main limitations of incorporating this
information into the active contour model is a loss of its generality and deforma-
bility within a geometric paradigm, which is probably the most attractive feature
of an active contour model. Unifying the a-priori shape information with image
data in an active contour model has been proposed by many researchers [42–46].
A separate class of compact representations of shape and image data within the
deformable model framework inspired the active shape model [40] and the active
appearance model [41].

4.2. Feature Space

The purpose of incorporating a-priori features is principally to balance the
force equation in such a way that the contour will converge from both the object and
background toward the interface. To strike this balance it is required to optimally
use information about object and background so that the regional features will
drive the snake from any image location toward the object–background interface.
Therefore, the image surface needs to be defined in such a manner that when the
contour lies within object class (defined in some form), the force field acts in such
a way that the energy minimization criteria are reached if and only if the contour
expands to propagate toward the interface. On the other hand, if a contour point
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(a) (b)

Figure 18. Illustration of the result of dual active contour model (a) initialization of the two
contours (shown in white); (b) result after convergence. Reprinted with permission from
[47]. Copyright c©1997, IEEE.

lies in the background region, it should experience a contracting force. In this
particular situation, it is assumed that the object is entirely contained within the
background. Figure 18 illustrates some results using the dual active contour model,
where two contours attempt to integrate the information from a contour expanding
within a feature to a contour contracting from outside the feature [47]. Though
conceptually this is something the a-priori information is designed to accomplish,
this method in principle does not use any explicit form of prior statistical image
information to drive the snake. Object feature information can be used analogous
to how shape information has been incorporated within the snake framework. The
idea is to define the statistical distribution of the feature space from prior-known
segmented object–background data and define a regional force field using this
information.

The statistical snake proposed by Ivins and Porill [31] addressed this feature
by incorporating an energy term that generates a bidirectional pressure force de-
pending on a-priori information of the image data. A regional feature defines the
modified external energy over the area as follows:

Eregion = −
∫∫
R

G(f(x, y))dxdy, (21)

where G is the function that measures the nature of the image data. For a unidi-
rectional snake with a balloon or like forces the value of G(f(x, y)) is set to +1
or –1 depending on whether the snake is expanding or contracting. In a statistical
snake, this measure will change the direction depending on the nature of f(x, y)
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(a) (b)

Figure 19. Segmentation results in sections of NMR images of brain using statistical
snake. Reprinted with permission from [31]. Copyright c©1994, British Machine Vision
Association Press.

and is defined as

G(f(x, y) =
{

+1 if |f(x, y)− µ| ≤ kσ,
−1 if |f(x, y)− µ| > kσ,

(22)

where µ defines the mean, and σ is the standard deviation of the intensity distribu-
tion in the object region. Thus, the force field exerts a unit outward pressure when
the contour is inside the object region and an inward pressure when the contour
lies outside the object region. This is attributable to the bidirectional nature of
the active contour model. The force can be modeled to vary with the distance
from the mean of the object intensity, i.e., when the control point of the snake is
near a mean object feature, the propagation force is high, and as it moves away
from the mean the force decreases, until it starts reversing direction as it crosses
the entire object feature distribution zone. A linear model and a model based on
Mahalanobis distance are also computed in [31].

These approaches are essentially a probabilistic approach with a pixel having a
certain confidence level belonging to some a-priori distribution. Suppose the image
has two main regions, with different probability distributions. A simple example
is the case where we have to segment a white object from a dark background;

Eregion = −
∫
S

log(P (f(s)|s ∈ R1))ds−
∫
S

log P (f(s)|s ∈ R2))ds, (23)

et al. [48] used a region likelihood function defined as follows:
the regions will have different means and possibly different variances. Jacob

′
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(a) (b)

(c) (d)

Figure 20. Segmentation results using the probabilistic model proposed in [48]: (a) initial
contour drawn on an ultrasound image of dog heart; (b) final segmentation result; (c,d)
segmentation of corpus callosum from MR images. Reprinted with permission from [48].
Copyright c©2004, IEEE.

where R1 and R2 are two regions in the image and the entire image domain
R = R1 ∪R2. S and S′ are the regions inside and outside the curve, respectively.
Thus, the optimal segmentation is obtained when S = R1 and S = R2. It can be
shown that Eq. (23) can be rewritten as [48]

Eregion =
∫
S

−
(

log(P (f(s)|s ∈ R1))
log(P (f(s)|s ∈ R2))

)
ds. (24)

Figure 20 illustrates segmentation results using the probabilistic model in [48].
Evaluation of the energy minimization equation for the snake using this kind of
probability density function requires estimation of these functions. As previously
mentioned, the probability is estimated from the a-priori information and approx-
imated as a Gaussian distribution with a certain mean and standard deviation. In
situations where the a-priori distributions are not known, they can be estimated
dynamically [48]. However, there is risk involved with this dynamic approach of
incorporating more uncertainty into the system. Nevertheless, the probabilistic
approach has proved to be a better solution for snake decomposition compared to
the one without any a-priori information. It is important to note that Eqs. (24)
and (25) balance the force from both the object and background feature space in
contrast to Eq. (23), which uses information about only the object feature. Since
by principle the requirement is to optimally use the information from the two
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Many other investigators have used the a-priori Gaussian distribution model

the confidence level of a pixel belonging to some region. Das et al. [24] developed
an active contour model using the a-priori information within a class uncertainty
[52] framework.

Given a priori knowledge of object/background intensity probability distribu-
tions, the object/background class of any location can be determined based on its
intensity value and establish the confidence level of the classification [52]. The
pixels with a higher confidence of belonging to the object class exert a high ex-
panding force on the contour, while those with a high confidence of belonging to
the background generate a high contracting force. It can be conjectured that the
pixels near the object–background interface will have the lowest confidence of be-
longing to either of the classes and will represent the region of highest uncertainty.
This is based on the assumption that there is a certain amount of mixing between
the two intensities at the interface, which is true for most practical images due to
effects like blurring, partial voluming effect, etc.

Given the probabilities for any pixel with intensity f belonging to object and
background as pO(f) and pB(f), respectively, and p(f) being the total probability
given by p(f) = pO(f) + pB(f), the class uncertainty of a pixel with intensity f
is expressed as

h(f) = −pO(f)
2p(f)

log
pO(f)
2p(f)

− pB(f)
2p(f)

log
pB(f)
2p(f)

. (25)

The class uncertainty is highest at the object–background interface, where the
pixel intensities are in the most un-deterministic state. The force field is defined
as follows:

Fregion(τ (si)) =
{

1− h(f(τ (si)) if f(τ (si) ∈ object,
−(1− h(f(τ (si))) if f(τ (si) ∈ background.

(26)

Thus, the force field will assist faster movement of the contour in the homogeneous
region and will slow down as it approaches the boundary. Other conventional force
fields have been used with this contour model [49]. The performance of a class
uncertainty-induced snake on medical phantoms and MR images of carotid artery
is depicted in Figure 21.

Other deformable model classes like the level sets also use a-priori classifica-
tion information. Many significant works have been published using this technique
[53–57]. However, active shape models and level sets are not within the purview
of this chapter, and so interested readers are encouraged to refer to the above-
mentioned references.

 
the force equation.
regions, so it is recommended that both feature spaces be used for definition of

(see, e.g., [24, 49–51]). With all these approaches, the main intention is to capture
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Figure 21. Illustration of class uncertainty-induced snake: (a) phantom image generated
from segmented mask of brain with noise and inhomogeneity added; (b) segmentation using
class uncertainty-induced active contour [49]; (c–e) cropped region showing carotid artery
in MR images (courtesy Hospital of the University of Pennsylvania); (f–h) segmentation

One of the major advantages of the level set approach is its adaptability to
topological changes. Traditional snakes, on the other hand, are restricted by their

attached CD for color version.
of lumen (green) and outer vessel wall (red) using the class uncertainty based snake. See

(a) (b)

(c) (d) (e)

(f) (g) (h)
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inability to respond to topological variations. The topology of the structure of
interest must be known a priori since traditional snakes models being parametric
representations are incapable of topological transformations without additional
intervention. Samadani [58] used a heuristic technique based on deformation en-
ergies to split and merge active contours. More recently, Malladi et al. [54] and
Caselles et al. [51] independently developed a topology-independent active con-
tour scheme based on the modeling of propagating fronts with curvature-dependent
speeds, where the propagating front is viewed as an evolving level set of some im-
plicitly defined function.

5. TOPOLOGICAL SNAKE

Topological adaptivity requires the multiple instances of the model to be dy-
namically created or destroyed, or can seamlessly split or merge as the object to
be segmented changes its topology. Much research has been dedicated to this area
[59–61]. The main principle behind each of these approaches involves using the
grid information to establish a relation between the parametric curve and the pixel
domain. Conversion to and from the traditional snakes model formulation requires
the ability to discard or impose the grid within the framework at any time. The
grid needs to provide a simple and effective means to extend the geometric and
topological adaptability of snakes. McInerney and Terzopoulos [59] developed a
parametric snakes model that has the power of an implicit formulation by using
a superposed simplicial grid to reparameterize the model during the deformation
process. Of all the approaches, we will detail this approach since it is the one most
widely used. As previously mentioned, the idea is to incorporate the traditional
snakes model within the framework of simplicial domain decomposition.

The grid of discrete cells used to approximate the snake model is an example
of space partitioning by simplicial decomposition. There are two main types
of domain decomposition methods: non-simplicial and simplicial. Most non-
simplicial methods employ a regular tessellation of space. The marching cubes
algorithm is an example of this type of method. These methods are fast and
easy to implement, but they cannot be used to represent surfaces or contours
unambiguously without the use of a disambiguation scheme.

Simplicial methods, on the other hand, are theoretically sound because they
rely on classical results from algebraic topology. In simplicial decomposition,
space is partitioned into cells defined by open simplices, where an n-simplex is
the simplest geometrical object of dimension n. A simplicial cell decomposition
is also called a triangulation.

The simplest triangulation of Euclidean space Rn is a Coxeter-Freudenthal
triangulation (Figure 22a). It is constructed by subdividing space using a uniform
cubic grid, and the triangulation is obtained by subdividing each cube into n!
simplices. Simplicial decompositions provide an unambiguous framework for
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Figure 22. (a) Simplicial approximation of contour model using a Freudenthal triangulation
[59]. (b) Cell classification. (c) Intersection of two snakes with “inside” grid cell vertices
marked. Snake nodes in triangles A and B are reconnected. Reprinted with permission
from [59]. Copyright c©1995, IEEE.

the creation of local polygonal approximations of a contour or surface model.
In an n-simplex, the negative vertices can always be separated from the positive
vertices by a single plane; thus, an unambiguous polygonalization of the simplex
always exists, and as long as neighboring cubes are decomposed so that they share
common edges (or faces in 3D) at their boundaries, a consistent polygonization
will result. The set of simplices (or triangles in 2D) of the grid that intersect the
surface or contour (the boundary triangles) form a two-dimensional combinatorial
manifold that has as its dual a one-dimensional manifold that approximates the
contour. The one-dimensional manifold is constructed from the intersection of
the true contour with the edges of each boundary triangle, resulting in one line

contour intersects each triangle in two distinct points, each located on a different
edge. The set of all these line segments constitutes the combinatorial manifold
that approximates the true contour.

The cells of the triangulation can be classified in relation to the partitioning
of space by a closed contour model by testing the “sign” of the cell vertices during
each time step. If the signs are the same for all vertices, the cell must be totally
inside or outside the contour. If the signs are different, the cell must intersect the
contour (Figure 22b).

The simplicial decomposition of the image domain also provides a framework
for efficient boundary traversal or contour tracing. This property is useful when
models intersect and topological changes must take place. Each node stores the
edge and cell number it intersects, and, in a complementary fashion, each boundary
cell keeps track of the two nodes that form the line segment cutting the cell. Any
node of the model can be picked at random to determine its associated edge and
cell number. The model can then be traced by following the neighboring cells
indicated by the edge number of the connected nodes.

segment that approximates the contour inside this triangle (Figure 22a). The

(a) (b) (c)
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When a snake collides with itself or with another snake, or when a snake
breaks into two or more parts, a topological transformation must take place. In
order to effect consistent topological changes, consistent decisions must be made
about disconnecting and reconnecting snake nodes. The simplicial grid provides
us with an unambiguous framework from which to make these decisions. Each
boundary triangle can contain only one line segment to approximate a closed snake
in that triangle. This line segment must intersect the triangle on two distinct edges.
Furthermore, each vertex of a boundary triangle can be unambiguously classified
as inside or outside the snake. When a snake collides with itself, or when two
or more snakes collide, there are some boundary triangles that will contain two
or more line segments. We then choose two line segment endpoints on different
edges of these boundary triangles and connect them to form a new line segment.
The two endpoints are chosen such that they are the closest endpoints to the outside
vertices of the triangle and such that the line segment joining them separates the
inside and outside vertices (Figure 22c). Any unused node points are discarded.

Once the topological transformations have taken place, the list of nodes gen-
erated can be visited and contour tracings perform via the grid cells, marking off
all nodes visited during the tracings. All new snakes generated are determined by
the topological transformation phase and assign each a unique identifier.

handle complex structures which are so often encountered in medical imaging.
Figure 23 illustrates some of the implementation results for tracking blood vessels
in a retinal angiogram, on the cerebral vasculature surface (3D), and in different
regions of brain. It is important to notice that topological adaptability has allowed
an immense amount of flexibility in the snake framework, and thus enabled it to
segment geometrically and topologically complex structures.

6. DISCUSSION AND CONCLUSIONS

The basic snake algorithm thus developed originally for computer vision ap-
plications has found widespread application in medical image analysis for its abil-
ity to capture local image statistics within a global geometric framework. This
framework is widely appreciated in segmenting anatomical structures and quanti-
fying various features in images of different modalities, including MR, x-ray, CT,
and ultrasound. The task of segmentation using an active contour model ranges
throughout the anatomical atlas, covering areas, like spine, heart, brain, cere-
brum, kidney, lungs, and liver, and various artery segmentation, like the carotid
and the aorta. An extensive amount of work has been done in delineating and
quantifying the growth of objects like tumors, multiple sclerosis lesions, a fetus,
micro-calcifications in breast from mammography images, etc. Thus, applications
range from identifying white matter in the brain to quantifying diseases through
imaging. Also, application of the active contour model has gone a step further in

Topological adaptive snakes are widely used [59, 60, 63] for their ability to
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 23. Illustration of results of segmentation using topology-adaptive active contour
model on 2D images and 3D volumes [60]. (a) Segmentation of blood vessels in retinal
angiography. T-surface segmentation of (b) cerebral vasculature from MR image volume;
(c–e) ventricles from MR image volume of the brain; (f–h) different view of cerebral cortex
segmentation using T-surface. Reprinted with permission from [60]. Copyright c©1999,
IEEE.
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identifying cellular structures and cell motion. This wide range of applications
essentially covers both the 2D and 3D image domain for signifying both volume
and temporal data. Motion tracking using 3D temporal data has also been widely
studied for cardiac, pulmonary, and arterial motion in 4D MR, CT, etc., and even
to the level of cellular motion from molecular imaging devices. At the present
time, the deformable model-based segmentation algorithm has become a vital part
of the most advanced image processing toolbox associated with medical imaging
devices.

Most clinical applications presently use manual segmentation of the region of
interest, that is, a domain expert goes through each of the image slices over the en-
tire volume, or temporal data, and manually identifies and delineates the region of
interest by using a mouse-guided framework. This has several disadvantages: the
manual segmentation process is extremely tedious and time consuming. Further-
more, the image segmentation is nonreproducible and prone to operator bias. Thus,
computer-assisted methodologies with minimal user intervention need to replace
the manual segmentation process to obtain accurately reproducible segmentation.

This chapter has attempted to focus on the development of the active contour
model to meet the various requirements in medical image segmentation and analy-
sis. Segmentation of medical images is required for accurate and reproducible
analysis of data for a huge range of applications, including diagnosis, postop-
erative study, and interactive surgical procedures. Manual segmentation is the
most common technique used by physicians to process data. However, with the
amount of data exploding and due to the nonreproducibility of the results, there
is an inherent need for automated or semi-automated computerized algorithms
that can generate segmentation results accurately and reproducibly. Segmentation
processes that use low-level image processing have not been sufficient to segment
complex structures from images and provide an accurate continuous boundary due
to their dependence on local statistics, which in turn are corrupted by noise and
other artifacts. The deformable model has been found to be quite efficient in this
context, since it uses physics-based constraints along with local image statistics
in a very natural way. The initial design of the active contour itself generated a
lot of interest. With the complexity of the task increasing, the requirements are
becoming more demanding, and subsequent improvements have followed. Efforts

Dependence on the gradient force alone for growth and termination of the active
contour forces the snake to fail in images with weak and fuzzy boundaries, since
the edge functional is not well defined in those regions. Regional information,
like homogeneity and contrast, improved the active contour model. The snake
evolution using regional information and local statistics, like gradient, captured
the object effectively as the propagation was controlled by the regional force rather
than a blind force. A-priori information even made the snake bidirectional, thus
helping it to prevent leakage. Performance was thus enhanced with incorporation
of this form of energy. Another major advancement of the active contour model

are being made to make the deformation less sensitive to initialization [13, 26].
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came in the form of inclusion of topological adaptability, where the snake can
merge and split to capture complex geometries and topologies.

The equations in this chapter mostly deal with a 2D space. However, they

same for all dimensionalities. Only the computation of geometric properties and
image forces is changed. The geometric properties then need to be evaluated for
a surface rather than a line segment. This makes the estimation computationally
expensive, but the main essence is retained. The snake framework can be utilized
in a different form often to segment 3D volumes. Rather than using the surface, the
3D volume can be broken down into an array of 2D slices (which comes naturally
in medical images). Each of the 2D slices can be separately segmented and stacked
up to form a 3D volume. However, in this approach the 3D information of the
medical data is not utilized optimally.

A similar approach has also been used for motion tracking in various medical

formable models have been used to track nonrigid microscopic and macroscopic
structures in motion, such as blood cells [65] and neurite growth cones [70] in
cine-microscopy, as well as coronary arteries in cine-angiography [71]. However,
the primary use of deformable models for tracking in medical image analysis is
to measure the dynamic behavior of the human heart, especially the left ventricle.
Regional characterization of heart wall motion is necessary to isolate the severity
and extent of diseases such as ischemia. The most conventional approach is to
track the 2D contour in an image frame and propagate the contour to the temporally
next frame for deformation. Some approaches have utilized motion vectors and
Kalman filtering approaches [66] to boost snake performance in tracking motions
of this kind.

The increasingly important role of medical imaging in the diagnosis and treat-
ment of disease and the rapid advancement in imaging devices have opened up
challenging problems for the medical image analysis community. Deformable
models offer an attractive solution to situations where we intend to capture complex
shapes and wide shape variability of anatomical structures. Deformable models
overcome many of the limitations of traditional low-level image processing tech-
niques by providing compact and analytical representations of object shape, by
incorporating anatomic knowledge, and by providing interactive capabilities.

APPENDIX A

Energy minimization of the snake is accomplished within an Euler-Lagrangian
framework of solving PDEs or a dynamic programming approach that uses neigh-
borhood information on an energy surface. Note that the energy-based approach
of dynamic programming and the greedy snake does not optimally use the image

are extendable to 3D in all cases [25,60]. The basic energy equation remains the

applications like tracking heart motion [64] and cell deformation [28,65–69]. De-
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vector information. Pseudocode for the PDE-based and the greedy snake methods
are provided in this appendix:

A. Pseudocode for Snake Computation Using the PDE Approach

1. Input image I(x, y)

2. Preprocessing

(a) Compute feature map (Input Image I)

i. Compute gradient map G = ∇Gσ ⊕ I
A. Normalize G

ii.

3. Input discrete points

4. Define a contour through the sample points on the curve

5. Input parameter values for snake computation: α = strength of elas-
ticity; β = rigidity strength; γ = gradient strength; η = other factor (might
be regional or user-defined constraints). The number of parameters
introduced will be equal to the number of force fields used.

6. Define stiffness matrix

K =




c1 b1 a1 ... ... ... ... ... aN−1 bN
b1 c2 b2 a2 ... ... ... ... 0 aN
a1 b2 c3 b3 a3 ... ... ... 0 0
0 a2 b3 c4 b4 a4 ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
0 0 ... ... ... aN−4 bN−3 cN−2 bN−2 aN−2
aN−1 0 ... ... ... 0 aN−3 bN−2 cN−1 bN−1
bN aN ... ... ... 0 0 aN−2 bN−1 cN




,

h4ai = βi+1,
h4bi = −2βi − 2βi+1 − h2αi+1,
h4ci = βi−1 + 4βi + βi+1 + h2αi + h2αi+1,

where α, β are the coefficient values.

1. While (Iterations = Maximum Iterations)

map F
Compute regional information-based normalized feature
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X={x(0), x(1), x(2),.....,x(N-1)}T
Y={y(0), y(1), y(2),.....,y(N-1)}T

x(•, t−
∆t, t − 2∆t),By(•, t − ∆t, t − 2∆t), where Bx denotes the x-
derivative values of the external energy

(
∂
∂xEext

)
and By =

∂
∂yEext. t represents the iteration index with separation ∆t=1
for most cases.

(c) Solve X = K−1Bx and Y = K−1By

(d) iterations++

(e) ReSample Curve

2. End and fit spline to the final contour.

B. Pseudocode for Snake Computation Using Local Neighborhood
Energy-Based Approach

1. Input image I(x, y)

2. Preprocessing

(a) Compute feature map (Input Image I)

i. Compute gradient map G = ∇Gσ ⊕ I
A. Normalize G

ii.

3. Input discrete points

4. Define a contour through the sample points on the curve

5. Input parameter values for snake computation: α = strength of elas-
ticity; β = rigidity strength; γ = gradient strength; η = other factor (might
be regional or user-defined constraints). The number of parameters
introduced will be equal to the number of force fields used.

6. While (Iterations != Maximum Iterations)

(a) For (i=0; i<N; i++) /* N = Number Of Control Points */

i. Search the 3× 3 neighborhood (for 2D)
A. Compute Energy due to all the factors at each neighbor-

hood
B. Find the lowest energy neighborhood pixel
C. Assign the point to this lowest energy neighborhood

(a) Construct thecoordinatematrix:

(b) Constructmatrix fromexternal energyand information: B

map F
Compute regional information-based normalized feature
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ii. Update the contour information

(b) Iterations++;

7. End and fit spline to the final contour.

Note that in both cases it important to ensure that any movement of the contour
that violates the topological circle configuration of the curve is avoided, that is,
there cannot be any self-intersecting lines in the contour.

APPENDIX B

Incorporation of a priori information in the form of some probabilistic ap-

intensity-based object background confidence classification is provided.

Pseudocode for Object–Background Classification Based on Intensity

1. Input Image I(x, y)

2. Input object distribution information (object mean, object std devia-
tion)

3. Input background intensity distribution (background mean, back-
ground std. deviation)

4. Construct One-Sided Gaussian Probability Density Function:

(a) If (Object mean > Background mean)

i. For (intensity = Minimum Intensity; intensity< =Maximum
Intensity, intensity++)
A. if (intensity < =Object Mean)
B. Object Probability (intensity) = exp(–(intensity – Object

Mean)2/(2*(Object Std Deviation)2);
C. else
D. Object Probability (intensity) = 1.0;
E. if (intensity<=background mean)
F. Background Probability (intensity) =1.0;
G. else
H. Background Probability (intensity) = exp(–(intensity –

Background Mean)2/(2*(Background Std Deviation)2);

(b) else

i. For (intensity = Minimum Intensity; intensity< =Maximum
Intensity, intensity++)

proach is detailed in this appendix. Specifically, the pseudocode for defining
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A. if (intensity < = Object Mean)
B. Object Probability (intensity) = exp(–(intensity – Object

Mean)2/(2*(Object Std Deviation)2);
C. else
D. Object Probability (intensity) = 1.0;
E. if((intensity<=background mean)
F. Background Probability (intensity) =1 .0;
G. else
H. Background Probability (intensity) = exp(–(intensity –

Background Mean)2/(2*(Background Std Deviation)2);

(c) For the entire image compute the probability map at each pixel.
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64. Mikić I, Krucinski S, Thomas JD. 1998. Segmentation and tracking in echocardiographic se-
quences: active contours guided by optical flow estimates. IEEE Trans Med Imaging 17:274–
285.

65. Leymarie F, Levine MD. 1993. Tracking deformable objects in the plane using an active contour
model. IEEE Trans Pattern Anal Machine Intell 15:617–634.

66. Curwen RW, Amini AA, Duncan JS, Lee F. 1994. Tracking vascular motion in x-ray image
sequences with Kalman snakes. Comput Cardiol, 1:109–112.

67. Freedman D, Zhang T. 2004. Active contours for tracking distributions. IEEE Trans Image
Process 13:518–526.

68. Ray N, Acton ST, Altes T, Lange EE, Brookeman JR. 2003. Merging parametric active contours
within homogeneous image regions for mri-based lung segmentation. IEEE Trans Med Imaging
22:189–200.

69. Ray N, Acton ST. 2004. Motion gradient vector flow: an external force for tracking rolling
leukocytes with shape and size constrained active contours. IEEE Trans Med Imaging 23:1466–
1478.

70. Gwydir SH, Buettner HM, Dunn SM. 1994. Non-rigid motion analysis and feature labelling
of the growth cone. In Proceedings of the IEEE Workshop on biomedical image analysis, pp.
80–87. Washington, DC: IEEE Computer Society.

71.
ultrasound. J Comput Graphics 29:457–464.
Lengyel J, Greenberg DP, Popp R. 1995. Time-dependent three-dimensional intravascular


