
14 Non-Intrusive Acquisition of Human Action

Table 2.4. Recording conditions for the example recognition applications.

Domain Condition(s)
Image Content Ideally, the only skin colored object in the image is the user’s hand.

Other skin colored objects may be visible, but they must be small com-
pared to the hand. This also applies to the arm; it should be covered
by a long-sleeved shirt if it is visible. In dynamic gestures the hand
should have completely entered the image before recording starts, and
not leave the image before recording ends, so that it is entirely visible
in every recorded frame.

Lighting Lighting is suffi ciently diffuse so that no signifi cant shadows are visi-
ble on the hand. Slight shadows, such as in Fig. 2.2 and Fig. 2.3, are
acceptable.

Setup The distance between hand and camera is chosen so that the hand fi lls
approximately 10– 25% of the image. The hand’s exact position in the
image is arbitrary, but no parts of the hand should be cropped. The cam-
era is not rotated, i.e. its x axis is horizontal.

Camera Resolution may vary, but should be at least 320 × 240. Aspect ratio
remains constant. The camera is adjusted so that no overexposure and
only minor color cast occurs. (Optimal performance is usually achieved
when gain, brightness and shutter speed are set so that the image appears
somewhat underexposed to the human observer.) For dynamic gestures,
a frame rate of 25 per second is to be used, and shutter speed should
be high enough to prevent motion blur. A consumer quality camera is
suffi cient.

such as those shown in Fig. 2.2 and 2.3. This process, which occurs within the feature
extraction module in Fig. 2.1, is visualized in Fig. 2.4.

Fig. 2.4. Visualization of the feature extraction stage. The top row indicates processing steps,
the bottom row shows examples for corresponding data.

2.1.2.1 Hand Localization

The identifi cation of foreground or target regions constitutes an interpretation of the
image based on knowledge which is usually specifi c to the application scenario. This

Hand Gesture Commands 15

knowledge can be encoded explicitly (as a set of rules) or implicitly (in a histogram,
a neural network, etc.). Known properties of the target object, such as shape, size,
or color, can be exploited. In gesture recognition, color is the most frequently used
feature for hand localization since shape and size of the hand’s projection in the two-
dimensional image plane vary greatly. It is also the only feature explicitly stored in
the image.

Using the color attribute to localize an object in the image requires a defi nition
of the object’s color or colors. In the RGB color model (and most others), even
objects that one would call unicolored usually occupy a range of numerical values.
This range can be described statistically using a three-dimensional discrete histogram
hobject(r, g, b), with the dimensions corresponding to the red, green, and blue com-
ponents.

hobject is computed from a suffi ciently large number of object pixels that are
usually marked manually in a set of source images that cover all setups in which the
system is intended to be used (e.g. multiple users, varying lighting conditions, etc.).
Its value at (r, g, b) indicates the number of pixels with the corresponding color. The
total sum of hobject over all colors is therefore equal to the number of considered
object pixels nobject, i.e.

∑

r

∑

g

∑

b

hobject(r, g, b) = nobject (2.5)

Because the encoded knowledge is central to the localization task, the creation of
hobject is an important part of the system’s development. It is exemplifi ed below for
a single frame.

Fig. 2.5 shows the source image of a hand (a) and a corresponding, manually
generated binary mask (b) that indicates object pixels (white) and background pixels
(black). In (c) the histogram computed from (a), considering only object pixels (those
that are white in (b)), is shown. The three-dimensional view uses points to indicate
colors that occurred with a certain minimum frequency. The three one-dimensional
graphs to the right show the projection onto the red, green, and blue axis. Not sur-
prisingly, red is the dominant skin color component.

(a) Source image (b) Object mask (c) Object color histogram

Fig. 2.5. From a source image (a) and a corresponding, manually generated object mask (b),
an object color histogram (c) is computed.

16 Non-Intrusive Acquisition of Human Action

On the basis of hobject, color-based object detection can now be performed in
newly acquired images of the object. The aim is to compute, from a pixel’s color,
a probability or belief value indicating its likeliness of representing a part of the
target object. This value is obtained for every pixel (x, y) and stored in a probability
image Iobject(x, y) with the same dimensions as the analyzed image. The following
paragraphs derive the required stochastic equations.

Given an object pixel, the probability of it having a certain color (r, g, b) can be
computed from hobject as

P (r, g, b|object) =
hobject(r, g, b)

nobject
(2.6)

By creating a complementary histogram hbg of the background colors from a
total number of nbg background pixels the accordant probability for a background
pixel is obtained in the same way:

P (r, g, b|bg) =
hbg(r, g, b)

nbg
(2.7)

Applying Bayes’ rule, the probability of any pixel representing a part of the ob-
ject can be computed from its color (r, g, b) using (2.6) and (2.7):

P (object|r, g, b) =
P (r, g, b|object) · P (object)

P (r, g, b|object) · P (object) + P (r, g, b|bg) · P (bg)
(2.8)

P (object) and P (bg) denote the a priori object and background probabilities,
respectively, with P (object) + P (bg) = 1.

Using (2.8), the object probability image Iobj,prob is created from I as

Iobj,prob(x, y) = P (object|I(x, y)) (2.9)

To classify each pixel as either background or target, an object probability thresh-
old Θ is defi ned. Probabilities equal to or above Θ are considered target, while all
others constitute the background. A data structure suitable for representing this clas-
sifi cation is a binary mask

Iobj,mask(x, y) =

{
1 if Iobj,prob(x, y) ≥ Θ (target)
0 otherwise (background)

(2.10)

Iobj,mask constitutes a threshold segmentation of the source image because it
partitions I into target and background regions.

Rewriting (2.8) as (2.11), it can be seen that varying P (object) and P (bg) is
equivalent to a non-linear scaling of P (object|r, g, b) and does not affect Iobj,mask

when Θ is scaled accordingly (though it may improve contrast in the visualization
of Iobj,prob). In other words, for any prior probabilities P (object), P (bg) 6= 0, all
possible segmentations can be obtained by varying Θ from 0 to 1. It is therefore

Hand Gesture Commands 17

practical to choose arbitrary values, e.g. P (object) = P (bg) = 0.5. Obviously, the
value computed for P (object|r, g, b) will then no longer refl ect an actual probability,
but a belief value.3 This is usually easier to handle than the computation of exact
values for P (object) and P (bg).

P (object|r, g, b) =

(
1 +

P (r, g, b|bg)

P (r, g, b|object)
· P (bg)

P (object)

)−1

(2.11)

A suitable choice of Θ is crucial for an accurate discrimination between back-
ground and target. In case the recording conditions remain constant and are known
in advance, Θ can be set manually, but for uncontrolled environments an automatic
determination is desirable. Two different strategies are presented below.

If no knowledge of the target object’s shape and/or position is available, the fol-
lowing iterative low-level algorithm presented in [24] produces good results in a
variety of conditions. It assumes the histogram of Iobj,prob to be bi-modal but can
also be applied if this is not the case.

1. Arbitrarily defi ne a set of background pixels (some usually have a high a priori back-
ground probability, e.g. the four corners of the image). All other pixels are defi ned as
foreground. This constitutes an initial classifi cation.

2. Compute the mean values for background and foreground, µobject and µbg, based on
the most recent classifi cation. If the mean values are identical to those computed in the
previous iteration, halt.

3. Compute a new threshold Θ = 1
2

(µobject + µbg) and perform another classifi cation of
all pixels, then goto step 2.

Fig. 2.6. Automatic computation of the object probability threshold Θ without the use of high-
level knowledge (presented in [24]).

In case the target’s approximate location and geometry are known, humans can
usually identify a suitable threshold just by observation of the corresponding object
mask. This approach can be implemented by defi ning an expected target shape, cre-
ating several object masks using different thresholds, and choosing the one which
yields the most similar shape. This requires a feature extraction as described in
Sect. 2.1.2 and a metric to quantify the deviation of a candidate shape’s features
from those of the expected target shape.

An example for hand localization can be seen in Fig. 2.7. Using the skin color
histogram shown in Fig. 2.5 and a generic background histogram hbg, a skin proba-
bility image (b) was computed from a source image (a) of the same hand (and some
clutter) as shown in Fig. 2.5, using P (object) = P (bg) = 0.5. For the purpose of
visualization, three different thresholdsΘ1 < Θ2 < Θ3 were then applied, resulting
in three different binary masks (c, d, e). In this example none of the binary masks

3For simplicity, the term “ probability” will still be used in either case.

18 Non-Intrusive Acquisition of Human Action

is entirely correct: For Θ1, numerous background regions (such as the bottle cap in
the bottom right corner) are classifi ed as foreground, while Θ3 leads to holes in the
object, especially at its borders. Θ2, which was computed automatically using the
algorithm described in Fig. 2.6, is a compromise that might be considered optimal
for many applications, such as the example systems to be developed in this section.

(a) Source Image (b) Skin Probability
Image

(c) Skin/Background
classifi cation using Θ1

(d) Skin/Background
classifi cation using Θ2

(e) Skin/Background
classifi cation using Θ3

Fig. 2.7. A source image (a) and the corresponding skin probability image (b). An ob-
ject/background classifi cation was performed for three different thresholds Θ1 < Θ2 < Θ3

(c-e).

While the human perception of an object’s color is largely independent of the
current illumination (an effect called color constancy), colors recorded by a camera
are strongly infl uenced by illumination and hardware characteristics. This restricts
the use of histograms to the recording conditions under which their source data was
created, or necessitates the application of color constancy algorithms [7, 9].4

In [12], a skin and a non-skin color histogram are presented that were created
from several thousand images found on the WWW, covering a multitude of skin

4In many digital cameras, color constancy can be achieved by performing a white balance:
The camera is pointed to a white object (such as a blank sheet of paper), and a transformation
is performed so that this object appears colorless (r = g = b) in the image as well. The
transformation parameters are then stored for further exposures under the same illumination
conditions.

Hand Gesture Commands 19

hues, lighting conditions, and camera hardware. Thereby, these histograms implic-
itly provide user, illumination, and camera independence, at the cost of a comparably
high probability for non-skin objects being classifi ed as skin (false alarm). Fig. 2.8
shows the skin probability image (a) and binary masks (b, c, d) for the source im-
age shown in Fig. 2.7a, computed using the histograms from [12] and three different
thresholds Θ4 < Θ5 < Θ6. As described above, P (object) = P (bg) = 0.5 was
chosen. Compared to 2.7b, the coins, the pens, the bottle cap, and the shadow around
the text marker have signifi cantly higher skin probability, with the pens even exceed-
ing parts of the fi ngers and the thumb (d). This is a fundamental problem that cannot
be solved by a simple threshold classifi cation because there is no threshold Θ that
would achieve a correct result. Unless the histograms can be modifi ed to reduce the
number of false alarms, the subsequent processing stages must therefore be designed
to handle this problem.

(a) Skin Probability
Image

(b) Skin/Back-
ground classifi ca-

tion using Θ4

(c) Skin/Back-
ground classifi ca-

tion using Θ5

(d) Skin/Back-
ground classifi ca-

tion using Θ6

Fig. 2.8. Skin probability image (b) for Fig. 2.8a and object/background classifi cation for three
thresholds Θ4 < Θ5 < Θ6 (b, c, d).

Implementational Aspects

In practical applications the colors r, g, and b commonly have a resolution of 8 bit
each, i.e.

r, g, b ∈ {0, 1, . . . , 255} (2.12)

A corresponding histogram would have to have 2563 = 16, 777, 216 cells, each
storing a fl oating point number of typically 4 bytes in size, totaling 64 MB. To reduce
these memory requirements, the color values are downsampled to e.g. 5 bit through
a simple integer division by 23 = 8:

r′ =
⌊r
8

⌋
g′ =

⌊g
8

⌋
b′ =

⌊
b

8

⌋
(2.13)

This results in a histogram h′(r′, g′, b′) with 323 = 32, 768 cells that requires
only 128 kB of memory. The entailed loss in accuracy is negligible in most appli-

20 Non-Intrusive Acquisition of Human Action

cations, especially when consumer cameras with high noise levels are employed.
Usually the downsampling is even advantageous because it constitutes a general-
ization and therefore reduces the amount of data required to create a representative
histogram.

The LTI-LIB class skinProbabilityMap comes with the histograms pre-
sented in [12]. The algorithm described in Fig. 2.6 is implemented in the class
optimalThresholding.

2.1.2.2 Region Description

On the basis of Iobj,mask the source image I can be partitioned into regions. A region
R is a contiguous set of pixels p for which Iobj,mask has the same value. The concept
of contiguity requires a defi nition of pixel adjacency. As depicted in Fig. 2.9, adja-
cency may be based on either a 4-neighborhood or an 8-neighborhood. In this sec-
tion the 8-neighborhood will be used. In general, regions may contain other regions
and/or holes, but this shall not be considered here because it is of minor importance
in most gesture recognition applications.

Fig. 2.9. Adjacent pixels (gray) in the 4-neighborhood (a) and 8-neighborhood (b) of a refer-
ence pixel (black).

Under laboratory recording conditions, Iobj,mask will contain exactly one target
region. However, in many real world applications, other skin colored objects may
be visible as well, so that Iobj,mask typically contains multiple target regions (see
e.g. Fig. 2.8). Unless advanced reasoning strategies (such as described in [23, 28])
are used, the feature extraction stage is responsible for identifying the region that
represents the user’s hand, possibly among a multitude of candidates. This is done
on the basis of the regions’ geometric features.

The calculation of these features is performed by fi rst creating an explicit descrip-
tion of each region contained in Iobj,mask. Various algorithms exist that generate, for
every region, a list of all of its pixels. A more compact and computationally more
effi cient representation of a region can be obtained by storing only its border points
(which are, in general, signifi cantly fewer). A border point is conveniently defi ned
as a pixel p ∈ R that has at least one pixel q /∈ R within its 4-neighborhood. An
example region (a) and its border points (b) are shown in Fig. 2.10.

In a counterclockwise traversal of the object’s border, every border point has a
predecessor and a successor within its 8-neighborhood. An effi cient data structure
for the representation of a region is a sorted list of its border points. This can be

Hand Gesture Commands 21

(a) Region pixels (b) Border points (c) Polygon

Fig. 2.10. Description of an image region by the set of all of its pixels (a), a list of its bor-
der pixels (b), and a closed polygon (c). Light gray pixels in (b) and (c) are not part of the
respective representation, but are shown for comparison with (a).

interpreted as a closed polygon whose vertices are the centers of the border points
(Fig. 2.10c). In the following, the object’s border is defi ned to be this polygon. This
defi nition has the advantages of being sub-pixel accurate and facilitating effi cient
computation of various shape-based geometric features (as described in the next sec-
tion).5

Finding the border points of a region is not as straightforward as identifying its
pixels. Fig. 2.11 shows an algorithm that processes Iobj,mask and computes, for every
region R, a list of its border points

BR = {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} (2.14)

Fig. 2.12 (a, b, c) shows the borders computed by this algorithm from the masks
shown in Fig. 2.8 (b, c, d). In areas where the skin probability approaches the thresh-
old Θ, the borders become jagged due to the random nature of the input data, as can
be seen especially in (b) and (c). This effect causes an increase in border length that
is random as well, which is undesirable because it reduces the information content
of the computed border length value (similar shapes may have substantially different
border lengths, rendering this feature less useful for recognition). Preceding the seg-
mentation (2.10) by a convolution of Iobj,prob with a Gaussian kernel alleviates this
problem by dampening high frequencies in the input data, providing smooth borders
as in Fig. 2.12 (d, e, f).

The LTI-LIB uses the classes borderPoints and polygonPoints (among
others) to represent image regions. The class objectsFromMask contains an al-
gorithm that is comparable to the one presented in Fig. 2.11, but can also detect holes
within regions, and further regions within these holes.

5It should be noted that the polygon border defi nition leads to the border pixels no longer
being considered completely part of the object. Compared to other, non-sub-pixel accurate
interpretations, this may lead to slight differences in object area that are noticeable only for
very small objects.

6m(x, y) = 1 indicates touching the border of a region that was already processed.
7m(x, y) = 2 indicates crossing the border of a region that was already processed.

22 Non-Intrusive Acquisition of Human Action

1. Create a helper matrix m with the same dimensions as Iobj,mask and initialize
all entries to 0. Defi ne (x, y) as the current coordinates and initialize them to
(0, 0). Defi ne (x′, y′) and (x′′, y′′) as temporary coordinates.

2. Iterate from left to right through all image rows successively, starting at y = 0.
If m(x, y) = 0 ∧ Iobj,mask(x, y) = 1, goto step 3. If m(x, y) = 1, ignore
this pixel and continue with the next pixel.6 If m(x, y) = 2, increase x until
m(x, y) = 2 again, ignoring the whole range of pixels.7

3. Create a list B of border points and store (x, y) as the fi rst element.
4. Set (x′, y′) = (x, y).
5. Scan the 8-neighborhood of (x′, y′) using (x′′, y′′), starting at the pixel that

follows the butlast pixel stored in B in a counterclockwise orientation, or at
(x′ − 1, y′ − 1) if B contains only one pixel. Proceed counterclockwise, skip-
ping coordinates that lie outside of the image, until Iobj,mask(x

′′, y′′) = 1. If
(x′′, y′′) is identical with the fi rst element of B, goto step 6. Else store (x′′, y′′)
in B. Set (x′, y′) = (x′′, y′′) and goto step 5.

6. Iterate through B, considering, for every element (xi, yi) its predecessor
(xi−1, yi−1) and its successor (xi+1, yi+1). The fi rst element is the succes-
sor of the last, which is the predecessor of the fi rst. If yi−1 = yi+1 6= yi, set
m(xi, yi) = 1 to indicate that the border touches the line y = yi at xi. Other-
wise, if yi−1 6= yi ∨ yi 6= yi+1, set m(xi, yi) = 2 to indicates that the border
intersects with the line y = yi at xi.

7. Add B to the list of computed borders and proceed with step 2.

Fig. 2.11. Algorithm to fi nd the border points of all regions in an image.

2.1.2.3 Geometric Features

From the multitude of features that can be computed for a closed polygon, only a
subset is suitable for a concrete recognition task. A feature is suitable if it has a
high inter-gesture variance (varies signifi cantly between different gestures) and a
low intra-gesture variance (varies little between multiple productions of the same
gesture). The fi rst property means that the feature carries much information, while
the second indicates that it is not signifi cantly affected by noise or unintentional
variations that will inevitably occur. Additionally, every feature should be stable,
meaning that small changes in input data never result in large changes in the feature.
Finally the feature must be computable with suffi cient accuracy and speed. A certain
feature’s suitability thus depends on the constellation of the vocabulary (because this
affects inter- and intra-gesture variance) and on the actual application scenario in
terms of recording conditions, hardware etc. It is therefore a common approach to
fi rst compute as many features as possible and then examine each one with respect
to its suitability for the specifi c recognition task (see also Sect. 2.1.3.3).

The choice of features is of central importance since it affects system design
throughout the processing chain. The fi nal system’s performance depends signifi -
cantly on the chosen features and their properties.

This section presents a selection of frequently used features and the equations
to calculate them. Additionally, the way each feature is affected by the camera’s
perspective, resolution, and distance to the object is discussed, for these are often

Hand Gesture Commands 23

(a) (b) (c)

(d) (e) (f)

Fig. 2.12. a, b, c: Borders of the regions shown in Fig. 2.8 (d, e, f), computed by the algorithm
described in Fig. 2.11. d, e, f: Additional smoothing with a Gaussian kernel before segmenta-
tion.

important factors in practical applications. In the image domain, changing the cam-
era’s perspective results in rotation and/or translation of the object, while resolution
and object distance affect the object’s scale (in terms of pixels). Since the error intro-
duced in the shape representation by the discretization of the image (the discretiza-
tion noise) is itself affected by image resolution, rotation, translation, and scaling of
the shape, features can, in a strict sense, be invariant of these transformations only in
continuous space. All statements regarding transformation invariance therefore refer
to continuous space. In discretized images, features declared “ invariant” may still
show small variance. This can usually be ignored unless the shape’s size is on the
order of several pixels.

Border Length

The border length l can trivially be computed from B, considering that the distance
between two successive border points is 1 if either their x or y coordinates are equal,
and

√
2 otherwise. l depends on scale/resolution, and is translation and rotation in-

variant.

Area, Center of Gravity, and Second Order Moments

In [25] an effi cient algorithm for the computation of arbitrary moments νp,q of poly-
gons is presented. The area a = ν0,0, as well as the normalized moments αp,q

24 Non-Intrusive Acquisition of Human Action

and central moments µp,q up to order 2, including the center of gravity (COG)
(xcog, ycog) = (α1,0, α0,1), are obtained as shown in (2.15) to (2.23). xi and yi

with i = 0, 1, . . . , n− 1 refer to the elements of BR as defi ned in (2.14). Since these
equations require the polygon to be closed, xn = x0 and yn = y0 is defi ned for
i = n.

ν0,0 = a =
1

2

n∑

i=1

xi−1yi − xiyi−1 (2.15)

α1,0 = xcog =
1

6a

n∑

i=1

(xi−1yi − xiyi−1)(xi−1 + xi) (2.16)

α0,1 = ycog =
1

6a

n∑

i=1

(xi−1yi − xiyi−1)(yi−1 + yi) (2.17)

α2,0 =
1

12a

n∑

i=1

(xi−1yi − xiyi−1)(x
2
i−1 + xi−1xi + x2

i) (2.18)

α1,1 =
1

24a

n∑

i=1

(xi−1yi − xiyi−1)(2xi−1yi−1 + xi−1yi + xiyi−1 + 2xiyi)

(2.19)

α2,0 =
1

12a

n∑

i=1

(xi−1yi − xiyi−1)(y
2
i−1 + yi−1yi + y2

i) (2.20)

µ2,0 = α2,0 − α2
1,0 (2.21)

µ1,1 = α1,1 − α1,0α0,1 (2.22)

µ0,2 = α0,2 − α2
0,1 (2.23)

The area a depends on scale/resolution, and is independent of translation and ro-
tation. The center of gravity (xcog, ycog) is obviously translation variant and depends
on resolution. It is rotation invariant only if the rotation occurs around (xcog, ycog) it-
self, and affected by scaling (i.e. changing the object’s distance to the camera) unless
its angle to the optical axis remains constant.

The second order moments (p+q = 2) are primarily used to compute other shape
descriptors, as described below.

Eccentricity

One possible measure for eccentricity e that is based on central moments is given
in [10]:

e =
(µ2,0 − µ0,2)

2 + 4µ1,1

a
(2.24)

(2.24) is zero for circular shapes and increases for elongated shapes. It is rotation
and translation invariant, but variant with respect to scale/resolution.

Hand Gesture Commands 25

Another intuitive measure is based on the object’s inertia along and perpendicular
to its main axis, j1 and j2, respectively:

e =
j1
j2

(2.25)

with

j1 =
µ2,0 + µ0,2

2a
+

√(
µ2,0 − µ0,2

2a

)2

+
(µ1,1

a

)2

(2.26)

j2 =
µ2,0 + µ0,2

2a
−
√(

µ2,0 − µ0,2

2a

)2

+
(µ1,1

a

)2

(2.27)

Here e starts at 1 for circular shapes, increases for elongated shapes, and is in-
variant of translation, rotation, and scale/resolution.

Orientation

The region’s main axis is defi ned as the axis of the least moment of inertia. Its orien-
tation α is given by

α =
1

2
arctan

(
2µ1,1

µ2,0 − µ0,2

)
(2.28)

and corresponds to what one would intuitively call “ the object’s orientation” . Ori-
entation is translation and scale/resolution invariant. α carries most information for
elongated shapes and becomes increasingly random for circular shapes. It is 180◦-
periodic, which necessitates special handling in most cases. For example, the angle
by which an object with α1 = 10◦ has to be rotated to align with an object with
α2 = 170◦ is 20◦ rather than |α1 −α2| = 160◦. When using orientation as a feature
for classifi cation, a simple workaround to this problem is to ensure 0 ≤ α < 180◦

and, rather than use α directly as a feature, compute two new features f1(α) = sinα
and f2(α) = cos 2α instead, so that f1(0) = f1(180◦) and f2(0) = f2(180◦).

Compactness

A shape’s compactness c ∈ [0, 1] is defi ned as

c =
4πa

l2
(2.29)

Compact shapes (c → 1) have short borders l that contain a large area a. The
most compact shape is a circle (c = 1), while for elongated or frayed shapes, c→ 0.
Compactness is rotation, translation, and scale/resolution invariant.

26 Non-Intrusive Acquisition of Human Action

Border Features

In addition to the border length l, the minimum and maximum pixel coordinates
of the object, xmin, xmax, ymin and ymax, as well as the minimum and maximum
distance from the center of gravity to the border, rmin and rmax, can be calculated
fromB. Minimum and maximum coordinates are not invariant to any transformation.
rmin and rmax are invariant to translation and rotation, and variant to scale/resolution.

Normalization

Some of the above features can only be used in a real-life application if a suitable
normalization is performed to eliminate translation and scale variance. For example,
the user might perform gestures at different locations in the image and at different
distances from the camera.

Which normalization strategy yields the best results depends on the actual appli-
cation and recording conditions, and is commonly found empirically. Normalization
is frequently neglected, even though it is an essential part of feature extraction. The
following paragraphs present several suggestions. In the remainder of this section,
the result of the normalization of a feature f is designated by f ′.

For both static and dynamic gestures, the user’s face can serve as a reference
for hand size and location if it is visible and a suffi ciently reliable face detection is
available.

In case different resolutions with identical aspect ratio are to be supported, reso-
lution independence can be achieved by specifying lengths and coordinates relative
to the image width N (x and y must be normalized by the same value to preserve
image geometry) and area relative to N2.

If a direct normalization is not feasible, invariance can also be achieved by com-
puting a new feature from two or more unnormalized features. For example, from
xcog , xmin, and xmax, a resolution and translation invariant feature xp can be com-
puted as

xp =
xmax − xcog

xcog − xmin
(2.30)

xp specifi es the ratio of the longest horizontal protrusion, measured from the
center of gravity, to the right and to the left.

For dynamic gestures, several additional methods can be used to compute a nor-
malized feature f ′(t) from an unnormalized feature f(t) without any additional in-
formation:

• Subtracting f(1) so that f ′(1) = 0:

f ′(t) = f(t) − f(1) (2.31)

• Subtracting the arithmetic mean f or median fmedian of f :

f ′(t) = f(t) − f (2.32)

f ′(t) = f(t) − fmedian (2.33)

Hand Gesture Commands 27

• Mapping f to a fi xed interval, e.g. [0, 1]:

f ′(t) =
f(t) − min f(t)

max f(t) − min f(t)
(2.34)

• Dividing f by max |f(t)| so that |f ′(t)| ≤ 1:

f ′(t) =
f(t)

max |f(t)| (2.35)

Derivatives

In features computed for dynamic gestures, invariance of a constant offset may also
be achieved by derivation. Computing the derivative ḟ(t) of a feature f(t) and using
it as an additional element in the feature vector to emphasize changes in f(t) can
sometimes be a simple yet effective method to improve classifi cation performance.
2.1.2.4 Example

To illustrate the use of the algorithms described above, the static example gestures
introduced in Fig. 2.2 were segmented as shown in Fig. 2.13, using the automatic
algorithms presented in Fig. 2.6 and 2.11, and features were computed as shown
in Tab. 2.5, using the LTI-LIB class geometricFeatures. For resolution inde-
pendence, lengths and coordinates are normalized by the image width N , and area
is normalized by N2. α specifi es the angle by which the object would have to be
rotated to align with the x axis.

(a) “ left” (b) “ right” (c) “ stop” (d) none

Fig. 2.13. Boundaries of the static hand gestures shown in Fig. 2.2. Corresponding features
are shown in Tab. 2.5.

For the dynamic example gestures “ clockwise” , “ open” , and “ grab” , the features
area a, compactness c, and x coordinate of the center of gravity xcog were computed.
Since a depends on the hand’s anatomy and its distance to the camera, it was nor-
malized by its maximum (see (2.35)) to eliminate this dependency. xcog was divided
by N to eliminate resolution dependency, and additionally normalized according
to (2.32) so that x′cog = 0. This allows the gestures to be performed anywhere in
the image. The resulting plots for normalized area a′, compactness c (which does not
require normalization), and normalized x coordinate of the center of gravity x′cog are
visualized in Fig. 2.14.

The plots are scaled equally for each feature to allow a direct comparison. Since
“ counterclockwise” , “ close” , and “ drop” are backwards executions of the above ges-
tures, their feature plots are simply temporally mirrored versions of these plots.

28 Non-Intrusive Acquisition of Human Action

Table 2.5. Features computed from the boundaries shown in Fig. 2.13.

Gesture
“ left” “ right” “ stop” none

Feature Symbol (2.13a) (2.13b) (2.13c) (2.13d)
Normalized Border Length l′ 1.958 1.705 3.306 1.405
Normalized Area a′ 0.138 0.115 0.156 0.114
Normalized Center of Gravity x′

cog 0.491 0.560 0.544 0.479
y′
cog 0.486 0.527 0.487 0.537

Eccentricity e 1.758 1.434 1.722 2.908
Orientation α 57.4° 147.4° 61.7° 58.7°
Compactness c 0.451 0.498 0.180 0.724
Normalized Min./Max. Coordinates x′

min 0.128 0.359 0.241 0.284
x′

max 0.691 0.894 0.881 0.681
y′
min 0.256 0.341 0.153 0.325

y′
max 0.747 0.747 0.747 0.747

Protrusion Ratio xp 0.550 1.664 1.110 1.036

Fig. 2.14. Normalized area a′, compactness c, and normalized x coordinate of the center of
gravity x′

cog plotted over time t = 1, 2, . . . , 60 for the dynamic gestures “ clockwise” (left
column), “ open” (middle column), and “ grab” (right column) from the example vocabulary
shown in Fig. 2.3.

Hand Gesture Commands 29

2.1.3 Feature Classifi cation

The task of feature classifi cation occurs in all pattern recognition systems and has
been subject of considerable research effort. A large number of algorithms is avail-
able to build classifi ers for various requirements. The classifi ers considered in this
section operate in two phases: In the training phase the classifi er “ learns” the vo-
cabulary from a suffi ciently large number of representative examples (the training
samples). This “ knowledge” is then applied in the following classifi cation phase.
Classifi ers that continue to learn even in the classifi cation phase, e.g. to automati-
cally adapt to the current user, shall not be considered here.

2.1.3.1 Classifi cation Concepts

This section introduces several basic concepts and terminology commonly used in
pattern classifi cation, with the particular application to gesture recognition.

Mathematical Description of the Classifi cation Task

From a mathematical point of view, the task of classifi cation is that of identifying an
unknown event ω, given a fi nite set Ω of n mutually exclusive possible events

ω ∈ Ω = {ω1, ω2, . . . , ωn} (2.36)

The elements of Ω are called classes. In gesture recognitionΩ is the vocabulary,
and each class ωi (i = 1, 2, . . . , n) represents a gesture. Note that (2.36) restricts the
allowed inputs to elements of Ω. This means that the system is never presented with
an unknown gesture, which infl uences the classifi er’s design and algorithms.

The classifi er receives, from the feature extraction stage, an observation O,
which, for example, might be a single feature vector for static gestures, or a sequence
of feature vectors for dynamic gestures. Based on this observation it outputs a result

ω̂ ∈ Ω where ω̂ = ωk, k ∈ {1, 2, . . . , n} (2.37)

k denotes the index of the class of the event ω assumed to be the source of the
observation O. If ω̂ = ω then the classifi cation result is correct, otherwise it is wrong.

To account for the case that O does not bear suffi cient similarity to any element
in Ω, one may wish to allow a rejection of O. This is accomplished by introducing a
pseudo-class ω0 and defi ning a set of classifi er outputs Ω̂ as

Ω̂ = Ω ∪ {ω0} (2.38)

Thus, (2.37) becomes

ω̂ ∈ Ω̂ where ω̂ = ωk, k ∈ {0, 1, . . . , n} (2.39)

30 Non-Intrusive Acquisition of Human Action

Modeling Classifi cation Effects

Several types of classifi ers can be designed to consider a cost or loss value L for
classifi cation errors, including rejection. In general, the loss value depends on the
actual input class ω and the classifi er’s output ω̂:

L(ω, ω̂) = cost incurred for classifying event of class ω as ω̂ (2.40)

The cost of a correct result is set to zero:

L(ω, ω) = 0 (2.41)

This allows to model applications where certain misclassifi cations are more se-
rious than others. For example, let us consider a gesture recognition application that
performs navigation of a menu structure. Misclassifying the gesture for “ return to
main menu” as “ move cursor down” requires the user to perform “ return to main
menu” again. Misclassifying “ move cursor down” as “ return to main menu” , how-
ever, discards the currently selected menu item, which is a more serious error because
the user will have to navigate to this menu item all over again (assuming that there is
no “ undo” or “ back” functionality).

Simplifi cations

Classifi ers that consider rejection and loss values are discussed in [22]. For the pur-
pose of this introduction, we will assume that the classifi er never rejects its input (i.e.
(2.37) holds) and that the loss incurred by a classifi cation error is a constant value L:

L(ω, ω̂) = L for ω 6= ω̂ (2.42)

This simplifi es the following equations and allows us to focus on the basic clas-
sifi cation principles.

Garbage Classes

An alternative to rejecting the input is to explicitly include garbage classes in Ω
that represent events to which the system should not react. The classifi er treats these
classes just like regular classes, but the subsequent stages do not perform any action
when the classifi cation result ω̂ is a garbage class. For example, a gesture recognition
system may be constantly observing the user’s hand holding a steering wheel, but
react only to specifi c gestures different from steering motions. Garbage classes for
this application would contain movements of the hand along the circular shape of the
steering wheel.

Hand Gesture Commands 31

Modes of Classifi cation

We distinguish between supervised classifi cation and unsupervised classifi cation:

• In supervised classifi cation the training samples are labeled, i.e. the class of each
training sample is known. Classifi cation of a new observation is performed by
a comparison with these samples (or models created from them) and yields the
class that best matches the observation, according to a matching criterion.

• In unsupervised classifi cation the training samples are unlabeled. Clustering al-
gorithms are used to group similar samples before classifi cation is performed.
Parameters such as the number of clusters to create or the average cluster size
can be specifi ed to infl uence the clustering process. The task of labeling the sam-
ples is thus performed by the classifi er, which of course may introduce errors.
Classifi cation itself is then performed as above, but returns a cluster index in-
stead of a label.

For gesture recognition, supervised classifi cation is by far the most common
method since the labeling of the training samples can easily be done in the recording
process.

Overfi tting

With many classifi cation algorithms, optimizing performance for the training data at
hand bears the risk of reducing performance for other (generic) input data. This is
called overfi tting and presents a common problem in machine learning, especially
for small sets of training samples. A classifi er with a set of parameters p is said
to overfi t the training samples T if there exists another set of parameters p′ that
yields lower performance on T , but higher performance in the actual “ real-world”
application [15].

A strategy for avoiding overfi tting is to use disjunct sets of samples for training
and testing. This explicitly measures the classifi er’s ability of generalization and al-
lows to include it in the optimization process. Obviously, the test samples need to be
suffi ciently distinct from the training samples for this approach to be effective.

2.1.3.2 Classifi cation Algorithms

From the numerous strategies that exist for fi nding the best-matching class for an
observation, three will be presented here:

• A simple, easy-to-implement rule-based approach suitable for small vocabularies
of static gestures.

• The concept of maximum likelihood classifi cation, which can be applied to a
multitude of problems.

• Hidden Markov Models (HMMs) for dynamic gestures. HMMs are frequently
used for the classifi cation of various dynamic processes, including speech and
sign language.

Further algorithms, such as artifi cial neural networks, can be found in the litera-
ture on pattern recognition and machine learning. A good starting point is [15].

