
Preface

Imaging is an interdisciplinary research area with profound applications in
many areas of science, engineering, technology, and medicine. The most prim-
itive form of imaging is visual inspection, which has dominated the area before
the technical and computer revolution era. Today, computer imaging covers
various aspects of data filtering, pattern recognition, feature extraction, com-
puter aided inspection, and medical diagnosis. The above mentioned areas are
treated in different scientific communities such as Imaging, Inverse Problems,
Computer Vision, Signal and Image Processing, . . ., but all share the common
thread of recovery of an object or one of its properties.

Nowadays, a core technology for solving imaging problems is regulariza-
tion. The foundations of these approximation methods were laid by Tikhonov
in 1943, when he generalized the classical definition of well-posedness (this
generalization is now commonly referred to as conditional well-posedness).
The heart of this definition is to specify a set of correctness on which it
is known a priori that the considered problem has a unique solution. In
1963, Tikhonov [371, 372] suggested what is nowadays commonly referred to
as Tikhonov (or sometimes also Tikhonov–Phillips) regularization. The ab-
stract setting of regularization methods presented there already contains all
of the variational methods that are popular nowadays in imaging. Morozov’s
book [277], which is the English translation of the Russian edition from 1974,
is now considered the first standard reference on Tikhonov regularization.

In the early days of regularization methods, they were analyzed mostly the-
oretically (see, for instance, [191,277,278,371–373]), whereas later on numer-
ics, efficient solutions (see, for instance, the monographs [111, 204, 207, 378]),
and applications of regularization methods became important (see, for in-
stance, [49,112–114]).

Particular applications (such as, for instance, segmentation) led to the
development of specific variational methods. Probably the most prominent
among them is the Mumford–Shah model [276, 284], which had an enor-
mous impact on the analysis of regularization methods and revealed chal-
lenges for the efficient numerical solution (see, e.g., [86, 88]). However, it is
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notable that the Mumford–Shah method also reveals the common features
of the abstract form of Tikhonov regularization. In 1992, Rudin, Osher, and
Fatemi published total variation regularization [339]. This paper had an enor-
mous impact on theoretical mathematics and applied sciences. From an an-
alytical point of view, properties of the solution of regularization functionals
have been analyzed (see, for instance, [22]), and efficient numerical algorithms
(see [90,133,304]) have been developed.

Another stimulus for regularization methods has come from the develop-
ment of non-linear parabolic partial differential equations for image denoising
and image analysis. Here we are interested in two types of evolution equa-
tions: parabolic subdifferential inclusion equations and morphological equa-
tions (see [8, 9, 194]). Subdifferential inclusion equations can be associated in
a natural way with Tikhonov regularization functionals. This for instance ap-
plies to anisotropic diffusion filtering (see the monograph by Weickert [385]).
As we show in this book, we can associate non-convex regularization func-
tionals with morphological equations.

Originally, Tikhonov type regularization methods were developed with the
emphasis on the stable solution of inverse problems, such as tomographical
problems. These inverse problems are quite challenging to analyze and to
solve numerically in an efficient way. In this area, mainly simple (quadratic)
Tikhonov type regularization models have been used for a long time. In con-
trast, the underlying physical model in image analysis is simple (for instance,
in denoising, the identity operator is inverted), but sophisticated regulariza-
tion techniques are used. This discrepancy between the different scientific
areas led to a split.

The abstract formulation of Tikhonov regularization can be considered in
finite dimensional space setting as well as in infinite dimensional function
space setting, or in a combined finite-infinite dimensional space setting. The
latter is frequently used in spline and wavelet theory. Moreover, we mention
that Tikhonov regularization can be considered in a deterministic setting as
well as in a stochastic setting (see, for instance, [85,231]).

This book attempts to bridge the gap between the two research areas
of image analysis and imaging problems in inverse problems and to find a
common language. However, we also emphasize that our research is biased
toward deterministic regularization and, although we use statistics to motivate
regularization methods, we do not make the attempt to give a stochastic
analysis.

For applications of imaging, we have chosen examples from our own re-
search experience, which are denoising, telescope imaging, thermoacoustic
imaging, and schlieren tomography. We do not claim that these applications
are most representative for imaging. Certainly, there are many other active
research areas and applications that are not touched in this book.

Of course, this book is not the only one in the field of Mathematical Imag-
ing. We refer for instance to [26,98]. Imaging from an inverse problems point
of view is treated in [49]. There exists also a vast number of proceedings and
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edited volumes that are concerned with mathematical imaging; we do not
provide detailed references on these volumes. Another branch of imaging is
mathematical methods in tomography, where also a vast amount of literature
exists. We mention exemplarily the books [232,288,289].

The objective of this book certainly is to bridge the gap between regu-
larization theory in image analysis and in inverse problems, noting that both
areas have developed relatively independently for some time.
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2

Image and Noise Models

Maximum a posteriori (MAP) estimation is a statistical method for denoising
of data, which takes into account statistical prior information on the clean
data and on the noise process. The maximum a posteriori estimate is the
most likely data under the assumption of priors for the data and the noise.

Typically, noise is assumed to be Gaussian, Laplacian, or Poisson dis-
tributed. Prior distributions of images are derived from histograms of training
data. Under such assumptions, MAP estimation reduces to a discrete varia-
tional regularization problem.

In this chapter, we first review basic statistical concepts. Applying these
concepts to discrete, digital images, we discuss several noise models and derive
priors for image data from histograms of “comparable” image data. Finally,
we show how this information can be used for MAP estimation.

2.1 Basic Concepts of Statistics

A random experiment is a “process, whose outcome is not known in advance
with certainty” (see [129, p. 5]). The set of possible outcomes is referred to
as the sampling space of the process. A probability distribution or probability
measure P on a sampling space Ω is a measure that satisfies P (Ω) = 1.

Let Ω be a sampling space with probability distribution P . A measurable
function Δ : Ω → R is called random variable. By Ran(Δ) := {Δ(ω) : ω ∈ Ω}
we denote the range of Δ. The random variable Δ induces a measure PΔ on
R by

PΔ(A) := P (Δ−1A) , A ⊂ R measurable .

An element x ∈ Ran(Δ) is called realization of Δ, and a PΔ-measurable subset
of R is called an event. For simplicity we write PΔ(x) := PΔ({x}).

If Ran(Δ) is discrete, then PΔ is called discrete probability distribution.
In this case, the probability distribution is uniquely determined by the values
PΔ(x), x ∈ Ran(Δ).

O. Scherzer et al., Variational Methods in Imaging, 27
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28 2 Image and Noise Models

If there exists a non-negative Borel function pΔ : R → R≥0 such that

PΔ(A) =
∫

A

pΔ , A ⊂ R measurable ,

then PΔ is called a (absolutely) continuous probability distribution. In this
case, the function pΔ is called the probability density of Δ.

Assume that Ω is a sampling space with probability distribution P . An
n-dimensional random vector Δ = (Δ1, . . . ,Δn) is a measurable function
Δ : Ω → Rn. The joint probability PΔ of Δ is the measure on Rn defined by

PΔ(A) := P
(
Δ−1(A)

)
, A ⊂ Rn measurable .

The probability density of a random vector Δ is defined analogously to the
probability density of a random variable.

If Δ is an n-dimensional random vector on Ω, then its components Δi,
1 ≤ i ≤ n, are themselves random variables on Ω. We say that the random
vector Δ consists of independent random variables Δi, if

PΔ(A1×· · ·×An) = PΔ1(A1) · · ·PΔn
(An) , A1, . . . , An ⊂ R measurable ,

where PΔi
are the probability distributions of Δi, 1 ≤ i ≤ n. If additionally

PΔi
= PΔj

for all 1 ≤ i, j ≤ n, then Δ consists of independent and identically
distributed, in short i.i.d., random variables.

The probability density of a random vector of independent continuous
random variables can be determined by the following result:

Theorem 2.1. Let Δ be a random vector consisting of independent random
variables Δi, 1 ≤ i ≤ n, with continuous probability distributions PΔi

and cor-
responding densities pΔi

. Then PΔ is continuous, and its probability density
pΔ is given by

pΔ =
n∏

i=1

pΔi
.

Proof. See, e.g., [321, Thm. I.3.2.]. ��

Definition 2.2. Assume that Δ is an n-dimensional random vector with
probability distribution PΔ, and that f : Rn → Rm, 1 ≤ m ≤ n, is con-
tinuous. The push forward f#Δ of Δ is the m-dimensional random vector
defined by the probability distribution

Pf#Δ(A) := PΔ(f−1A) , A ⊂ Rm measurable .

For a Lipschitz function f : Rn → Rm, 1 ≤ m ≤ n, the Jacobian is defined as

Jf :=
√

det(∇f ∇fT ) . (2.1)
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If f is Lipschitz and has a non-vanishing Jacobian almost everywhere and
Δ has a continuous probability distribution, then also Pf#Δ is a continuous
probability distribution. In this case, its density can be determined by means
of the following lemma.

Lemma 2.3. Let Δ be an n-dimensional continuous random vector with
probability distribution PΔ and density pΔ. Assume that f : Rn → Rm,
1 ≤ m ≤ n, is locally Lipschitz such that its Jacobian satisfies Jf �= 0 almost
everywhere in Rn. Then

pf#Δ(y) =
∫

f−1(y)

pΔ(x)
Jf (x)

dHn−m , y ∈ Rm ,

where Hn−m denotes the (n−m)-dimensional Hausdorff measure (see (9.1)).

Proof. By definition, we have for every measurable set A ⊂ Rm that
∫

A

pf#Δ(y) = Pf#Δ(A) = PΔ

(
f−1(A)

)
=

∫

f−1(A)

pΔ(x) . (2.2)

Using the coarea formula (see [159, Thm. 3.2.12], where as function g there
we use g = (pΔ/Jf )χf−1(A)), we find that

∫

f−1(A)

pΔ(x) =
∫

A

∫

f−1(y)

pΔ(x)
Jf (x)

dHn−m . (2.3)

Combining (2.2) and (2.3), it follows that
∫

A

pf#Δ(y) =
∫

A

∫

f−1(y)

pΔ(x)
Jf (x)

dHn−m , A ⊂ Rm measurable .

This shows the assertion. ��

Definition 2.4 (Mean and variance). Let Δ be a random variable with
probability distribution PΔ. We define the mean (or expectation) E(Δ) and
the variance Var(Δ) by

E(Δ) :=
∫

R

xdPΔ , Var(Δ) :=
∫

R

(
x − E(Δ)

)2 dPΔ ,

provided the integrals exist. If the distribution PΔ is continuous with density
pΔ, then we have

E(Δ) :=
∫

R

pΔ(x)x , Var(Δ) :=
∫

R

pΔ(x)
(
x − E(Δ)

)2
.

We call
√

Var(Δ) the standard deviation of Δ.
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Remark 2.5. Repeating a random experiment, we obtain a finite number of
realizations (a sample) of a random variable. Based on this sample, we can
define a discrete probability distribution on R:

Let δ1, . . . , δn denote n realizations of a random variable Δ. Then the
vector δ = (δ1, . . . , δn) defines a probability distribution on R by

Pδ(x) :=
1
n

∣∣{i ∈ {1, . . . , n} : δi = x
}∣∣ . (2.4)

We refer to Pδ(x) as the empirical probability distribution of δ. We denote

E(δ) :=
1
n

n∑
i=1

δi

the sample mean and

Var(δ) :=
1
n

n∑
i=1

(
δi − E(δ)

)2

the sample variance of δ, i.e., E(δ) and Var(δ) are the mean and variance of
the probability density Pδ(x) defined in (2.4), respectively.

In particular, E(δ) and Var(δ) are the mean and variance, respectively, of
the empirical probability distribution of δ. ♦

Remark 2.6. Let Δ be a random variable. Assume that Var(Δ) and E(Δ)
exist. Then

Var(Δ) = E(Δ2) − E(Δ)2 ,

where Δ2 is the push-forward of Δ by the function f(x) = x2 (see, e.g., [129,
Thm. 4.3.3]). ♦

Example 2.7. We recall some important distributions on R and Rn, which are
required below for the definitions of image noise models. Details and motiva-
tions for these distributions can be found in [129].

1. The Poisson distribution is a discrete distribution P with range Ran(P ) =
N ∪ {0}. It is given by

P (k) =
λk

k!
exp(−λ) , k ∈ N ∪ {0} , (2.5)

where the parameter λ ≥ 0 is at the same time the mean and the variance
of P .

2. Let I ⊂ R be measurable with 0 < L1(I) < ∞. The uniform distribution
on I is given by the probability density

p(x) =

{
L1(I)−1 , if x ∈ I ,

0 , if x �∈ I .
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3. The Laplacian distribution on R with mean x̄ ∈ R and σ1 > 0 is given by
the probability density

p(x) =
1

2σ1
exp

(
−|x − x̄|

σ1

)
, x ∈ R . (2.6)

4. The Gaussian distribution on R, also called normal distribution, with
mean x̄ and standard deviation σ2 > 0 is given by the probability density

p(x) =
1

σ2

√
2π

exp

(
−|x − x̄|2

2σ2
2

)
. (2.7)

5. If Δ is a random vector consisting of i.i.d. random variables, then the
probability density of Δ is given as the product of the probability densities
of Δi (cf. Theorem 2.1). For example, for i.i.d. Gaussian random variables
we have

p(x) =
1

(σ2

√
2π)

n exp

(
−|x − x̄|2

2σ2
2

)
,

where x̄ = (x̄, . . . , x̄)T ∈ Rn (compare with the more general definition of
multivariate (or vectorial) Gaussian distribution in the literature, see for
example [321, Sect. VIII.4]). Note that here |x − x̄| denotes the Euclidean
norm on Rn. ♦

2.2 Digitized (Discrete) Images

In this section, we give the basic model of discrete and continuous images as
used in the sequel.

Let h > 0 and nx, ny ∈ N. Discrete images of size nx × ny are given as
matrices u = (uij)(i,j)∈I1 , where

uij ∈ R , (i, j) ∈ I1 := {1, . . . , nx} × {1, . . . , ny} ,

describe the intensity values of a digital image at the nodal points

xij = (ih, jh) , (i, j) ∈ I1 ,

of a regular rectangular pixel grid x = (xij). The parameter h controls the
resolution of the image, that is, the horizontal and vertical distance of the
pixels xij (see Fig. 2.1). Note that in the literature, sometimes pixels are
defined as rectangles with midpoints xij .

In contrast with digital photography, where intensities are assumed to be
integers in a certain range (for instance, between 0 and 255), we allow for
arbitrary real values in the consideration below.
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Ω

…

…x1,1 x2,1 x3,1 xnx,1

x1,ny xnx,ny

h

Fig. 2.1. Pixel grid with nodes xij = (ih, jh).

A continuous image is given by its intensity function u : Ω → R, where

Ω :=
(
0, (nx + 1)h

)
×

(
0, (ny + 1)h

)
.

Note that Ω is chosen in such a way that the pixel grid x is contained in the
interior of Ω.

To every pair (i, j) in the set

I2 := {1, . . . , nx − 1} × {1, . . . , ny − 1}

we assign the discrete gradient vij of u at xij setting

vij :=
1
h

(
ui+1,j − uij

ui,j+1 − uij

)
. (2.8)

The resulting mapping v : I2 → R2 is called the discrete gradients matrix.
Note that this matrix is not an ordinary matrix of scalars, but its entries
are actually vectors. Moreover, we denote the matrix of norms of the discrete
gradients |vij | by |v|.

We distinguish discrete gradients v of a discrete image from one-sided
discrete gradients ∇hu of a continuous image u, which are defined by

∇hu(xij) :=
1
h

(
u(xi+1,j) − u(xij)
u(xi,j+1) − u(xij)

)
, (i, j) ∈ I2 .

In the special case that the discrete image u is given as pointwise discretiza-
tion of a continuous image u, that is, uij = u(xij), we obtain the equality of
gradients vij = ∇hu(xij). It is, however, convenient in certain applications
to also allow more general discretizations with respect to which the equality
does not necessarily hold.
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2.3 Noise Models

In this section, we discuss noise models corresponding to different distor-
tions in image recording. We concentrate first on intensity errors, which are
realizations of independent random variables, acting on each pixel location
separately, and then on sampling errors, where the observed error depends on
surrounding pixels as well.

Intensity Errors

The simplest model for intensity errors is additive noise. Let u be a discrete
image and δ = (δij)ij be an nx × ny matrix of realizations of i.i.d. random
variables. If the recorded data are

uδ = u + δ , (2.9)

then we speak of additive intensity errors in the image data. If each ran-
dom variable is Gaussian distributed, we speak of Gaussian intensity errors.
Other commonly used noise models assume a Laplacian, uniform, or Poisson
distribution (with constant parameter) of the random variables. Variational
approaches for removing additive Gaussian intensity errors are discussed in
the subsequent sections.

A model of multiplicative noise is given by

uδ = u · δ ,

where, again, δ = (δij)ij is a matrix of realizations of (non-negative) i.i.d. ran-
dom variables, and the multiplication is understood pointwise, that is, uδ

ij =
uijδij . We then speak of multiplicative intensity errors. A variational de-
noising approach taking into account such a noise model has been studied
in [337,346,347]. Aubert & Aujol [25] have considered multiplicative Gamma
noise and developed an adequate variational denoising approach.

Poisson noise and Salt-and-Pepper noise are prominent noise models with
a functional dependency of the noise δ on u, which is neither multiplicative
nor additive, that is,

uδ = δ(u) .

Photon counting errors produced by CCD sensors are typically modeled by
Poisson noise [40, 223, 359]. Let us consider a camera with a two-dimensional
array of CCD sensors, each sensor (i, j) corresponding to a position xij of the
sensor. During exposure, each sensor counts the number of incoming photons
at xij . Because this number is non-negative, the vector u has non-negative
entries.

The number of photons δij(u) detected by the CCD sensor can be modeled
as a realization of a Poisson distributed random variable with mean uij . Then
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the probability for measuring the value k ∈ N ∪ {0} at the pixel position xij

is given by the probability distribution PΔij
=: Pij defined by (cf. (2.5))

Pij(k) =
uk

ij

k!
exp(−uij) , k ∈ N ∪ {0} .

In the case of Salt-and-Pepper noise, it is assumed that uniform bounds
cmin ≤ uij ≤ cmax of the data u are given. On each pixel xij , the noise process
either sets the intensity uij to cmin or cmax, or leaves the intensity unchanged.
This can be modeled by considering δij(u) a realization of the random variable
Pij with range {cmin, uij , cmax} given by

Pij(cmin) = λ1 , Pij(uij) = λ2 , Pij(cmax) = λ3 ,

where λi ≥ 0 satisfy λ1 + λ2 + λ3 = 1. One application is the modeling of
corrupt sensors that are either in an “always on” or “always off” state. In this
case, cmin = 0 represents black (off) pixels and cmax = 1 white (on) pixels.
For more details, we refer to [184, p. 316] or [92].

Sampling Errors

We consider the noise model

uδ = u + δ |v| , (2.10)

where |v| is the matrix of the norms of the discrete gradients defined in (2.8)
and δ is an (nx−1)× (ny −1) matrix of realizations of i.i.d. Gaussian random
variables Δij . We assume that each Δij has zero mean and standard deviation
σΔij

:= σΔ > 0. As in the case of multiplicative intensity errors, all operations
in (2.10) are understood pointwise. For the sake of simplicity of presentation,
we do not notationally distinguish between the nx × ny matrices u and uδ

on the one hand and the sub-matrices consisting of the first (nx − 1) columns
and first (ny − 1) rows on the other hand.

The relevance of this noise model becomes evident from the following con-
siderations: Let us assume that uij , (i, j) ∈ I2, are obtained by sampling a
function u ∈ C2

0 (Ω) at sampling points xij ∈ Ω, (i, j) ∈ I2. The following
results state that the error model defined in (2.10) approximates an error
model, where each sampling point is randomly shifted in direction of ∇u(xij).

Theorem 2.8. Let h > 0 fixed. Assume that u ∈ C2
0 (R2) satisfies

uij = u(xij) , (i, j) ∈ I2 .

Moreover, let

xδ
ij := xij + δijnij , nij :=

⎧⎪⎨
⎪⎩

∇u(xij)
|∇u(xij)|

, if ∇u(xij) �= 0 ,

0, else ,
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that is, nij is orthogonal to the level line ∂ leveluij
(u) at xij. Then there exists

a constant C only depending on u, such that

1
|I2|

∑
(i,j)∈I2

∣∣u(xδ
ij) − uδ

ij

∣∣ ≤ C

|I2|
(
h

∑
(i,j)∈I2

|δij | +
∑

(i,j)∈I2

δ2
ij

)
. (2.11)

Proof. Because u(xij) = uij , it follows that also ∇hu(xij) = vij . Because by
assumption u ∈ C2

0 (R2), Taylor’s theorem shows that there exists C1 > 0
only depending on

∥∥∇2u
∥∥
∞, such that

∣∣u(xij + δijnij) − u(xij) − δij∇u(xij) · nij

∣∣ ≤ C1δ
2
ij , (i, j) ∈ I2 . (2.12)

Using (2.12) shows that
∣∣u(xδ

ij) − uδ
ij

∣∣ =
∣∣u(xij + δijnij) − u(xij) − δij |∇hu(xij)|

∣∣
≤

∣∣δij∇u(xij) · nij − δij |∇hu(xij)|
∣∣ + C1δ

2
ij .

(2.13)

Because ∇u(xij) · nij = |∇u(xij)|, it follows from (2.13) that
∣∣u(xδ

ij) − uδ
ij

∣∣ ≤ |δij |
∣∣|∇u(xij)| − |∇hu(xij)|

∣∣ + C1δ
2
ij

≤ |δij |
∣∣∇u(xij) −∇hu(xij)

∣∣ + C1δ
2
ij .

(2.14)

Moreover, there exists C2 > 0, again only depending on
∥∥∇2u

∥∥
∞, such that

∣∣∇u(xij) −∇hu(xij)
∣∣ ≤ C2h , (i, j) ∈ I2 . (2.15)

Inserting (2.15) in (2.14), we derive

1
|I2|

∑
(i,j)∈I2

∣∣u(xδ
ij) − uδ

ij

∣∣ ≤ C2 h

|I2|
∑

(i,j)∈I2

|δij | +
C1

|I2|
∑

(i,j)∈I2

δ2
ij ,

which proves the assertion. ��

Remark 2.9. We now study the influence of the mesh size h on the above
defined sampling errors. To that end, we indicate the parameter h by a su-
perscript in all occurring variables and sets.

Recall that the sample means of δh and
∣∣δh

∣∣ and the sample variance of
δh are defined as (see Definition 2.4 and Remark 2.6)

E(δh) =
1∣∣Ih
2

∣∣
∑

(i,j)∈Ih
2

δh
ij , E(|δh|) =

1∣∣Ih
2

∣∣
∑

(i,j)∈Ih
2

∣∣δh
ij

∣∣ ,

Var(δh) =
1∣∣Ih
2

∣∣
∑

(i,j)∈Ih
2

(
δh
ij − E(δh)

)2 =
1∣∣Ih
2

∣∣
∑

(i,j)∈Ih
2

(δh
ij)

2 − E(δh)2 .
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xδ
ij

nij

xij

level line

Fig. 2.2. Distortion of a sampling point in 2D. The shift is assumed to be orthogonal
to the level line.

Inserting these definitions in the right-hand side of (2.11) yields

1∣∣Ih
2

∣∣
∑

(i,j)∈Ih
2

∣∣∣u(xh,δ
ij ) − uh,δ

ij

∣∣∣ ≤ C
(
h E(|δh|) + E(δh)2 + Var(δh)

)
.

For h > 0, denote by PΔh the distribution of the random vector Δh. The law
of large numbers (see, e.g., [160, VII.7, Thm. 1]) implies that E(δh) → 0 in
probability, that is,

lim
h→0

PΔh

({∣∣E(δh)
∣∣ > ε

})
= 0 , ε > 0 .

Similarly, the law of large numbers implies that E(|δh|) converges in proba-
bility to a finite number, which implies that h E(|δh|) → 0. As a consequence,
it follows from Theorem 2.8 that

lim sup
h→0

1∣∣Ih
2

∣∣
∑

(i,j)∈Ih
2

∣∣∣u(xh,δ
ij ) − uh,δ

ij

∣∣∣ ≤ C Var(δh) in probability , (2.16)

that is,

lim
h→0

PΔh

({ 1∣∣Ih
2

∣∣
∑

(i,j)∈Ih
2

∣∣∣u(xh,δ
ij ) − uh,δ

ij

∣∣∣ > C Var(δh) + ε
})

= 0 , ε > 0 .

Using (2.16), it follows that the error model (2.10) for small variances ap-
proximately describes displacement errors of the sampling points in direction
orthogonal to the level lines (compare Fig. 2.2). ♦

2.4 Priors for Images

In the following, we show how images themselves can be modeled as realiza-
tions of a random vector, the distribution of which is called prior distribution
or prior (see [129,231]). The method of MAP estimation, to be introduced in
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Section 2.5, then provides a statistical motivation for variational methods for
denoising. We attempt to use as simple as possible priors, and assume that
either the intensities of the image or the discrete gradients are i.i.d. Below we
show with three test examples that this assumption, though extremely sim-
plifying, still provides enough information to be used in MAP estimation for
efficient denoising.

In this book, we consider three digitized test images shown in Figs. 2.3,
2.5, and 2.7:

• a digital photo, which we refer to as the mountain image,
• a synthetic image, which we refer to as the cards image, and
• ultrasound data.

As additional test data, we use noisy variants of the mountain and cards
images. We have artificially distorted the images by adding either Gaussian
intensity errors or by simulating sampling errors.

The test data with Gaussian intensity errors are plotted in Figs. 2.9 and
2.11. The test data with sampling errors are shown in Figs. 2.10 and 2.12.

Histograms of the Intensities

Histograms are important for motivating variational regularization techniques.
The histogram of an image is determined by partitioning R into congruent
half-open sub-intervals of length ΔI > 0,

Ik :=
[
k ΔI, (k + 1)ΔI

)
, k ∈ Z ,

and counting the occurrences of u in the sub-intervals, that is,

ck := |{(i, j) ∈ I1 : uij ∈ Ik}| .

The histogram is represented as a probability density p on R that is constant
on each interval Ik and there attains the value

p|Ik
:=

ck

ΔI |I1|
, k ∈ Z .

Comparing the histograms of the intensities of the test images with the corre-
sponding histograms of the distorted images reveals that, by adding Gaussian
noise to an image, the histogram of the intensities becomes smoother (compare
the histograms of Figs. 2.4 and 2.6).

The ultrasound image in Fig. 2.7 contains speckle noise. Because no noise-
free version is available, we compare the original data with a filtered version
of the image (see Fig. 2.8). For filtering, the total variation regularization
method discussed in Chapter 4 is used. Again, the histogram of the noisy
data is smoother than that of the filtered image.
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Fig. 2.3. Mountain image. Fig. 2.4. Histogram of mountain
image (black line) and histogram
of the image distorted with Gaus-
sian noise (gray line).

Fig. 2.5. Cards image.
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Fig. 2.6. Histogram of cards im-
age (black line) and histogram of
the image distorted with Gaus-
sian noise (gray line).

Fig. 2.7. Ultrasound data.
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Fig. 2.8. Histogram of original
ultrasound data (black line) and
of filtered data (gray line).
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Fig. 2.9. Mountain image dis-
torted by additive Gaussian noise.

Fig. 2.10. Mountain image dis-
torted by sampling point errors.

Fig. 2.11. Cards image distorted
by additive Gaussian noise.

Fig. 2.12. Cards image distorted
by sampling point errors.

The above examples show that the intensity histograms of images strongly
depend on the image content. Therefore it is difficult to provide an a priori
probability density p(u) that approximates the histograms of a variety of
different images.

Histograms of the Discrete Gradients

In image processing, commonly the histograms of norms of the discrete gra-
dients of intensities are preferred to intensity histograms. Figures 2.14, 2.16,
and 2.18 show the histograms of |v| for our test images. It can be recognized
that the histograms are pronounced at around 0 and look very similar to the
probability distributions considered above. In Figs. 2.13, 2.15, and 2.17, the
histograms for the distorted and the original test images are compared to
highlight the differences.

For both the card and the mountain image without distortions, the his-
tograms of the discrete gradients are concentrated around zero, indicating that
the images have dominant flat regions. For the data distorted with Gaussian
noise, the histogram is significantly flatter. Distortions of sampling points
strongly change the histogram in the mountain image but not in the cards
image. This is due to the fact that the cards image consists of piecewise con-
stant parts, in which sampling errors have no effect.
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Distribution of |v| and fitted Gaussian and Laplacian distribution
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Fig. 2.13. Empirical distribution
of the discrete gradient: moun-
tain image (black line), distorted
by Gaussian noise (dark gray line)
and distorted by sampling errors
(light gray line).
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Fig. 2.14. Histogram of |v| (bar
plot) for the mountain image and
fitted Laplacian (black line) and
Gaussian (gray line) distribution.
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Fig. 2.15. Empirical density of
|v| for the cards image (black
line), distorted by Gaussian noise
(dark gray line) and distorted by
sampling errors (light gray line).

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2.16. Histogram of |v| (bar
plot) for the cards image and
fitted Laplacian (black line) and
Gaussian (gray line) distribution.
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Fig. 2.17. Histogram of |v| for
the ultrasound (black line) and fil-
tered ultrasound data (gray line).
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Fig. 2.18. Histogram of |v| for
the filtered ultrasound data and
fitted Laplacian (black line) and
Gaussian (gray line) distribution.
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Table 2.1. Optimal approximation (w.r.t. l2-error) by Gaussian and Laplacian
probability densities to the histograms of the absolute value of discrete gradients of
the images.

Test image l2-error – Gauss l2-error – Laplace

Mountain 3.13 × 10−3 2.61 × 10−3

Cards 10.25 × 10−3 1.14 × 10−3

In order to derive image priors, we compare the histograms of |v| with
an appropriate subset of well-established continuous probability density func-
tions supported in [0,∞). For a continuous density function p̃ we use the
approximation

P̃ |Ik
:=

1
|Ik|

∫

Ik

p̃(s) ≈ p̃(k) , k ∈ Z ,

and minimize the l2-error between the histogram and the vector
(
p̃(k)

)
.

In the following, we denote by U a random vector and by pU the proba-
bility density of U. The image u is considered as a realization of U.

We now assume that the probability density pU(u) only depends on the
matrix |v| of the norms of the discrete gradients v of u. Additionally, we
assume that the norms of the discrete gradients are i.i.d. In this case, the
probability density of U is the product of the densities of |vij |.

A typical assumption on the absolute values of the discrete gradients is
that they are Gaussian distributed, in which case the prior is

pU(u) := C exp

⎛
⎝− 1

2σ2
2

∑
(i,j)∈I2

|vij |2
⎞
⎠ , (2.17)

or that they are Laplacian distributed (see [39]), in which case the prior is

pU(u) := C exp

⎛
⎝− 1

σ1

∑
(i,j)∈I2

|vij |

⎞
⎠ .

We refer to these priors as the Gaussian prior and the Laplacian prior, re-
spectively.

Example 2.10. We determine the best approximation of discrete gradients of
the cards and mountain histogram, respectively, within the set of Laplacian
and Gaussian densities. To that end, we have to determine the parameters
σq > 0, q ∈ {1, 2}, in such a way that the density p as introduced in (2.6) and
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(2.7), respectively, optimally fits the histogram. In Figs. 2.14 and 2.16, we have
plotted the optimal Laplacian density (q = 1) and the optimal Gaussian den-
sity (q = 2). Table 2.1 shows that the histogram can be better approximated
within the set of Laplacian distributions than within the set of Gaussian dis-
tributions. ♦

In the case of the mountain image, one can see that the histogram of the
discrete gradients attains its maximum away from zero (see Fig. 2.14). The
reason is that natural images often include regions containing texture, where
small oscillations cause a non-vanishing discrete gradient. The Gaussian and
Laplacian prior, however, both attain their maximum at zero. In order to
mirror this situation, we introduce a new density, in the following referred to
as log-prior (see Fig. 2.19),

pU(u) := C exp

⎛
⎝ ∑

(i,j)∈I2

−|vij |q

q σq
3

+ log |vij |

⎞
⎠ ,

where C > 0 is a normalizing constant, and q = 1 or q = 2.
We motivate the log-prior as follows: Let v ∈ R2 be a realization of a two-

dimensional random vector V , which is Gaussian or Laplacian distributed,
that is, it has a probability density of the form

pV (v) = C exp
(
− |v|q

q σq
3

)
,

where σ3 > 0, q ∈ {1, 2}, and C :=
(∫

R2 exp (− |ṽ|q /qσq
3)

)−1. We are
interested in the distribution of |V |, and therefore we consider its proba-
bility density p|V |. Using Lemma 2.3 with f(v) = |v|, which implies that
the Jacobian of f (see (2.1)) satisfies Jf = 1 almost everywhere, we find
that

p|V |(s) = C

∫

|ṽ|=s

exp
(
−|ṽ|q

qσq
3

)
dH1 , s ≥ 0 , (2.18)

where H1 is the one-dimensional Hausdorff measure (see (9.1)). Because the
integrand in (2.18) is constant on {|ṽ| = s}, it follows from the fact that
H1({|ṽ| = s}) = 2πs that

p|V |(s) = 2πsC exp
(
− sq

qσq
3

)
, s ≥ 0 , (2.19)

the maximum of which is attained for s = σ3. Figure 2.19 shows the graphs
of the probability density (2.19) for q = 1 and q = 2. For q = 2, the
function p|V | is the density of the Rayleigh distribution (see, for example,
[388]).
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Fig. 2.19. Probability density p|V |(s) = Cs exp(−sq/qσq
3) with σ3 = 1, C =(∫ ∞

0
s exp(−sq/qσq

3)
)−1

for q = 1 (black line) and q = 2 (gray line).

2.5 Maximum A Posteriori Estimation

We consider the following situation:
Let Ũ = (U,Uδ) be an (n + m)-dimensional random vector. The proba-

bility distribution of Ũ is just the joint probability distribution of U and Uδ,
denoted by PU,Uδ .

Moreover, let uδ be a realization of the m-dimensional random vector Uδ.
We want to find a realization u0 of U that makes the pair (u,uδ) most likely.
Typically, uδ is interpreted as noisy data, which are formed from the clean
data by means of a known noise process.

If U is a discrete random vector, the task of reconstructing u0 is com-
paratively easy. The most likely realization u0 is the one that, for fixed uδ,
maximizes the joint probability PU,Uδ(·,uδ). In order to make the defini-
tion suited for generalization to the non-discrete case, we define maximum
a posteriori estimation for discrete random vectors by means of conditional
probabilities:

Definition 2.11. Let U and Uδ be discrete random vectors. The conditional
probability of u for given realization uδ of Uδ is defined by

PU|Uδ(u|uδ) :=

⎧⎨
⎩

PU,Uδ(u,uδ)
PUδ(uδ)

, if PUδ(uδ) > 0 ,

0 , if PUδ(uδ) = 0 .

(2.20)

The mapping

uδ �→ u0 := arg max
u

PU|Uδ(u|uδ)
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is called maximum a posteriori estimator, in short MAP estimator, and the
function u0 is called MAP estimate (see [383,391]).

Example 2.12. We apply MAP estimation to a simple example: Let U and Δ
be two independent discrete random variables with values in I1 := {1, 2, 3}
and I2 := Z, respectively. We assume that the corresponding probability dis-
tributions are defined by

PU (u) =
1
3

and PΔ(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.4 if δ = 0 ,

0.24 if |δ| = 1 ,

0.055 if |δ| = 2 ,

0.005 if |δ| = 3 ,

0 else .

Let Uδ = U + Δ. Then

PUδ(uδ) =
∑
u∈I1

PU,Δ(u, uδ − u) =
∑
u∈I1

PU (u) PΔ(uδ − u)

=
1
3

∑
u∈I1

PΔ(uδ − u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.002 if uδ = −2 or 6 ,

0.02 if uδ = −1 or 5 ,

0.1 if uδ = 0 or 4 ,

0.232 if uδ = 1 or 3 ,

0.293 if uδ = 2 ,

0 else .

For uδ ∈ {−2, . . . , 6}, the probabilities PU,Uδ(u, uδ) and PU |Uδ(u|uδ) can be
read from the following tables, for uδ �∈ {−2, . . . 6} we have PU,Uδ(u, uδ) =
PU |Uδ(u|uδ) = 0 for every u.

uδ

PU,Uδ -2 -1 0 1 2 3 4 5 6

u=1 0.002 0.018 0.080 0.133 0.080 0.018 0.002 0.000 0.000
u=2 0.000 0.002 0.018 0.080 0.133 0.080 0.018 0.002 0.000
u=3 0.000 0.000 0.002 0.018 0.080 0.133 0.080 0.018 0.002

PU |Uδ -2 -1 0 1 2 3 4 5 6

u=1 1.0 0.917 0.800 0.576 0.273 0.079 0.017 0.000 0.0
u=2 0.0 0.083 0.183 0.345 0.455 0.345 0.183 0.083 0.0
u=3 0.0 0.000 0.017 0.079 0.273 0.576 0.800 0.917 1.0

(Note that these values have been rounded.)

For given uδ, we can determine from PU |Uδ the most probable value u ∈
{1, 2, 3}. For example, the probability PU |Uδ for the value of U δ = 0 attains
the maximum at U = 1. ♦
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In the following, we study the problem of MAP estimation for absolutely
continuous distributions. The argumentation follows [321, pp. 98–99]. We as-
sume that the random vectors U, Uδ, and Ũ = (U,Uδ) have absolutely
continuous probability distributions PU, PUδ , and PU,Uδ with according den-
sities pU, pUδ , and pU,Uδ .

Analogously to (2.20), we define the conditional probability of a measur-
able set A ⊂ Rn for given measurable B ⊂ Rm by

PU|Uδ(A|B) :=

⎧⎨
⎩

PU,Uδ(A,B)
PUδ(B)

, if PUδ(B) > 0 ,

0, if PUδ(B) = 0 .

Now let uδ be a realization of Uδ. We define the conditional density pU|Uδ of
u ∈ Rn given uδ by

pU|Uδ(u|uδ) :=

⎧⎨
⎩

pU,Uδ(u,uδ)
pUδ(uδ)

, if pUδ(uδ) > 0 ,

0, if pUδ(uδ) = 0 .

(2.21)

The next result reveals the connection between conditional density and
conditional probability:

Theorem 2.13. Let u and uδ be realizations of the random vectors U and
Uδ, respectively. Assume that the densities pUδ and pU,Uδ are continuous,
and pUδ(uδ) > 0.

For ρ > 0, let Uρ(u) and Uρ(uδ) denote the open cubes with side length 2ρ
around u and uδ,

Uρ(u) := (u1 − ρ, u1 + ρ) × · · · × (un − ρ, un + ρ) ,

Uρ(uδ) := (uδ
1 − ρ, uδ

1 + ρ) × · · · × (uδ
m − ρ, uδ

m + ρ) .

Then
pU|Uδ(u|uδ) = lim

ρ→0
2−nρ−n PU|Uδ

(
Uρ(u)|Uρ(uδ)

)
.

Proof. Because the probability densities pUδ and pU,Uδ are continuous, it
follows from the mean value theorem for integration that

pUδ(uδ) = lim
ρ→0

1
2mρm

∫

Uρ(uδ)

pUδ(uδ) = lim
ρ→0

PUδ

(
Uρ(uδ)

)
2mρm

, (2.22)

pU,Uδ(u,uδ) = lim
ρ→0

PU,Uδ

(
Uρ(u) × Uρ(uδ)

)
2n+mρn+m

. (2.23)

Thus the assertion follows from the definitions of conditional probability
in (2.20) and conditional density in (2.21). ��
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Note that (2.22) and (2.23) are simple versions of the Lebesgue–Besicovitch
differentiation theorem (see, e.g., [157, Sect. 1.7] for a formulation with balls
instead of cubes), which also applies to discontinuous densities, in which case
(2.22) and (2.23) only hold almost everywhere.

As a consequence of Theorem 2.13, maximization of pU|Uδ(·|uδ) can be
considered as continuous analogue to discrete MAP estimation.

In many applications, the vector uδ is considered a noisy perturbation of
some unknown data u. The noise process that generates uδ is described by
the conditional density pUδ|U(uδ|u) of uδ given u. Thus we have to find a way
that links the two conditional densities pU|Uδ(u|uδ) and pUδ|U(uδ|u). This is
achieved by means of the formula of Bayes (see, for instance, [129]),

pU|Uδ(u|uδ) =

⎧⎨
⎩

pUδ|U(uδ|u) pU(u)
pUδ(uδ)

, if pUδ(uδ) > 0 ,

0 , if pUδ(uδ) = 0 .

Therefore, we call continuous MAP estimation the problem of maximizing
the functional

T MAP(u) =
pUδ|U(uδ|u) pU(u)

pUδ(uδ)
. (2.24)

Note that in (2.24), the constant factor pUδ(uδ) can be omitted without affect-
ing the maximization problem. A maximizer of (2.24) is called MAP estimate.

To simplify the maximization, the logarithmic MAP estimator

T logMAP(u) := − log pUδ|U(uδ|u) − log pU(u) (2.25)

is often used in applications. Because the logarithm is a strictly increasing
function, the transformation does not change the extrema. The problem of
minimization of T logMAP is referred to as log MAP estimation.

2.6 MAP Estimation for Noisy Images

We now show how the method of MAP estimation can be applied to image
denoising and analysis.

We always assume that we are given a noisy image uδ that is a distortion of
the clean image by one of the noise processes introduced in Section 2.3. More-
over, we denote by U a random variable associated with one of the image
priors introduced in Section 2.4. In addition, u denotes a realization of U.

Intensity Errors

We first assume additive Gaussian intensity errors on the image. In this case,
the data uδ are given as (see (2.9))
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uδ = u + δ ,

where δ is a realization of the random vector Δ = (Δij), (i, j) ∈ I2, where
Δij are i.i.d. Gaussian random variables with zero mean and variance σ2. For
fixed u, the random vector Uδ is given by

Uδ = u + Δ .

We immediately see that U δ
ij for given u are independently Gaussian dis-

tributed with mean uij and variance σ2. Thus the conditional probability
density p(uδ|u) := pUδ|U(uδ|u) is given by

p(uδ|u) =
(

1
σ
√

2π

)|I2| ∏
(i,j)∈I2

exp

(
−

(uδ
ij − uij)2

2σ2

)
. (2.26)

For simplicity of presentation, we now omit the subscripts of the probability
densities pUδ|U(uδ|u) and pU(u), which can always be identified from the
context. From (2.26), it follows that

− log p(uδ|u) = |I2| log
(
σ
√

2π
)

+
∑

(i,j)∈I2

(uδ
ij − uij)2

2σ2
.

The goal of maximum a posteriori estimators (see also (2.24)) is to de-
termine u by maximizing the product of the conditional probability density
p(uδ|u) and the probability density of u, which is given by its image prior p(u).
Maximizing the conditional probability density is equivalent to minimization
of the negative logarithm of the conditional probability density.

Assuming a Gaussian prior (2.17), the second term in (2.25) reads as

− log p(u) =
∑

(i,j)∈I2

1
2σ2

2

|vij |2 + C .

Thus, the log MAP estimator for denoising images with intensity errors and
Gaussian prior consists in minimization of the functional

arg min
u∈RI1

∑
(i,j)∈I2

(
(uij − uδ

ij)
2 + α |vij |2

)
,

where α := σ2/σ2
2 > 0.

Sampling Errors

As above, we now determine MAP estimators for the model of sampling errors,
where the noise model is given by (2.10).
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Again we assume that δ is a realization of a random vector Δ = (Δij),
(i, j) ∈ I2, consisting of i.i.d. Gaussian random variables Δij all having zero
mean and variance σ2. Let u be fixed (and therefore also v), then it follows
that the random variables

U δ
ij = uij + |vij |Δij , (i, j) ∈ I2 , (2.27)

are independent.
Assuming that |vij | > 0 for all (i, j) ∈ I2, it follows from (2.27) by using

Lemma 2.3 with f(x) = uij + |vij |x (and therefore Jf = |vij |) that

p(uδ
ij |u) =

∫
{

δij=
uδ

ij
−uij

|vij |
} 1
|vij |

pΔij
(δij) dH0

=
(

1
σ
√

2π

)
1

|vij |
exp

(
−

(uij − uδ
ij)

2

2σ2 |vij |2

)
.

(2.28)

Because Uδ
ij , (i, j) ∈ I2, are independent, we have that

p(uδ|u) =
∏

(i,j)∈I2

p(uδ
ij |u) . (2.29)

Inserting (2.28) into (2.29), it follows that

p(uδ|u) =
(

1
σ
√

2π

)|I2| ∏
(i,j)∈I2

1
|vij |

exp

(
−

(uij − uδ
ij)

2

2σ2 |vij |2

)
. (2.30)

As an example, the log MAP estimator, defined in (2.25), according to the
conditional probability density (2.30) and the log-prior (2.19) is given by

arg min
u∈RI1

∑
(i,j)∈I2

(
1
2

(uij − uδ
ij)

2

|vij |2
+

α

q
|vij |q

)
, q = 1, 2 . (2.31)

Here α := σ2/σq
3 > 0.

It is convenient for this book to study (2.31) in a more general setting. We
consider

arg min
u∈RI1

∑
(i,j)∈I2

(
1
p

(uij − uδ
ij)

p

|vij |q
+

α

r
|vij |r

)
(2.32)

with p > 1 and r ≥ 1, and q ≥ 0. In Chapters 4 and 5, we investigate
continuous formulations

arg min
u∈X

(
1
p

∫

Ω

(u − uδ)p

|∇u|q +
α

r

∫

Ω

|∇u|r
)

(2.33)

of the discrete variational problem defined in (2.32), where X is an appropriate
space of functions u : Ω → R.
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Further Reading

Background on statistical modeling of MAP estimators can be found for in-
stance in [129,321].

The standard reference for statistical approaches in inverse problems is
[231]. Computational methods for statistical inverse problems are discussed
in [378].

The relation between variational methods and MAP estimation is dis-
cussed in [39, 79, 186, 201, 202, 296]. An early reference on the topic on MAP
estimators in imaging is [179].


