
2 Simple MPI I 
FORTRAN Applications 

2.1 Introduction 

The numerical algorithms discussed throughout this textbook can be implemented by 
using Message Passing Interface (MPI) either in FORTRAN or C++ language. 
MPIFORTRAN is essentially the same as the "regular" FORTRAN 77 and/or 
FORTRAN 90, with some additional, "special FORTRAN statements for parallel 
computation, sending (or broadcasting), receiving and merging messages among 
different processors. Simple and most basic needs for these "special" FORTRAN 
statements can be explained and illustrated through two simple examples, which will 
be described in subsequent sections. 

2.2 Computing Value of 7C by Integration 

The numerical value of x (~3.1416) can be obtained by integrating the following 
function: 

4 
f(x)=- for x = [0,1] 

1+x2 ' 

Since 

hence 

Integrating the function given in Eq.(2.1) can be approximated by computing the 
area under the wave f(x), as illustrated in Figure 2.1. 

In Figure 2.1, assuming the domain of interests, x = 0 + 1, is divided into n = 8 
segments. For example, segment 1 will correspond to x = 0 and 2/16, segment 4 
corresponds to x = 6/16 and 8/16, etc. Thus, the integral size h = (1-0)/8 = 118. It is 
further assumed that the number of processors (= numprocs) to be used for parallel 
computation is 4 (= processors Po, PI, P2, and P3). The values of "myid" in Table 2.1 
(see loop 20) are given by 0, 1,2, and 3, respectively. 
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f(x) 
1 + 

4 
Figure 2.1 Computing n; by Integrating f (x) = - 

1+x2 

According to Figure 2.1, a typical processor (such as P3) will be responsible to 
compute the areas of two segments. Thus, the total areas computed by processor P3 
are: 

= (Area of segment 4) + (Area of segment of 8) (2.3) 

or 

(Area)q = (h *Average height of segment 4) + (h * Average height of segment 8) (2.4) 

= h * (Average height of segment 4 + Average height of segment 8) (2.5) 

The values of {sum) and mypi are computed inside and outside loop 20, respectively 
(see Table 2.1). 

Since there are many comments in Table 2.1, only a few remarks are given in the 
following paragraphs to further clarify the MPIJFORTRAN code: 

Remark 1. In a parallel computer environment, and assuming four processors 
(= Po, PI, P2, and P3) are used, then the same code (such as Table 2.1) will be 
executed by each and every processor. 
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Remark 2. In the beginning of the main parallel MPIIFORTRAN code, "special" 
MPVFORTRAN statements, such as include "mpif.h, call MPI-INIT, ..., and call 
MPI-COMM-SIZE (or near the end of the main program, such as call 
MPI-FINALIZE), are always required. 

Remark 3. The variable "myid" given in Table 2.1 can have integer values as 0, 1, 
2, . . . (# processors -1) = 3, since # processors = numprocs = 4 in this example. 

Remark 4. The "If-Endif' block statements, shown near the bottom of Table 2.1, 
are only for printing purposes, and therefore, these block statements can be executed 
by any one of the given processors (such as by processor Po or myid = 0), or by 
processor Pg (or myid = 3). To be on the safe side, however, myid = 0 is used, so that 
the parallel MPI code will not give an error message when it is executed by a single 
processor! 

Remark 5. The parameters given inside the call MPI-BCAST statement have the 
following meanings: 

IS' parameter = n = The "information" that needs to broadcast to all 
processors. This "information" could be a scalar, a vector, 
or a matrix, and the number could be INTEGER, or 
REAL, etc. 

In this example, n represents an INTEGER scalar. 

2nd parameter = 1 (in this example), which represents the "size" of the 1'' 
parameter. 

3rd parameter = MPI-INTEGER, since in this example the 1" parameter is an 
integer variable. 

4' parameter = 0, which indicates that the IS' parameter will be broadcasting to 
all other processors. 

Remark 6. Depending on the processor number (= myid), each processor will be 
assigned to compute a different segment of rectangular areas (see do-loop 20, in 
Table 2.1). 

Remark 7. After executing line "mypi=h*sum," each and every processor has 
already computed its own (or local) net areas (= area of 2 rectangular segments, as 
shown in Figure 2.1), and is stored under variable "mypi." Therefore, the final value 
for n, can be computed by adding the results from each processor. This task is done 
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by "call MPI-REDUCE." The important (and less obvious) parameters involved in " 
call MPI-REDUCE," shown in Table 2.1 are explained in the following paragraphs: 

IS' parameter = mypi = net (rectangular) areas, computed by &processor. 

2nd parameter = pi = total areas (= approximate value for It), computed by 
adding (or summing) each processor's area. 

3rd parameter = 1 (= size of the IS' parameter) 

4' parameter = MPI-DOUBLE-PRECISION = double precision is used for 
summation calculation. 

5' parameter = MPI-SUM = performing the "summing" operations from each 
individual processor's results (for some 
application, "merging" operations may be 
required). 

6" parameter = 0 

Remark 8. Before ending an MPI code, a statement, such as call MPI-FINALIZE 
(see Table 2.1), needs to be included. 

Table 2.1 Compute 'IC by Parallel Integration 12.'] 

3 pi.f - compute pi by integrating f(x) = 4/(1 + x**2) 

c Each node: 
c 1) receives the number of rectangles used in the approximation. 
c 2) calculates the areas of it's rectangles. 
c 3) Synchronizes for a global summation. 
c Node 0 prints the result. 
C 

c Variables: 
L 

c pi the calculated result 
c n number of points of integration. 
c x midpoint of each rectangle's interval 
c f function to integrate 
c sum,pi area of rectangles 
c tmp temporary scratch space for global summation 
c i do loop index 
................................................................ 

program main 
include 'mpif.hl 
double precision P125DT 
parameter (PI25DT = 3-14 1592653589793238462643dO) 
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double precision mypi, pi, h, sum, x, f, a,timel ,time2 
integer n, myid, numprocs, i, rc 

function to integrate 
f(a) = 4.d0 1 (1.dO + a*a) 
call MPI-INIT( ierr ) 
call MPI-COMM-RANK( MPI-COMM-WORLD, myid, ierr ) 
call MPI-COMM-SIZE( MPI-COMM-WORLD, numprocs, ierr ) 
print *, 'Process ', myid, ' of ', numprocs, ' is alive' 

end 
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2.3 Matrix-Matrix Multiplication 

The objective of this section is to again illustrate the usage of few basic parallel 
MPIJFORTRAN statements for simple applications such as multiplying 2 matrices. 
To further simplify the discussion, it is assumed that 4 processors (numtasks = 
number of processors = 4, see line #021 in Table 2.2) are used for parallel 
multiplication of 2 square matrices A (1000, 1000) and B (1000, 1000). The main 
steps involved in this example are summarized as follows: 

Step 1: Input (or generate) matrices [A] and [B] by a master program (= processor 
0). This task is done by lines # 048 - 058 in Table 2.2. 

Step 2: The master processor will distribute certain columns of matrix [B] to its 
workers (= numworkers = numtasks - 1 = 4 - 1 = 3 workers, see line #022 in Table 
2.2). Let NCB = Number of Columns of [B] = 1,000. The average number of 
columns to be received by each "worker" processor (from a "master" processor) is: 

Avecol = NCBInumworkers = 1,000/3 = 333 (see line #060). 

The "extra" column(s) to be taken care of by certain "worker" processor(s) is 
calculated as: 

Extra = mod (NCB, numworkers) = 1 (see line #061). 

In this example, we have a "master" processor (taskid = 0, see line #020) and 3 
"worker" processors (taskid = 1, 2, or 3). Each "worker" processor has to carry a 
minimum of 333 columns of [B]. However, those worker processor number(s) that 
are less than or equal to "extra" (= I), such as worker processor 1, will carry: 

Cols = avecol + 1 = 334 columns (see line #066). 

The parameter "offset" is introduced and initialized to 1 (see line #062). The value of 
"offset" is used to identify the "starting column number" in the matrix [B] that will 
be sent (by a MASTER processor) to each "worker7' processor. Its value is updated 
as shown at line #079. For this particular example, the values of "offset" are 1, 335, 
and 668 for "worker processor" number 1,2, and 3 (or processor numbers PI, P2, and 
P3), respectively. 

In other words, worker processor PI will receive and store 334 columns of [B], 
starting from column 1 (or offset = I), whereas worker processors P2 (and P3) will 
receive and store 333 columns of [B], starting from column 335 (and 668), 
respectively. 

Inside loop 50 (see lines #064 - 080), the "master7' processor (Po) will send the 
following pieces of information to the appropriate "worker processors": 
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(a) The value of "offset" (see line #07 1) 
(a) The number of columns of [B] (see line #073) 
(b) The entire matrix [A] (see line #075) 
(c) The specific columns of [B] (see line #077) 

The parameters involved in MPI- SEND are explained as follows: 
lSt parameter = name of the variable (could be a scalar, a vector, a matrix, etc.) 

that needs to be sent 
2nd parameter = the size (or dimension) of the 1'' parameter (expressed in 

words, or numbers) 
3* parameter = the type of variable (integer, real, double precision, etc.) 
4" parameter = dest = destination, which processor will receive the message (or 

information) 
5" parameter = mtype = 1 (= FORM-MASTER, also see lines #013,063) 
6" parameter = as is, unimportant 
7" parameter = as is, unimportant 

Having sent all necessary data to "worker processors," the "master processor" will 
wait to receive the results from its workers (see lines # 081 - 091), and print the 
results (see lines # 092 - 105). 

Step 3: Tasks to be done by each "worker" processor. 

(a) Receive data from the "master" processor (see lines #lo6 - 118). 
(b) Compute the matrix-matrix multiplications for [entire A]*[portion of 

columns B] = [portion of columns C], see lines #I19 - 125. 
(c) Send the results (= [portion of columns C]) to the "master" processor (see 

lines #I26 - 136). 

It shouId be noted here that the parameters involved in MPI-RCV are quite similar 
(nearly identical to the ones used in MPI-SEND). 

Table 2.2 Parallel Computation of Matrix Times Matrix 12.'] 

I program mm 

include 'mpif.hl 
c NRA : number of rows in matrix A 
c NCA : number of columns in matrix A 
c NCB : number of columns in matrix B 

parameter (NRA = 1000) 
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parameter (NCA = 1000) 
parameter (NCB = 1000) 
parameter (MASTER = 0) 
parameter (FROM-MASTER = 1) 
parameter (FROM-WORKER = 2) 
integer numtasks,taskid,numw~rkers,source,dest,mtype, 
& cols,avecol,extra, offset,i,j,k,ierr 
integer status(MP1-STATUS-SIZE) 
real*8a(NRA,NCA), b(NCA,NCB), c(NRA,NCB) 
call MPI-INIT( ierr ) 
call MPI-COMM-RANK( MPI-COMM-WORLD, taskid, ierr ) 
call MPI-COMM-SEE( MPI-COMM-WORLD, numtasks, ierr ) 
numworkers = numtasks- 1 
print *, 'task ID= ',taskid 

......................................... 
write(6,*) 'task id = ',taskid 
call system ('hostname') 
! to find out WHICH computers run this job 
! this command will SLOW DOWN (and make UNBALANCED 
! workloads amongst processors) 

......................................... 
if(numworkers.eq.0) then 
time00 = MPI-WTIME() 

: Do matrix multiply 
do I1 k=l, NCB 
do I 1 i=l, NRA 
c(i,k) = 0.0 
do 11 j=l,NCA 
c(i,k) = c(i,k) + a(i j) * b(j,k) 

11 continue 
time01 = MPI-WTIME() 
write(*,*) ' C(1,l) : ', c(l ,I) 
write(*,*) ' C(nra,ncb): ',C(nra,ncb) 
write(*,*) 
write(*,*) ' Time me=O: ', time01 - time00 
go to 99 
endif 

: ........................... master task ........................... 
if (taskid .eq. MASTER) then 
time00 = MPI-WTIME() 

: Initialize A and B 
do 30 i=l, NRA 
do 30 j=l, NCA 
a(i,j) = (i-l)+(j-1) 

30 continue 
do 40 i=l, NCA 
do 40 j=l, NCB 
b(i,j) = (i-I)*&]) 

$0 continue 
: Send matrix data to the worker tasks 

avecol = NCBInumworkers 
extra = mod(NCB, numworkers) 
offset = 1 
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mtype = FROM-MASTER 
do 50 dest=l, numworkers 
if (dest .le. extra) then 

cols = avecol + 1 
else 

cols = avecol 
endif 
write(*,*)' sending',cols,' cols to task',dest 
call MPI-SEND( offset, 1, MPI-INTEGER, dest, mtype, 

& MPI-COMM-WORLD, ierr ) 
call MPI-SEND( cols, 1, MPI-INTEGER, dest, mtype, 

& MPI-COMM-WORLD, ierr ) 
call MPI-SEND( a, NRA*NCA, MPI-DOUBLE-PRECISION, dest, mtype, 

& MPI-COMM-WORLD, ierr ) 
call MPLSEND( b(1 ,offset), cols*NCA, MPI-DOUBLE-PRECISION, 

& dest, mtype, MPI-COMM-WORLD, ierr ) 
offset = offset + cols 

0 continue 
Receive results from worker tasks 
mtype = FROM-WORKER 
do 60 i=l , numworkers 

source = i 
call MPI-RECV( offset, 1, MPI-INTEGER, source, 

& mtype, MPI-COMM-WORLD, status, ierr ) 
call MPI-RECV( cols, 1, MPI-INTEGER, source, 

& mtype, MPI-COMM-WORLD, status, ierr ) 
call MPI-RECV( c(l ,offset), cols*NRA, MPI-DOUBLE-PRECISION, 

& source, mtype, MPI-COMM-WORLD, status, ierr ) 
0 continue 

time01 = MPI-WTIME() 
Print results 
do 90 i=l, NRA 

d o 8 0 j =  1,NCB 
write(*,70)c(ij) 

70 format(2x,fS.2,$) 
80 continue 

print *, ' ' 
90 continue 

write(*,*) ' C(1,l) : ', c(I,1) 
write(*,*) ' C(nra,ncb): ',C(ma,ncb) 
write(*,*) 
write(*,*) ' Time me=O: ', time01 - time00 

endif 
***************************wOrkertask****************************** 

if (taskid.gt.MASTER) then 
time1 l = MPI-WTIME() 
Receive matrix data from master task 
mtype = FROM-MASTER 
call MPI-RECV( offset, 1, MPI-INTEGER, MASTER, 

& mtype, MPI-COMM-WORLD, status, ierr ) 
call MPI-RECV( cols, 1, MPI-INTEGER, MASTER, 

& mtype, MPLCOMM-WORLD, status, ierr ) 
call MPI-RECV( a, NRA*NCA, MPI-DOUBLE-PRECISION, MASTER, ! 115 
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& mtype, MPI-COMM-WORLD, status, ierr ) 
call MPI-RECV( b, cols*NCA, MPI-DOUBLE-PRECISION, MASTER, 

& mtype, MPI-COMM-WORLD, status, ierr ) 
C Do matrix multiply 

do 100 k=l , C O ~ S  

do 100 i=l,  NRA 
c(i,k) = 0.0 
do 100 j=l,  NCA 

c(i,k) = c(i,k) + a(ij) * b(j,k) 
100 continue 

C Send results back to master task 
mtype = FROM-WORKER 
call MPI-SEND( offset, 1, MPI-INTEGER, MASTER, mtype, 

& MPI-COMM-WORLD, ierr ) 
call MPI-SEND( cols, 1, MPI-INTEGER, MASTER, mtype, 

& MPLCOMM-WORLD, ierr ) 
call MPI-SEND( c, cols*NRA, MPI-DOUBLE-PRECISION, MASTER, 

& mtype, MPI-COMM-WORLD, ierr ) 
time22 = MPI-WTIME() 
write(*,*) ' Time me=',taskid,': ', time22 - time1 1 
endif 

99 call MPI-FINALIZE(ierr) 
end 

2.4 MPI Parallel 110 

Some basics in InputIOutput (VO) operations under MPI environments are 
explained and demonstrated in  Table 2.3 

Table 2.3 V 0  Operations under MPI Environments 

program mpiio 
include 'mpif.hl 

c implicit real*8(a-h,o-z) ! will get error if use this "implicit" strnt 
.......................................................................... 
c Purposes: Using MPI parallel i/o for writing &reading by different 
c processors, on "different segments" of the "same" file 
c Person(s): Todd and Duc T. Nguyen 
c Latest Date: April 10,2003 
c Stored at: cd -Iceelmpi-sparse-fem-dampi-io.f 
c Compile ??: Just type 
c tmf90 -fast -xarch=v9 mpi-io.f -1mpi 
c Execute ??: Just type (assuming 2 processors are used) 
c bsub -q hpc-mpi-short -I -n 2 a.out 
c Output: Stored at files 301+(me= processors 0, 1, etc ...) 
.......................................................................... 

real*8 a, b 
real*8 tl,t2,t3 
parameter (nns = 10000000) 
integer op,nns,nsz,myfh 
dimension a(nns),b(nns) 
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call MPI-INIT(ierr) 
call MPI_COMM-RANK(MP1-COMM-WORLD, me, ierr) 
call MPLCOMM-SIZE(MP1-COMM-WORLD, np, ierr) 
ns = nnslnp 
ip = 101 
op = 301 +me 
kind = MPI-OFFSET-KIND 

.................................... 
Initial testing arrays 
.................................... 

do i = 1,ns 
a(i) = i+ns*me 
b(i) = 0 

enddo 
.................................... 
Open the file 
.................................... 

call MPI-FILE-OPEN(MP1-COMM-WORLD, 'test', 
& MPI~MODE~rdwr+mpi~mode~create,MPI~INFO~NULL,myfh,ierr) 

.................................... 
Set view point for each process 
.................................... 

idisp = ns*S*me 
write(op,*) '----------------------I 
write(op,*) 'me,kindl,me,kind 
write(op,*) 'idispl,idisp 
call MPI~FILE~SET~VIEW(myfh,idisp,MPl~double~precision, 

& MPl-double-precision,'native',MPI-INFO-NULLjerr ) 
call mpi-file-seek(myfh,idisp,mpi-seek-set,ierr) 
nsz = ns 
write(op,*) 'nszl,nsz 

..................................... 
Write array to the disk 

..................................... 
: write(op,*) 'al,(a(i),i=l ,nsz) 

t 1 = MPI-WTIME() 
call MPI~FTLEEWRITE(myfh,a,nsz,MPI~double~precision, 

& mpi-status-ignore,ierr) 
t2 = MPI-WTIME() 
write(op,*) 'Time to write(MP1) to the disk',t2-tl 

..................................... 
: Read file 
..................................... 

idisp = ns*Sh(me+l) 
if (me .eq. np-1) then 
idisp = 0 

endif 
call MPI-FILE-SET-VIEW(myfh,idisp,MPI_double-precision, 

& MPl~double~precision,'native',MPI~INFO~NULL,ierr ) 
call MPI-FnE_READ(myfh,b,nsz,MPI-double-precision, 

& mpi-status-ignore,ierr) 
call MPI-FILE-CLOSE(myfh,ierr) 
t3 = MPI-WTIME() 
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write(op,*) 'Time to read(MP1) from the disk',t3-t2 
c write(op,*) 'b',(b(i),i=l ,nsz) 
c call MPI-FILE-CLOSE(myfh,ierr) 
999 call MPI-FINALIZE(ierr) 

stop 
end 

Preliminary timing for READIWRITE by a different number of processors is 
reported in Table 2.4. 

Table 2.4 Preliminary Performance of MPI Parallel 110 

(Using HELIOS, but compiled and executed from CANCUN, SUN-10,000 
computer) 

NP 

Write 

Read 

33.04 sec 

15.39 sec 

Each 
processor 
write 10 
million 
double 
procession 
words, 
and read 
10 Million 
words 

16.34 sec 
me = 0) 

16.68 sec ~ 
'me = 1) ~ 
18.34 sec 
'me = 0) 

19.68 sec 
:me = 1) 

Each 
processor 
write and 
read 5 
million 
double 
precision 
words (in 
parallel) 

Z9.75 sec 

58.38 sec 

1 1.77 sec 

3.79 sec ' 

Correspond 
to 4 
processors 

me = 

each 
processor 
write and 
read 
2.5*106 
words 

Comments 

using MPI wall clock 

time subroutine 

{write is slower than read 

Parallel y& seems to offei 
some speed 

Parallel seems to be 

worse 
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2.5 Unrolling Techniques 

To enhance the performance of the codes, especially on a single vector processor, 
unrolling techniques are often used to reduce the number of "load and store" 
movements (to and from the CPU), and, therefore, code performance can be 
improved (up to a factor of 2, on certain computer platforms). 

To illustrate the main ideas, consider the simple task of finding the product of a 
given matrix [A] and a vector {x), where 

Algorithm 1: Dot product operations 

In this algorithm, each row of a matrix [A] operates on a vector {x)  to obtain the 

product operations of two vectors. The FORTRAN code for this algorithm is given 
in Table 2.5. 

Table 2.5 Matrix Times Vector (Dot Product Operations) 
Do 1 I = 1, N  (say = 4 )  
D 0 1 J = l , N  

1 b ( 1 )  = b ( 1 )  + A ( 1 ,  J )  * x ( J )  

Algorithm 2: Dot product operations with unrolling techniques 

We can group a few (say NUNROL = 2) rows of [A] and operate on a vector {x). 
Thus, algorithm 1 can be modified and is given in Table 2.6. 

Table 2.6 Matrix Times Vector (Dot Product Operations, with Unrolling Level 2) 
Do 1 I = 1, N ,  NUNROL ( =  2 )  
DO 1 J =1, N 

b ( 1 )  = b ( 1 )  + A ( 1 ,  J )  * x ( J )  
1 b ( I + l )  = b ( I + l )  + A ( I + l ,  J )  * x ( J )  
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Algorithm 3: Saxpy operations 

In this algorithm, each column of matrix [A] operates on an appropriate component 
of vector {x} to get a "partial, or incomplete7' solution vector {b). Thus, the first 
"partial" solution for {b) is given as: 

{b ) incomplete = 

13 26 

and eventually, the "final, complete" solution for {b) is given as: 

{b} find = 

26 

The FORTRAN code for this algorithm is given in Table 2.7. 

Table 2.7 Matrix Times Vector (Saxpy Operations) 
Do 1 I = 1, N 
DO 1 J = 1, N 

b ( J )  = b ( J )  + A ( J ,  I )  * x ( 1 )  
1 Cont h u e  

The operation inside loop 1 of Table 2.7 involves a summation of a scalar 12 (= x (I), 
in this case, since x(1) is independent from the innermost loop index J) times a vector 
x (= A(J, I), in this case, since the I" column of [A] can be considered as a vector) - 
elus a previous vector y (= b(J), in this case), hence the name SAXPY! 

Algorithm 4: Saxpy operations with unrolling techniques 

We can group a few (say NUNROL = 2) columns of matrix [A] and operate on 
appropriate components of vector {x). Thus, algorithm 3 can be modified as shown 
in Table 2.8. 

Table 2.8 Matrix Times Vector (Saxpy Operation with Unrolling Level 2) 
Do 1 I = 1, N ,  NUNROL ( =  2 )  
D o 1  J = l ,  N 

b ( J )  = b ( J )  + A ( J ,  I )  * x ( 1 )  + A ( J ,  I + 1 )  * x ( I + l )  
1 Continue 
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Remarks: Unrolling dot product operations are different from unrolling saxpy 
operations in several aspects: 

(a) The former (unrolling dot product) gives a "final, or complete" solution, 
whereas the latter (unrolling saxpy) gives a "partial, or incomplete" 
solution. 

(b) In FORTRAN coding, the former requires "several" FORTRAN statements 
inside the innermost loop (see Table 2.6), whereas the latter requires "one 
long" FORTRAN statement (see Table 2.8). 

(c) The former involves the operation of the dot product of two given vectors, 
whereas the latter involves the operation of a CONSTANT times a 
VECTOR, plus another vector. 

(d) On certain computer platforms (such as Cray 2, Cray YMP and Cray - C90, 
etc.), saxpy operations are faster than dot product operations. Thus, 
algorithms and/or solution strategies can be tailored to specific computer 
platforms to improve the numerical performance. 

(e) In Tables 2.6 and 2.8, if N is "not" a multiple of "NUNROL", then the 
algorithms have to be modified slightly in order to take care of a few 
remaining rows (or columns) of matrix [A], as can be seen in Exercises 2.4 
and 2.6. 

2.6 Parallel Dense Equation Solvers 

In this section, it will be demonstrated that simple, yet highly efficient parallel 
strategies can be developed for solving a system of dense, symmetrical, positive 
definite equations. These strategies are based upon an efficient matrix times matrix 
subroutine, which also utilizes the "unrolling" techniques discussed in the previous 
sections. 

2.6.1 Basic Symmetrical Equation Solver 

Systems of linear, symmetrical equations can be represented as: 
A . x = b  (2.1 1) 

One way to solve Eq42.11) is to first decompose the coefficient matrix A into the 
product of two triangular matrices 

A = U ~ U  (2.12) 

Where U is an upper-triangular matrix which can be obtained by 
i -1 . . 

aij - x u k i u k j  

when i # j , then uij = 
k=l 

Uii  

when i = j , then 
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Then the unknown vector x can be solved through the forwardhackward 
elimination, such as: 

u T y = b  (2.15) 

for y, with 

and to solve 

for x, with 

The efficiency of an equation solver on massively parallel computers with 
distributed memory is dependent on both its vector andlor cache performance and its 
communication performance. In this study, we have decided to adopt a skyline 
column storage scheme to exploit dot product operations. 

2.6.2 Parallel Data Storage Scheme 

Assuming 3 processors are used to solve a system of 15 matrix equations, the matrix 
will be divided into several parts with 2 columns per blocks (ncb = 2). Therefore, 
from Figure 2.2, processor 1 will handle columns 1, 2, 7, 8, 13, and 14. Also, 
processor 2 will handle columns 3, 4, 9, 10, and 15, and processor 3 will handle 
columns 5, 6, 11, and 12. The columns that belong to each processor will be stored 
in a one-dimensional array in a column-by-column fashion. For example, the data in 
row 4 and column 7 will be stored by processor 1 at the 7" location of one- 
dimensional array A of processor 1. Likewise, each processor will store only 
portions of the whole matrix [A]. The advantage of this storage scheme is that the 
algorithm can solve a much bigger problem. 
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Figure 2.2 Block Columns Storage Scheme 

Two more small arrays are also needed to store the starting columns (icolst) and 
ending columns (jcolend) of each block. 

Therefore, from this example: 

icolst := ( ) icolend := ( L) 
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It should be noted that sizes of arrays {icolst) and {icolend] are the same for the 
same processor, but may be different from other processors. In fact, it depends on 
how many blocks are assigned to each processor (noblk). For this example, 
processors 1 and 2 each stores 3 blocks of the matrix, and processor 3 stores 2 blocks 
of the matrix. 

2.6.3 Data Generating Subroutine 

The stiffness matrix, stored in a one-dimensional array {A) and the right-hand-side 
load vector {b)  will be automatically generated such that the solution vector {x) will 
be 1 for all values of {x). Also, from Eq.2.14, the diagonal values of the stiffness 
matrix should be large to avoid the negative values in the square root operation. The 
general formulas to generate the stiffness matrix are: 

aiYi = 50000. (i + i) 

and the formula for RHS vector can be given as: 

2.6.4 Parallel Choleski Factorization 1'.91 

Assuming the first four rows of the matrix A (see Figure 2.2) have already been 
updated by multiple processors, and row 5 is currently being updated, according to 
Figure 2.2, terms such as ~ 5 , ~ .  . . U5.6 and U ~ , J  1.. . u5,~2 are processed by processor 3. 
Similarly, terms such as u 5 , ~  .. u5,* and u5,,3. .. are handled by processor 1 while 
terms such as u ~ , ~ ,  and are executed by processor 2. 

As soon as processor 3 completely updated column 5 (or more precisely, updated the 
diagonal term since the terms u , , ~  u2,5 . .. u ~ , ~  have already been factorized 
earlier), it will send the entire column 5 (including its diagonal term) to all other 
processors. Then processor 3 will continue to update its other terms of row 5. At the 
same time, as soon as processors 1 and 2 receive column 5 (from processor 3), these 
processors will immediately update their own terms of row 5. 

To enhance the computational speed, by using the optimum available cache, the 
"scalar" product operations (such as uki*ukj) involved in Eq.(2.13) can be replaced by 
"sub-matrix" product operations. Thus, Eq(2.13) can be re-written as: 
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Similar "sub-matrix" expressions can be used for Eqs.(2.14,2.16,2.18). 

2.6.5 A Blocked And Cache Based Optimized Matrix-Matrix Multiplication 

Let's consider matrix C(m,n) to be the product of two dense matrices A and B of 
dimension (m,l) and (l,n), respectively. 

A basic matrix-matrix multiplication algorithm consists of triple-nested do loops as 
follows: 

D o  i = l , m  
D o  j = l , n  

DO k = l  , 1 
c ( i ,  j ) = c ( i ,  j ) + a ( i , k ) * b ( k ,  j )  

ENDDO 
ENDDO 

ENDDO 

Further optimization can be applied on this basic algorithm to improve the 
performance of the multiplication of two dense matrices. The following optimization 
techniques are used for the matrix-matrix multiplication sub-routine. 

Re-ordering of loop indexes 
Blocking and strip mining 
Loop unrolling on the considered sub-matrices 
Stride minimization 
Use of temporary array and leftover computations 

2.6.5.1 Loop Indexes And Temporary Array Usage 

Fortran uses column-major order for array allocation. In order to get a "stride" of one on most 
of the matrices involved in the triple do loops of the matrix-matrix multiplication, one needs 
to interchange the indices as follows: 

D o  j = l , n  
D o  i = l , m  

D o  k = l ,  1 
c ( i ,  j ) = c ( i ,  j ) + a ( i , k ) W k ,  j )  

ENDDO 
ENDDO 

ENDDO 

Note that in the above equation, the order of the index loop has been re-arranged to 
get a stride of 1 on matrix C and B. However, the stride on matrix A is m. In order to 
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have a stride of 1 during the computation on matrix A, a temporary array is used to 
load a portion of matrix A before computation. 

2.6.5.2 Blocking and Strip Mining 

Blocking is a technique to reduce cache misses in nested array processing by 
calculating in blocks or strips small enough to fit in the cache. The general idea is 
that an array element brought in should be processed as fully as possible before it is 
flushed out. 

To use the blocking technique in this basic matrix-matrix multiplication, the 
algorithm can be re-written by adding three extra outer loops (JJ, II, and KK) with an 
increment equal to the size of the blocks. 

Do KK=l,l,kb 
Do J=JJ,min(n,JJ+jb-1) 

Do I=II,min(m,II+ib-1) 
Do K=KK,min(l,KK+kb-1) 

c(i, j)=c(i, j)+a(i,k)*b(k, j) 
ENDDO 

ENDDO 
ENDDO 

ENDDO 
ENDDO 

ENDDO 

In the above code-segment, ib, jb, and kb are the block sizes for i, j, and k, 
respectively, and they are estimated function of the available cache size for different 
computer platforms. 

2.6.5.3 Unrolling of Loops 

Unrolling of loops is considered at various stages. To illustrate the idea, let's 
consider the inner do loop (see the index k) where the actual multiplication is 
performed. Here a 4 by 4 sub-matrix is considered at the time, and the inner do loop 
of Eqs.(2.13 - 2.14 ) can be unrolled in the following fashion: 

DO j=l, number of J blocks 
DO i=l, number of I blocks 

DO k=l, number of K blocks 
c{i,j} = C{i.j} + T{1,1) * Btk,j} 
c{i+l,j} = C{i+l,j} + TIl.21 * B{k,jl 
c{i,j+l} = C{i,j+l} + T{1,11 * B{k.j+ll 
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C{i+l,j+2) = C{i+l,j+2) + T{1,2) * Btk,j+2), 
c{i,j+3) = C{i,j+3} + T{1,1) * ~{k,j+3) 
C{i+l,j+3) = C{i+l,j+3) + T{1,2) * ~{k,j+3) 
C{i+2,j) = C{i+2,j) + TI1,l) * B{k,j) 
C{i+3,j) = C{i+3,jl + T{1.2) * B{k,j) 
C{i+2,j+l) = C{i+2,j+l) + T{1,1) * B{k,j+l) 
C{i+3,j+l) = C{i+3,j+lI + T{1,2) * B{k,j+l) 
C{i+2,j+2) = C{i+2,j+2) + T{I,l) * B{k,j+21 
C{i+3,j+2) = C{i+3,j+2) + T{1,2) * ~{k,j+2) 
c{i+2,j+3) = C{i+2,j+3) + T{1,1) * ~{k,j+31 
C{i+3,j+3) = C{i+3,j+3) + T{1,2) * ~{k,j+3) 

ENDDO 
ENDDO 

ENDDO 

In the above code-segment, T is the temporary 2-D array, which contains portions of 
the matrix [A]. 

2.6.6 Parallel "Block" Factorization 

I 1 

Figure 2.3 Parallel Block Factorization 



84 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

The procedure starts at factorizing the first block of processor 1 by using basic 
sequential Choleski factorization. Then, processor 1 will send its first block (Al) to 
processor 2 and 3. After that, processor 1 will factorize A2 and A6 blocks. At the 

same time, processor 2 is factorizing B1, B3, and B8 blocks, and processor 3 is 
factorizing C1 and C4 blocks. Up to now, the first ncb rows are already factorized. 

Note: 

Suppose the block A2 is being factorized, the formula that can be used for 
factorization is 

[A2lnew = ( [A 1 lT )-' [A2l01, 

Pre-multiply both side with [ A I ] ~ ,  we get 

lT [A2lnew = [A2lo1, 

[A2Inew , therefore, can be solved by performing the forward operations for 
ncb times. 

After processor 2 finished factorizing blocks B1, B3, and B8, the block B2 will be 
the next block to be factorized. The numerator of equation (2.13) can be 
"symbolically7' rewritten in the form of sub-matrix as: 

[Wnew = Jm (2.21) 

"Squared" both sides of Eq.(6.21), one gets: 

[~21;f ,w [B~I,, = [B2101d - [ ~ 1 1 ~ [ ~ 1 1  (2.22) 

Since the right-hand-side matrix of Eq(2.22) is known, the "standard" Choleski 
method can be used to compute [B2Inew. After processor 2 finishes factorizing B2, it 
will send the information of this block to processor 3 and processor 1, respectively. 
Then, it will factorize block B4 and B9 while processor 3 and 1 are factorizing C2, 
C5, A3, and A7. Up to now, the f is t  2 (ncb) rows are already factorized. 

Suppose block C2 is being factorized, the numerator of equation 3 can be re- 
written in sub-matrix form as: 

Then, the denominator term will be processed like the step that has been used to 
factorize block A2. 
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Now, processor 3 will be the master processor (i.e., the processor that will factorize 
the diagonal block), and the step mentioned above will be repeated for subsequent 
steps. 

2.6.7 "Block" Forward Elimination Subroutine 

From Section 2.6.1, the system of Eq. (2.1 1) can be rewritten as: 

In this forward substitution phase, three different types of processors are identified: 

1. The master processor is the processor that calculates the "final" solution {xi) 
for this phase (i.e., processor 1 at starting point). 

2. The next master processor is the processor that will calculate the final {xi} in 
the next loop of operation (i.e., processor 2 at starting point). 

3.The workers are the processors that will calculate the updated value of {xi) in 
the next loop of operation (i.e., processor 3 at starting point). 

The procedure from the given example starts at the forward substitution for the final 
solution { y ,  ] by doing forward substitution of block A 1 by processor 1, the master 
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processor. Then, processor 1 will send the solution of (y , ]  to processor 2 (the next 
master processor) and 3 (the worker). After that, processor 1 will "partially" update 
{ y4) and { y7) by doing forward of substitution blocks A2 and A6, respectively. For 
the next master processor, processor 2, it will update and calculate the final {yzJ by 
doing forward substitution of blocks B1 and B2 respectively. After that, processor 2 
will send the solution of (yz] to processor 3 (the next master processor) and 1 (the 
worker). At the same time, the worker, processor 3 will do  forward substitution of 
block C1 to update {y3) and C4 to update (y6) .  The next step will be that processor 
3 is the master processor, and the procedure will be repeated until all intermediate 
unknowns are solved. 

2.6.8 "Block" Backward Elimination Subroutine 

In this backward substitution phase, the unknown vector {x) ,  shown in Eq.(2.11), 
will be solved. 

Figure 2.4 Backward Elimination Phase 
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From Figure 2.4, processor 2 will be the master of the starting process. The main 
ideas of the algorithm are to divide the upper-factorized matrix into a sub-group of 
block matrices, which have, normally ncb x np rows. Also, there are 3 types of sub- 
group blocks, which are the first blocks, the intermediate blocks, and the last blocks 
or leftover block. Then each processor will do backward substitution block by block 
from bottom to top and, if possible, from right to left. After doing backward 
substitution, each processor will send the solution (partially updated or final) to its 
left processor (i.e. processor 2 will send the solution to processor 1, processor I will 
send the solution to processor 3, and processor 3 will send the solution to processor 
2). From the given example, processor 2 will do backward substitution of block B15 
to find the final solution of X8. Then, it will send X8 to the adjacent (left) processor, 
processor 1, and start to do backward substitution of block B14 to find the partially 
updated solution of X7. Then, processor 2 will send X7 to processor 1 .  Now, 
processor 1 will do backward substitution of block A12 to find the final solution of 
X7, while processor 2 is doing backward substitution of block B13 to find the partial 
updated solution of X6. To clearly understand the steps involved in this phase, see 
Table 2.9. 

Table 2.9 Processor Tasks in Backward Substitution Subroutine 

Processor 1 

Idle (Waiting 
until B14 is 
finished) 

Idle 

Processor 2 

(Master) 

I X 7  I partial 

Idle (Waiting until 
A1 1 is finished) 

Idle 

Processor 3 

Final solution 
{X8] is found 

{ X 7  I final, 

X 6  1 partial 

Remark 
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Idle (Waiting 
until B6 is 
finished) 

Idle (Waiting until 
A4 is finished) 

Idle 

Idle (Waiting 
until C5 is 
finished) 

C5 

C4 

Idle (Waiting until 
A3 is finished) 

Idle (Waiting 
until B4 is 
finished) 

Idle (Waiting 
until C2 is 
finished) 

Idle (Waiting 
until B1 is 
finished) 

Idle Done 

Done Done 

2.6.9 "Block" Error Checking Subroutine 

After the solution of the system of equations has been obtained, the next step that 
should be considered is error checking. The purpose of this phase is to evaluate how 
good the obtained solution is. There are four components that need to be considered: 

1. X,,, is the Xi that has the maximum absolute value (i.e., the maximum 
displacement, in structural engineering application). 

2. Absolute summation of Xi 
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--. + 

3. Absolute error norm of [A ] . x - b 
4. Relative error norm is the ratio of absolute error norm and the norm of 

4 

RHS vector b . 

Figure 2.5 Error Norms Computation (Upper Triangular Portion) 

The first two components can be found without any communication between each 
processor because the solution {x)  is stored in every processor. However, the next 
two components, absolute error norm and relative error norm, require 
communication between each processor because the stiffness matrix of the problem 
was divided in several parts and stored in each processor. Therefore, the parallel 
algorithm for error norm checking will be used to calculate these error norms. The 
key concepts of the algorithm are that every processor will calculate its own 
[ A 1 . i - b , and the result will be sent to the master processor, processor 1. 

The procedure starts at each processor, which will calculate [A] { X ) ,, which 
corresponds to {bi) for the lower part of the stiffness matrix. From Figure 2.6, 
processor 1 will partially calculate [A]{X), by multiplying the lower part of [Al l  
with { X I ) .  

Similarly, Processor 2 will partially calculate [A]{XJ2 by multiplying the lower part 
of [Bl]  and [B2] with { X I )  and {X2),  respectively. The step will be repeated until 
every processor finishes calculating the lower part of the stiffness matrix. In this 
step, there is no communication between processors. 
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Figure 2.6 Error Norms Computation (Lower Triangular Portion) 

Figure 2.7 Error Norms Computation (Upper Triangular Portion) 
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Once the calculating for the lower part of the stiffness matrix is done, the next step 
will be the calculation of the diagonal and the upper part of the stiffness matrix. This 
procedure starts with the same concept as the calculation of the lower part. After the 
diagonal and the upper part is done, every processor will have its own [A]{XJi. 

Then, the worker processors will send [A)(X)i to the master processor. Therefore, 
processor 1 will have the complete values of [A] {XI. Next, processor 1 will find the 
difference between [A]{X) and (b) ,  and the norm of this difference will be the 
absolute error norm. The absolute error norm will then be divided by the norm of the 
RHS vector to give the relative error norm. 

2.6.10 Numerical Evaluation 

Several full-size (completely dense) symmetrical matrix equations are solved, and 
the results (on different computer platforms) are compared and tabulated in Tables 
2.10 - 2.12. All reported times are expressed in seconds. Performance of the 
"regular" versus "cache-based'' matrix-matrix multiplication sub-routines is 
presented in Table 2.13. Results for a parallel SGI dense solver (on NASA LaRC 
SGUOrigin 2000, Amber Computer, 40 GB RAM), as compared to our developed 
software, are given in Tables 2.14 - 2.15. 

It is interesting to note the "major difference" between our developed parallel dense 
solver (on the Sun 10k computer) as compared to the parallel SGI dense solver (on 
the NASA SGIIORIGIN-2000 computer). 

In particular, let's look at Tables 2.14 and 2.15, paying attention to the "time ratio" 
of "Forward-Backward / Factorization." 

For 5,000 dense equations, using 8 (SGI Amber) processors, and with the near 
optimal block size ncb = 64, our developed parallel solver has the "time ratio" = 
(Forward & Backward 1 Factorization) = (3.5 1 19.1) = 18.32% as indicated in Table 
2.15. 

However, for the same problem size (= 5,000 equations), using 8 (NASA 
SGUORIGIN-2000, Amber) processors, the SGI Parallel Dense Solver library sub- 
routine has the "time ratio" = (Forward & Backward 1 Factorization) = (4.8 / 15.8) = 
30.38%, as indicated in Table 2.14. 

Thus, our developed software is much more efficient than the well-respected SGI 
software, especially for the Forward & Backward solution phases. 

Finally, we show the results from porting the software to run on commodity 
computer systems. The software system using Windows 2000 workstation OS was 
developed using Compaq FORTRAN compiler (Version 6.1) and uses MPI- 
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Softtech's MPI library (Version 1.6.3). The same numerical experiments used with 
the two earlier hardware platforms yielded ncb = 32 and 64 showing somewhat 
similar performances. However, ncb = 64 was used as the block size. Moreover, the 
dense equations used in evaluating the performance came from actual finite element 
models. Table 2.16 shows the results for 4,888 equations while Table 2.17 is for 
10,368 equations. 

The performance of the commodity cluster is better than both the workstation 
platforms. When the matrices fit into memory (Table 2.16), the speedup is sub- 
linear. The speedup, however, is super-linear with larger problems and can be 
misleading. 

This is because the matrices do not fit into memory and a larger number of page 
faults occur with the single processor version. Nevertheless, the overall throughput 
and performance is impressive. 

Table 2.10 Two Thousand (2,000) Dense Equations (Sun 10k) 
orward Substitution ackward Substitution I 
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Table 2.12 Ten Thousand (10,000) Dense Equations (Sun 10k) 
= 10000 actorization time orward Substitution ackward Substitution I 

Table 2.13 Matrix-Matrix Multiplication Subroutines 
I LIONS (Helios) 1 LIONS(Cancun) 1 NASA 

I I~~1/0ri~in-2000 
Regular I Cache I Cache I Cache Version I Cache 

) version I version 1 Version 1 (seconds) 1 version 1 

* using MPI-WTIME( ) 

using etime( ) 

lOOOxlO00 

Table 2.14 Five Thousand (5,000) Dense Equations Timings Using SGI Parallel 

(seconds) 
177.405' 

(SGI Amber) (seconds) 

(seconds) 
6.391' 

# of 

Processes 

1 

2 

4 

8 

(seconds) 
6.420~ 

Factorization 

Time 

87.4 

48.8 

23.8 

15.8 

10.9~ 

Forward& 

Backward 

Substitution 

4.2 

4.6 

4.4 

4.8 

(seconds) 
9.5' 

Total 

Time 

91.6 

53.4 

28.2 

20.6 

Speedup 

1 

1.7 

3.2 

4.4 
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Table ber) (seconds) 

I 1 

Table M) (seconds) 

I I I I I 

Table EM) (seconds) 
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2.6.11 Conclusions 

Detailed numerical algorithms and implementation for solving a large-scale system 
of dense equations have been described. Numerical results obtained from the 
developed MPI dense solver, and the SGI parallel dense solvers on different parallel 
computer platforms have been compared and documented. 

The following conchsions, therefore, can be made: 

1. The developed parallel dense solver is simple, efficient, flexible, and 
portable. 

2. Using the developed parallel dense solver, a large-scale dense matrix can 
be stored across different processors. Hence, each processor only has to 
store "small portions" of the large dense matrix. 

3. From Tables 2.10 - 2.12, it seems that when the problem size is getting 
bigger, the optimized number of columns per block that fits in a system 
cache will be approximately 64 columns per block. 

4. Optimum performance of the developed parallel dense solver can be 
achieved by fine-tuning the block size on different computer platforms. 

2.7 DevelopingIDebngging Parallel MPI Application Code on Your Own Laptop 

A Brief Description of MPYPro 

MPIIPro is a commercial MPI middleware product. MPIIPro optimizes the time for 
parallel processing applications. 

MPIIPro supports the full Interoperable Message Passing Interface (IMPI). IMPI 
allows the user to create heterogeneous clusters, which gives the user added 
flexibility while creating the cluster. 

Verari Systems Software offers MPIJPro on a wide variety of operating systems and 
interconnects, including Windows, Linux, and Mac OS X, as well as Gigabit 
Ethernet, Myrinet, and InfiniBand. 

Web site 

Contact Information 

Telephone: 
Voice: (205) 397-3 141 
Toll Free: (866) 85 1-5244 
Fax: (205) 397-3142 
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Sales support 

sales @ mpi-softtech.com 

Technical support 

Cost 

$100 per processor (8 processor minimum), one time payment 
Support and Maintenance are required for the first year at a rate of 20% per 
annum of the purchase price. Support ONLY includes: NT4SP5 and higher, 
2000 Pro, XP Pro, and Windows 2003 Server. 

Steps to Run MpiIPro on Windows OS 

MPIIPro requires Visual Studio 98 to run parallel FORTRAN code on Windows 0 s .  
Visual Studio 98 supports both FORTRAN and C programming languages. MPI is 
usually written in C programming language; therefore Visual Studio is sufficient for 
the user's needs. 

A. Open Fortran Compiler Visual Studio 

B. Open Project 

Open a new "project" as a Win 32 Console Application. Give a name to your project, 
e.g., projectl. This will create a folder named "project 1." 

C. Create a Fortran File 

Create a new Fortran file under the project folder you have just created, e.g., 
projectl.for, and when you create a file, click on the option "Add to Project." 

Then, type your program in this file. If you have other files or sub-routines to link to 
this file 

Create a file or files under the folder 'projectl,". 
Then, from the pulldown menu, go to Project1 Add to Project and select 
File. 
Select the files to be linked one by one and add them to your project. 

D. Parallelizing Your Own Program With MpiIPro 

There are a total of four call statements to type in a program running sequentially. 
But, first of all, one has to type the following line at the very beginning of the code: 
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include 'mp$ h' 

Then, right after defining the data types and character strings, the following three 
call statements need to be typed: 

call MPI-INIT (ierr) 
call MPI-COMM-RANK (MPI-COMM-WORLD, me,ierr) 
call MPI-COMM-SIZE (MPI-COMM-WORLD, np,ierr) 

where 

me = the ID of each processor ( e.g., me = 0, 1, 2, 3, 4, 5 if six processors are 
used) 

np = total number of processors 
ierr = error message 

In order to finalize the procedure of parallel programming, another call statement has 
to be placed at the end of the program: 

call MP1-FINALIZE (ierr) 

E. A Simple Example of Parallel MPIIFORTRAN Code 

The entire list of the ''trivial'' MPI code is shown below: 

call MPI-INIT (ierr) 
call MPI-COMM-RANK(MP1-COMM-WORLD, me, ierr) 
call MPI-COMM-SIZE(MP1-COMM-WORLD, np, ierr) 

if (me .eq. 0) then 
open(5,file='rectdata.txt') 
read(5,") b,h 
write(6,") me,' b,hl,b,h 
endif 

do i = 1,np 
a(i) = (me+i)*2 
enddo 
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I call MPI-FINALIZE(ierr) 

stop 1 end 

As you can see, there are two subroutine calls in the trivial MPI code. These sub- 
routines are added to the project as described in Section C. The sub-routines created 
for this example are listed below: 

subroutine subl (me) 
write(6,") me,' is in subl subroutine' 
return 
end 

subroutine sub2(me) 
write(6,") me,' is in sub2 subroutine' 
return 
end 

F. Before Compilation 

A user makes some modifications in the FORTRAN compiler before helshe 
compiles hisher code. These modifications include defining the paths for the 
directory in which the file 'mpgh' is stored for the library files required by MPIJPro. 

1. From the pulldown menu, go to Tools then click on Options. 
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It will open up the Options window; click on Directories. Under the Show directories 
for sub-menu, the path for MPI/Pro include file is defined. 

The same procedure is repeated for MPlIPro library files: 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

1 C \Proslam Fdes\Mmosoft Visual Stud1o\VC98\L1b 11 

2. From the pulldown menu, go to Project then click on Settings. 

Here, choose Link and then General for Category. 

Add MPIIPro libraries mpipro.lib and mpipro-dv$lib to ObjectAibraries modules. 
Then, switch the Category to Input. 

Type 1ibc.M in the Ignore libraries section as shown below: 
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G. Compilation 

As the next step, the user is supposed to compile histher program and create the 
executable file. To do this: 

From the pulldown menu, go to Build, then select Compile to 
compile the MPI code. When you do this, a folder named "Debug" 
will be created. 
Go to Build again, and select Build to create the executable of the 
MPI code. The executable file will be located under the folder 
"Debug." 

H. Specifying the Computer Name(s) 

In order to specify the machine name, create a file named "Machines" under the 
same directory where the executable file exists. Type in the computer name as your 
processor for parallel processing. 

I. Running Parallel 

1. Open up the window for a command prompt. To do this, go to Windows StartJRun 
and type "cmd" or "cmd.exe." This will run the command prompt. 

2. In command prompt, go to the folder "Debug" where you have created the 
executable file. 

3. Then type: 
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mpirun -np number o f  vrocessor executable file name 

J. Outputs of the Simple Demonstrated MPVFORTRAN Code 

Assuming six processors are used to "simulate" the parallel MPI environment on the 
"Laptop" personal computer, using the MPI code discussed in Section E. The results 
obtained from MPIIFORTRAN application code are shown below: 

me= 1 a(-) 4.00000000000000 6.00000000000000 
8.00000000000000 10.0000000000000 12.0000000000000 
14.0000000000000 

1 is in subl subroutine 
1 is in sub2 subroutine 

me= 4 a(-) 10.0000000000000 12.0000000000000 
14.0000000000000 l6.OOOOOOOOOOOOO 1 8.0000000000000 
20.0000000000000 

4 is in sub 1 subroutine 
4 is in sub2 subroutine 

me= 2 a(-) 6.00000000000000 8.00000000000000 
10.0000000000000 12.0000000000000 14.OOOOOOOOOOOOO 
16.0000000000000 

2 is in subl subroutine 
2 is in sub2 subroutine 

me= 3 a(-) 8.00000000000000 10.0000000000000 
12.0000000000000 14.0000000000000 16.OOOOOOOOOOoOO 
18.0000000000000 

3 is in subl subroutine 
3 is in sub2 subroutine 

me= 5 a(-) 12.0000000000000 1 4 . 0 0 0 0 0 0 ~ 0 0 ~ 0  
16.0000000000000 l8.OOOOOOOOOOOOO 20.0000000000000 
22.0000000000000 

5 is in subl subroutine 
5 is in sub2 subroutine 
0 b,h 6.00000000000000 8.00000000000000 

me= 0 a(-) 2.00000000000000 4.00000000000000 
6.00000000000000 8.00000000000000 10.0000000000000 
12.0000000000000 

0 is in subl subroutine 
0 is in sub2 subroutine 
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2.8 Summary 

In this chapter, a brief summary of how to write simple parallel MPIIFORTRAN 
codes has been presented and explained. Through two simple examples (given in 
Sections 2.2 - 2.3), it is rather obvious that writing parallel MPUFORTRAN codes 
are essentially the same as in the sequential mode of FORTRAN 77, or FORTRAN 
90, with some specially added parallel MPIJFORTRAN statements. These special 
MPIJFORTRAN statements are needed for the purposes of parallel computation and 
processors' communication (such as sendinglreceiving messages, summing /merging 
processor's results, etc.). Powerful unrolling techniques associated with "dot- 
product" and "saxpy" operations have also been explained. These unrolling 
strategies should be incorporated into any application codes to substantially improve 
the computational speed. 

Exercises 

Write a sequential FORTRAN (or C++) code to find the product 
{b)= [A]* {x) , using dot-txoduct operations, where 

[AL~, = = i + j 

{xInxl= x j  = j 

n=5000 

Re-do problem 2.1 using saxr>v operations. 

Re-do problem 2.1 using unrolling level 10. 

Re-do problem 2.1 using unrolling level 7. 

Re-do problem 2.2 using unrolling level 10. 

Re-do problem 2.1 using unrolling level 7. 

Assuming 4 processors are available (NP = 4), write a parallel MPI/ 
FORTRAN (or C++) program to re-do problem 2.1. 

2.8 Given a real array A(-) that contains " N  random values 0.00 and 1 .OO (say, N = 
lo6 numbers), and assuming there are "NP" processors available (say, NP = 4), 
write a MPl-parallel FORTRAN (or C++) that will print the above " N  numbers 
in "increasing" order. 




