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Introduction

Regulationof cell number ingerminal zonesof thenervous system isdependent

on the interaction of extracellular signals with the ‘‘intrinsic’’ properties of the

germinal cells that may vary depending on the developing stage of the organ-

ism. During early embryonic development, proliferation of cells occurs along

the lumen of the developing neural tube, in an area defined as ‘‘the ventricular

zone’’. At this stage, cells proliferate very fast and characteristically give rise to

identical daughter cells, via a process identified as ‘‘symmetric cell division’’

that allows for expansion of the primordial structures (Fig. 2.1A). As the

organism develops, the need for ‘‘rapid expansion’’ decreases and new struc-

tures begin to form while still allowing for growth of the organism. Therefore,

bymid-gestation, a secondgerminal zonearises, the subventricular zone (SVZ)

and cells in this area acquire a modality of cell division characterized by the

generation of two different daughter cells (‘‘asymmetric cell division’’): One

with the ability to self-renew and the other one with the ability to differentiate

into a specific lineage (Temple, 2001). In adult SVZ, the maintenance of

homeostasis induces stem cells and multipotential progenitors to divide asym-

metrically, unless a need for rapid expansion (e.g. repair after injury) induces

the cells to shift to a symmetric modality of division (Fig. 2.1B).

Changes in the levels of the extracellular signals, alterations of their

receptors or modification of the intracellular signaling molecules regulating

proliferation during embryonic development, may result in abnormalities of
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Figure 2.1. Schematic representation of the distinct modalities of cell division. During

development (A), the expansion of brain structures is first guaranteed by the rapid

and symmetric non-terminal cell division. As new cell types are generated, the pattern

of cell division becomes asymmetric. In the adult animal (B) it is likely that stem cells

(B cells) in the remaining germinal zones such as the SVZ undergo asymmetric cell

division to maintain a specific number of mother and daughter cells. ‘‘Multipotent

progenitors (C cells) undergo a similar pattern of asymmetric cell division and

generate A cells and oligodendrocyte progenitors (not shown), with the ability to

divide following a symmetric division where both daughter cells exit from the cell

cycle (Q) and differentiate. Note that upon injury, the need for expansion of the

progenitor population leads to symmetric division and expansion of C cells that

generate both neurons and oligodendrocytes.’’
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brain structures. Changes or modifications of extracellular or intracellular

signals in adult neural stem cells, in contrast, may not affect the histoarch-

itecture of the brain, but affect the number of multipotential progenitors

available for repair after injury. If proliferation is defective, a smaller num-

ber of cells will be available for repair, conversely, if proliferation proceeds

uncontrolled, larger number of cells may result in hyperplastic foci and

eventually lead to neoplastic transformation.

Since the responsiveness of neural stem cells and multipotential progenitors

to extracellular signals is a dynamic process dependent on the developmental

stage and on the regional localization of the cells, it becomes important to

recognize that conclusions based on studies on embryonic stem cells may not

be translated directly to adult neural stem cells. These temporally and devel-

opmentally restricted profiles of responsiveness to mitogenic and anti-mito-

genic signals are determined by several parameters, including the

bioavailability of extracellular signals, the presence of specific receptors,

cross-talks among distinct signaling pathways and modulation of cell cycle

regulatory molecules. All of these events can be affected or determined by

specific genetic traits, expression of transcription factors and epigenetic modi-

fications of chromatin components resulting in differences of gene expression

that modulate the ‘‘context-specific’’ responsiveness of a stem cell.

It is worthmentioning that although the steady-state number of neural stem

cells at any given stage of development is the result of the equilibrium between

proliferation, differentiation, migration and survival of these cells, this chap-

ter will focus only on the experimental evidence on extracellular factors and

intracellular molecules affecting proliferation of neural stem cells and multi-

potent progenitors. This has been a very challenging task and although we

have attempted to include several studies in this area, the overwhelming body

of available literature has hindered our attempts to be exhaustive.

Extracellular Factors Affecting Proliferation

Basic Fibroblast Growth Factor (bFGF)

The Fibroblast Growth Factor (FGF) family includes a large number of

ligands and receptors initiating signaling cascades that are critical for the

early development of the organism (Burke et al., 1998; Klint and Claesson-

Welsh, 1999; Reuss and von Bohlen und Halbach, 2003). Of the different

members of the FGF family of ligands, for instance, FGF8 is primarily

involved in patterning of the midbrain and anterior forebrain (Mason et al.,

2000), FGF3 is important for the development of the ear (Represa et al., 1991)

and FGF2 is important for proliferation of neural stem cells and neurogenesis

both in vitro (Reynolds and Weiss, 1992; Vescovi et al., 1993; Vaccarino et al.,

1995; Kuhn et al., 1997) and in vivo (Craig et al., 1996; Tao et al., 1996; Kuhn
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et al., 1997; Wagner et al., 1999). FGF2 (or bFGF) is expressed in the rodent

brain at mid-gestation, from E11.5 to E17.5 in mice and from E13.5 to E19.5

in rats (Vaccarino et al., 1999b; Raballo et al., 2000), during a period coinci-

dent with active neurogenesis (Bayer and Altman, 1991; Caviness et al., 1995).

Targeted deletion of Fgf2 in mice results in a 50% reduction in the number of

cortical neurons (Vaccarino et al., 1999b), thus suggesting a critical role for

this ligand in neurogenesis.

The expression of the bFGF receptor, FGFR1 in the ventricular zone

(Fig. 2.2), is observed at E8.5-9.5 (Orr-Urtreger et al., 1991; Wanaka et al.,

1991) and it progressively decreases as neuroblasts begin to exit from the cell

cycle and start differentiating (Raballo et al., 2000). The phenotypic analysis

of mutant mice with targeted deletions in the FgfR1 or FgfR2 receptors

supports the idea that FGF signaling mediated by these two receptors, but

not by FGFR3 and FGFR4, is critical for regulating proliferation and

development of telencephalic structures (Yamaguchi et al., 1994; Deng

et al., 1997; Partanen et al., 1998; Xu et al., 1998; Tropepe et al., 1999).

The role of FGF receptor signaling in proliferation of neural progenitors

and stem cells is also supported by a separate line of investigation on the

effect of FGF2 administration at distinct developmental stages (Qian et al.,

1997; Kelly et al., 2003). High doses of FGF2 intracerebrally injected during

embryogenesis (E14 in mice), result in massive enlargement of the ventricles

and aberrant proliferation and differentiation (Ohmiya et al., 2001). How-

ever, low doses of recombinant FGF2 in rat embryos (Vaccarino et al.,

1999a) or even in neonatal and adult rats (Tao et al., 1996; Wagner et al.,

1999) enhance proliferation and neurogenesis.

Epidermal Growth Factor (EGF) Family

The epidermal growth factor (EGF) family of polypeptides includes EGF,

transforming growth factor-alpha (TGF-alpha), heparin-binding EGF (HB-

EGF) and related neuregulins. These polypeptides, produced by neurons

and glial cells, play an important role in the development of the nervous

system, by affecting proliferation, survival, migration and differentiation of

neuronal and glial cells (Xian and Zhou, 1999). Neuregulins have been

identified during the late embryonic development (Corfas et al., 1995), and

their receptors ErbB2 and ErbB4 are expressed in the E12 embryo (Korn-

blum et al., 2000) as well as in embryonically derived neural stem cells

(Calaora et al., 2001). Although neuregulin signaling especially via the

ErbB4 receptor is critical for migration of adult neuroblasts and possibly

survival and neurogenesis (Calaora et al., 2001; Anton et al., 2004), the

available experimental evidence does not support a role of this EGF family

member in proliferation. TGF alpha, in contrast, is a potent mitogen and

also the predominant form of EGF ligand expressed in the developing brain

and in adult SVZ (Kornblum et al., 1997). The importance of this ligand
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in regulating proliferation of adult neural stem cells is supported by the

phenotypic characterization of the TGF alpha null mice characterized by

decreased number of mitosis exacerbated by senescence (Tropepe et al.,

1997).

Expression of EGFR in vivo occurs during late embryogenesis (Fig. 2.2)

in the developing SVZ and follows the expression of FGFR1 in ventricular

zone cells (Burrows et al., 1997). Consistent with this temporal progression,

cells isolated from embryonic mouse brain during early development (i.e.

E10-E12) are FGFR1þ, while those isolated at later developmental stages

are both EGFRþ and FGFR1þ (Ciccolini and Svendsen 1998; Gritti et al.,

1999; Lillien and Raphael 2000). This expression pattern is also consistent

with the distinct growth factor requirements of early embryonic stem cells

for FGF2 and of the late embryonic stem cells for EGF and FGF2 (Tropepe

et al., 1999; Martens et al., 2000).

The concept of temporal responsiveness to distinct growth factors deter-

mined by the sequential expression pattern of distinct receptor subunits is

also supported by a comparative phenotypic analysis of the EgfR and FgfR

null mice. While the FgfR1 null mice are early embryonic lethal (Deng et al.,

1994; Yamaguchi et al., 1994), the phenotype of the EgfR null mice is

characterized by reduced cortical size at E18 (Threadgill et al., 1995), and

progressive neuronal degeneration during the postnatal period (Sibilia and

Wagner, 1995; Sibilia et al., 1998).

Despite the similar role as mitogens, FGF2 and EGF have been differen-

tially implicated as modulators of lineage restriction and neurogenesis. It has

been proposed that the differential role played by these factors depends on

the segregation of the mitogenic effect on distinct cellular populations: EGF

preferentially targeting the quiescent stem cells and FGF targeting the more

committed neuroblasts (Morshead and van der Kooy, 1992; Morshead et al.,

1994). The co-expression of FGFR1 and EGFR within the same cell type at

later stages of development, however, argues against this possibility (Gritti

et al., 1999). An alternative explanation for the differential effect exerted by

these two growth factors is the possibility that through the activation of

distinct tyrosine kinase receptors, they may affect distinct intracellular sig-

naling effectors, or the kinetics of activation of specific signaling molecules

(Lax et al., 2002; Yamada et al., 2004).

The idea that FGF2 and EGF may differentially affect the behavior of

multipotent neural progenitors is also based on the evidence that two weeks

of intraventricular administration of EGF to adult mice result in decreased

neurogenesis and increased generation of astrocytes, while administration of

FGF2 results in enhanced generation of neurons (Kuhn et al., 1997). Similar

data have been obtained by several other groups with the exception of a

study, reporting similar effects of FGF2 or EGF treatment on adult neuro-

genesis (Craig et al., 1996). The in vivo ultrastructural identification of adult

SVZ cells affected by EGF intraventricular infusion, for instance, clearly
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demonstrated the ability of EGF to affect the modality of cell division of the

transit amplifying C cell population from asymmetric to symmetric, and to

restrict neuroblast formation (Doetsch et al., 2002a). Similarly, intrastriatal

infusion of TGF alpha in an animal model of Parkinson’s disease (Cooper

and Isacson, 2004) induces the formation of clusters of GFAP�=nestin
þ

cells

along the lateral wall of the ventricle, very likely representing an expansion

of the transit amplifying C cells (Cooper and Isacson, 2004). Finally, in vitro

studies in cultured neurospheres show increased astrocyte generation in

response to EGF and enhanced neuronal differentiation in response to

FGF2 (Whittemore et al., 1999; Jori et al., 2003). Together, these data

identify EGF signaling as permissive for astrocytic but not neuronal differ-

entiation and FGF signaling as permissive for the neurogenic fate in the

adult SVZ.

Insulin-Like Growth Factor-1 (IGF1)

Insulin growth factor peptides 1 and 2 are members of a family of insulin-

related peptides originally identified by their ability to stimulate growth of

chondrocytes (Laron, 2001). IGF1 is secreted by many tissues and its func-

tion varies according to the site of secretion and the presence of its receptors.

The expression of its receptors is highly conserved throughout evolution

(Garofalo and Rosen, 1988). IGF1R, in particular, is expressed in the

embryonic brain and co-localizes with the expression of FGFR and EGFR

in cells of selective germinal zones (Bondy et al., 1990; Garcia-Segura et al.,

1991; Kar et al., 1993). The phenotype of mice with targeted deletion in the

Igf1 gene or in the Igf1R gene is severely hypomorphic, with a clear decrease

in brain size (Baker et al., 1993; Liu et al., 1993; Beck et al., 1995), thus

suggesting IGF1R function as critical for brain development. Conversely,

transgenic mice over-expressing IGF1 show a generalized increase in cell

number and corresponding increase in brain size (Carson et al., 1993). The

role of IGF1 in neurogenesis is still controversial. While in vitro studies on

embryonic and adult stem cells suggest a role in neuronal differentiation of

EGF-responsive stem cells (Arsenijevic and Weiss 1998; Arsenijevic et al.,

2001), other reports underline its role as survival factor for FGF responsive

stem cells (Drago et al., 1991) and studies on freshly isolated PSA-NCAMþ
cells describe IGF1 as both survival and mitogenic factor for EGF respon-

sive cells (Gage et al., 2003). Its function in oligodendrocytes and myelin-

ation is better characterized. In addition, it has been recently suggested that

IGF1 also favors the commitment of adult neural stem cells towards the

oligodendrocytic phenotype (Hsieh et al., 2004). More studies on the in vivo

function of IGF1 will be necessary to decipher the multiple roles played by

this factor in the adult SVZ.
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Neurotrophins

The neurotrophin family is composed of several trophic factors including the

originally discovered founding member nerve growth factor (NGF) (reviewed

in Aloe, 2004), and the related brain-derived neurotrophic factor (BDNF),

neurotrophin-3, -4 and -5 (NT-3, NT-4, NT-5) (Leibrock et al., 1989; Hohn

et al., 1990; Maisonpierre et al., 1990; Berkemeier et al., 1991; Hallbook et al.,

1991). Neurotrophin bind to two classes of receptors: tyrosine kinase recep-

tors (Trk A, B and C) and a low affinity neurotrophin receptor called p75 that

is structurally related to the TNFR superfamily (Barker, 2004). Each ligand

binds with the highest affinity to a specific tyrosine kinase receptor (i.e. TrkA

and NGF, TrkB and BDNF, TrkC and NT-3), while all the neurotrophins can

bind to the low-affinity p75 (Chao, 2003). The complexity of the system is

enhanced by the presence of alternatively spliced isoforms for TrkB and TrkC

that may differ in case of the presence of specific catalytic domains (Huang

and Reichardt, 2003; Teng and Hempstead, 2004).

In the adult SVZ p75 immunoreactivity is confined to proliferating cells.

The majority of the p75þ cells are identified also by EGFR immunoreactiv-

ity. Few p75þ cells in the SVZ are also nestinþ, but the majority of them does

not colabel with GFAP or PSA-NCAM (Giuliani et al., 2004), thus suggest-

ing that p75 is mainly expressed in the fast-proliferating cell population.

Interestingly, no TrkA receptor expression is detected in the periventricular

region by in situ hybridization (Anderson et al., 1995) or immunohistochem-

istry (Giuliani et al., 2004; Fiore et al., 2005), while the full-length and

truncated form of TrkB receptors are both present. Truncated TrkB is

confined to the ependymal cell layer and to choroid plexus, while full length

TrkB expression is more widespread (Anderson et al., 1995). Therefore, it is

not surprising that BDNF is the primary neurotrophin-affecting neurogen-

esis in the adult SVZ (Kirschenbaum and Goldman, 1995). In vivo infusion

of BDNF in the lateral ventricle of the rat adult brain enhances BrdU

incorporation in the SVZ and is associated with an increased number of

neurons migrating to the olfactory bulb (Zigova et al., 1998). Since the

BrdUþ cells are also p75þ and TrkB� (Pencea et al., 2001), it is thought

that the proliferative effect of BDNF is mediated by signaling through the

low affinity p75 receptor in the fast proliferating cell population. The effect

of BDNF on adult neurogenesis (i.e. the generation of neurons from the

multipotential stem cells), in contrast, is a TrkB-dependent event, and is

likely directed on PSA-NCAMþ neuroblasts. In agreement with this model,

treatment of embryonic and adult-derived neurospheres with neurotrophins

affects differentiation, but not proliferation of TrkBþ cells (Ahmed et al.,

1995; Benoit et al., 2001). BDNF also acts as permissive factor for the

maturation and survival of neuroblasts generated from the SVZ (Kirschen-

baum and Goldman 1995). A recent study on the effect of BDNF on

GABAergic interneurons derived from the SVZ has shown that the sequen-

tial activation of p75 and then TrkB signaling pathways is critical for the
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development of the dendritic arbor (Gascon et al., 2005). Together, these

studies support a p75-mediated effect in cell proliferation and a TrkB-

mediated effect in neurogenesis of adult neural stem cells.

Ephrins

Ephrins are cell-surface-tethered ligands for Eph receptors, a family of tyro-

sine kinase receptors. The functional complex ephrin/Eph is involved in

several processes, including the formation and guidance of growth cones

from differentiating neurons and the induction and maturation of neuronal

spines (Palmer and Klein, 2003). There are two subclasses of ephrin ligands:

type A (ephrinA) are GPI-linked membrane proteins while type B (ephrinB)

are transmembrane proteins (Orioli and Klein, 1997; O’Leary and Wilkinson,

1999). The ephrin family of receptors (Eph) can also be subdivided into class A

(EphA) and B (EphB) on the basis of structural similarities in the extracellular

domain and on their ability to preferentially bind to specific ligands. Type A

ligands (ephrinA) bind to EphA receptors, and type B ligands (ephrinB) bind

to EphB receptors, although the EphA4 receptor can bind to both types of

ligands (Kullander and Klein, 2002) and ephrinA5 can also bind to the EphB2

receptor (Himanen et al., 2004; Pasquale, 2004). During development, this

signaling system modulates attraction/repulsion, cell adhesion and cell migra-

tion (Klein, 2004). In addition, a possible direct or indirect role for ephrinB1 in

neurogenesis is suggested by its expression in neuroepithelial cells in the VZ at

the onset of neocortical neurogenesis and its persistence throughout the

neurogenetic period (Stuckmann et al., 2001). It has been suggested that

ephrinB1 plays a role in affecting the responsiveness of neuroepithelial cells

to other cues and also to favor migration of newly generated neurons towards

their targets.

In adult SVZ, both ephrin ligands (ephrin-B2,B3 and A5) and ephrin

receptors (EphB1-B3, EphA4) are expressed in specific subpopulations of

cells (Conover et al., 2000). Intraventricular infusion of ephrin B2 or of the

EphB2 ectodomain dramatically disrupts neuroblast migration and in-

creases proliferation in the SVZ, thus resulting in the formation of regions

of localized hyperplasia (Conover et al., 2000).

Therefore, ephrins/Eph complexes act as environmental cues for migra-

tion processes, axonal pathfinding and topographic mapping during devel-

opment, although they can also modulate proliferation and guided

migration of neurons in the adult SVZ.

The Tgfbeta Family, Including Bone Morphogenetic

Protein (BMP)

Transforming growth factor beta (TGFbeta) signaling controls several intra-

cellular processes including proliferation, apoptosis, differentiation and
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lineage specification. TFGbeta ligands bind to serine-threonin kinase recep-

tors (type I and II) on the cell surface and the signal is mediated by a

heterogeneous group of proteins called Smads (Shi and Massague, 2003).

The TGFbeta family of cytokines comprises two subfamilies, TGFbeta/

Activin/Nodal subfamily and BMP (Bone Morphogenetic Protein)/GDF

(Growth and Differentiation Factor)/MIS (Muellerian Inhibiting Substance)

subfamily. TGFbeta cytokines are expressed in the CNS of the developing

rodent (Flanders et al., 1991; Millan et al., 1991; Schmid et al., 1991) in

regions where neuronal differentiation occurs. In fact, TGFbeta2 in vitro

induces cell cycle exit and differentiation of precursor cells (Mahanthappa

and Schwarting, 1993; Constam et al., 1994; Kane et al., 1996). The BMP

family includes a group of dorsal morphogens whose effect is pleiotropic and

ranges from the induction of a dorsal fate in cells of the developing neural

tube (Shah et al., 1996; Liem et al., 1997; Panchision et al., 2001), to the

suppression of differentiation and maintainance of self-renewal in embry-

onic stem cells (Ying et al., 2003), from the down-regulation of EGFR

expression in embryonic progenitors (Lillien and Raphael, 2000), to the

induction of apoptosis (Graham et al., 1996). In addition, BMP signaling

has been implicated in neurogenesis (Liem et al., 1995; Reissmann et al.,

1996; Li et al., 1998; Panchision and McKay, 2002) as well as in gliogenesis

(Gross et al., 1996), and also to favor the commitment to the astrocytic

lineage at the expenses of neurogenesis and oligodendrogliogenesis (Grin-

span et al., 2000; See et al., 2004). The effect of BMPs on astrogliogenesis is

dependent on cross-talks among distinct signaling pathways and involves the

activation of critical signaling molecules, including SMADs and STATs

(Nakashima et al., 1999a). Since SMADs are downstream of BMP signaling

and STATs are downstream of LIF signaling, it is the interaction between

these two signaling pathways that appears to be critical for astrogliogenesis.

Intriguingly, however, an alternative pathway of activation of STATs by

BMP receptor signaling (Rajan et al., 2003) has been suggested. According

to this model, STAT activation is mediated by a serine-threonine kinase

(called FRAP) that becomes activated upon binding of BMP4 to its receptor

(Rajan et al., 2003).

Besides their role in development, BMPs favor astrogliogenesis also in the

adult animal (Lim et al., 2000; Panchision et al., 2001). Indeed, BMP2 and 4

and cognate receptors are expressed in the adult SVZ where they favor the

astrocytic phenotype of adult neural stem cells (Lim et al., 2000) and

possibly modulate the cell cycle length of migrating neuroblasts (Coskun

and Luskin, 2001). Noggin, a BMP antagonist expressed by the ependymal

cells, promotes neurogenesis by counteracting the effect of the BMPs on

astrogliogenesis (Lim et al., 2000).

Thus, the activation of the TGFbeta signaling modulates both the deci-

sion of a cell to exit from the cell cycle and the commitment to an astrocityc

fate.
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Ciliary Neurotrophic Factor (CNTF) and Leukemia

Inhibitory Factor (LIF)

Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF)

are two neuroregulatory cytokines which play a major role in the developing

nervous system. They both exhibit broad structural similarities (Bazan,

1991) and share signaling components (Gearing et al., 1991, 1992; Gearing

and Bruce, 1992; Ip et al., 1992, 1993) among each other and with other

members of the family, including interleukin-6, oncostatin or cardiotrophin

1. CNTF is widely expressed within the nervous system (Ip et al., 1993; Ip

and Yancopoulos, 1996; Ip, 1998) and has been implicated in fate choice

decision and survival of sensory, sympathetic, ciliary and motor neurons

(Sleeman et al., 2000; Turnley and Bartlett 2000).

LIF and CNTF share a common receptor, gp130 (Davis et al., 1993; Ip

and Yancopoulos, 1996; Nandurkar et al., 1996). Specificity of the signaling

response is achieved by selective binding of the ligand with specific receptor

components. LIF signaling requires dimerization of the LIF receptor sub-

unit beta (LIFRbeta) with gp130; while CNTF requires trimerization of its

cognate receptor subunit (CNTFRalpha) with LIFRbeta and gp130

(Fig. 2.2). CNTFRalpha is expressed in embryonic neural precursor cells

(Ip et al., 1993; Lachyankar et al., 1997) and in neurons and astrocytes of the

adult central nervous system (Ip et al., 1993; MacLennan et al., 1996; Lee

et al., 1997a,b; Kirsch et al., 1998; Dallner et al., 2002), including the

subventricular zone (Seniuk-Tatton et al., 1995).

In vitro studies on embryonic stem cells suggest a role for CNTF/LIF

signaling in maintaining pluripotency (Conover et al., 1993) and preventing

differentiation (Pennica et al., 1995) or even promoting survival (De Felici and

Dolci, 1991; Pesce et al., 1993). Thephenotypeof theCNTFnullmice, however

is relatively normal and exhibits motor neuron losses only later in life, thus

arguing against a major role played by this cytokine during development

(Masu et al., 1993). The phenotypes of the CNTFR �/� (DeChiara et al.,

1995), of the LIFR �/� (Li et al., 1995) or the gp130 �/� (Nakashima et al.,

1999a) mice, in contrast, are characterized by a profound motor neuron defect

at birth, thus supporting the notion that CNTF is critical for survival and

viability of motor neurons (Sendtner et al., 1994; Ip 1998). The neuroprotec-

tive effect of CNTF is also observed in vivo, as demonstrated by the intracer-

ebral administration of this cytokine in animalmodels ofHuntington’s disease

(Anderson et al., 1996; Emerich et al., 1996) and in injured dopaminergic

neurons after transection of the nigrostriatal pathway (Hagg and Varon,

1993).

The detection of CNTF receptors during embryonic development and in

adult neural germinal zones raises the possibility that CNTF/LIF family

members play a role in regulating proliferation and fate choice of neural stem

cells. Treatment of neural embryonic progenitors and stem cells with these

cytokines suggests a critical role in astroglial differentiation (Bonni et al., 1997;
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Rajan and McKay 1998; Park et al., 1999; Galli et al., 2000; Morrow et al.,

2001). Signaling through STAT3, a transcription factor downstream of the

LIF/gp130 receptor signaling pathway is critical for the expression of GFAP

(Bonni et al., 1997) a fact also supportedby the severly perturbed astrogliogen-

esis in LIFR �/� mice (Koblar et al., 1998). The role of STAT in astrocytic

differentiation has been the subject of several studies. It has been shown that

GFAP promoter activation requires the assembly of a complex including

SMADs, STATs, the co-activator CBP and the histone acetyl-transferase

p300 (Nakashima et al., 1999b). Over-expression of neurogenin, a neuronal-

specific basic HLH factor, disrupts this ‘‘gliogenic’’ complex by sequestration

of the CBP/p300 component from STATs and thus prevents GFAP promoter

activation (Sun et al., 2001). The presence of histone acetyl transferase p300 in

the transcriptional complex suggests that activation of the astrocytic pro-

gram of differentiation necessitates changes in chromatin conformation.

Besides acetylation of nucleosomal histones, the GFAP promoter is also

regulated by a switch in the methylation of specific lysine residues on

nucleosomal histones (Song and Ghosh, 2004). The ‘‘switch’’ from a silen-

cing methylation on lysine 9 to an activating methylation on lysine 4 of

histone H3 is affected by the presence of FGF2 and results in an open

chromatin conformation in the promoter region, thus facilitating binding

of transcriptional activators such as STATs and SMADs (Song and Ghosh

2004). CNTF signaling has also been implicated in oligodendrocytic mat-

uration (Barres et al., 1996; Marmur et al., 1998) and neuronal differenti-

ation (Ernsberger et al., 1989; Saadat et al., 1989; Ip et al., 1994; Rudge

et al., 1996; Ezzeddine et al., 1997; Lachyankar et al., 1997). In the adult

forebrain, signaling through the CNTFR/LIFR/gp130 complex is respon-

sible for the maintenance of EGF-responsive neural stem cells (Fig. 2.3).

CNTF treatment of SVZ-derived cells in vitro, increases self-renewal and

expansion (Shimazaki et al., 2001) and in vivo, it enhances proliferation of

the EGF-responsive population (Shimazaki et al., 2001; Chojnacki et al.,

2003). The effect of CNTF/LIF signaling on proliferation and self-renewal

can be explained in terms of receptor cross-talks. Proliferation could be

consequent to the effect of CNTF on Notch1 signaling (Chojnacki et al.,

2003), while self-renewal could be due to the effect of LIF on differenti-

ation inhibitors, such as the Ids, downstream of BMP receptor signaling

(Ying et al., 2003).

Notch1

Notch is a cell-surface receptor activated by contact with a member of the

DSL family of ligands (Delta, Serrate, Lag2). Upon ligand activation, the

Notch receptor is cleaved and its intracellular domain (Notch ICD) is

released into the cytosol, translocates into the nucleus where it activates

the transcription of CSL/CBF and induces the expression of HES genes that

have been described as basic HLH transcription factors with the ability to
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inhibit neuronal differentiation (Lindsell et al., 1996; Weinmaster, 2000).

Therefore, Notch signaling during development has been linked to inhibition

of differentiation (Artavanis-Tsakonas et al., 1995). Although the role of

Notch in timing of cell fate specification and differentiation is supported by

several studies (Yun et al., 2002), the persistence of Notch1 and Jagged 1

expression in the adult SVZ (Stump et al. 2002) suggests that these molecules

may also modulate the behavior of pluripotential progenitors and adult stem

cells. The depletion of neural stem cells in the Notch1�/�mice (Hitoshi et al.,

2002) indicates a role for Notch in promoting self-renewal at the expenses of

neurogenesis. However, transient Notch activation induced by administra-

tion of Notch ligand results in severe decrease of the neurogenic potential

paralleled by increased gliogenesis (Morrison et al., 2000b). These appar-

ently contradictory results can be reconciled by evoking the importance of

spatial and temporal cues on the responsiveness of progenitor cells to Notch

signaling. Indeed, expression of active Notch at midgestation inhibits pro-

liferation and decreases the generation of neurons (Chambers et al., 2001).

At later stages, however, Notch ICD promotes proliferation and gliogenesis

(Gaiano et al., 2000; Chambers et al., 2001). Thus, similar to what was

described for BMP and CNTF, the same signal can result in maintenance

of stem-like cells or gliogenesis, depending on the cellular context.

Sonic Hedgehog

Sonic hedgehog (Shh), is a very well characterized morphogen expressed at

high levels in cells of the ventral telencephalon at embryonic day 11.5 (E11.5)

and maintained throughout development (Dahmane and Ruiz-i-Altaba

1999; Wallace 1999; Wechsler-Reya and Scott 1999). Shh has been impli-

cated in several aspects of CNS development such as proliferation (Marti

et al., 1995; Roelink et al., 1995; Chiang et al., 1996; Ericson et al., 1996) and

cell fate determination (Zhu et al., 1999). It has alo been shown to exert

opposing actions to BMP2 in embryonic cortical progenitors (Machold et al.,

2003, Viti et al., 2003b). Mice, bearing conditional null alleles of both Shh

and its receptor Smoothened, have a dramatic reduction in the number of

neural progenitors in the SVZ, possibly resulting from reduced proliferation

and increased apoptosis (Machold et al., 2003).

Recent studies on the adult SVZ in postnatal and adult mice have identi-

fied the Shh responsive SVZ cells as the GFAPþ B cells and the EGF

responsive transit amplifying progenitors C cells (Palma et al., 2005). The

in vitro data in SVZ cultures treated with Shh do not support a direct effect

of this molecule on proliferation, although they do suggest a synergistic

effect with EGF (Palma et al., 2005). Similarly, the increased number of

neurospheres formed by embryonic stem cells pre-treated with Shh and

cultured in the presence of EGF has been ascribed to the up-regulation of

EGFR level (Viti et al., 2003b). The lack of proliferation or differentiation in

the adult SVZ after intrastriatal injection of a myristoylated form of Shh
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(Charytoniuk et al., 2002) is consistent with the in vitro data. However, the

decreased proliferation observed in the SVZ after administration of the Shh

antagonist cyclopamine suggests a more complex role for this molecule

(Palma et al., 2005). Although the role of Shh in survival of SVZ cells has

not been addressed, it is likely to play a role in modulating the responsive-

ness of neural stem cells to other signaling molecules regulating cell number

(Fig. 2.3).

Wnt

The behavior of cells in the developing nervous system is tightly regulated

by the highly conserved family of Wnt signaling molecules. Wnt proteins

can either be secreted or located at the cell surface and may interact with a

family of cell surface receptors in the Frizzled family (Ikeya et al., 1997;

Yoshikawa et al., 1997; Hall et al., 2000). Binding of the ligand to the

Figure 2.2. Extracellular Receptors in embryonic and adult neural stem cells. Sche-

matic representation of the major subtypes of extracellular receptors observed

during embryonic development (panel A) and in the adult SVZ (panel B). Note

that during early embryonic development (upper cell in panel A), only FGF and

LIF receptors are expressed, but at later stages cells become also responsive to BMPs,

Shh and EGF (lower cell in panel A). In the adult SVZ (panel B), a differential

pattern of receptor expression is observed. The relatively quiescent B cells are

responsive to BMPs, Shh and neurotrophins ephrins, while the transit amplifying

progenitors express the receptors for EGF, FGF, CNTF, and Notch (B).
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receptor transduces a signal which involves inactivation of the GSK-3

kinase and the accumulation of the transcriptional regulator beta catenin.

Of the several Wnt family members, analysis of the phenotype of mice with

targeted deletions in specific genes has revealed the critical importance of

Wnt1, Wnt3a and Wnt7a in the developing nervous system (Megason and

McMahon, 2002). Cell proliferation is commonly regulated by Wnt signal-

ing and expansion of the CNS fails in Wnt1 mutants (reviewed in Logan

and Nusse, 2004) Over-expression of Wnt7a in embryonic stem cells in-

creases proliferation and self-renewal both in vivo and in vitro and further

promotes maturation of cortical progenitors by inducing the expression of

EGFR (Viti et al., 2003b).

Recently, the role of Wnt and its downstream-signaling molecule beta

catenin has been explored in neural stem cells. Transgenic mice over-express-

ing beta catenin have grossly enlarged brains that could not be simply

explained in terms of mitogenic effect or decreased apoptosis (Chenn and

Walsh, 2002). Rather, it appears that beta catenin affects the decision of

progenitors to exit from the cell cycle and this, in turn, results in loss of growth

control (Chenn and Walsh, 2002; Zechner et al., 2003). However, in other

cellular systems such as embryonic stem cells, beta catenin favors neurogen-

esis (Otero et al., 2004). This cell context role of b catenin has been linked to

the presence of FGF2 (Israsena et al., 2004). In the presence of FGF2, beta

catenin contributes to the maintenance of a proliferative state (Viti et al.,

2003), while in the absence of FGF2, it enhances neuronal differentiation by

forming transcriptionally active complexes on neurogenic promoters (Isra-

sena et al., 2004; Otero et al., 2004; Logan and Nusse, 2004). A better

understanding of the role of Wnt pathway in neural stem cell biology will be

a very important and critical step for the design of stem cell-based therapies.

Hypoxia-Induced Growth Factors

Ischemia and cerebral injury stimulate neurogenesis in neuroproliferative

regions of the adult brain, including SVZ and the hippocampal DG (Gould

and Tanapat, 1997; Parent et al., 1997; Liu et al., 1998; Takagi et al., 1999;

Gu et al., 2000; Magavi et al., 2000; Jin et al., 2001; Yoshimura et al., 2001;

Zhang et al., 2001). Concomitantly to ischemic injuries, expression of some

factors increases (Kawahara et al., 1999; Marti, 2004):

(a) Erythropoietin EPO

Erythropoietin (EPO) is a pleiotropic-inducible molecule produced by the

kidney and whose function was first described as the regulator of red blood

cell production (Carnot and Deflandre, 1906) by promoting erythrocyte

survival in the bone marrow (Koury and Bondurant, 1990a; 1990b; Yous-

soufian et al., 1993; Fisher, 2003). EPO is also a key example of a gene that

is regulated in an oxygen-dependent manner and, thus, its expression is
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induced when the oxygen levels are reduced (Wenger, 2002). Recently, EPO

and its receptor EPOR have also been detected in the developing CNS, thus

suggesting a possible role in neural development (Buemi et al., 2002; Liu

et al., 1994; Juul et al., 1998,1999). Indeed, mice with an Epor targeted

deletion (Epor�/�) (Lin et al., 1996), are characterized by the severe reduc-

tion in the number of neural progenitor cells and increased apoptosis (Yu

et al., 2002).

The observation that embryonic precursors in the CNS proliferate and

differentiate more in response to lowered oxygen (Morrison et al., 2000a;

Studer et al., 2000) suggests that perhaps they could play a similar role in

adult neural stem cells. In vitro studies on cultured neural stem cells are

consistent with the idea that increased EPO gene expression results in

increased adult neurogenesis (Shingo et al., 2001). Furthermore, intraven-

tricular infusion of EPO in mice favors the migration of newly generated

neurons to the olfactory bulb and the effect is blocked by anti-EPO anti-

bodies (Shingo et al., 2001). Together these data suggest that EPO can

negatively regulate proliferation of stem cells while favoring the differenti-

ation towards the neuronal lineage.

(b) Vascular Endothelial Growth Factor VEGF

The vascular endothelial growth factor (VEGF) is a hypoxia-inducible

secreted protein (Wenger, 2002) that regulates endothelial cell growth and

differentiation and is also a survival factor for endothelial cells (Risau,

1997). The loss of a single allele in the mouse results in death during

embryogenesis, due to vascular defects (Ferrara et al., 1996). In the nervous

system, VEGF is expressed during development (Breier et al., 1992), and is

related to the EPO-induced response to hypoxic insults in the brain as a

target for the hypoxia inducible transcription factor (HIF-1) (Marti, 2004).

VEGF has neurotrophic and neuroprotective effects on distinct types of

neurons (Silverman et al., 1999; Sondell et al., 1999, 2000; Jin et al., 2000a,

2000b; ; Matsuzaki et al., 2001) and its receptor VEGFR2/flk-1 is expressed

in neural progenitor cells (Yang and Cepko, 1996; Jin et al., 2002b), thus

suggesting a possible role in neurogenesis. In the adult murine brain, admin-

istration of exogenous VEGF increases proliferation (Fig. 2.3) of neuronal

precursors in the SVZ by modulating cell division rather than survival (Jin

et al., 2002b). Finally, in cultures from the neonatal SVZ, treatment with

FGF2 increases the expression of VEGFR2/flk-1, and in turn, treatment

with VEGF enhances the chemotactic response of FGF2-stimulated progen-

itors, thus suggesting a synergistic effect of these two factors on migration

(Zhang et al., 2003).

(c) Heparin-Binding HB-EGF

Heparin-binding EGF-like growth factor (HB-EGF) is a mitogenic and

chemotactic glycoprotein that contains an EGF-like domain and acts
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through several receptors, including ErbB1, ErbB4, and heparin sulfate

proteoglycans. Although the targeted deletion of HB-EGF in mice affects

mainly heart and skin development (Yamazaki et al., 2003), the expression in

neurons and glial cells throughout the brain suggests a role in the CNS

(Mishima et al., 1996; Hayase et al., 1998; Nakagawa et al., 1998). As for

EPO and VEGF, the expression of HB-EGF in the brain is increased by

ischemia and results in neuroprotection (Kawahara et al., 1999). In addition,

HB-EGF enhances neurogenesis in vitro, in neonatal cerebellar cultures

(Opanashuk and Hauser 1998) and embryonic mouse neurons exposed to

hypoxic conditions (Jin et al,. 2002a). In vivo, intraventricular infusion HB-

EGF enhances neurogenesis in the adult SVZ (Jin et al., 2002a) and restores

neurogenesis to young adult levels when administered to aged mice in

combination with FGF2 (Jin et al., 2003).

Extracellular Matrix and Cell–Cell Contact

It has been proposed that the maintenance of neural stem cells in the adult

brain is favored by the presence of extracellular conditions creating a

‘‘niche’’ that favors the preservation of an undifferentiated and proliferative

state (Doetsch, 2003; Alvarez-Buyilla and Lim, 2004). The concept of a

‘‘niche’’ including components of the extracellular matrix, is quite attractive

and has also been described in the hematopoietic system (Mercier et al.,

2002). Remarkably, several components identified in the extracellular matrix

of the SVZ (Gates et al., 1995) have been proven effective in modulating the

responsiveness to mitogens (i.e. FGF2, EGF) or to morphogens (i.e. Shh,

Wnt, BMPs). For instance, ECM molecules such as Tenascin C and

chondroitin sulfate proteoglycans, present in the late embryonic SVZ and

persist in the adult brain (Garcion et al., 2004), modulate the sensitivity to

other extracellular signals at several developmental stages. This effect could

be due to indirect binding to other matrix components or to direct inter-

action with specific cell surface receptors. In the tenascin null mice the

responsiveness of embryonic stem cells to FGF2 is dramatically reduced,

while the sensitivity to BMP4 is increased (Garcion et al., 2004). Given the

previously discussed antagonistic role of BMP and FGF2 on EGFR expres-

sion (Lillien and Raphael, 2000), it is not surprising that tenascin loss of

function results in decreased proliferation of SVZ cells and delayed EGFR

expression.

Another component of the ECM, the glycosaminoglycan heparin sulfate,

has also been shown to promote the action of FGF2 in embryonically

derived cells (Chipperfield et al., 2003), although it inhibits the response to

this same factor in cells derived from the adult brain (Leventhal et al., 1999;

Shen et al., 2004). These data corroborate and support the idea that the

extracellular matrix is a critical component of the niche and that it may

affect stem cell behavior by modulating the responsiveness to other extra-

cellular cues and possibly affecting intracellular signals.
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Another essential component of the neural stem cell niche is the vascular

compartment. In the developing CNS, the embryonic neural stem cells in the

VZ have been shown to produce vascular endothelial growth factor (VEGF)

which is known to contribute to the neovascularization of the area. A more

direct evidence that endothelial cells enhanceproliferationandneurogenesis of

embryonic and adult neural stem cells is provided by co-culture experiments

(Leventhal et al., 1999). Explants of adult SVZ cultured in the presence of

endothelial cells express higher levels of the neurotrophin BDNF (Shen et al.,

2004).Time-lapsevideorecordingofdividingclonesofneural stemcells,grown

in the presence of endothelial cells, indicates that co-culture conditions tend to

favor the symmetric modality of cell division (Shen et al., 2004). Therefore,

proliferation of the neural stem cells seems to be affected by a wide range of

molecular signals, including the production of soluble factors (i.e. VEGF,

BDNF), the cross talk with the wnt/beta catenin signaling pathway and/or

with the Notch signaling pathway (Temple, 2001, Shen et al., 2004).

Neurotransmitters

(a) Dopamine

Dopamine is a neurotransmitter produced by neurons in the substantia

nigra, ventral tegmental area and preoptic area. It is involved in numerous

brain processes and contributes to integration of cortical information under-

lying motor, limbic and cognitive aspects of behavior (Nieoullon, 2002).

Besides its function as neuromodulator, dopamine also plays a role in

neurogenesis during development. The D1 and D2-receptors are expressed

in the striatal VZ and have been shown to play opposing roles in favoring (D2)

or inhibiting (D1) cell cycle progression in the lateral ganglionic eminence

(Jung and Bennett, 1996). The effect of D1-receptor activation is dominant

over the effect of the D2 receptor and results in an overall reduction of cells

entering S-phase (Ohtani et al., 2003). The role of D3 receptor signaling is not

well established, although it is expressed in the proliferative neuroepithelium

and persists postnatally in the subventricular zone (Diaz et al., 1997). Admin-

istration, either in vivo or in vitro of D3-receptor agonists, increases the

proliferative rate of neural stem cells and the number of cells expressing

neuronal markers (Pilon et al., 1994; Coronas et al., 2004; Van Kampen

et al., 2004). This effect is mediated by MAPK activation, a pathway also

activated by BDNF to affect neurogenesis (Zigova et al., 1998; Pencea et al.,

2001). Given the dual relationship between dopamine receptor activation and

BDNF expression (Guillin et al., 2001, 2003; Kuppers and Beyer, 2001; Sokol-

off et al., 2002; ), it is likely that they synergize in promoting neurogenesis.

(b) Serotonin (5-HT)

Serotonin (5-HT) is produced by neurons of the raphe nucleus in the brain

stem and modulates sensorimotor control, cognition and mood (Struder and
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Weicker, 2001b, 2001a). In addition to modulating synaptic function in the

adultbrain, 5-HTalso controls important functions inbraindevelopment such

as neurite outgrowth, cell survival and synaptogenesis (Gaspar et al., 2003).

The role of serotonin in neurogenesis is suggested by studies on the

class of antidepressants called ‘‘Serotonin Selective Re-uptake Inhibitors

(SSRI)’’. Stress is known to inhibit neurogenesis by elevating the levels of

gluco-corticoids (Moghaddam et al., 1994; Stein-Behrens et al., 1994). SSRI

anti-depressants reverse the effect of stress and increase proliferation and

differentiation of newly formed cells into neurons in the hippocampus (Mal-

berg et al., 2000; Santarelli et al., 2003). Since serotonin receptors (5-HT1A

and HT2C) are expressed in the SVZ, it is not surprising that systemic admin-

istration of various agonists increases proliferation of cells in this brain region

(Banasr et al., 2004). Intriguingly, like for dopamine, the effects of serotonin

onneurogenesis seem tobe related toBDNFsignaling, thus suggesting that the

effect of the distinct classes of neurotransmitters is possibly linked to

the presence of neurotrophins (Mattson et al., 2004).

(c) Opioids

Opioid peptides are known to act as neurotransmitters or neuromodulators

in the adult nervous system. They act through three cognate receptors:

m, d, k (Dhawan et al., 1996) that are also expressed in the SVZ (Zagon

and McLaughlin, 1986; Stiene-Martin et al., 2001). Blockade of opioid

receptors enhances cell proliferation, while their activation induces an anti-

proliferative effect (Hauser et al., 1996). Although this effect was originally

attributed to a fourth opioid receptor z (Zagon et al., 1991), it is likely that

the opioid effect on neurogenesis is a m-mediated effect since the m receptor

is widely expressed postnatally in neuroproliferative regions (Stiene-Martin

et al., 2001).

Hormones

(a) Thyroid Hormone

T3 constitutes the active ligand of the thyroid hormone (TH). The expres-

sion of TH receptors in the brain varies according to the cell type, region and

age as it clearly shows a spatial-temporal patterning during development

(Bradley et al., 1992) and adulthood (Puymirat et al., 1991). Besides the well-

established role of TH in maturation of oligodendrocytes (Baas et al., 1997;

Baumann and Pham-Dinh, 2001), the presence of its receptors in the adult

brain also led to investigate a possible effect in neurogenesis. Indeed, hypo-

thyroid rats showed increased proliferation in the SVZ and olfactory bulb,

while hyperthyroid rats showed reduced proliferation and increased ten-

dency to differentiate into oligodendrocytes (Fernandez et al., 2004). Co-

administration of thyroid hormone with retinoic acid results in a net increase

of proliferation in SVZ and enhanced neurogenesis (Giardino et al., 2000).
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(b) Estrogens

The role of sex steroids in neurogenesis has been suggested by the existence

of a gender bias in hippocampal-dependent tasks (Roof et al., 1993; Frye

et al., 2000; Conrad et al., 2003). At the cellular level, these differences are

correlated with the proliferative effects of estrogens in the hippocampus

(Tanapat et al., 1999, 2005). Estrogens can bind to two types of receptors,

called alpha and beta. Both receptors have been detected in several brain

regions throughout development (Shughrue et al., 1990). Both receptors are

also present in the ventricular wall of the embryonic neural tube as well as in

the adult brain (Brannvall et al., 2002), but the functional role of estrogens at

distinct stages of development is quite distinct. While estrogen treatment

potentiates the mitogenic effect of EGF in embryonic neural stem cells, it

antagonizes the EGF effect in adult neural stem cells, by upregulating the

cell cycle inhibitor p21Cip/Waf1 (Brannvall et al., 2002).

(c) Prolactin

Prolactin is a hormone that increases during pregnancy and at postpartum,

signaling lactation. Prolactin stimulates the production of neuronal progen-

itors in the SVZ (Bridges and Grattan, 2003; Shingo et al., 2003). The

increased neurogenesis results in the formation of new neurons in the olfac-

tory bulb (Shingo et al., 2003), and is possibly related to the enhanced

olfactory capability of the mother.

Others

(a) Amyloid Precursor Protein and Amyloid Peptide

The amyloid precursor protein (APP) is a type I transmembrane protein with

unknown physiological functions. Its soluble-secreted form (sAPP), present

in normal brain tissue (Palmert et al., 1989), has biological activities resem-

bling a growth factor and increases the in vitro proliferation of embryonic

neural stem cells (Ohsawa et al., 1999). The soluble sAPP binds to EGFRþ

cells in the adult SVZ and in vitro, EGF induces the secretion of soluble APP

(sAPP) by SVZ-derived cells. Intriguingly, sAPP infusions into the lateral

ventricle enhances proliferation of the EGF-responsive progenitors and

increases the cell number (Caille et al., 2004). In pathological conditions

such as Alzheimer’s disease, however, neurons are exposed to the amyloid

beta-peptide (Abeta), a self-aggregating neurotoxic protein. This peptide, in

contrast to sAPP, has been shown to impair neurogenesis in the SVZ of

adult mice and in human cortical neural precursor cells (Fig. 2.3). Amyloid

beta peptide treatment suppresses both proliferation and differentiation of

neural progenitors and induces apoptosis, associated with a disruption of

calcium regulation. The cumulative result of these effects is a severe deple-

tion of neurons possibly contributing to the olfactory and cognitive deficits

observed in Alzheimer’s disease (Haughey et al., 2002).
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Intracellular Signals Affecting Proliferation

Although it is often assumed that experimental results obtained in stem cells

isolated in the developing animal can be extrapolated to the behavior of stem

cells in the mature CNS, a large number of studies support the concept of

intrinsic differences in distinct neural stem cell populations, depending on

their location and birthdate (Temple 2001). The existence of temporally

regulated changes intrinsic to the cell is suggested by studies of in vitro

time-lapse videos of isolated stem cells. These studies have shown that cells

maintained in the same culture conditions can first give rise to neurons and

then to glia (Qian et al., 1998, 2000).

These ‘‘intrinsic differences’’ may result from genetic differences and

epigenetic modifications affecting the pattern of gene expression in a given

cell population. Consistent with this interpretation, genetic profiling of

embryonic and adult hematopoietic stem cells has identified a relatively

small subset of commonly expressed genes and an even smaller number of

genes shared with neural stem cells (Ivanova et al., 2002). Changes in gene

expression may also result from differences in the extrinsic signaling path-

ways whose cross talk affects the length of the cell cycle (Tc) and/or the

probability of progenitor cells to re-enter the cell cycle or become quiescent

(Nowakowski et al., 2002). In this respect, it has been shown that cells in the

embryonicVZ undergo a progressive increase in the length of Tc and that an

increased proportion of these cells leaves the cell cycle with each cell division

(Takahashi et al., 1996). Both these events are likely to be modulated by the

expression levels of cell cycle regulatory molecules and other transcription

Figure 2.3. Schematic view of a sagittal section of the adult brain. In red are some of

the extracellular signals that inhibit proliferation and favor the exit from the cell

cycle. In green are the extracellular signals that promote proliferation and increase

neurogenesis.
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factors (Tarui et al., 2005). Thus, progressive changes in the expression of

cell cycle genes modify the cycle kinetics and the relative proportion of

proliferating cells within each population, depending on the developmental

stage and cellular context.

Studies on the cell cycle kinetics of progenitors/neural stem cells during

embryonic development, for instance, have reported increased cell cycle

length with increasing embryonic age (Fig. 2.4) and a switch of cell division

from symmetric and rapid (Tc = ~17.6 hr) at E11, to asymmetric and slower

(Tc = ~26.5) at E14 (Tropepe et al., 1999). Differences in cell division persist

in the adult forebrain subependyma (Fig. 2.4), and at least two distinct

populations of proliferating cells have been identified (Morshead et al.,

1998). One population, the constitutively proliferating population, has a Tc

of 12.7 hr (Morshead and van der Kooy, 1992) and corresponds to the transit

amplifying progenitor population (Doetsch et al., 2002a), also called the ‘‘C

cell type’’ (Doetsch et al., 1997). The other population has a much longer cell

cycle duration (Tc~15 d or more) and corresponds to the quiescent cell

population (Morshead et al., 1994, 1998), of adult ‘‘stem cells’’ also called

‘‘B cell type’’ (Garcia-Verdugo et al., 1998).

Lengthening of the cell cycle time is thought to be a function of an increase

in the duration of G1 as the rest of the cell cycle parameters remain relatively

Figure 2.4. Lengthening of the cell cycle duration in stem cells during development.

Note that during the early stages of development (A), the cell cycle duration (Tc) is

very fast, possibly allowing for expansion. Around E11 the Tc is 17 hours and the

modality of cell division primarily symmetric. As the organism develops and neuro-

genesis begins (E14) the cell cycle time increases to 26 hours and the modality of

division becomes asymmetric. In the adult SVZ (B) two main cell types have been

identified. The relatively quiescent B cells has a very long Tc (15 days) and has been

proposed to be the precursor of the rapidly expanding population of C cells, charac-

terized by a short cell cycle time (12 hrs) and the ability to give rise to neuroblasts and

oligodendrocyte progenitors that become quiescent (Q).
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constant over time (von Waechter and Jaensch, 1972; Caviness et al., 1995).

Therefore, it is likely that the expression of cell cycle regulatory molecules in

distinct cell populations accounts for differences in cell cycle kinetics. In

agreement with this model, studies on cell cycle length in the neonatal rat

brain (Schultze and Korr, 1981; Menezes et al., 1995; , 1998; Smith and

Luskin, 1998) have indicated that differences in cell cycle kinetics between

cells in the neonatal anterior SVZ (that have a fast cell cycle time) and the

migratory cells in the RMS with a slower kinetics of cell division (Smith and

Luskin, 1998), correlate with the levels of expression of the G1 inhibitor

p19INK4d (Coskun and Luskin, 2001).

Indeed cell cycle length and the probability to exit from the cell cycle

are both affected by cell cycle regulatory molecules and transcription factors

whose expression can be modulated by genetic factors, epigeneticmodifica-

tions of chromatin and by the integration of extracellular signals.

Cell Cycle Regulatory Molecules

In order to discuss intracellular mechanisms of proliferation of CNS pro-

genitors and neural stem cells, it becomes critical to introduce the molecules

regulating the progression from G1 into the S phase of the cell cycle.

Progression through G1 is regulated by the ordered synthesis, assembly

and activation of distinct cyclin-CDK enzymatic complexes (Dyson, 1998;

Nevins, 2001). Two main enzymatic activities have been described: CDK4,

acting in early-mid G1; and CDK2, acting in late G1, very close to the entry

into the S replicative phase (Sherr, 1994; Sherr and Roberts, 1999). These

two activities differ in terms of substrate specificity and modality of regula-

tion. CDK4, for instance, is positively regulated by cyclin D and is inhibited

by members of the INK4 (INhibitors of CDK4) family. CDK2, in contrast,

is positively regulated by cyclin E and negatively regulated by the Kips

(Kinase Inhibitory Proteins). The main substrates of cyclinD/CDK4/6 com-

plexes are proteins of the Rb family (including pRb, p107 and p130). INK4

proteins prevent their phosphorylation, thus allowing them to sequester E2F

and blocking the transcription of E2F-responsive genes that are responsible

for driving the cell into S-phase (Kastan et al., 1992). Besides the role of Rb

as growth-inhibitory pathway, another important cell cycle checkpoint act-

ing at the G1 phase is mediated by the p53 tumor-suppressor gene (Paggi

et al., 1996; Mundle and Saberwal, 2003). We shall now review literature

pertinent to the expression patterns of these cell cycle regulatory molecules

in the central nervous system, with a special emphasis on their possible

functional role in the SVZ.

(a) Rb Family

The Retinoblastoma gene family is composed of three members of

closely related proteins characterized by a ‘‘pocket’’ domain pRb, p107
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and p130/Rb2 (Brehm et al., 1998; Luo et al., 1998; Magnaghi-Jaulin et al.,

1998). These molecules play a critical role in eukaryotic cell cycle progression

as negative regulators of proliferation. The retinoblastoma gene product pRb,

in its hypophosphorylated state, binds to members of the E2F family of

transcription factors, converting them to active transcriptional repressors,

by recruiting histone deacetylases (Dyson, 1998). Phosphorylated pRb in

contrast, is unable to bind to E2F, the repression is relieved and results in

the transcription of genes involved in DNA-replication (Fig.2.5) and nucle-

otide biosynthesis (Beijersbergen et al., 1994; Ginsberg et al., 1994). Distinct

members of the Rb family show association with specific members of the E2F

family and pRb preferentially binds to E2F-1, -2 and -3 while p107 and p130

preferentially bind to E2F-4 and -5 (Lees et al., 1992; Li et al., 1993). In

addition, p107 and p130 can also bind to cyclin/CDK2 complexes (Gill et al.,

1998; Callaghan et al., 1999; Ferguson and Slack, 2001).

The expression profile of the ‘‘pocket proteins’’ in the brain has a charac-

teristic cellular and temporal pattern. While pRb is found in both dividing

precursor cells and postmitotic neurons during embryogenesis, p107 expres-

sion is restricted to the ventricular zone and is rapidly down-regulated at the

onset of differentiation (Jiang et al., 1997; Yoshikawa 2000). P130 is ex-

pressed mainly in post-mitotic differentiated cells (Clarke et al., 1992; Jacks

et al., 1992; Lee et al., 1994). Consistent with the temporal pattern of

expression, targeted deletions in the Rb locus result in embryonic lethality

(Cobrinik et al., 1996; Lee et al., 1996), while mice with deletions in p107 or

p130 develop normally (Vanderluit et al., 2004). The expression pattern of

Figure 2.5. Molecular control of cell cycle entry. The G1/S transition of the cell cycle

is regulated by the enzymatic activity of cyclin/CDK complexes. The resulting in-

creased phosphorylation of the tumor suppressor gene pRb (or other members of the

pocket protein family) induces the release of transcription factors of the family E2F/

DP and allows the transcription of genes involved in S phase entry. The main

inhibitors (INK4 and KIP family members) and activators (cyclin D and E) of the

cyclin/CDK complexes active at the G1/S transition are shown.
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p107 persists in the adult SVZ, where it is expressed in small clusters of cells

around the ventricular wall (Vanderluit et al., 2004). Mice lacking p107

exhibit increased proliferation of the fast proliferating population, but also

increased self-renewal of neural stem cells, as indicated by the ability of cells

derived from the SVZ of p107 null mice, to generate a larger number of

secondary neurospheres than wild type mice (Vanderluit et al., 2004).

(b) INK4 Family Members

INK4 proteins inhibit S-phase entry by preventing the formation of active

cyclin D/CDK4 holoenzymes, due to the formation of binary complexes

between the INK inhibitor and the catalytic subunit CDK4 (Quelle et al.,

1995, 1997).

The Ink4 locus is composed of several genes identified as Ink4a, Ink4b,

Ink4c and Ink4d. While each of the Ink4 b-d genes encodes for one protein

named on the basis of the molecular weight p15INK4b, p18INK4c,

p19INK4d, the Ink4a locus is unusual because its second exon contributes

coding sequences to two distinct reading frames resulting in two proteins:

p16INK4a and p19ARF (Zindy et al., 1997).

In developing mouse embryos, only p18INK4c and p19INK4d have been

identified (Zindy et al., 1997). P18INK4c is preferentially localized in

neurons as they exited from the cell cycle (Zindy et al., 1999), whereas

p19INK4d is mainly detected in post-mitotic neurons and expressed at

high levels in the adult brain (Zindy et al., 1999), often together with

p27Kip1 (vanLookeren-Campagne and Gill, 1998). In the neonatal rat

SVZ, p19INK4d levels are low in proliferating cells at the anterior border

of the SVZ and progressively increase in the migratory cells of the rostral

migratory stream (Luskin and Coskun, 2002), thus suggesting that this

molecule plays a critical role in the induction of cell cycle exit once the

migrating cells have reached their final destination (Zindy et al., 1999).

Consistent with this interpretation, studies on mice with targeted deletion

of two major cell cycle inhibitors, p18INK4c and p27Kip1 continue to

proliferate even after the migratory period (Zindy et al., 1997).

The results regarding the expression of p16INK4a and its possible role in

cell cycle regulation of developing CNS are more controversial. While

Northern and Western Blot analysis of extracts from developing mouse

embryos (van Lookeren Campagne and Gill 1998) have not detected any

p16INK4a signal in the brain, different results have been obtained in the

developing rat, where p16INK4a is expressed at high levels in the prolifer-

ating cells of the VZ from E16 to E20 (Zindy et al., 1997). Although

p16Ink4a expression is apparently down-regulated in the rat brain also,

there appears to be a general consensus on the increasing levels of this

protein with increasing age of the animal (Zindy et al., 1997). It is important

to mention, however, that p16INK4a can be easily detected in vitro, in

dissociated primary cultures, thus suggesting that the stress of culturing
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could induce the expression of molecules that may not be present in an

in vivo context (Jacobs et al., 1999a, 1999b). As previously mentioned, the

p16INK4a represents the alpha transcript of the Ink4a locus and represents

an inhibitor of cyclin D/CDK complexes acting on pRb-E2F complexes. The

other transcript of the same Ink4a locus is p19ARF (beta transcript) and it

originates from a promoter some 15 kb upstream of the alpha transcript

resulting in a different reading frame of exon 2 than the alpha transcript (see

Fig. 2.6).

As a consequence, the beta transcript encodes a protein that has no

sequence homology with p16INK4a and that activates p53 rather than

the pRb pathway (Fig. 2.6). Given the importance of the Ink4a locus in

the transcription of regulatory components for two growth-inhibitory path-

ways, Rb and p53, it becomes easier to understand the high incidence of

deletions or inactivations observed in this locus in patients with brain

tumors.

The INK4a proteins have not been detected in the developing SVZ,

although presumably their expression increases with age. Given the import-

ance of these molecules as modulators of the cell cycle, it becomes critical to

understand the mechanisms regulating their expression. In this respect, it has

been shown that a member of the polycomb family of chromatin modifiers

called Bmi is expressed in the adult SVZ and acts as a potent repressor of the

Ink4a locus (Molofsky et al., 2003). Mice with targeted deletions in the Bmi

gene have a significant decrease in proliferation of neonatal and adult SVZ

cells together with a 20 fold induction of p16INK4a gene product and a 3

fold increase of p19ARF (Molofsky et al., 2003). Besides proliferation, the

increased levels of p16INK4a also modulate the ability of the stem cells to

self-renew, thus supporting the importance of the Ink4 locus as tumor

suppressor.

Remarkably, however, spontaneous glial tumors are not observed in the

Ink4a/Arf null mutants. Even though both GFAPþ astrocytes and nestinþ
cells in these mice have the characteristics of ‘‘immortal’’ cells (Holland et al.,

1998a), they still require the delivery of a constitutively active form of the

exon 1beta 1alpha

beta transcript alpha transcript
p19 ARF p16INK4a

p53 pathway

2 2

CDK 4 inhibition (Rb pathway)

Figure 2.6. The INK4a locus. The INK4a locus can generate two transcripts: p19

ARF that regulates p53 function and p16INK4a, that modulates the activity of

CDK4 and therefore regulates the Rb pathway.
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EGFR (Bachoo et al., 2002) or of the activated forms of Ras or Akt

(Uhrbom et al. 2002; Kamijo et al., 1997) for neoplastic transformation.

Finally, it is worth mentioning that mice with selective deletion of p19ARF,

with intact p16INK4a, develop spontaneous gliomas (Sherr and Roberts

1995), thus arguing that p19ARF rather than p16INK4a is involved in the

neoplastic transformation of SVZ cells.

(c) Kip Family Members

Inhibitors of the Kip family can bind CDK4/cylinD complexes, although

with lower affinity than the INK4 proteins, but this event does not result in

efficient functional inhibition of enzymatic activity (Polyak et al., 1994;

Toyoshima and Hunter, 1994; Sherr and Roberts, 1999). The ability of the

Kips to inhibit S-phase entry is mediated by the formation of ternary

complexes with cyclin A or E and CDK2 (Russo et al., 1996). The inhibitory

effect of the Kip molecules on cyclin/CDK complexes is two-fold: they

prevent substrate binding and rearrange the amino-terminal lobe of

CDK2; thus blocking ATP binding (Russo et al., 1996) Three Kip inhibitors

have been identified: p27Kip1 (Matsuoka et al., 1995), p21Cip1/Waf1 and

p57Kip2 (Sherr and Roberts 1999). The p57Kip2 inhibitor is found in the

VZ and SVZ of the developing rat brain at E16 and E18, and higher levels of

expression are observed in post-mitotic cells at E20 (van Lookeren Cam-

pagne and Gill, 1998). The p21Cip/Waf1 inhibitor is also detected at E16

and E18, but its expression is confined to the ependymal layer of the

ventricle and the choroid plexus and dramatically decreases to undetectable

levels in the adult brain (van Lookeren Campagne and Gill, 1998). In

agreement with this expression pattern p21Cip1�/� mice do not show any

change in the proliferative ability of cells in the developing or mature brain

in physiological conditions (Qiu et al., 2004).

Of the three members of the Kip family, p27Kip1 is undoubtedly the most

interesting. Its expression is detected in proliferating cells of the VZ at mid-

gestation (van Lookeren Campagne and Gill, 1998) and its levels progres-

sively increase with increasing numbers of cell divisions (Delalle et al., 1999).

Given the characteristic pattern of expression during the embryonic neuro-

genetic period, it has been suggested that p27Kip1 accumulation is part of

the mechanism regulating progressive lengthening of the cell cycle and/or

increased probability of cell cycle exit (Tarui et al., 2005). Studies on

p27Kip1 �/� mice, however, have shown that the length of the cell cycle

(Tc) of cortical embryonic progenitors is not affected by p27Kip1 loss of

function (Goto et al., 2004), although there is a definite increase in the

probability of the cells to re-enter the cell cycle, and thus an increase of the

proliferating population.

The expression of p27Kip1, however, persists in cells of the adult SVZ and

in the rostral migratory stream, thus suggesting a role for this molecule also in

the regulation of the proliferating population in the adult brain (van Lookeren
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Campagne and Gill, 1998). Mice with targeted deletions in the first exon of

p27Kip1 show a selective increase in the number of transit amplifying

progenitors concomitant with a reduction in the number of neuroblasts

and no change in the number of stem cells (Doetsch et al., 2002b). This

indicates that cell cycle regulation of SVZ adult progenitors is remarkably

cell-type specific with p27Kip1 being a key regulator of cell division in

transit amplifying progenitors, but not of the slow proliferating stem cells

(Doetsch et al., 2002b). In vitro studies on neurospheres cultured from the

neonatal SVZ support this interpretation. The levels of p27Kip1 are low in

proliferating neurospheres, they increase during the early stages of differen-

tiation and decrease again with time, in culture, thus indicating a possible

role for this protein in regulating the cell cycle of immature, but not stem

cells or the more mature neuroblasts (Jori et al., 2003). Together, these

data suggest that distinct molecular pathways may be activated in physio-

logical and pathological conditions in order to modulate the number of

neural stem cells (Fig. 2.7).

(d) p53 Pathway

The tumor-suppressor gene p53 is an important checkpoint for mammalian

cells in the G1 phase of the cell cycle. Upon genotoxic stress, irradiation,

DNA damage, oxidative stress or glucose deprivation, this molecule acti-

vates a transcriptional response resulting in either exit from the cell cycle

(possibly mediated by up-regulation of p21Cip1/Waf1) or apoptosis. In the

developing brain, however, p53 expression is most abundant in proliferating

Figure 2.7. Schematic representation of extracellular signals and intracellular mol-

ecules regulating the decision of a cell in the G1 phase of the cell cycle. Although it is

not clear whether mitogenic and anti-mitogenic signals affect the same cellular

effector molecules in SVZ cells, it is likely that activation of active cyclin/CDK

complexes result in proliferation, while their inhibition by Kip and INK family

members may result in cell cycle exit.
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cell populations of the embryonic and postnatal rat brain, and is not ob-

served in regions undergoing spontaneous apoptosis (Donehower et al.,

1992). At E14, its levels are very high in proliferating cells of the ventricular

zone, while from E16 to E20, it is also expressed in the SVZ and the cortical

plate. The expression of p53 decreases postnatally, but it remains quite high

in the postnatal rostral migratory stream and in the subventricular zone,

where it persists together with p27Kip1 (van Lookeren Campagne and Gill,

1998). Interestingly, the pattern of expression of p21Cip1/Waf1, one of the

downstream transcriptional targets of p53, is quite different, indicating that

the role of p53 in cell cycle regulation of adult neural stem cells is independ-

ent of p21Cip/Waf1 expression. Despite the high levels of p53 detected in the

VZ and SVZ of the developing rat brain, p53 null mice develop normally,

and do not display any major defects in brain histoarchitecture (Donehower

et al., 1992). Intriguingly, however, they do display increased susceptibility

to the development of glial tumors after transplacental exposure to muta-

gens (Leonard et al., 2001). Current studies in our laboratory support the

hypothesis that the increased susceptibility of these mice to brain tumors is

secondary to a specific role of this molecule in modulating the number of

adult neural stem cells in vivo (SGP and PCB unpublished).

In vitro, the levels of the cell cycle regulator p53 are quite low in prolifer-

ating neurospheres generated from neonatal rats and maintained in EGF and

its transcript levels are significantly higher in cells differentiated after mitogen

withdrawal (Nakamura et al., 2000; Jori et al., 2003). Higher p53 levels

correlate with increased apoptotic index in vitro after 3-7 days in culture.

Increased protein levels, however, are observed only after 21 days in differen-

tiating conditions, and correlate with the detection of high levels of neuronal

and glial markers, thus suggesting a dual role for this molecule in apoptosis

and in differentiation or lineage commitment of neural stem cells.

Other Intracellular Signaling Molecules

Emx2

Emx2 and the related gene Emx1 are the vertebrate homologues of the

Drosophila gene Empty spiracles (ems) involved in cephalic development

(Mallamaci et al., 1998). The distinct expression pattern during late embry-

onic development with Emx2 expression restricted to the VZ, and Emx1

strongly expressed in the subplate and cortical plate (Gulisano et al., 1996),

suggests that these two transcription factors play distinct roles in the devel-

oping nervous system. Emx2 is involved in proliferation and migration while

Emx1 seems to affect neurogenesis (Yoshida et al., 1997). Emx1 null mice,

however, do not have the corpus callosum and show only subtle defects in

cerebral cortex (Pellegrini et al., 1996), while Emx2 null mice display major

alterations of the brain histoarchitecture (Mallamaci et al., 2000; Tole et al.,

2000). Recent studies on Emx2 null mice have shown significant enlargement

of the proliferative ventricular and subventricular zones (Galli et al., 2002),
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thus suggesting that this molecule acts as a negative regulator of proliferation

ofneuralprecursorsandadultneural stemcells.Emx2 isexpressed invivo in the

adult SVZ (Gangemi et al., 2001;Galli et al., 2002) and in the rostralmigratory

stream, and in vitro in multipotent neural precursors (Galli et al., 2002). Its

expression is significantly decreased when these stem cells differentiate into

neurons and glia (Gangemi et al., 2001; Galli et al., 2002). Gain-of-function

studies by over-expressing Emx2 decrease the proliferative rate of cells while

retaining theirdifferentiativepotential (Gangemi etal., 2001;Gallietal., 2002).

Basedon these invivoand invitro studies, it canbeconcluded thatEmx2actsas

a negative regulator of proliferation of adult neural stem cells.

Vax 1

The homeobox Vax1 is a homologue of Emx2 and is also strongly expressed

in the embryonic and adult SVZ and in the RMS (Soria et al., 2004). In the

absence of Vax1, embryonic precursor cells proliferate 100 times more than

wild-type controls, in vitro. In addition, the SVZ of Vax1 null mice shows

signs of hyperplasia and disorganization (Soria et al., 2004). Together, these

data suggested that, like Emx2, the transcription factor Vax1 is an important

regulator of proliferation of SVZ cells.

PTEN

PTEN is a lipid phosphatase originally cloned as a tumor suppressor for

glioma (Li et al., 1997; Tamura et al., 1998; Datta et al., 1999). PTEN is a

phosphatidylinositol (PIP) phosphatase, responsible for the dephosphoryla-

tion of PIP3, thus antagonizing the role of the survival kinases PI3K and Akt

and rendering the cells more susceptible to apoptosis (Groszer et al., 2001). In

addition, PTEN is responsible for the dephosphorylation of the focal adhe-

sion kinase FAK, resulting in the inhibition of cell migration (Groszer et al.,

2001). In the adult brain, PTEN is expressed mainly in neurons and is found

both in the nucleus and cytoplasm of cells in the olfactory bulb, in the SVZ

and in large projection neurons. Given the importance of this signaling

molecule in regulating multiple pathways, several groups have generated

conditional knockout mice using the Cre-lox system. The first to be reported

is the PTEN deleted by Cre expression in nestinþ cells (Backman et al., 2001;

Kwon et al., 2001). These mice show increased proliferation and decreased

apoptosis of cells lining the ventricular walls with a dramatic brain enlarge-

ment and death immediately after birth (Li et al., 2003). Very different is the

phenotype of mice where PTEN is deleted in cells expressing Cre from the

GFAP promoter (Recht et al., 2003; Berger et al., 2004). In this case, no

change in proliferation or apoptosis has been reported, although the mice

displayed an abnormal organization of the cerebellum. These data clearly

indicate that the effect of PTEN is cell-context dependent and is affected by

the intracellular and extracellular milieu, possibly due to the cross-talk with

distinct signaling pathways that are active in different cells at different times.
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Conclusions

Although stem cell therapy has been proposed for therapeutic strategies

aimed at repairing functions, it is important to realize that as yet, relatively

little is known about the behavior of embryonic and adult stem cells in

terms of responsiveness to extracellular cues and intracellular signaling

molecules.

The challenge that awaits ahead is to define possible differences in intra-

cellular signaling molecules between embryonic and adult derived neural

stem cells that may underlie the distinctive responsiveness of these different

cell types to external signals. A better understanding of the mechanisms

regulating proliferation and differentiation of multipotent progenitors into

differentiated neurons, astrocyte and oligodendrocytes is, therefore, essential

for developing a realistic frame of therapeutic intervention while preventing

undesirable - and yet possible-neoplastic transformation of adult neural

stem cells.
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Table 1.

Extracellular factor Effect Reference

FGF2 " proliferation (Wagner et al., 1999)

" neurogenesis (Wagner et al., 1999)

EGF " proliferation (Kuhn et al., 1997)

# neurogenesis (Doetsch et al., 2002)

TGFa " proliferation (Cooper and Isacson 2004)

" migration

IGF-1 " proliferation (Arsenijevic et al., 2001)

" neurogenesis (Arsenijevic and Weiss 1998)

" survival (Gago et al., 2003)

BDNF " proliferation (p75) (Zigova et al., 1998)

" neurogenesis (TrkB) (Pencea et al., 2001)

" survival (Kirschenbaum and Goldman 1995)

EPO " neurogenesis (Shingo et al., 2001)

VEGF " proliferation (Jin et al., 2002b)

" migration (Zhang et al., 2003)

HB-EGF " neurogenesis (Jin et al., 2002a)

Ephrins " proliferation (Conover et al., 2000)

# migration

TNFa " proliferation (Wu et al., 2000)

BMP # proliferation (Coskun and Luskin, 2001)

" self-renewal (Ying et al., 2003)

" gliogenesis (Gross et al., 1996)

" neurogenesis (Li et al., 1998; Panchison et al., 2001)

Noggin " neurogenesis (Lim et al., 2000)

CNTF/LIF " self-renewal (Shimazaki et al., 2001)

" gliogenesis (Bonni et al., 1997; Rajian et al., 1998)

" neurogenesis (Emsley and Hagg 2003)

Shh " proliferation (Charytoniuk et al., 2002; Palma et al., 2005)

Wnt (b catenin) þFGF2 proliferation " (Viti et al., 2003; Israsena et al., 2004)

�FGF2 neurogenesis " (Israsena et al., 2004; Otero et al., 2004)

Notch variable (Chambers et al., 2001)

Tenascin C " proliferation (Garcion et al., 2004)

Serotonin " proliferation (Banasr et al., 2004)

" neurogenesis

Dopamine " proliferation (Coronas et al., 2004)

(Baker et al., 2004)

" neurogenesis (Van Kampen et al., 2004)

Opioids # proliferation (Stiene-Martin et al., 2001)

Others

sAPP " proliferation (Ohsawa et al., 1999)

Abeta # proliferation (Haughey et al., 2002)

# migration

" apoptosis

*shh enhanced the mitogenic effect of EGF
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