
Chapter 2

TLM-BASED METHODOLOGY

This chapter examines a methodology that enables you to model y our
large system designs at higher level of abstraction and realize actual
productivity gains offered by SystemC.

2.1 Transaction-Level Modeling Overview

In the past, when many systems were a more manageable size, a system
could be g rasped by a sin gle pers on known b y a v ariety of titles such as
system archit ect, chief engin eer, lead en gineer, or project engineer. Th is
guru may hav e been a software engi neer, hardware engineer, or algo rithm
expert depending on the primary technology leveraged for th e system. The
complexity was such that this person could keep most or all of the details in
his or her head, and this technical lead er was able to use spreadsheets and
paper-based methods t o c ommunicate t houghts a nd c oncepts t o the r est o f
the team.

The guru's background usually dictated his or her success i n
communicating requ irements t o each of the communities invo lved in t he
design of the system. The guru's past experiences also controlled the quality
of the multi-discipline trade offs such as hardware i mplementation versus
software implementation versus algorithm improvements.

In most cases, these trade offs resulted in concept ual disconnects among
the thr ee groups . F or e xample, cellu lar t elephone sy stems consist of ver y
complex algorithms, software, and hardware, and teams wo rking o n th em
have traditionally leveraged more rigorous but still ad-hoc methods.

These methods usu ally consist of a so ftware-based model; sometimes
called a s ystem architectural model (SAM), written in C, Java, or a si milar
language. The model is a co mmunication v ehicle between algo rithm,
hardware, and so ftware groups. The model may be used for algo rithmic
refinement or used as basi s for deri ving hardware and software subsystem
specifications. The exact parameters modeled are specific to the system type

12 SystemC: From The Ground Up

and application, but t he model is ty pically un-timed (more on t his topic i n
the following section). Typically, each team then uses a different language to
refine the design for their portion of the system. The teams leave behind the
original multi-discipline system model and in many cas es, a ny inform al
communication among the groups.

With rapidly increasing design complexity and the rising cost of failure,
system designers in most product domains will need a similar top-down
approach bu t with an i mproved methodology. An emerging s ystem design
methodology based on Transaction-Level Modeling (TLM) is evolving from
the large system design methodology discussed above. This emerging
methodology has s ignificantly m ore external and project design reuse
enabled by a language like SystemC.

Transaction-level modeling is an e merging con cept withou t precise
definitions. A working group of Open SystemC Initiative (OSCI) is currently
defining a set of ter minology for TLM and will eventuall y d evelop TLM
standards. In reality, when engineers talk of TLM, they are probably talking
about one or more of four different modeling styles that are discussed in the
following section.

The underlying concept of TLM is to model only the level of detail that
is n eeded by t he engineers developing t he system c omponents a nd sub-
system for a p articular task in th e development process. By modeling only
the necessary details, design teams can realize huge gains in modeling speed
thus enabling a new methodology. At this level, changes are relatively easy
because the d evelopment team has not yet painted itself into a corner wi th
low-level details such as a parallel bus implementation versus a s erial bus
implementation.

Using TLMs makes tasks usually reserved for hardware implementations
practical to run on a model early in the system development process. TLM is
a concept independent of language. However, to implement and refine TLM
models, it is helpful to have a language like SystemC whose features support
independent refinement of functionality and communication that is crucial to
efficient TLM development.

Before exploring this new design methodology we will explore some of
the background and terminology around TLM.

TLM-Based Methodology 13

2.2 Abstraction Models

Several sets of ter minology have been defined for the abstraction levels
traditionally used in system models. We are presenting a slight variation of a
model developed and presented by Dan Gajski a nd Lu kai Cai at CODES
(HW/SW Co-Design Conference) 2003 that is illustrated in Figure 2-1.

The first concep t necessary for understanding TLM is that system and
sub-system communication and functionality can b e developed and refined
independently. In th is term inology, the c ommunication and functionality
components can be un-timed (UT), approximately-timed (AT), or cycle-
timed (CT).

Figure 2-1. Abstraction Terminology

A model that is c ycle-timing accu rate for comm unication and for
functionality is usually referred t o as a register-transfer level (RTL) model.
We refer to models with un-timed communi cation an d fun ctionality as a
SAM. The RTL model is traditionally used for automatic synthesis to gates.
Many times the SAM i s used for al gorithmic refinement and can be refined
to approximately-timed communication and/or functionality.

The ot her fou r po ints plotted on t he graph are us ually collectively
referred to as TLMs, and rely on approximately-timed functi onality o r
communication. Approximately-timed models can rely on statistical timing,

Abstraction Terminology

Un-
Timed

Approximate-
Timed

Cycle-
Timed

 SAM

 RTL TLM

 TLM

 TLM

 TLM

Un-Timed

Approximate-
Timed

Cycle-
Timed

Fu
nc

t io
na

lit
y

Communication

More Accurate

More Accurate

14 SystemC: From The Ground Up

estimated timing, or s ub-system ti ming re quirements (or budgets) deri ved
from system requirements.

A m odel wi th cy cle-timed comm unication and app roximately-timed
functionality has been referred to as a Bus Functional Model(BFM) in older
methodologies a nd t he l abel i s r etained here. T he three r emaining T LMs
have not yet developed commonly accepted names. For now, we will use the
names developed by Gajski and Cai.

Table 2-1. Timing of Transaction-Level Models

Model Communication Functio nality

SAM UT UT

Component assembly UT AT

Bus arbitration AT AT

Bus functional CT AT

Cycle-accurate
computation

AT CT

RTL CT C T

All of these models are not necessary for most systems. In reality, most
systems only need to progress through two or t hree points on the graph in
Figure 2 -1. With a language t hat su pports r efinement concepts, the
transformation can be quite efficient.

TLM-Based Methodology 15

2.3 Another Look at Abstraction Models

In thi s section, to build out your unders tanding of how TLM can be
useful, we present a less rigoro us and more e xample-based discussion o f
TLM. We will assume a generic system containing a m icroprocessor, a few
devices, and memory connected by a bus.

The timing diagram in Figure 2-2 illustrates one possible design outcome
of a bus implementation. When first defining and modeling t he s ystem
application, the exact bus-timing details do not affect the desi gn decisions,
and all the im portant information co ntained with in the illustration is
transferred between the bus d evices as one event or transaction (component-
assembly model).

Further i nto t he development c ycle, the number of b us c ycles may
become important (to defin e bus cy cle-time requ irements, etc.) and the
information for each clock cycle of the bus is transferred as one transaction
or event (bus-arbitration or cycle-accurate computation models).

When the bu s sp ecification is fu lly chosen and defined, the bus is
modeled with a transaction or event per signal transition (bus functional or
RTL model). Of course, a s more deta ils ar e added, more events occur and
the speed of the model execution decreases.

In this diagram, the component assembly model takes 1 “event,” the bus
arbitration model takes approximately 5 “events,” and the RTL model takes
roughly 7 5 “ events” (the e xact n umber d epends o n t he n umber o f
transitioning s ignals and the exact simulator algorithm). This si mple
example ill ustrates the magnitude of computation required and wh y m ore
system design teams are employing a TLM-based methodology.

16 SystemC: From The Ground Up

Figure 2-2. Generic Bus Timing Diagram

2.4 TLM-Based Methodology

Now t hat w e h ave d iscussed s ome of the T LM concepts, we can look
more closely at a TLM-based methodology as illustrated in Figure 2-3.

In this methodology, we still start with the traditional methods used to
capture the customer requirements, a paper Product Requirements Document
(PRD). So metimes, t he product requirements are obtained directly from a
customer, but more likely the requirements are captured through the research
of a marketing group.

From the PRD, a SAM is developed. The SAM development effort may
cause changes or refinement to the PRD. The SAM is usually written by an
architect or archit ecture grou p and captures the product spec ification or
system critical parameters. In an algorithmic intensive system, the SAM will
be used to refine the system algorithms.

The SAM i s then refi ned in to a TLM th at may start as a component
assembly type of TLM and is further refined to a bus arbitration model. The
TLM is refined fu rther as software design and develo pment and hardware
verification environment development progresses.

Generic Bus Timing

clock

bus_req<0..1> device 0 request

bus_gnt<0..1> device 0 grant

bus_ack acknowledge

addr_data addr data0 data1 data2

Component Assembly Model Transaction

Bus Arbitration Model Transactions

TLM-Based Methodology 17

Figure 2-3. TLM-Based Flow

Requirements Definition

Requirements
Document

System Architecture Model
Development

SAM

Transaction Level Model
Development

TLM

SW
Design

and
Development

HW
Verification

Environment
Development

HW
Refinement

RTL

RTL to GDSII Flow

18 SystemC: From The Ground Up

If the proper design language and t echniques are u sed consistently
throughout the flow, then the SAM can be reused and refined to devel op the
TLM. The TLM has several goals:
1. Refinement of implementation features such as HW/SW partitioning; HW

partitioning among ASICs, FPGAs, and boards; bus architecture
exploration; co-processor definition or selection; and many more

2. Development platform for system software
3. “Golden Model” for the hardware functional verification
4. Hardware micro-architecture exploration and a basis for developing

detailed hardware specifications

In the near future, if EDA too ls mature sufficiently, the TLM code may
be refined to a behavioral synthesis model and be automatically converted to
hardware from a higher-level abstraction than the current RTL synthesis
flows. To day, the hardwar e refin ement is likely done thro ugh a traditional
paper sp ecification and RTL development tec hniques, although the
functional verification can now be performed via the TLM as outlined later
in this chapter.

At first, development o f th e TLM ap pears to be an unn ecessary task.
However, the TLM creates benefits including:

Earlier software development

Earlier and better hardware functional verification test bench

Creates a clear and unbroken path from customer requirements to
detailed hardware and software specifications

After reading this book, you and your team should have the knowledge to
implement TLMs quickly and effectively. The following section discusses in
detail the benefits your team will bring to your organization when applying
this methodology: early software development and early hardware functional
verification.

TLM-Based Methodology 19

2.4.1 Early Software Development

In com plex systems where new software and new h ardware are being
created, software developers must often wait for the hardware design to be
finalized before t hey can be gin detailed c oding. Softw are developers must
also wait for devices (ICs and printed circuit bo ards) to be manufactured to
test t heir code i n a reali stic environm ent. Even t hen, cr eating a realistic
environment on a l ab workbench can be very comp lex. This dependency
creates a long critical pat h that may add so much financial risk to a pro ject
that it is never started.

Figure 2-4 illustrates a traditional system development project schedule.
The a rrows highlight d ifferences a T LM-based methodology would make.
The ti me scale an d the du ration of ea ch p hase depend on th e pr oject size,
project c omplexity, and the ma keup of the sy stem co mponents (hardware,
software, and algorithms).

Figure 2-4. Schedule Benefits of Earlier Software Development

Schedule Motivation

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Architecture
Design

SW Development

SW Verification

HW Design

HW Functional
Verification

HW Implementation

System Verification

20 SystemC: From The Ground Up

Creating a TLM from the SAM slightly lengthens the architectural design
phase of a project, but it offers several potential benefits:

Ability to start refining and testing software earlier, thereby reducing
the overall development cycle

Ability to provide earlier and more realistic hardware/software trade
off studies at a time when changes are easier, thus improving overall
system quality

Ability to deliver executable models to customers both for validating
the specification and driving changes, and acceleration of product
adoption

Ability to cancel (or redefine) an unrealistic project before spending
even larger sums of money

Any opportunity to begin the software development work earlier warrants
consideration. Indee d, t he bott om line financ ial retu rns f or just start ing
software development earlier, may d ictate the adoption of this new
methodology without the other benefits listed above.

2.4.2 Better Hardware Functional Verification

System design teams are always looking for way s to provide more and
better functional verification of the har dware. The number of cases required
to functionally verify a system is growing even faster than the actual system
complexity.

Verifying the hardware interaction with the actual software and firmware
before creating the hardware is becoming increasingly more important. With
the chip mask set costs exceeding several hundred thousand dollars, finding
out after making chips that a software workaroun d for the hardware is
impossible or too slow is not acceptable. As a result, many teams are
developing s imulation an d e mulation tech niques to v erify the hardwar e
interaction with the software and firmware.

Additionally, with the increase in size and complexity of the hardware, it
is increas ingly important t o verify that un foreseen interactions within the
chip, b etween ch ips, or b etween ch ips and software do not create
unacceptable con sequences. De bugging t hese interactions wit hout
significant visibility into the state of the chip being verified is very tough.

Very large Verilog or VHDL simulations along with emulation strategies
have tra ditionally been used for sy stem-level functio nal verification. With
increasing system complexity, Verilog and VHDL simulations have become
too slo w for such ve rification. Hardware e mulation tec hniques ha ve bee n

TLM-Based Methodology 21

used when si mulation has been t oo sl ow, but emulation techni ques often
have limited state visibility for debugging, and they can be very expensive.

When a desi gn team develops a TLM, it is straightforward to refine the
model to a verificati on environment through the use of adapters as outlined
in the following section.

2.4.3 Adapters and Functional Verification

This section is a very brief overview of how a TLM model can be used as
part of an overall system f unctional verification s trategy. With mod ern
systems, th e hardware design i s not fully deb ugged until it is successfully
running th e system software. Thi s ap proach e nables functional verification
of the hardware with the system software prior to hardware availability.
More details about implementation of this approach are given in Chapter 13,
Custom Channels, and other sources4.

To sh ow one way that adapters can be applied to a TLM to create a
verification en vironment, we will assume a generic s ystem t hat looks like
Figure 2-5. The generic system is composed of a microprocessor, memory, a
couple of devices, and a bus with an arbiter.

Figure 2-5. Generic System

4 Grot ker, T., Liao, S., Marti n, G., Swan, S. 2002. System Design with Syst emC. Norwell
Massachusetts: Kluwer Academic Publishers.

Bus
Manager

Data
Memory

Auto
Bus I/F

CPU
DSP

Coprocessor

Program
Memory

Bus Activity
Model

Display
I/F

Arbiter

TLM Interface

22 SystemC: From The Ground Up

For our discu ssions, we will conce ntrate on communi cation refi nement
and as sume th at the fun ctionality of th e devices, the memory, and the
microprocessor will be approximately-timed or cy cle-timed as appropriate
throughout the design cycle.

In this ve ry s imple ex ample, we assum e tha t RTL v iews of the
microprocessor and memory are not available or not important at this point
in the verifi cation strategy. In this case, the RTL for the t wo devices could
be functionally verified by insertion of an adapter as illustrated in Figure
2-6.

This approach dict ates t hat the adapt er co nverts t he ti ming-accurate
signals of the bus coming from the RTL to a transaction view of the bus. The
RTL see s t he bu s activity that wo uld be created by the mi croprocessor,
memory, and arbiter. Bus activity is propagated only to the non-RTL portion
of th e sy stem after th e adapter crea tes the transaction . This propagation
creates a very high performan ce model compared to a traditi onal fu ll RTL
model.

This approach is just one way of applying adapters. The system-critical
parameters, the system size, the system complexity, and more will contribute
to a verification plan that will defi ne a s ystem-specific appro ach for
application of adapters.

Figure 2-6. Adapter Example

Bus
Manager

Data
Memory

Auto
Bus I/F

CPU
DSP

Coprocessor

Program
Memory

Bus Activity
Model

Display
I/F

Arbiter

Adapter

Adapter

TLM interface

TLM interface

Pin and Cycle

Accurate Interface

TLM-Based Methodology 23

2.5 Summary

A new TLM-based methodology is emerg ing t o a ttack the desig n
productivity of co mplex s ystems. T he ben efits of adopting t his sty le o f
methodology are derived from ear ly software development, early functional
verification, and hi gher system qualit y. The productivity improvements
derived from T LM-based methodology a re h uge a nd are t he major
motivation for adoption. Now, it is time to explore SystemC, a language that
enables this new methodology.

