
Chapter 2 

MULTIPLE-INPUT MULTIPLE-OUTPUT 
SYSTEMS WITH SPACE-TIME CODES 

2.1 Introduction 
Digital communication using Multiple-Input Multiple-Output (MIMO) sys

tems is one of the most significant technical breakthroughs in modem commu
nication. MIMO systems are simply defined as the systems containing multiple 
transmitter antennas and multiple receiver antennas. Communication theories 
show that MIMO systems can provide a potentially very high capacity that, in 
many cases, grows approximately linear with the number of antennas. Recently, 
MIMO systems have already been implemented in wireless communication 
systems, especially in wireless LANs (Local Area Networks) [Griffith, 2004], 
[Group, 2003], [Jones et al., 2003]. Different structures of MIMO systems 
have also been proposed by industrial organizations in the Third Generation 
Partnership Project (3GPP) standardizations, including the structures proposed 
in [Electronics, 2004], [Ericsson, 2004], [Nokia, 2004], [Samsung and SNU, 
2004]. The core idea under the MIMO systems is the ability to turn multi-path 
propagation, which is typically an obstacle in conventional wireless communi
cation, into a benefit for users. 

The main feature of MIMO systems is space-time processing. Space-Time 
Codes (STCs) are the codes designed for the use in MIMO systems. In STCs, 
signals are coded in both temporal and spatial domains. Among different types 
of STCs, orthogonal Space-Time Block Codes (STBCs) possess a number 
of advantages over other types of STCs (as mentioned in details later in this 
chapter) and are considered in this book. 

In addition, the combination of STBCs and closed loop transmission diversity 
techniques using feedback loops has been investigated in the literature. When 
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Figure 2. L The diagram of MIMO systems. 

applied, this combination improves significantly the performance of wireless 
systems. Several such transmission diversity techniques have been derived in 
the literature, such as space-time coded systems with beamforming [Nokia, 
2002], antenna weighting [Electronics, 2002] or transmitter diversity antenna 
selection [Katz et al., 2001]. 

In Sections 2.2, 2.3 and 2.4 of this chapter, three main topics are respectively 
mentioned including: 

• MIMO systems from capacity perspectives; 

• Space-Time Block Codes; 

• Typical transmission diversity techniques 

These topics are very important for readers to have the basic knowledge 
related to the issues mentioned in this book. Conclusions and research problems 
addressed in this book are mentioned in Section 2.5. 

2.2 Multiple-Input Multiple-Output Wireless 
Communications 

2.2.1 MIMO System Model 
We consider a single user MIMO system comprising UT transmitter antennas 

(riT Tx antennas) and UR receiver antennas (UR RX antennas). In particular, 
a complex baseband system described in discrete-time domain is of interest 
throughout the book. The block diagram of the MIMO system is presented 
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in Fig. 2.1. During each Symbol Time Slot (STS), the transmitted signals are 
presented as an n^ x 1 column vector x, whose entry x ,̂ for i == 1 , . . . , n^, is 
the transmitted signal at the i^^ Tx antenna during the considered STS. 

We consider here an additive Gaussian channel (with or without Rayleigh 
fading) for which the optimal distribution of the transmitted signals in x is also 
Gaussian, i.e., the transmitted signals xi, fox i = 1 , . . . ,nT, are zero-mean, 
identically independently distributed (i.i.d.) complex random variables. The 
covariance matrix of x is 

Kxx = ^{xx^} 

where E{.} denotes the expectation, and (.)^ denotes the Hermitian trans
position operation. The total power of transmitted signals (during each STS) 
is constrained to P , regardless of the number of transmitter antennas n^. It 
implies that 

P = tr{-Rxx) 

where tr{.) denotes the trace operation of the argument matrix. 
In all following sections, we assume that channel coefficients (or transmis

sion coefficients) arc perfectly known at the receiver, but they may or may not be 
known at the transmitter. The scenario where channel coefficients are unknown 
at both transmitter and receiver is mentioned in [Marzetta and Hochwald, 
1999]. Readers may refer to [Marzetta and Hochwald, 1999] for more details. 

In the case where channel coefficients are unknown at the transmitter (but 
known at the receiver), we assume that the transmitted power at each Tx antenna 
is the same and equal to 

p « = -
riT 

for j == 1 , . . . , riT- In the case where the channel coefficients are known at 
the transmitter, the transmitted power is unequally assigned to the Tx antennas 
following the water-filling rule (see Appendix 1.1 in [Vucetic and Yuan, 2003]). 
We will mention this case in more details later in this chapter. 

The channel is presented by an UR X UT complex matrix H, whose elements 
hij are the channel coefficients between the f^ Tx antenna (j = 1, • . . , TIT) 
and the i^^ Rx antenna (i = 1 , . . . , UR). Channel coefficients hij are assumed 
to be zero-mean, i.i.d. complex Gaussian random variables with a distribution 
CAr(0,l). 

Noise at the receiver is presented by an n/^ x 1 column vector n whose ele
ments are zero-mean, i.i.d. complex Gaussian random variables with identical 
variances (power) a^. 
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If we denote r to be the column vector of signals received at Rx antennas 
during each STS, then the transmission model is presented as 

r = Hx + n 

If we assume that the average total power Pr received by each Rx antenna 
(regardless of noises) is equal to the average total transmitted power P from 
riT Tx antennas, the Signal-to-Noise Ratio (SNR) at each Rx antenna is then 

_ Pr _ P 

To guarantee the assumption that Pr — P , for a channel with fixed channel 
coefficients and with the equal transmitted power per Tx antenna PJUT (i.e., in 
the case where channel coefficients are known at the receiver, but unknown at 
the transmitter), we must have the following constraint: 

Y^\h,j\^ = nT (2.1) 

for i = 1 , . . . , n/?. For a channel with random channel coefficients and with 
equal transmitted power per Tx antenna, the formula (2.1) is calculated with 
the expected value. 

The system capacity C{bits/s) is defined as the maximum possible trans
mission rate such that the error probability is arbitrarily small. In this book, we 
also consider the normalized capacity C/W{bits/s/Hz), which is the system 
capacity C normalized to the channel bandwidth W. 

2.2.2 Capacity of Additive White Gaussian Noise Channels M îth 
Fixed Channel Coefficients 

In this section, at first, we derive the most general formula to calculate the 
channel capacity for both cases where channel coefficients are known as well as 
unknown at the transmitter. Based on this general formula, we will then derive 
the formulas for channel capacity in some particular cases. 

The most general formula for calculating channel capacity in the case where 
channel coefficients are either known or unknown at the transmitter is the 
Shannon capacity formula (see Eq. (1.19) in [Vucetic and Yuan, 2003]): 

C = wJ2^ogJl + ^ \ (2.2) 
1=1 ^ ^ 
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where W is the bandwidth of each sub-channel, r is the rank of the channel 
coefficient matrix H (r is equal to the number of non-zero eigenvalues of H ^ H ) , 
Pri is the received power at each Rx antenna from the i^^ sub-channel, for 
i — 1 , . . . , r, during the considered symbol time slot. The term "sub-channeV 
is defined here as that mentioned in Section 1.3 of [Vucetic and Yuan, 2003]. 
Readers may refer to that section for more details. The rank r is at most equal 
to m == min(nT, UR). 

2.2.2.1 Unknown Channel Coefficients at the Transmitter 

In this case, as mentioned earlier, the transmitted power per Tx antenna is 
assumed to be identical and equal to Ptj — P/nT- Let Q be the Wishart matrix 
defined as 

Q 
H H ^ if UR < riT 
H ^ H ifnR>nT 

From Eq. (2.2), it has been proved (see Eq. (1.30) in [Vucetic and Yuan, 2003]) 
that the channel capacity for such a scenario is 

C^W log2 det {Ir + 2Q) 
HTCT 

= W log2 detfl^H-—Q) 
^ riT 

(2.3) 

where det(.) denotes the determinant of the argument matrix. 
We consider some particular cases as follows: 

• Single antenna channel: In this case, we have r — UT = UR = 1 and 
Q r= /i r=r 1 (sec Eq. (2.1)). From (2.3), the channel capacity is calculated 
as 

C = W log2 det (1 + -g) 
G^ 

(2.4) 

At SNR p = ^ = 20dB, for instance, the normalized capacity of the single 
antenna channel is C/W = 6.658 bits/s/Hz. 

Receive diversity: In this case, TIT = I, TIR > 2 and H = {hi.,. hn^)^, 
where (.)^ denotes the transposition operation. From (2.3), the channel 
capacity is calculated as 

UR 

C = W\og^{l + -^Y.\^^\^) 
i=l 
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Assuming that |/i^p = 1, for i = 1 , . . . , UR, then we have 

C = W log2 (1 + ^ ) (2.5) 

For nR = 2 and SNR p = 2MB, we have C/W = 7.6511 bits/s/Hz. We 
can see that the normalized capacity in this case is larger than that in the 
case of channels with single Tx and Rx antennas. 

• Transmit diversity: In this case, TIT >. 2, UR — 1 and H = (/ i i . . . hnj). 
From (2.3), the channel capacity is calculated as 

C = W \og^{l^ 2El^^H 

Assuming that |/i^p = 1 for z = 1 , . . . , n^, then we have 

C^W log2 (1 + ^ ) (2.6) 

From (2.6), we see that the capacity of the channel where channel coefficients 
are fixed and unknown at the transmitter is the same as that of the single 
antenna channel (see Eq. (2.4)), regardless of the number nr of Tx antennas. 
Hence, for nr = 2,nR = l and SNR p = 2MB, we have C/W = 6.658 
bits/s/Hz. 

2.2.2.2 Known Channel Coefficients at tiie Transmitter 

The channel capacity can be increased if channel coefficients are known at 
the transmitter. In this case, the transmitted power is assigned unequally to 
the Tx antennas, according to the "water-filling" rule, i.e., a larger power is 
assigned to a better sub-channel and visa versa (see Appendix 1.1 in [Vucetic 
and Yuan, 2003]). The power assigned to the z*̂  sub-channel is 

2 

Pti=-{p-^y, z = l , . . . , r 

where (a)^ = max(a, 0), A '̂s are the non-zero eigenvalues of the matrix H ^ H 
(also H H ^ ) and p is determined to satisfy the power constraint 

r 

5^Pti = P (2.7) 
z = l 

For the i*̂  sub-channel, the received power Pri at the receiver antenna is cal
culated as (see Eq. (1.20) in [Vucetic and Yuan, 2003]): 

Pri = ^iPti = \^iP ~ ^ ) 
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Then, the channel capacity is derived from (2.2) as given below (see Eq. (1.35) 
in [Vucetic and Yuan, 2003]): 

C^WY, l̂ g2 
\ ^ (A /̂x - a^y 

1=^1 
( j2 

We consider the channel with UT > 'i and UR = 1 again. We have r = 
min(nT, TIR) = 1 and H = {hi... hnj^)> The power constraint (2.7) becomes 

2 

Equivalently, we have jj, = P+j^, where the only eigenvalue Ai of the matrix 

H ^ H is Ai = YHII \hi?- Therefore, we have 

Assuming that |/i^p = 1 for z = 1 , . . . , n^, then we have 

C = W \og,{l + '-^) 

For riT = 2 mdSNR p = 20dB, we have C/W = 7.6511 bits/s/Hz, which 
is larger than the channel capacity when the channel coefficients are unknown 
at the transmitter (C/W = 6.658 bits/s/Hz). 

2.2.3 Capacity of Flat Rayleigh Fading Channels 

In this scenario, channel coefficients are random, rather than being fixed as 
in Gaussian channels. We assume here that channel coefficients are zero-mean, 
i.i.d. complex Gaussian random variables with variances of 1/2 per dimension 
(real and imaginary). Hence, each channel coefficient has a Rayleigh distributed 
magnitude, uniformly distributed phase and the expected value of the squared 
magnitude equal to one, i.e., E{\hij\'^} = 1. We would like to stress that, 
in all following sections, channel coefficients are assumed to be known at the 
receiver, but unknown at the transmitter. Thus, the transmitted power per Tx 
antenna is assumed to be identical and equal to Ptj — P/UT, for J = 1 , . . . , n^. 

We will consider the following scenarios, which have been widely mentioned 
in the literature, such as in [Telatar, 1999], [Vucetic and Yuan, 2003]: 

• The channel coefficient matrix H is random and its entries change randomly 
during every symbol time slot (STS). This scenario is referred to as ihtfast, 
flat Rayleigh fading channel. 
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• H is random and its entries change randomly after each block containing a 
fixed number of STSs. This scenario is referred to as the block flat Rayleigh 
fading channel. 

• H is random but is selected at the beginning of transmission and its entries 
keep constant during the whole transmission. This scenario is referred to as 
the slow or quasi-static, flat Rayleigh fading channel. 

We will consider the first two scenarios simultaneously in the following section. 

2.2.3.1 Capacity of MIMO Systems in Fast and Block Rayleigh Fading 
Channels 

It has been derived in the literature that the capacity of MIMO systems in fast 
and block Rayleigh fading channels is calculated as (see Eq. (1.56) in [Vucetic 
and Yuan, 2003] or Theorem 1 in [Telatar, 1999]) 

C =^E{W log2 det fl̂  + ^Q) (2.8) 

where r is the rank of the matrix H and the matrix Q is the Wishart matrix 
defined as 

r H H ^ iinRKUT 
^ ' \ H ^ H ifnR>nT ^ ' 

Eq. (2.8) can be evaluated with the aid of Laguerre polynomials (see Section 
1.6.1 in [Vucetic and Yuan, 2003] or Theorem 2 in [Telatar, 1999]) 

(k-{-n — m)\ 
k=o ^ ^ 

X [L^-^(A)]^A^-^e-^dA (2.10) 

where n = max(nT, n/^), m = min(nT, n^) and 

1 rl^ 

k\ 

is the Laguerre polynomial of order k. 

Tn—m/\\ -*- ^X\m—n ^ c^—X\n—m-\-k\ 
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Figure 2.2. Capacity of MIMO systems with one Rx antenna in fast or block flat Rayleigh 
fading channels. 

Furthermore, by increasing m and n, but keeping the ratio ^ = ^ = const, 
we have the following limit (see Eq. (1.61) in [Vucetic and Yuan, 2003] and 
Eq. (13)in[Telatar, 1999]): 

,. C W 
hm — = 

n-^oo rn 2TT /:-o-s^-)\/(v-)('-^) 
where 
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Figure 2.3. Capacity of MIMO systems with one Tx antenna in fast or block flat Rayleigh 
fading channels. 

We consider now three scenarios: 

Transmit diversity: In this case, we have UT >2 and UR = 1. From (2.10), 
we have 

C = W-
- l ) ! i o 

i°g2(i + r ^ A ) A " - - i e-^dX 
{riT — i j ! Jo " "̂  nrcr^ 

When TfiT increases, the capacity approaches the asymptotic value 

P 
lim C = T^log2fl + -^ ) 

(2.11) 

(2.12) 

We realize that Eq. (2.12) is similar to Eq. (2.6). It means that, when the 
number of Tx antennas is large, the capacity of the transmit diversity system 
in fast or block Rayleigh fading channels approaches the capacity of the 
transmit diversity system in AWGN channels where channel coefficients are 
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Figure 2.4. Capacity of MIMO systems with nr = UR in fast or block flat Rayleigh fading 
channels. 

unknown at the transmitter. The channel capacity of the transmit diversity 
systems is presented in Fig. 2.2. In this figure, the solid lines present the 
capacity calculated by (2.11), while the dashed lines present the asymptotic 
capacity calculated by (2.12). The dashed lines thus also present the capacity 
of AWGN channels calculated following (2.6). 

Receive diversity: In this case, we have n^ = 1 and nR>2. From (2.10), 
we have 

1 P^ / P \ 

"'"^J^^^^^.i ><'&(I + ;;,A)A"»-.-^CA (2.13) 

When UR increases, the capacity approaches the asymptotic value 

PnR\ 
lim C = W^log2fl + ^ ) (2.14) 
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We realize that (2.14) is similar to (2.5). It means that, when the number 
of Rx antennas is large, the capacity of the receive diversity system in fast 
or block Rayleigh fading channels approaches the capacity of the receive 
diversity system in AWGN channels. Channel capacity of the receive di
versity systems is presented in Fig. 2.3. The solid lines present the capacity 
calculated by (2.13), while the dashed lines present the asymptotic capacity 
calculated by (2.14). Similarly, the dashed lines also present the capacity 
of AWGN channels calculated following (2.5). 

• Transmit and receive diversity: We assume further that TIT = TIR, and hence, 
m — n = riT = UR. Thus, from (2.10), channel capacity is calculated as 

poo . p\ . ^ i? - l 

C^W log2 (1 + 2) E [LlW?e-^d\ (2.15) 
Jo V nna^I ^^ 

where 

With the note that m = n = nj^ — n/^, the empirical bound of the capacity 
in (2.15) has the following closed form (see Eq. (1.76) in [Vucetic and Yuan, 
2003]): 

lim 
Wn 

> log. ( ^ ) 

From this formula, it is clear that the capacity almost increases Unearly with 
the number of Tx (and Rx) antennas. The capacity of the channel with 
UT — riR is presented in Fig. 2.4. 

2.2.3.2 Capacity of MIMO Systems in Slow Rayleigh Fading Channels 

The results mentioned here were originally derived by Foschini and Gans 
[Foschini and Gans, 1998]. We consider a MIMO system where the channel 
coefficient matrix H is chosen randomly at the start of transmission and it stays 
constant during the whole transmission. The entries of H follow the Rayleigh 
distribution. Wireless Local Area Networks (LANs) with high data rates and 
low fade rates are examples of this scenario. 
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Again, we consider three cases as follows: 

• Receive diversity: In this case, we have n^ = 1 and TIR > 2. It has been 
shown by Eq. (10) in [Foschini and Gans, 1998] or by Eq. (1.78) in [Vucetic 
and Yuan, 2003] that the channel capacity is calculated as 

where XIUR ^^ ^ chi-square random variable with 2nR degrees of freedom. 

• Transmit diversity: In this case, we have TIT > 2 and UR = 1, li has been 
shown by Eq. (11) in [Foschini and Gans, 1998] or by Eq. (1.79) in [Vucetic 
and Yuan, 2003] that the channel capacity is calculated as 

where X2nT ^^ ^ chi-square random variable with 2nT degrees of freedom. 

Transmit and receive diversity: We further assume that n = UT = TIR and 
n is large, then it is shown by Eq. (20) in [Foschini and Gans, 1998] or by 
Eq. (1.82) in [Vucetic and Yuan, 2003] that the lower bound on the capacity 
is 

^ > ( l + ^ ) log2 ( l + 5 ) - °̂S2 e + Sn (2.16) 

where e„ is a Gaussian random variable with the mean and variance as given 
below: 

1 / p \ - V 2 
E{en} = - log2(^l + ^ 

+^ 

From (2.16), we realize that when the number of Tx (and Rx) antennas is large, 
the channel capacity is linearly proportional to the number of antennas. For 
SNR p = ^ — 2MB, and n = UT = riR = 8, the normalized capacity is 
C/W ^ 37%its/s/Hz. 
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2.3 Space-Time Block Codes 
Communication requires a very high rate with high rehability these days. 

Two major difficulties to obtain reUable communication via high rate wireless 
communication systems are bandwidth limitation of communication channels 
and multipath fading. To surmount these difficulties, multiple antenna systems 
referred to as MIMO systems, which provide a transmit and/or receive diversity, 
can be used. As mentioned in Section 2.2 of this book or in [Foschini, 1996], 
[Foschini and Gans, 1998], [Marzetta and Hochwald, 1999], [Telatar, 1999], 
MIMO systems can provide a potentially huge capacity gain with the same 
requirements for power and bandwidth as the single antenna systems. In many 
cases, the capacity of channels is proved to increase linearly with the lower 
number among the number of transmitter antennas (Tx antennas) and that of 
receiver antennas (Rx antennas). 

Based on those information theoretical results, various schemes for the trans
mission of signals via MIMO systems have been proposed, including Bell Lab 
Layered Space-Time (BLAST) [Foschini, 1996], Space-Time Trellis Codes 
(STTCs) [Tarokh et al., 1998], Space-Time Block Codes (STBCs) [Alamouti, 
1998], [Tarokh et al., 1999a], [Tarokh et al., 1999b] and Unitary Space-Time 
Codes [Hochwald and Marzetta, 2000] among many others. All designs are 
targeted to the transmission of signals in MIMO systems to achieve diversity 
and data rates as high as possible, while bandwidth expansion (if any) must be 
kept as small as possible. 

Particularly, Tarokh et al. [Tarokh et al., 1998] proposed a few Space-Time 
Trellis Codes (STTCs) for 2-^ Tx antennas, which perform well in slow fading 
environment and have almost no loss of capacity compared to the channel 
capacity. However, the complexity of decoders increases exponentially with 
the size of signal constellations. The authors in [Tarokh et al., 1998] also 
derived the criteria for designing a good Space-Time Code (STC), including 
rank criterion and determinant criterion. 

Later, Alamouti [Alamouti, 1998] discovered a very simple transmitter di
versity technique for two Tx antennas, which provides a full diversity order, 
has no loss of capacity (if the number of Rx antennas is equal to one), and 
possesses a simple and fast maximum likelihood (ML) decoding. Instead of 
being joined, the transmitted signals are decoded separately at decoders due to 
the orthogonality between the columns (and rows) of the code. The Alamouti 
code could be considered as the original Space-Time Block Code (STBC) - the 
Space Time Codes (STCs) constructed from orthogonal designs. The discovery 
of the Alamouti code is presented by a milestone in Fig. 1.1 of Chapter 1. 
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Although some other designs were proposed for STCs, such as non-
orthogonal designs based on number theory [A.-Meraim et al., 2002], [Damen 
et al., 2002], orthogonal STBCs are currently receiving an intensive attention 
due to the following reasons: 

1 They posses a fast and very simple maximum likelihood decoding [Tarokh 
et al., 1999a], [Tarokh et al., 1998] due to their orthogonality. 

2 They provide a full diversity order for a certain number of Tx antennas. Con
sequently, these codes have good error probability characteristics [Tarokh 
etal , 1999b]. 

Motivated by the Alamouti code, Tarokh et al. [Tarokh et al., 1999a], [Tarokh 
et al., 1999b] proposed STBCs for various numbers of Tx antennas. Based on 
signal constellations, the authors classified STBCs into two classes, namely, 
STBCs for real signals and STBCs for complex signals. Real STBCs can be 
used in the case of Pulse Amplitude Modulation (PAM) while complex STBCs 
are used for Phase Shift Keying (PSK) or Quadrature Amplitude Modulation 
(QAM) constellations. Both of them may, or may not, include linear processing 
(LP) at transmitters. The term "linear processing" will be explained in more 
details later. 

Real STBCs have been well examined. There is a systematic method to 
construct real STBCs with the maximum rate Rmax = 1 for up to 8 Tx an
tennas based on Huwitz-Radon theory. The background on the Huwitz-Radon 
theory can be found in [Ganesan and Stoica, 2000], [Geramita and Seberry, 
1979]. These codes also provide a maximum Signal-to-Noise Ratio (SNR) at 
receivers [Ganesan and Stoica, 2001]. 

Unlike real STBCs, complex STBCs have not been well known in the litera
ture yet, while they are more practical. Complex STBCs have recently received 
much attention. For these reasons, in this book, we will mainly focus on com
plex orthogonal STBCs (CO STBCs). 

In this section, we present the basic theories on STBCs which are mainly 
based on the contributions of Alamouti [Alamouti, 1998], Liang [Liang, 2003], 
and Tarokh et al. [Tarokh et al., 1999a], [Tarokh et al., 1999b], [Tarokh et al., 
1999c], [Tarokh et al., 1998]. 

A STBC representing a relationship between original transmitted symbols Si 
and their replicas artificially created by the transmitter for transmission over the 
channel with multiple Tx antennas is defined by dip XUT matrix, where p is the 
number of symbol time slots (STSs) for transmission of one code block and UT 
is the number of Tx antennas. Generally, the elements of the matrix are linear 
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Figure 2.5. Space-time block encoding. 

combinations of k input symbols Si(i=\.. .k), which represent the information-
bearing binary bits to be transmitted. Assuming that the signal constellation 
consisting of 2^ points is considered. Then, h binary bits are represented by a 
symbol si. Therefore, a block of k x b binary bits is entered into the encoder 
at a time and the encoding process is carried out in both space and time, hence, 
the code block at the output of the encoder is referred to as a Space-Time Block 
Codes (STBC). The space-time encoding process is presented by Fig. 2.5. 

This block of the transmitted symbols is mathematically represented by a 
matrix X of size p x n^ as follows: 

giriT 

92nT 

QpUT 

., n r , represents a linear combination 

911 912 .. 

921 922 •• 

9pi 9p2 •• 

where gji, for j = 1 , . . . , p and I — 1,. 
of the symbols Si. The entries ^ j i , . . . , 9JUT ^^^ transmitted simultaneously from 
riT Tx antennas at the j ^ ^ time slot. Clearly, the length p of the STBC represents 
the delay for transmission (and for decoding as well). Since k symbols are 
transmitted during p STSs, the code rate of the STBC is defined by the ratio 

R = k/p 

The code rate is related to the spectral efficiency of the STBC as given below: 

n Tsb bits/s/Hz 

where B denotes the bandwidth, r^ and r^ denote the bit rate and the symbol 
rate, respectively. The bandwidth B is calculated as 

R k 
Hz (2.17) 
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Therefore, the spectral efficiency of the STBC is 

T] — — = hR — — hits/ s/Hz 

Clearly, for the same signal constellation, a higher code rate results in a more 
efficient STBC. In other words, the code rate R represents the spectral efficiency 
of the STBC. 

From Eq. (2.17), we also realize that if R is smaller than one, then there 
exists a bandwidth expansion to transmit STBCs, compared to, for instance, the 
transmission without using STBCs where each symbol is transmitted during 
each STS via one Tx antenna. It will be analyzed in more details later that 
the Alamouti STBC [Alamouti, 1998] achieves the full rate, i.e. i? = 1, and 
consequently, does not expand transmission bandwidth. 

It should be emphasized that, in the literature, STBCs usually refer to or
thogonal STBCs. Other classes of STCs include quasi-orthogonal STBCs [Ja-
farkhani, 2001], [Su and Xia, 2002a], [Su and Xia, 2002b], Space-Time TreUis 
Codes (STTCs) [Tarokh et al., 1998], Layered Space-Time Codes (LSTs) [Fos-
chini, 1996], [Vucetic and Yuan, 2003], or Linear Space-Time Codes [Hassibi 
and Hochwald, 2001], [Hassibi and Hochwald, 2002]. Orthogonal STBCs are 
of great interest as decoding processes of those codes only involve the linear 
processing at the receiver thanks to the orthogonality between their columns, 
and consequently, it is very simple to decode them. Because of this histor
ical reason, the term "STBCs" should be understood as orthogonal STBCs 
throughout this book. 

The main milestones in examining STBCs so far are presented in Fig. 1.1 in 
Chapter 1, which is explained in more details by the following sections. 

2.3.1 Real Orthogonal Designs 
DEFINITION 2.3.1 A generalized, real orthogonal design (also called gener
alized, real, orthogonal STBC) Q is defined as a pxn matrix whose nonzero 
entries are the indeterminates xi, X2, . - -, Xk over the real number field R or 
their negatives —xi, —X2, . . . , —Xk such that 

g^g = V (2.18) 

where g^ denotes the transpose of the matrix g, while V is a diagonal ma
trix of size n X n with diagonal entries Vu, for i = 1, 2 , . . . , n, of the form 
{kiXi + li2X2 + • • • + kk^l) ^nd coefficients / ^ i , . . . , lik are strictly positive, 
real numbers. The rate ofg is R = k/p. The matrix g is said to be a [p, n, k] 



26 COMPLEX ORTHOGONAL SPACE-TIME PROCESSING 

real orthogonal design. Ifp = n, Q is called square, real orthogonal design. If 
the coefficients Z^i,..., lik satisfy ki = - - - — kk = 1, for z = 1,2,.. . , n, then 
Q is called real, orthogonal STBC without Linear Processing (LP). Otherwise, 
Q is called real, orthogonal STBC with LP. 

The condition on the positive definiteness of the coefficients kjS is to guarantee 
that the STBC Q provides a full diversity order. 

Proof. We prove that Q satisfies the rank criterion for designing STBCs, i.e. 
[Tarokhetal., 1998]: 

det [G{xi - x\,X2 - X2,...,x/c - XkY X 

for any distinct pair of codewords x = (x i , . . . , jfjt) and x = (x i , . 
that Q[x\ — xi, X2 — X2,. . . , Xk — x^) is the matrix ^(xi , X2,. 
we replace the set (xi, X2,. . . , x/̂ ) by the set {x\ — xi, X2 — X2, 
From (2.18), we have 

det {g^g) = Yl 
k 

J - 1 

^Xk)' Note 
, Xk) when 
-) Xk ~~ Xk)' 

Therefore 

det [g{x\ — x i , X2 - X2 

Xg{xi - Xi,X2 - X2, 

k 

, Xk ~ Xk) X 

= n 
1=1 

2_^Hj\Xj Xj) 

Evidently, if kjS are positive definite, for any distinct pair of codewords x and 
X, we always have 

det [g{xi - x i , X2 - X 2 , . . . , Xk 

X g{xi - X i , X 2 -X2 , . . . ,X /c -Xk) 

XkY X 
> 0 

It means that, g satisfies the design criterion concerning to rank. Hence, the 
STBC g provides a full diversity order. 

Real STBCs can be used for any Pulse Amplitude Modulation (PAM) or may 
even be used for Binary Phase Shift Keying (BPSK) and, generally, they are 
only used for those modulation techniques. In addition, real STBCs have been 
well examined in the literature. 
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It is more convenient to express p = 2̂ "̂̂ .̂g where 0 < c, 0 < d < 4, g is 
odd, and c, d, q are in the natural number field N. Furthermore, let A{R^ n) = 
Pmin be the minimum number p such that there exists a generalized orthogonal 
design of size p x n providing a code rate of at least R=k/p (if there is no such 
design, then A{R,n) = oo). It is proven in [Tarokh et al., 1999b] (pp.1461) 
that: 

1 For any i?, A{R^ n) < oo. It means that for any code rate R (and, therefore, 
including R = 1), generalized, real orthogonal designs always exist. 

2 Full-rate, real STBCs exist for any number of n. 

3 For any generalized orthogonal design of full rate (R = 1), one has 
A(l,n) — Pmin = min(2'̂ ^"^^), where the minimization is taken from 
the set 

{c,d\c,deN, 0<c, 0<d<4, p{p) = 8c + 2^ > n} 

In the above equation, p{p) is referred to as the Hurwitz-Radon number, 
which will be defined in more details later. The minimum length of any/w//-
rate, real orthogonal STBCs, i.e., A(l, n), can be determined via the condition 
on the Hurwitz-Radon number p{p), which is stated by the following theorem 
(see Proposition 4 in [Liang, 2003]). 

THEOREM 2.3.2 For any number of Uy a rate-1, [p, n,p] real orthogonal 
STBC exists if and only if(ijf) the Hurwitz-Radon number p{p) > n, i.e.: 

p{p) = 8c + 2^> n 

The value of A(l^ n) presents the minimum length of the full-rate STBCs 
and also presents the minimum requirement on memory to achieve the full rate. 
Some values of A(l, n) are presented in Table 2.1. 

If we consider n as the number of Tx antennas and p as the delay of STBCs, 
then real orthogonal designs providing a full rate exist for any number n of Tx 
antennas. In addition, the optimal delay for real STBCs for 1, 2, 4 and 8 Tx 
antennas are 1, 2, 4 and 8 symbol time slots, respectively. In other words, the 
square, real STBCs only exist for 1, 2, 4 and 8 Tx antennas. 

In general, for full-rate, real STBCs, A{l,n) (or Pmin) has the following 
form [Tirkkonen and Hottinen, 2002]: 

Pmin = A{1, n) = lQl(n-l)m2\lo92{l+{n-l)modS)] 



28 COMPLEX ORTHOGONAL SPACE-TIME PROCESSING 

Table 2.1. Some typical values of prnm (or A(l , n)) for the full-rate, real STBCs. 

n 
1 
2 
3 
4 
5 
6 
7 
8 

c 
0 
0 
0 
0 
0 
0 
0 
0 

d 
0 
1 
2 
2 
3 
3 
3 
3 

Pmin 

1 
.2 
4 
4 
8 

8 
8 
8 

n 

9 
10 
11 
12 
13 
14 
15 

1 ^̂  

c d 
0 
1 
2 
2 
3 
3 
3 
3 

Pmin 

16 
32 
64 
64 

128 
128 
128 
128 

where [a\ is the smallest integer which is equal to or greater than a, and \a] is 
the biggest integer which is equal to or smaller than a. 

Some examples of full-rate, generalized orthogonal designs are given below: 
Forn=l,p=l: 

Gi = (xi) (2.19) 

For n=2, p=2: 

G2 = 
Xi X2 

-X2 Xi 
(2.20) 

For n=3, p=4: 

For n=4, p=4: 

Ql = 
r xi 

X2 

L ^3 

GA = 

Xl 

-X2 

-X3 

—X4 

-X2 

Xl 

—X4 

X2 

Xl 

X4 

-xs 

- ^ 3 

X4 

Xl 

Xs 

—X4 

Xl 

X2 

— X4 

-X3 

X2 

X4 

X3 

-X2 

Xl 

(2.21) 
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For n=5, P 

Gl = 

=̂8: 

Xi 

X2 

^3 

X4 

_ 3^5 

For n=8, p=8: 

08 = 

Xi 

-X2 

-X3 

—X4 

-X5 

-X6 

-Xj 

-X8 

-X2 

Xi 

X4 

-X3 

xe 

X2 

Xi 

—X4 

-X6 

X5 

Xs 

-X7 

-XS 

—X4 

Xi 

X2 

X7 

X3 

X4 

Xi 

-X2 

-X7 

-Xs 

X5 

XQ 

—X4 

Xs 

-X2 

Xi 

Xs 

X4 

-Xs 

X2 

Xl 

-Xs 

X7 

-XQ 

X5 

-^5 

-xe 
-X7 

-Xs 

Xl 

X5 

XQ 

X7 

Xs 

Xl 

-X2 

-Xs 

—X4 

-XQ 

X5 

-Xs 

X7 

-X2 

XQ 

-X5 

Xs 

-X7 

X2 

Xl 

X4 

-Xs 

~X7 

Xs 

X5 

-Xe 

-Xs 

X7 

-Xs 

-X5 

Xe 

Xs 

—X4 

Xl 

X2 

-Xs 

-X7 

Xe 

X5 

—X4 

Xs 

X7 

-Xe 

-X5 

X4 

Xs 

-X2 

Xl 

(2.22) 

2.3.1.1 Maximum Rates of Square, Real Orthogonal Designs 

As mentioned before, there always exist the real orthogonal designs [p, n^k] 
with a full rate for any number of n. However, a question which could be raised 
is what the maximum number k of variables, say kmax^ in the square, real 
orthogonal designs is. To answer this question, we need to define the Hurwitz-
Radon number p{n) which has been intensively mentioned in the literature, 
such as [Geramita and Seberry, 1979], [Liang, 2003], [Tarokh et al., 1999b]. 

DEFINITION 2.3.3 Ifn = 2^{2b + 1) and a = Ac + d, where a, b, c and d 
are integers with 0 < d < 4, then the Hurwitz-Radon number is defined as 

can be rewritten as follows: 

p{n) = p(2«(26+l)) 

2a + 1 if a 
2a if a 
2a if a 
2a + 2 if a 

0 {mod) 4 
1 (mod) 4 
2 (mod) 4 
3 (mod) 4 

(2.23) 

where mod denotes the modulo operation. 
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Table 2.2. The maximum number of variables and the maximum rates of square, real STBCs. 

n 

1 
2 
3 
4 
5 
6 
7 
8 

n-max 

1 
2 
1 
4 
1 
2 
1 
8 

RR max 

1 
1 

1/3 
1 

1/5 
1/3 
1/7 

1 

n 

9 
10 
11 
12 
13 
14 
15 

1 ^̂  

i^max 

1 
2 
1 
4 
1 
2 
1 
9 

max 

1/9 
1/5 

1/11 
1/3 

1/13 
1/7 

1/15 
9/16 

The Hurwitz-Radon numbers have the following properties: 

p(2"(26+l)) = p(2«) 

p(16n) = p(n) + 8 

It has been proved that the maximum number kmax of variables in a square, 
real orthogonal design is equal to the Hurwitz-Radon number p{n), i.e., [Adams 
et al., 1965], [Geramita and Seberry, 1979], [Liang, 2003]: 

kmax = p{n) = p{T) 

= 8c + 2^ 

p(2«(26+l)) 

(2.24) 

From Eq. (2.24), we have the following corollary: 

COROLLARY 2.3.4 The maximum rate of square^ real orthogonal designs for 
any number of Tx antennas n = 2^^^^{2b+l), denoted by RRrnax^ iscalculated 
as 

RRT] 
rvT] p{n) 8c H- 2^ 

n n n 
(2.25) 

In (2.25), the subscript "R" implies that the formula is applied to real designs. 
The maximum numbers of variables and the maximum rates of square, real 
STBCs for some typical values of n are given in Table 2.2. From Eq. (2.25) 
and Table 2.2, some following important notes are derived: 

1 If n is odd, the maximum code rate of square, real orthogonal designs is 
RRmax = 1/^- Therefore, forn > 3, the code rate is very small, and hence. 
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there might be no point to examine square, real STBCs for the odd number 
of Tx antennas which is greater than 3. 

2 Square, real STBCs with a full rate exist only for n = 1, 2, 4 and 8 Tx 
antennas. Note that the full-rate, real STBCs exist for any number n of 
Tx antennas, but forn 7̂  1, 2, 4 or 8, those full-rate, real STBCs must be 
non-square. 

2.3.1.2 Constructions of Maximum Rate, Square, Real STBCs 

In this section, three methods for the construction of maximum rate, square, 
real STBCs are presented, including 1) the Adams-Lax-Phillips construction 
from octonions; 2) the Adams-Lax-Phillips construction from quaternions; and 
3) the Geramita-PuUman construction. A good summary of these constructions 
can be found in Liang's paper [Liang, 2003]. 

1 The Adams-Lax-Phillips construction from octonions [Adams et al., 1965], 
[Adams et al, 1966]: We already have 4 square, real STBCs for n = 2^ 
with a = 0, 1, 2 and 3, i.e., Eq. (2.19) for a = 0; Eq. (2.20) for a = 1; 
Eq. (2.21) for a =- 2 and Eq. (2.22) for a = 3. Denote 

^ 2 « == Q 2 < ^ { x i , . . , , Xp(^n)) (2.26) 

which has p{n) = p(2^) real variables and is of size nxn. 

From Q2<^, one can construct a square, real STBC of order 2"+^ comprising 
p(n) + 1 real variables as follows: 

g^a+i = ^2^+1 (Xi, . . . , Xp(n)+l) 

where I^ denotes the identity matrix of order n. 

(2.27) 

From ^2«+i' one can construct a square, real STBC of order IQn = 2^'^^ 
comprising p{n) + 8 real variables as follows: 

= ^2«+i ( ^ I s + l2n ( ^ ^ 8 ( 0 , ^p(n)+25 • • • 5 ^p(n)+8) 

(2.28) 
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where Qg is defined by (2.22) and 0 denotes the Kronecker product. 

From (2.26) - (2.28), the transition from order n = 2^ to order 16n can be 
expressed as 

In 0 Qs{yi^y2y' . . , ^s) Q2- 0 I s 

aja 0 l 8 In 0 0 8 ( - y i , y 2 , • . . ,2/8) 

where yi = Xp(n)^i for i = 1 , . . . , 8. 

In order to construct the square, real STBC of order n == 2^(26 + 1), from 
the square, real STBC of order n = 2^, say 2̂̂ » we just need to perform 
the Kronecker product between I(26+i) and ^2«-

The above constructions can be used to generate a maximum rate, square, 
real orthogonal design of order n with p(n) real variables for any number 
of n G N from the initial four orthogonal designs of orders n = 1,2,4,8. 

2 The Adams-Lax-Phillips construction from quaternions [Adams et al, 
1965]: Another construction method using quaternions was introduced in 
[Adams et al., 1965]. This construction is another method for the transition 
from orthogonal designs of order n = 2^ to order 16n. 

Consider a square, real STBC of order n — 2^ 

^2« = ^ 2 « ( x i , . . . , X p ( ^ ) ) 

which has p{n) = p{2^) real variables. From ^2«. we can construct a 
square, real STBC of order 16n = 2"+^ with p(2^) + 8 real variables Xi for 
2 ::= 1 , . . . , p{2'') + 8, denoted by 

^2a+4 == ^2^+4 ( X l , . . . , Xp(2a)+8) 

as given below 

In (8) L4 (2/1, 2/2, 2/3, 2/4) 0 4 n 

OAU In (8) 1^4(2/1, 2/2,2/3,2/4) 

In (8)R4(2 /5 , -2 /6 , -2 /7 , -2 /8) ^2^ 0 1 4 

0ja (g)l4 In ® R4( -2 /5 , -2/6, -2/7, "2/8) 

In(8)R4(2/5,2/6,2/7,2/8) & « 0 1 4 

e ja 0 I4 In 0 R4( -2 /5 , 2/6, 2/7, 2/8) 

In0L4( -2 / l ,2 /2 ,2 /3 ,2 /4 ) 0 4 n 

0 4 n In 0 L4( -2 / l , 2/2,2/3,2/4) 

02^ '2a + 4 
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where L4 and R4 are defined as 
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L 4 ( l / i , 2/2,2/3,^4) = 

1^4(2/5,2/6,^7,2/8) = 

2/1 - 2 / 2 - 2 / 3 - 2 / 4 

2/2 2/1 2/4 - 2 / 3 

2/3 - 2 / 4 2/1 2/2 

2/4 2/3 - 2 / 2 2/1 

2/5 - 2 / 6 - 2 / 7 - 2 / 8 

2/6 2/5 - 2 / 8 2/7 

2/7 2/8 2/5 - 2 / 6 

L 2/8 - 2 / 7 2/6 2/5 

while On is the zero matrix of order n and yi = Xp(̂ )̂ _̂  for i == 1 , . . . , 8. 

3 The Geramita-Pullman construction [Geramita and Pullman, 1974]\ As
sume that we are given a square, real STBC of order n — 2^ with 
p{n) — p{2^) real variables, denoted by 

^2« = ^ 2 ^ ( x i , . . . , X p ( ^ ) ) 

= Xiln + X2M2 H h X^(n)Mp(^) 

where M^ are the real coefficient matrices of order n for z = 1 , . . . , p(n) 
(Ml = I^). The transition from order n to order 16n is presented as 

02^+4 ( a : i , . . . ,Xp(2a)+8) 

= XlIlGn 
p{n) 

Is 0 XiMi Osn + 
O 

-3^p(n) + l l 8 n O s n 

0 8 ( 0 , Xp(n) + 2, • • • , ^ p ( n ) + 8 ) 0 I n O g n 

O s n 0 8 ( 0 , —Xp(n) + 2, . • • , —a;p(^)+8) (8) I « 

In order to construct the square, real STBC of order n = 2^(26 + 1 ) , from 
the square, real STBC ^2« of order n = 2", we just need to perform the 
Kronecker product between I(26+i) and ^2^ • 

2.3.1.3 Constructions of Full-Rate, Non-Square, Real STBCs 

The method to construct full-rate, non-square, real STBCs for any number n 
of Tx antennas is mentioned by Liang [Liang, 2003]. Readers may refer to the 
Part IV in [Liang, 2003] for more details. Again, it is noted that \hQ full-rate, 
square, real STBCs exist only for n=l, 2, 4 and 8. For other values of n, the 
full-rate, real STBCs must be non-square. 
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2.3.2 Complex Orthogonal Designs - CODs 
DEFINITION 2.3.5 A generalized Complex, Orthogonal Design COD (also 
complex, orthogonal STBC) Z = X + i Y /̂  defined as ap x n matrix whose 
nonzero entries are the indeterminates ±5i, ±S2, . . . , ±5^ ,̂ their conjugates 
±5^, dz52, . . . , ±5^ or their products with i = \A-T over the complex number 
field C, such that 

2^2= (EI^JI')I '^X" (2.29) 

where Z ^ denotes the Hermitian transpose ofZ and Inxn i^ the identity matrix 
of order n. The rate of Z is R = k/p. The matrix Z is said to be a |jp, n, k] 
complex orthogonal design. Ifp=n, Z is called square, complex orthogonal 
design (square COD). Otherwise, Z is called non-square (or rectangular) COD. 

It is important to note that the Complex Orthogonal Designs (CODs) defined 
as above are actually the so-called Generalized Complex Orthogonal Designs 
(GCODs) without Linear Processing (LP), which were first used by Tarokh et 
al. [Tarokh et al., 1999b]. Meanwhile, the term "Complex Orthogonal De
signs" (CODs) in [Tarokh et al., 1999b] was used to present a class of complex 
orthogonal designs which are square, of size nx n and comprise n indetermi
nates. However, nowadays, the term "CODs" is usually referred to as the one 
defined by the Definition 2.3.5. 

DEFINITION 2.3.6 A generalized Complex Orthogonal Design COD with 
Linear Processing - LP (also complex linear processing orthogonal STBC) 
Z = X + z Y is defined as ap x n matrix whose nonzero entries are the inde
terminates ±5i, ±52, . . . , -iiSky their conjugates :ts\, ±^2, . . . , ±5^ or their 
products with i = ^f^-V over the complex number field C, such that 

Z^Z - V 

where V is a diagonal matrix of size nxn with diagonal entries Vjj, for 
J = 1,2,... ,n, of the form (/ji|xip + /j2|^2p + • • • + Ijkl^k]'^)' The coeffi
cients / j i , . . . , Ijk are strictly positive, real numbers. Z^ denotes the Hermitian 
transpose ofZ. The rate ofZ is R = k/p. The matrix Z is said to be a [p, n, k] 
COD with LP. Ifp=n, Z is called square, complex orthogonal design (square 
COD) with LP. Otherwise, Z is called non-square (or rectangular) COD with 
LP 
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It is important to note that CODs with LP defined as above were originally 
called Generalized Complex Orthogonal Designs (GCODs) with LP by Tarokh 
etal. [Tarokh et al., 1999b]. 

By the similar analysis as mentioned in Section 2.3.1, it is easy to realize that 
the matrix Z defined in the Definitions 2.3.5 and 2.3.6 provides a full diversity 
order as det(Z^Z) > 0 for any distinct pair of codewords s ={si,..., 5/̂ ) 
and s ={si,..., s%), provided that the coefficients Iji, for jf = 1 , . . . , n and 
/ = 1 , . . . , fc are definitely positive. 

As opposed to real STBCs, CODs (or Complex Orthogonal STBCs - CO 
STBCs) can be used for PSK and QAM modulations. Also, they have not been 
well known unlike real STBCs. 

2.3.2.1 Maximum Rate of Square, Complex Orthogonal STBCs 

It has been proved that the maximum number kmax of variables in a square 
COD of size n = 2^(2b+1) is [Adams et al., 1965], [Liang, 2003], [Tirkkonen 
and Hottinen, 2002]: 

kmax = (a + 1) (2.30) 

From Eq. (2.30), we have the following corollary: 

C OROLL ARY 2.3.7 The maximum rate of square, complex orthogonal designs 
for any number n = 2^(26 + 1 ) of transmitter antennas is 

Rcmax = - ^ = 2 « ( 2 6 + l ) ^^'^^^ 

In (2.31), the subscript "C" implies that the formula is applied to complex 
designs. 

The maximum number of variables, kmax^ and the maximum rates Rcmax 
of square, complex, orthogonal STBCs (CO STBCs) for some typical values 
of n are given in Table 2.3. 

REMARK 2.3.8 It is important to clarify that, according to Liang's paper 
[Liang, 2003], the maximum achievable rate for CO STBCs of orders n = 
2m — lorn = 2m is (see Eq. (130) in [Liang, 2003]) 

Rmax = {m + l)/2m (2.32) 

However, note that this maximum rate is only achievable for non-square con
structions, except for the special case when m = 1, i.e. when n = 1 or n = 2. 
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Table 2.3. The maximum number of variables and the maximum rates of square CO STBCs. 

n 

1 
2 
3 
4 
5 
6 
7 
8 

Kmax 

1 
2 
1 
3 
1 
2 
1 
4 

1 
1 

1/3 
3/4 
1/5 
1/3 
1/7 
1/2 

n 

9 
10 
11 
12 
13 
14 
15 
16 

i^max 

1 
2 
1 
4 
1 
2 
1 
5 

Re max 

1/9 
1/5 

1/11 
1/3 

1/13 
1/7 

1/15 
5/16 

For square constructions of orders n — 2^(26 + 1 ) , the maximum achievable 

rate must he calculated by Eq. (2.31). When m = 1, (2.31) and (2.32) provide 

the same results. Readers should refer to Corollary 2 and Section IID in [Liang, 

2003], or Section IV in [Tirkkonen and Hottinen, 2002] for more details. 

Particularly, for n = 8, i.e., m = 4, a = 3 and b — 0, the maximum 

achievable rate of non-square CO STBCs following (2.32) is 5/8, while the 

maximum achievable rate of square CO STBCs according to (2.31) is only 1/2. 

In Liang's paper, the author made an unclear statement in the abstract that 

the achievable maximum rate for n — 2m — 1 and n = 2m is (m + l ) /2m, 

but did not state if this maximum rate is achievable by square or non-square 

constructions, which may lead to some confusion. 

From Eq. (2.31) and Table 2.3, we have some following important notes: 

1 If n is odd, the maximum code rate of square CO STBCs is Rcmax = 1/^-

For n > 3, the code rate is very small, and hence, there might be no point 

to examine square CO STBC for the odd number of Tx antennas which is 

greater than 3. 

2 Square, CO STBCs with a full rate exist only for n — 1 and n == 2 Tx 

antennas. 

2.3.2.2 Maximum Possible Rate of Non-Square CO STBCs 

If n can be presented as n = 2m — 1 o r n = 2m, where m is any nonzero 

natural number, then the maximum possible rate of non-square CO STBCs is 

given by the following theorem, which is equivalent to Theorems 5 and 6 in 

[Liang, 2003]: 
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T H E O R E M 2.3.9 For any given number of transmitter antennas n = 2m — 1 

and n = 2m with TTI G N and m ^ Q, the rate of non-square, complex 

orthogonal STBCs satisfies 

R < ^ (2.33) 
2m 

From the above theorem, we can draw the following corollary: 

C O R O L L A R Y 2.3.10 For any number of Tx antennas n = 2m—land n = 2m. 

with m G N and m 7̂  0, there exist certain values of the two parameters k 

(the number of variables in the code) and p (the length of the code) for which 

the [p, n, k] non-square CO STBC achieves the maximum rate: 

m -f- 1 
Rmax = - ^ (2.34) 

Zm. 

E X A M P L E 2.3.1 For n = 8, the maximum rate of non-square CO STBCs is 

Rmax=^/8' ^s clarified earlier in Remark 2.3.8, this maximum rate does not 

contradict with the maximum rate Re max-1^^ mentioned in Table 2.3 for the 

same n. It is because the maximum rate Rmax =5/8 is for non-square orthogonal 

designs, while the maximum rate Rcmax=i/2 is for square orthogonal designs. 

The maximum rate-5/8, non-square CO STBC exists for n = 8, p = 112 , 

k = 70, i.e., [112,8,70] CO STBC. This construction can be found in Appendix 

E in [Liang, 2003]. 

Some typical values of the maximum possible rates Rmax^ the maximum 

number of variables kmax, and the optimal delay Pmin of non-square CO STBCs 

are given in Table 2.4, Table 2.5 and Table 2.6, respectively. These tables are 

derived from Table I and Table II in [Liang, 2003]. 

From these tables, some following important notes are derived: 

1 If n is odd, as opposed to the case of square CO STBCs (see Table 2.3), 

the maximum code rate of non-square CO STBCs are still potentially high. 

For instance, when n=15, the maximum code rate in the former case is 

Rcmax=^/^5 while that in the later case is Rmax^^l^^-

2 Although having higher maximum rates, non-square CO STBCs require a 

very large decoding delay (also memory length) forn > 6 (see Table 2.6). 
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Table 2.4. The maximum possible rates of non-square CO STBCs. 

n 
1 
2 
3 
4 
5 
6 
7 
8 

-ttmax 

1 
1 

3/4 
3/4 1 
2/3 
2/3 
5/8 
5/8 

n 

9 
10 
11 
12 
13 
14 
15 
16 

-ttmax 

3/5 
3/5 

7/12 
7/12 

4/7 
4/7 

9/16 
9/16 

Table 2.5. The maximum number of variables of non-square CO STBCs. 

n 
1 
2 
3 
4 
5 
6 
7 
8 

i^max 

1 
2 
3 
6 

10 
20 
35 
70 

n 
9 

10 
11 
12 
13 
14 
15 
16 

r^max 

126 
252 
462 
924 

1716 
3432 
6435 

12870 

Table 2.6. The optimal delay of non-square CO STBCs with the maximum possible rates. 

n 
1 
2 
3 
4 
5 
6 
7 
8 

Pmin 

1 
2 
4 
8 

15 
30 
56 

112 

n 

9 
10 
11 
12 
13 
14 
15 
16 

Pmin 

210 
420 
792 

1584 
3003 
6006 

11440 
22880 

2.3.2.3 Constructions of Maximum Rate, Square CO STBCs 

In this section, three methods for the construction of maximum rate, square 
CO STBCs, namely 1) the Jozefiak construction; 2) the Adams-Lax-PhiUips 
construction and 3) the Wolfe construction, are presented. It is noted that there 
exist other construction methods. For instance, from Clifford representation 
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theory, Tirkkonen et al. [Tirkkonen and Hottinen, 2002] proposed another 
method to construct maximum rate, square CO STBCs. Readers may refer 
to Section 3.1 in [Su and Xia, 2003] or Eq. (20) in [Tirkkonen and Hottinen, 
2002] for more details. Other construction methods follow from the Amica
ble Orthogonal Designs (AODs), which are fully explained in [Geramita and 
Seberry, 1979] and will be mentioned in more details later in Chapter 3. 

1 The Jozefiak construction [Jozefiak, 1976]: Assume that n is even and that 
n = 2^. Further, assume that we already have an n x n square, complex 
orthogonal design Z2« = Z2a(si , . . . , 5^+1). Then the square complex 
STBC of size 2n x 2n is constructed as 

^2a+i = Z2a+i(5i, . . . ,5a+l,5a+2) 

Z2« Sa-\-2^n 

^a+2^n ^ 2 « 
(2.35) 

To construct the maximum rate, square CO STBC of size n = 2^(26 + 1 ) , 
we need to perform the Kronecker product between the identity matrix 
1(26+1) ^iid the maximum rate, square, complex STBC of size n = 2^, 
i.e. Z2a(26+i) = 1(26+1) 0 '^2^-

EXAMPLE 2.3.2 

Forn=l, i.e., a=0, we have Zi = (si). 
Forn-2, i.e., a=l,from (2.35), we have 

Z2 = 
S2 

5? 

Forn=3, i.e., a=0, b=l, we have 

Z3 = I3 (R) Zi = 
si 0 0 
0 si 0 
0 0 si 

Forn=4, i.e., a=2, we have 

J4 = 

Si 

— < ? * 

^2 

— Q * 

0 

S2 

'^l 

0 
— Q * 

ss 
0 

si 
^2 

0 

S3 

-S2 

Si 
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For n=8, i.e., a=3, we have 

Z4 54I4 

z« 
-sU. 4^4 zf 
51 

— Q* 

0 

* 

-sl 0 
0 
0 

52 

"̂ 1 

0 
— Q* 

^3 

0 
— Q* S4 

0 
0 

53 

0 

"̂ 1 

"̂ 2 

0 
0 

— Q* 

54 
0 

0 
53 

-52 

51 

0 
0 
0 

— Q* 

54 

54 

0 
0 
0 

•̂ 1 

•̂ 2 

•̂ 3 

0 

0 
54 

0 
0 

-52 

51 

0 

•̂ 3 

0 
0 
54 

0 

-53 

0 
51 

•̂ 2 

0 
0 
0 
54 

0 
-53 

52 

* 

(2.36) 

2 The Adams-Lax-Phillips construction [Adams et al, 1965]: This construc
tion is similar to the Jozefiak construction except that the recursive formula 
(2.35) is replaced by 

Z2a+l = Z2a+i (5 i , . . . , 5 a + l , 5 a + 2 ) 

5a+2ln Z i 
'vH ^* T 
^ 1 ^a-\-2^n 

3 The Wolfe construction [Wolfe, 1976]: This construction is similar to the 
Jozefiak construction and the Adams-Lax-Phillips construction except that 
the recursive formula (2.35) is replaced by 

Z2a+l = Z2a+l (5 i , . . . , 5 a + l , 5 a + 2 ) 

5a+2ln Zi 

-zf ^a+2^n 

2.3.2.4 Constructions of High-Rate, Non-Square CO STBCs 

The method to construct high-rate, non-square CO STBCs for any number n 
of Tx antennas is mentioned by Liang [Liang, 2003]. Readers may refer to the 
Part V in [Liang, 2003] for more details. It should be emphasized that, by this 
method, maximum rate, square CO STBCs can also be constructed. However, 
the constructing procedures are more complicated than the methods mentioned 
in Section 2.3.2.3. Therefore, this construction method should only be used for 
constructing high-rate, non-square CO STBCs. 
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2.3.2.5 On the Maximum ffiates of CODs with Linear Processing 

CODs with Linear Processing (LP) are defined by Definition 2.3.6. It has 
been shown by the Corollary 4.1 in [Su and Xia, 2003] that, if the coefficients 
satisfy Iji = - -- = Ijj^, for j == 1 , . . . , n, then relaxing the definition of CODs 
in order to allow LP at the transmitter fails to provide a higher code rate for 
square CODs (also square CO STBCs). In other words, the maximum code 
rate of square CO STBCs with LP is also calculated by Eq. (2.31). 

However, it is unknown whether the maximum rate of square CO STBCs 
with LP is different to that of square CO STBCs without LP if the condition 
l-^ =z '. • = Ijj^^ for J = 1 , . . . , n, is not satisfied. 

As opposed to square CO STBCs with LP, the maximum rate of non-square 
CO STBCs with LP has been unknown yet. 

Since full-rate, real STBCs exist for any number of Tx antennas (see the 
second note of Section 2.3.1.1), we are always able to construct rate-1/2, non-
square CO STBCs with LP for any number of Tx antennas. The construction 
method is mentioned by Part E in [Tarokh et al., 1999b] and by Eq. (4.4) in [Su 
and Xia, 2003]. Furthermore, in [Su and Xia, 2003] and [Su and Xia, 2001], 
W. Su et al. derived the two non-square CO STBCs with LP for 5 and 6 Tx 
antennas with code rates of 7/11 and 18/30 (or 0.6), respectively. At the time 
of their discovery, those codes were the known maximum-rate, non-square CO 
STBCs with LP for 5 and 6 Tx antennas. 

However, up to date, these code rates were outdated already. By using the 
construction method proposed in [Liang, 2003] with the observation that the 
orthogonality is not affected by multiplying each column of a COD with a 
coefficient / (/ ^ 0 and / 7̂  1), we realize that the achievable code rate of 
non-square CO STBCs with LP is also calculated by Eq. (2.34). This is the 
known maximum rate of non-square CO STBCs with LP so far. 

For instance, by multiplying the first column of each of the constructions 
(100) and (101) in [Liang, 2003] for 5 and 6 Tx antennas, i.e. the [15,5,10] 
and [30,6,20] CO STBCs, respectively, with a coefficient Z = 2, we have the 
non-square CO STBCs with LP Z satisfying 

10 10 10 10 10 

z^z = diag{4J2\si\^J2\'^\^J2\'^\^T.\'^\^J2\'i\') 
i=l i=l i=l i=l i=l 
20 20 20 20 20 20 

i=l i=l z=l z=l i=l i=l 
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where diag denotes a diagonal matrix with the elements on the main diagonal 
provided in the brackets. The code rates of these non-square CO STBCs with 
LP are 2/3 and 2/3, respectively, which are higher than the code rates 7/11 and 
18/30 in [Su and Xia, 2003], [Su and Xia, 2001]. 

Therefore, we can conclude that the known maximum rate of non-square CO 
STBCs with LP to date is the same as that of non-square CO STBCs without 
LP and is calculated by Eq. (2.34) for any number of Tx antennas. However, 
it is unknown whether or not the true maximum rate of non-square CO STBCs 
with LP is higher than that of non-square CO STBCs without LP. This requires 
to be further examined. 

2.3.2.6 Capacity of the Channel Using STBCs 

We consider here a CO STBC of size pxnr comprising k complex variables, 
where UT denotes the number of Tx antennas and p denotes the length of 
the CO STBC. The code rate is thus R = k/p. We assume that channels 
comprise UR RX antennas and they are block, flat Rayleigh fading channels. 
Channel coefficients are assumed to be known at the receiver, but unknown at 
the transmitter. Therefore, the transmitted power per Tx antenna is assumed to 
be the same and equal to P/TIT (see Section 2.2.3 for more details). 

According to S. Sandhu et al. [Sandhu and Paulraj, 2000], although using 
STBCs can provide a high rate and a full transmission diversity order for a 
given number of Tx antennas with relatively simple detection, it incurs a loss 
of capacity in comparison with the true capacity of the channel. 

The loss of capacity is a function of the rank r of the channel coefficient 
matrix H (r < min(nT, TIR)) and the code rate R — k/p. As a result, the loss 
of capacity depends on the number of Tx antennas UT and Rx antennas UR, and 
the code rate R = k/p (see Eq. (6) in [Sandhu and Paulraj, 2000]): 

AC = w(l--)E{log^(l + -^\\H^^^ 
k\^(, (^ P 

, . - - . ^ II " I I F 

S 
+ Q̂g2 ( 1 + -. , P n . . „9 ) (2-37) 

where 

^ WF- / Ai 
i=l 
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/ p \2 r / p \ 3 r 

^ ^ z = l 

while Â s are nonzero eigenvalues of H ^ H (or H H ^ ) , W is the bandwidth 
of each sub-channel, ^ is the SNR at each Rx antenna. Readers may refer to 
Section 2.2 for more details on these notations. 

From (2.37), some results of interest are derived as follows [Sandhu and 
Paulraj, 2000]: 

• Any channel with a full rate CO STBC (i.e. k — p), such as the Alamouti 
code [Alamouti, 1998], used over a channel with one Rx antenna (r = nR = 
1) is always optimal with respect to capacity since AC = 0. 

• CO STBCs of any rates, including the full-rate codes, such as the Alamouti 
code, used over i.i.d. Rayleigh channel with multiple Rx antennas, i.e. 
riR > 2, always incur a loss in capacity because AC is non-zero. 

Therefore, although using STBCs in MIMO systems can provide a potentially 
high capacity and a full transmission diversity order for a given number of 
Tx antennas with a relatively simple decoding algorithm, there exists a loss of 
capacity compared to the true maximum capacity of the MIMO systems. 

2.3.2.7 Examples on the Capacity of Channels and of CO STBCs 

We consider a MIMO system with UT TX and UR RX antennas. The trans
mission model is thus 

Y = J — X H + N (2.38) 
\ riT 

where X G C^^'^^ denotes the matrix of complex transmitted signals during 
p symbol time slots (or p channel uses), H G C^^^^^ denotes the channel 
coefficient matrix, and N G C^^'^^ denotes the additive noise matrix. We 
assume that the entries of H and X are i.i.d. complex Gaussian random variables 
with the distribution CAf{0,1), which implies that 

E{tr{Ji^U)} = UTTiR 

£;{tr(X^X)} = riTP (2.39) 



44 COMPLEX ORTHOGONAL SPACE-TIME PROCESSING 

The coefficient A / ^ in Eq. (2.38) ensures that p is the SNR at each Rx antailjia 
during each symbol time slot (channel use), independently of the number UT 
of Tx antennas. 

We assume further that the channel is a flat, block Rayleigh fading channel 
whose channel coefficients are perfectly known at the receiver, but not at the 
transmitter. Let (7(p, n^, TIR) be the true capacity of the channel between the 
Tx and Rx antennas, while CSTBC{P^ ^ T , ^R) be the capacity of the cbaunfl 
where the STBC is utihzed. 

Similarly to that mentioned earlier in Eq. (2.8), the channel capacity is cal
culated as 

C = E<W lo2 det(î  + ;^^Q)j i am 

where r is the rank of the matrix H and Q is defined as 

_ r H H ^ if̂  
~ \ H ^ H if ^ 

Note that the matrix Q in Eq. (2.41) is defined by a formula which is slightly 
different to that mentioned in Eq. (2.9) in Section 2.2.3.1. That is because, in 
Eq. (2.38), H has size UT X UR, rather than having size UR X UT like in Section 
2.2.3.1. In the case where H has size TIR X TIT, we just need to exchange n j 
and riR inEq. (2.41). 

The channel capacity can be easily calculated (see Section 2.2.3.1 for more 
details). From Eq. (2.10), (2.11), (2.13) and (2.15), the channel capacity for 
some particular values of n^, UR and p is shown in Table 2.7. 

We may have a question of how well an STBC performs from capacity 
perspective when comparing the maximum mutual information which can be 
supported to the true channel capacity. This question has been partially an
swered in Section 2.3.2.6. In this section, we calculate the maximum mutual 
information of some known STBCs in Rayleigh fading channels to expose more 
clearly this issue. 

EXAMPLE 2.3.3 We consider here a system with n^ = 2 and UR = 1 using 
the Alamouti code 

_ r x i X21 
^ " ~ * * 

L ~^2 ^1 J 
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Table 2.7. Normalized channel capacity for several values of transmitter and receiver antenna 
numbers. 

riT 

2 

2 

3' ' 

3 

4 

4 

B 

TlR 

1 

2 

1 

2 

1 

2 

4 

p(dB) 

20 

20 

20 

21.25 

20 

20 , 

23 

20 

20 

Formula for ^^^'^^'^-^^ 

/ ,°^log,( l + ^ ) A e - M A 

Xriog,(l + ^ ) [ l + ( l -A)V"dA 

r i ! l o g 2 ( l + ^)A^e-MA 

/J- log,( l + ^ ) [ l + | (2-Af]Ae-MA 

/ - i l o g , ( l + ^)A^e-MA 

/ - l o g , ( l + ^ ) [ ^ + i(3-A)^]A^e-MA 

+ ^ ( - A ^ + 21A^ - 126A + 210)^]A^e-^dA 

C(p,nT,nfi) 
W 

6.2810 

11.2898 

6.4115 

6.8213 

12.1396 

6.4751 

7.4656 

12.4875 

24.9326 

From (2.3/8), the transmission mffd^l ,beconf£S 

yi 
y2 

Xi X2 

\h2 + 
ni 

n2 
(2.42) 

We rewrite it as 

hi 
h% 

h2 7^1 

V2 + 
ni 

Therefore, we have a modified transmission mod§l as follows; 

Y ^ W^H3C + W <^m 

It is easy to realize that the channel matrix H in (2A2) is changed into the 
channel matrix^, which is orthogonal and has a rank r = 2. From (2.40) and 
(2.43), the maximum mutual information of the Alamouti code per symbol time 
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slot (or per channel user - PCU) is calculated as 

C5TBC(P, 2,1) = -ElW \og2 
P 

= -E{W \og2 

= -E^W \og2 

= EI W\og2 

det ( I^ + - ^ H ^ H 

d e t ( l 2 + | H ^ H 

l + ^[\hi\' + \h2\ 

We see that CSTBC{P, 2 , 1 ) / W = C{p, 2, l)/W, where C{p, 2,1) is the ca

pacity of a MIMO system comprising two Tx and one Rx antennas with the 

SNR p at the Rx antenna (see (2.8)). Therefore, CSTBC{P, 2, l)/W = 6.2810 

bits/s/Hz per channel use (PCU) for p = 20dB (see the Table 2.7). In other 

words, the Alamouti code in the channel with only one Rx antenna does not 

incur a loss of capacity in comparison with the true capacity of the channel. 

This agrees with the note in Section 2.3.2.6. 

E X A M P L E 2.3.4 We now show that the Alamouti code used in the channel 

with more than one Rx antenna does incur a loss of capacity. Assume that the 

channel now comprises UR = 2 Rx antennas. The transmission model now 

becomes 

2/11 

. 2/21 

2/12 1 

2/22 J 

It is rewritten as 

" 2/11 " 

2/2*1 

2/12 

. 2 / 2 2 . 

\l 2 [ 
Xi X2 

X2 Xi 

hii 

_ h2i 

fp 
]/ 2 

r hii /121 

ri2i fill 

hl2 h22 

L ^̂ 22 h 12 J 

/il2 

h22 
+ 

Xl 1 

. ^ 2 J 
+ 

r nil 

L ^ 2 1 

ni2 

n22 

• nil ' 

^21 

ni2 

- ^22 -
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Similarly, the matrix H is orthogonal and has a rank r — 2. The maximum 
mutual information per channel use of the code is 

CsTBc{p,'2.,2) 

P 
det I^ + ^«"«)]} 

= -^<!W^log2 det (I2 + ^ ( \hn\^ + \hi2\^ + |/i2iP + |/i22p )l2 )]} 
-i W\og2 l + ^{\hn\^ + \hi2f + \h2i\^ + \h22\' (2.44) 

Therefore CSTBC{P^ 2, 2) = C{2p, 4,1), where C(2p, 4,1) is the capacity of 
a MIMO system comprising 4 Tx antennas and 1 Rx antenna with the SNR 2p 
at the Rx antenna. Therefore, CSTBC{P^ 2, 2) = 7.4656 bits/s/Hz PCU for 
p — 20dB (see Table 2.7 for 2p = 23 dB), The channel capacity in this case, 
meanwhile, is 

C(p,2,2) 

= Elw\og2 [det (ir + - ^ H H ^ " ) ! | 

= sS^Wlog, [(^1 + ^{\hn\' + \hi2\')^ ( 1 + ^{\h2i\' + |/i22p))] } 

(2.45) 

From (2.44) and (2.45), it is easy to prove that C{p, 2,2) > CSTBC{P^ 2, 2). 
In fact, CsTBc{p,'^,'^)/W = 7.4656 bits/s/Hz PCU while the normalized 
channel capacity C{p,2,2)/W = 11.2898 bits/s/Hz (see Table 2.7). Therefore, 
theAlamouti code in this case incurs a crucial loss of capacity. This also agrees 
with the note in Section 2.3.2.6. 

EXAMPLE 2.3.5 We consider the scenario where UT = 3, rin = 1, p = 4 and 
the following non-square STBC (see [Hassibi andHochwald, 2002], pp.1807): 

X = 
4 
3 

Xl 

—X2 

—x^ 
0 

X2 

Xl 
0 

— Xo 

X3 

0 

^j 
Xo 
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The eoefflcient W | is to ensure the constraint (2.39). We have the equivalent 
channel coefficient matrix as given below: 

H ^ 

hi h2 hs 
0 

0 -hi 
hi -h\ 
hi 
0 h% -h% 

Therefore, the maxitnum mutual information per channel use of this STBC is 

P 

^H W^log2 

det (I,. + -^H^H) 11 

1 = 1 -• ^ 

3 4 \ 
= 4^(3A 3, i j 

Following Table 2.7, C5T^a(p,8,1)/W^ = | C ( | p , 3 , l ) / l ^ ^ 0.75 x 
6.8213 = 5.1160 bits/s/Hz PCJJ for p = 2QdB, Hence, the maximum mu
tual information CSTBC{P^^A) i^ Smaller than the true channel capacity 
C{p, 3,1) - 6.4115 bits/s/Hz. 

Note that, it is not always possible to calculate the maximum mutual information 
of STBCs following the above method, since we cannot always find the equiv
alent channel coefficient matrix H following the above method. The general 
method to find the equivalent channel coefficient matrix H for calculating the 
maximum mutual information is mentioned in [Hassibi and Hochwald, 2002] 
(Section III). This method was originally derived for linear space-time codes, 
but is also applicable to STBCs. 

2.4 Transmission Diversity Techniques 
2.4.1 Classification of Tiransmission Diversity Techniques 

Transmission diversity techniques have been widely used to enhance the 
performance of wireless channels. Various techniques have been proposed in 
the literature as well as applied in pTactice. These techniques can be classified 
as follows: 
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Depending on the domain in which the transmission redundancy is provided, 
diversity techniques are divided into time diversity, frequency diversity and 
space diversity. 

Depending on where diversity techniques are used, transmission diversity 
techniques can be classified into transmit diversity and receive diversity. 

2.4.1.1 Time Diversity 

Time diversity is a diversity technique where identical signals are transmitted 
during different time slots. These time slots are uncorrelated, i.e., the temporal 
separation between those slots is greater than the coherence time of the wire
less channel, which is in turn calculated as l/Fm=c/{vFs), where Fm is the 
maximum Doppler frequency, c the speed of light, v the speed of mobile and Fg 
the frequency of the transmitted signals [Proakis, 2001]. In fact, interleavers 
and error control coding, such as Forward Error Correction (FEC) codes, are 
employed to provide time diversity for the receiver. Another example of the 
modern implementation of time diversity is the RAICE receiver in CDMA (Code 
Division Multiple Access) systems [Rappaport, 2002] (pp. 391). 

The main shortcoming of this technique is that the redundancy is provided 
in the time domain with a penalty of a loss in bandwidth efficiency. The loss 
in bandwidth is due to the guard time existing between the time slots. 

2.4.1.2 Frequency Diversity 

In this diversity technique, several frequencies are used to transmit the same 
signals. The frequency separation between these carrier frequencies is an order 
of several times of the coherence bandwidth of the channel [Proakis, 2001]. 
Consequently, the carrier frequencies are uncorrelated, i.e., they do not experi
ence the same fades. 

In practice, frequency diversity is often used in Line-Of-Sight (LOS) mi
crowave channels. Some examples of systems employing frequency diversity 
include spread spectrum systems, such as Direct Sequence Spread Spectrum 
(DS-SS), Frequency Hoping Spread Spectrum (FH-SS) or Multi-Carrier Spread 
Spectrum (MC-SS) systems. 

Similarly to the case of time diversity, in frequency diversity, the redun
dancy is provided in the frequency domain with the penalty of a loss in spectral 
efficiency. The loss in spectral efficiency is due to the guard bands existing 
between the carrier frequencies. Additionally, the structure of the receiver is 
complicated as it must be able to work with a number of frequencies. 
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2.4.1.3 Space Diversity 

Space diversity, which is also named antenna diversity, has been frequently 
implemented in practice. This diversity technique can be further classified into 
various schemes, such as polarization diversity [Rappaport, 2002] (pp. 387), 
beamforming diversity [Blogh and Hanzo, 2002], [Godara, 1997], [Katz and 
Ylitalo, 2000], [Larsson et al., 2003], antenna switching [Barrett and Amott, 
1994]. Depending on whether it is applied to the transmitter or to the receiver, 
it can be classified into transmit diversity and receive diversity. Depending 
on how the replicas of the transmitted signals are combined at the receiver, 
space diversity techniques are classified into selection combining technique, 
switched combining technique, equal-gain combining technique and maximum 
ratio combining (MRC) technique [Rappaport, 2002]. 

The concept of space diversity is using multiple Tx and/or Rx antennas to 
transmit and/or receive signals. These antennas are spatially separated from 
one another by some halves of the wavelength, and consequently, they may be 
considered to be independent of one another [Jakes, 1974], [Salz and Winters, 
1994]. 

Unlike time diversity and frequency diversity, in space diversity, the redun
dancy is provided for the receiver in the spatial domain, and consequently, this 
technique has no loss in spectral efficiency. 

In practical wireless communication, a combined diversity technique of the 
aforementioned techniques is employed to provide multi-dimensional diversity. 
For instance, in GSM cellular systems, a combination between multiple anten
nas at the base station (space diversity) and interleaving as well as error control 
coding (time diversity) is utilized to provide the 2-dimensional diversity for the 
receivers (mobile users). 

In this book, the authors examine the combination between multiple antennas 
(space diversity), antenna switching techniques (space diversity), Space-Time 
Block Codes STBCs (space and time diversity), and maximum ratio combin
ing (MRC) technique (space diversity) to provide more diversity for wireless 
communication channels utilizing STBCs. 

2.4.2 Spatial Diversity Combining Methods 

As mentioned earlier, spatial diversity combining methods can be divided into 
the following categories: selection combining, scanning combining, maximum 
ratio combining and equal gain combining (see [Vucetic and Yuan, 2003] (pp. 
55) and [Rappaport, 2002] (pp. 385)). 
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Figure 2.6. Selection combining method. 

2.4.2.1 Selection Combining 

This is the simplest spatial diversity combining method which requires only 
a SNR monitoring action and an antenna switch at the receiver. 

In this technique, the receiver comprises M Rx antennas associated with M 
individual demodulators to provide M branches of which the gains are weighted 
to provide the same average SNR for every branch. The receiver selects the 
incoming signal with the highest instantaneous SNR to demodulate. In reality, 
as the measurement of the instantaneous SNR is difficult, the term {S-{-No)/No, 
where {S + NQ) is the instantaneous power of the received signal (including 
noise), is normally measured. The diagram of the selection combining method 
is presented in Fig. 2.6. 

The average SNR of the received signal 7 (when selection combining is used) 
compared to the average SNR F of each branch (when no diversity is used) is 
calculated as follows (Eq. (7.62) in [Rappaport, 2002]): 

M . 

k=l 
k 

(2.46) 

Clearly, for M > 2, we have 7 > F. However, this technique is not optimal as 
it does not use all incoming signals simultaneously to provide the best received 
signals. 

2.4.2.2 Scanning Combining - SC 

In this technique, the receiver scans all branches following a certain order 
and selects a particular branch which has an SNR above the predetermined 
SNR threshold. The signal of this branch is selected as the output until it drops 
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Figure 2.7. Scanning combining method. 

under the predetermined threshold. The receiver then starts searching again. 
The diagram of the scanning combining method is presented in Fig. 2.7. 

The advantage of this technique over the selection combining method is that 
the receiver does not need to monitor continuous and instantaneous SNRs of all 
branches at all times. However, it is inferior compared to selection combining 
method as the best incoming signal is not always selected, and consequently, 
the average SNR of the output is smaller than that mentioned in (2.46). 

2.4.2.3 Maximum Ratio Combining - MRC 

In this technique, the signals from M branches are weighted by the cor
responding weighting factors Gk = j ^ of those branches (k = 1 , . . . , M), 
where rk and Âo are the envelopes of received signals and the noise power, and 
then summed. Generally speaking, the weighting factors of the branches are 
proportional to the ratios -^ of those branches themselves. Before summing, 
the signals must be co-phased to provide the coherence voltage addition. The 
average SNR 7 M of the output signal is simply the sum of individual SNRs 
r of all branches (Eq. (7.70) in [Rappaport, 2002]): 

7M = M r (2.47) 

Clearly, this technique can provide an acceptable output signal with the expected 
SNR even when no incoming signal is acceptable. Certainly, the structure and 
the cost of the MRC are higher than those of other combining methods. The 
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Figure 2.8. Conventional baseband MRC technique using two receiver antennas. 

diagram of the conventional baseband MRC technique using 2 Rx antennas is 
presented in Fig. 2.8. Readers may refer to [Alamouti, 1998] or [Liew and 
Hanzo, 2002] (pp. 192) for more details. 

2.4.2.4 Equal Gain Combining - EGC 

This diversity technique is similar to the maximum ratio combining method, 
except that all weighting factors are set to one. The performance is marginally 
inferior compared to that of the maximum ratio combining method. 

2.4.3 Transmit Diversity Techniques 

Transmit diversity techniques [Fragouli et al., 2002], [Winters, 1994], [Win
ters, 1998] can be categorized to transmit diversity with or without feedback. 
In the uplinks (from Mobile Stations (MSs) to Base Stations (BSs)) of mo
bile communication systems, receive diversity is usually used by employing 
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multiple receiver antennas at BSs. However, in the downlinks (from BSs to 
MSs), it is more practical to utilize transmit diversity techniques than using 
receive diversity techniques due to the following reasons: 

• Multiple Rx antennas at MSs require a more complicated structure and 
more processing procedures at MSs, and consequently, require more power. 
Therefore, the lifetime of batteries in MSs is shortened. 

• Due to the tiny size of MSs, it is impractical to install more than two Rx 
antennas at MSs. 

Various transmit diversity techniques have been proposed in the literature, 
such as delay diversity schemes [Seshadri and Winters, 1993], [Wittneben, 
1991], [Wittneben, 1993], beamforming [Larsson et al., 2003], antenna switch
ing [Barrett and Arnott, 1994]. In order to improve further the performance 
of systems, transmit diversity is combined with modulation schemes and/or 
coding schemes with the consequence that both diversity gain and coding gain 
can be improved. The combination between transmit diversity techniques and 
Space-Time Codes (STCs) having coding gains, such as Space-Time Trellis 
Codes (STTCs) [Tarokh et al., 1998], is one of such combined transmit diver
sity techniques. 

Although STBCs do not provide coding gains, STBCs possess a simple 
decoding method. They provide full diversity in both space and time domains 
without ^ or with a small bandwidth expansion ̂ . The small bandwidth extension 
is due to the fact that the full-rate, CO STBCs do not exist for more than two 
Tx antennas (see Section 2.3.5 or [Liang, 2003], [Liang and Xia, 2003], [Wang 
and Xia, 2003]). 

In this book, we propose some diversity Antenna Selection Techniques 
(ASTs) for channels using either STBCs or differential STBCs (DSTBCs). 
When STBCs or DSTBCs are used, it is possible to use the MRC technique at 
the receiver. The association between the proposed ASTs and the MRC tech
nique significantly improves the performance of wireless channels using either 
STBCs or DSTBCs. Certainly, the performance of systems can be further im
proved by associating transmit diversity and receive diversity. 

^For instance, when the Alamouti code [Alamouti, 1998] is used in systems with one receiver antenna. 
Readers may refer to Section 2.3.2.6 and 2.3.2.7 for more details. 
^For the Alamouti code used in systems with more than one receiver antenna and for any CO STBC of order 
greater than 2. Readers may refer to Section 2.3.2.6 and 2.3.2.7 for more details. 
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2.5 Issues Addressed in the Book 
As analyzed before, MIMO systems potentially possess a high capacity, 

which is a desired property for the current communication needs requiring a very 
high data rate and high reliability, such as multimedia communication services, 
cellular mobile, and the Internet. In many cases, as pointed out previously, 
the capacity of MIMO systems is approximately linearly proportional to the 
number of antennas. 

STBCs are among various practical, advanced coding techniques designed 
for the use of multiple transmission antennas, which potentially approach the 
high capacity of MIMO systems (although there exists a loss of capacity com
pared to the true capacity of MIMO channels). As mentioned earlier, this coding 
technique possesses the following properties: 

1 It completely or highly takes advantage of the channel bandwidth, i.e., the 
maximum mutual information of STBCs is equal (in the case of the Alamouti 
code used in systems with 1 Rx antenna) or approaches the high capacity of 
MIMO channels. 

2 It decreases the sensitivity to multi-path fading, and facilitates utilization of 
higher level modulation schemes resulting in an increase of the data rate. 

3 It also facilitates the increase of the coverage area of wireless systems, and 
consequently, improves the reuse of frequencies in mobile communication 
systems. 

4 Consequently, it improves the data rate, the error performance and capacity 
of wireless communication channels with small or even without any expan
sion of bandwidth. An example is given in Fig. 2.9. This figure illustrates 
the bit error performance improvement of the Alamouti code compared to 
the transmission without space-time coding. 

5 It requires arelatively simple decoding technique, i.e.. Maximum Likelihood 
(ML) decoding, due to the orthogonality between the columns of the code 
matrices. Therefore, Space-Time Block coding is a simple and cost-effective 
coding scheme to meet the requirement on quality and spectral efficiency for 
the next generation wireless systems without changing much the structure 
of the existing systems. In fact, the Alamouti code has been adopted in 
the third (3G) generation wireless standards, such as WCDMA and CDMA 
2000, by the Third Generation Partnership Project (3GPP) [3GPP, 2002], 
[Al-Dhahir, 2002], [Rappaport et al., 2002]. 
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Figure 2.9. Alamouti code vs. transmission without coding with QPSK modulation and 8PSK 
modulation. 

In this book, we consider the following research problems: 

1 Although constructions of square, maximum rate CO STBCs, such as the 
Adams-Lax-Phillips construction, Jozefiak construction, and Wolfe con
struction, are well known (see Section 2.3.2.3 or [Liang, 2003]), the codes 
resulting from these constructions have numerous zeros, since these con
struction methods always involve identity matrices. This shortcoming im
pedes the practical implementation, especially in high data rate systems. 

So far, the general constructions of square, maximum rate CO STBCs with 
fewer or even with no zeros such that the transmitted symbols equally dis
perse through Tx antennas have not been well examined. Those codes, 
referred to as the improved square CO STBCs, have the advantages that the 
power tends to be equally transmitted via each Tx antenna during every 
symbol time slot and that a lower peak power per Tx antenna is required 
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to achieve the same bit error rates as for the conventional CO STBCs with 
zeros. This book proposes such constructions of improved CO STBCs. 

2 To increase the bit rates of CO STBCs, Multi-Modulation Schemes (MMSs) 
can be applied to CO STBCs. The CO STBCs resulted from our aforemen
tioned, discovered constructions, where some variables appear more often 
than the others, are especially good constructions for the use of MMSs. 
With the same MMSs and the same peak power per Tx antenna, such con
structions may provide a higher data transmission rate and possess better 
error performance than the conventional STBCs where numerous zeros are 
present. 

In addition, in MMSs, the optimal inter-symbol power allocation to achieve 
the best error performance is an important property. Although MMSs and 
the method examining the optimal inter-symbol power allocation have been 
somewhat mentioned in [Tirkkonen and Hottinen, 2001], these issues have 
not been well examined yet. 

Therefore, this book proposes MMSs applied to CO STBCs to increase the 
transmission rate and a general method for examining the optimal inter-
symbol power allocation in such MMSs to achieve the optimal error prop
erties. 

3 As analyzed earlier, the benefit of diversity techniques is evident. The com
bination between CO STBCs and a closed loop transmission diversity tech
nique (using a feedback loop) to improve further the performance of wireless 
channels has been intensively examined in the case of coherent detection. 
However, it will be better if the time required to process the feedback in
formation at the transmitter is shortened, and consequently, the system is 
quickly updated to the change of channels. This book derives an improved 
transmitter antenna selection technique, which reduces the time required 
to process feedback information and enhances further the performance of 
space-time coded wireless channels in the case of coherent detection. 

4 So far, the closed loop transmit diversity techniques with the aid of a feed
back loop and with a limited number of training symbols (or pilot symbols) to 
select transmitter and/or receiver antennas in the channels using Differential 
Space-Time Block Codes (DSTBCs) have not been intensively investigated 
yet. This book proposes two transmission antenna selection techniques for 
the channels using DSTBCs, improving significantly the performance of 
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wireless channels and being very robust, even in correlated, flat Rayleigh 
fading channels or in the channels with imperfect carrier recovery. 

5 Although the methods to generate correlated Rayleigh fading envelopes in 
wireless channels have been intensely examined in the literature, those meth
ods have their own shortcomings, which seriously limit their applicability. 
A more generalized algorithm to generate Rayleigh fading envelopes, which 
are correlated in spatial, temporal and/or spectral domains, and can be ap
plied to the case of either discrete-time instants or a real-time scenario, is 
essential for researchers in simulating and modelling the channels. This 
book proposes such a more generalized algorithm to generate correlated 
Rayleigh fading envelopes that overcomes all shortcomings of the conven
tional methods. 




