
Preface

Though there are many recent additions to graduate-level introductory books
on Bayesian analysis, none has quite our blend of theory, methods, and ap-
plications. We believe a beginning graduate student taking a Bayesian course
or just trying to find out what it means to be a Bayesian ought to have some
familiarity with all three aspects. More specialization can come later.

Each of us has taught a course like this at Indian Statistical Institute or
Purdue. In fact, at least partly, the book grew out of those courses. We would
also like to refer to the review (Ghosh and Samanta (2002b)) that first made
us think of writing a book. The book contains somewhat more material than
can be covered in a single semester. We have done this intentionally, so that
an instructor has some choice as to what to cover as well as which of the
three aspects to emphasize. Such a choice is essential for the instructor. The
topics include several results or methods that have not appeared in a graduate
text before. In fact, the book can be used also as a second course in Bayesian
analysis if the instructor supplies more details.

Chapter 1 provides a quick review of classical statistical inference. Some
knowledge of this is assumed when we compare different paradigms. Following
this, an introduction to Bayesian inference is given in Chapter 2 emphasizing
the need for the Bayesian approach to statistics. Objective priors and objec-
tive Bayesian analysis are also introduced here. We use the terms objective
and nonsubjective interchangeably. After briefly reviewing an axiomatic de-
velopment of utility and prior, a detailed discussion on Bayesian robustness is
provided in Chapter 3. Chapter 4 is mainly on convergence of posterior quan-
tities and large sample approximations. In Chapter 5, we discuss Bayesian
inference for problems with low-dimensional parameters, specifically objec-
tive priors and objective Bayesian analysis for such problems. This covers
a whole range of possibilities including uniform priors, Jeffreys’ prior, other
invariant objective priors, and reference priors. After this, in Chapter 6 we
discuss some aspects of testing and model selection, treating these two prob-
lems as equivalent. This mostly involves Bayes factors and bounds on these
computed over large classes of priors. Comparison with classical P-value is
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also made whenever appropriate. Bayesian P-value and nonsubjective Bayes
factors such as the intrinsic and fractional Bayes factors are also introduced.

Chapter 7 is on Bayesian computations. Analytic approximation and the
E-M algorithm are covered here, but most of the emphasis is on Markov chain
based Monte Carlo methods including the M-H algorithm and Gibbs sampler,
which are currently the most popular techniques. Follwing this, in Chapter 8
we cover the Bayesian approach to some standard problems in statistics. The
next chapter covers more complex problems, namely, hierarchical Bayesian
(HB) point and interval estimation in high-dimensional problems and para-
metric empirical Bayes (PEB) methods. Superiority of HB and PEB methods
to classical methods and advantages of HB methods over PEB methods are
discussed in detail. Akaike information criterion (AIC), Bayes information
criterion (BIC), and other generalized Bayesian model selection criteria, high-
dimensional testing problems, microarrays, and multiple comparisons are also
covered here. The last chapter consists of three major methodological appli-
cations along with the required methodology.

We have marked those sections that are either very technical or are very
specialized. These may be omitted at first reading, and also they need not be
part of a standard one-semester course.

Several problems have been provided at the end of each chapter. More
problems and other material will be placed at http://www.isical.ac.in/˜
tapas/book

Many people have helped – our mentors, both friends and critics, from
whom we have learnt, our family and students at ISI and Purdue, and the
anonymous referees of the book. Special mention must be made of Arijit
Chakrabarti for Sections 9.7 and 9.8, Sudipto Banerjee for Section 10.1, Partha
P. Majumder for Appendix D, and Kajal Dihidar and Avranil Sarkar for help
in several computations. We alone are responsible for our philosophical views,
however tentatively held, as well as presentation.

Thanks to John Kimmel, whose encouragement and support, as well as
advice, were invaluable.

Indian Statistical Institute and Purdue University Jayanta K. Ghosh
Indian Statistical Institute Mohan Delampady
Indian Statistical Institute Tapas Samanta
February 2006
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High-dimensional Problems

Rather than begin by defining what is meant by high-dimensional, we begin
with a couple of examples.

Example 9.1. (Stein’s example) Let N(μp×1, Σp×p ≡ σ2Ip×p) be a p-variate
normal population and Xi = (Xi1, . . . , Xip), i = 1, . . . , n be n i.i.d. p-variate
samples. Because Σ = σ2I, we may alternatively think of the data as p in-
dependent samples of size n from p univariate normal populations N(μj , σ

2),
j = 1, . . . , p. The parameters of interest are the μj ’s. For convenience, we ini-
tially assume σ2 is known. Usually, the number of parameters, p, is large and
the sample size n is small compared with p. These have been called problems
with large p, small n. Note that n in Stein’s example is the sample size, if
we think of the data as a p-variate sample of size n. However, we could also
think of the data as univariate samples of size n from each of p univariate
populations. Then the total sample size would be np. The second interpreta-
tion leads to a class of similar examples. Note that the observations are not
exchangeable except in subgroups, in this sense one may call them partially
exchangeable.

Example 9.2. Let f(x|μj), j = 1, . . . , p, denote the densities for p populations,
and Xij , i = 1, . . . , n, j = 1, . . . , p denote p samples of size n from these
p populations. As in Example 9.1, f(x|μj) may contain additional common
parameters. The object is to make inference about the μj ’s.

In several path-breaking papers Stein (1955), James and Stein (1960),
Stein (1981), Robbins (1955, 1964), Efron and Morris (1971, 1972, 1973a,
1975) have shown classical objective Bayes or classical frequentist methods,
e.g., maximum likelihood estimates, will usually be inappropriate here. See
also Kiefer and Wolfowitz (1956) for applications to examples like those of
Neyman and Scott (1948). These approaches are discussed in Sections 9.1
through 9.4, with stress on the parametric empirical Bayes (PEB) approach
of Efron and Morris, as extended in Morris (1983).
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It turns out that exchangeability of μ1, . . . , μp plays a fundamental role
in all these approaches. Under this assumption, there is a simple and natural
Bayesian solution of the problem based on a hierarchical prior and MCMC.
Much of the popularity of Bayesian methods is due to the fact that many new
examples of this kind could be treated in a unified way.

Because of the fundamental role of exchangeability of μj ’s and the sim-
plicity, at least in principle, of the Bayesian approach, we begin with these
two topics in Section 9.1. This leads in a natural way to the PEB approach
in Sections 9.2 and 9.3 and the frequentist approach in Section 9.4.

All the above sections deal with point or interval estimation. In Section 9.6
we deal with testing and multiple testing in high-dimensional problems, with
an application to microarrays. High-dimensional inference is closely related to
model selection in high-dimensional problems. A brief overview is presented
in Sections 9.7 and 9.8. We discuss several general issues in Sections 9.5 and
9.9.

9.1 Exchangeability, Hierarchical Priors, Approximation
to Posterior for Large p, and MCMC

We follow the notations of Example 9.1 and Example 9.2, i.e., we consider
p similar but not identical populations with densities f(x|μ1), . . . , f(x|μp).
There is a sample of size n, X1j , . . . , Xnj , from the jth population. These p
populations may correspond with p adjacent small areas with unknown per
capita income μ1, . . . , μp, as in small area estimation, Ghosh and Meeden
(1997, Chapters 4, 5). They could also correspond with p clinical trials in a
particular hospital and μj , j = 1, . . . , p, are the mean effects of the drug being
tested. In all these examples, the different studied populations are related
to each other. In Morris (1983), which we closely follow in Section 9.2, the
p populations correspond to p baseball players and μj ’s are average scores.
Other such studies are listed in Morris and Christiansen (1996).

In order to assign a prior distribution for the μj ’s, we model them as ex-
changeable rather than i.i.d. or just independent. An exchangeable, dependent
structure is consistent with the assumption that the studies are similar in a
broad sense, so they share many common elements.

On the other hand, independence may be unnecessarily restrictive and
somewhat unintuitive in the sense that one would expect to have separate
analysis for each sample if the μj ’s were independent and hence unrelated.
However, to justify exchangeability one would need a particular kind of de-
pendence. For example, Morris (1983) points out that the baseball players in
his study were all hitters; his analysis would have been hard to justify if he
had considered both hitters and pitchers.

Using a standard way of generating exchangeable random variables, we in-
troduce a vector of hyperparameters η and assume μj ’s are i.i.d. π(μ|η) given
η. Typically, if f(x|μ) belongs to an exponential family, it is convenient to
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take π(μ|η) to be a conjugate prior. It can be shown that for even moderately
large p – in the baseball example of Morris (1983), p = 18 – there is a lot of
information in the data on η. Hence the choice of a prior for η does not have
much influence on inference about μj ’s. It is customary to choose a uniform
or one of the other objective priors (vide Chapter 5) for η.

We illustrate these ideas by exploring in detail Example 9.1.

Example 9.3. (Example 9.1, continued) Let f(x|μj) be the density ofN(μj , σ
2)

where we initially assume σ2 is known. We relax this assumption in Subsection
9.1.1.

The prior for μj is taken to be N(η1, η2) where η1 is the prior guess about
the μj ’s and η2 is a measure of the prior uncertainty about this guess, vide
Example 2.1, Chapter 2. The prior for η1, η2 is π(η1, η2), which we specify a
bit later.

Because (X̄j =
∑n

i=1Xij/n, j = 1, . . . , p) form a sufficient statistic and
X̄j ’s are independent, the Bayes estimate for μj under squared error loss is

E(μj |X) = E(μj |X̄) =
∫
E(μj |X̄,η)π(η|X̄)dη.

where X = (Xij , i = 1, . . . , n, j = 1, . . . , p), X̄ = (X̄1, . . . , X̄p) and (vide
Example 2.1)

E(μj |X,η) = E(μj |X̄j ,η) =
η2X̄j + (σ2/n)η1
η2 + (σ2/n)

= (1 −B)X̄j +Bη1, (9.1)

with B = (σ2/n)/(η2 + σ2/n), depends on data only through X̄j .
The Bayes estimate of μj , on the other hand, depends on X̄j as above

and also on (X̄1, . . . , X̄p) because the posterior distribution of η depends on
all the X̄j ’s. Thus the Bayes estimate learns from the full sufficient statistic
justifying simultaneous estimation of all the μj ’s. This learning process is
sometimes referred to as borrowing strength. If the modeling of μj ’s is realistic,
we would expect the Bayes estimates to perform better than the X̄j ’s. This
is what is strikingly new in the case of large p, small n and follows from the
exchangeability of μj ’s.

The posterior density π(η|X) is also easy to calculate in principle. For
known σ2, one can get it explicitly.

Integrating out the μj ’s and holding η fixed, we get X̄j ’s are independent
and

X̄j |η ∼ N(η1, η2 + σ2/n). (9.2)

Let the prior density of (η1, η2) be constant on R × R+. (See Problem 1 and
Gelman et al. (1995) to find out why some other choices like π(η1, η2) = 1/η2
are not suitable here.)

Given (9.2) and π(η1, η2) as above,
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π(η|X) ∝
{
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n )

p∑
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n
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exp
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}

×
(
η2 +

σ2

n

)−(p−1)/2

exp

{
− 1

2(η2 + σ2

n )
S

}
, (9.3)

where X̄ = 1
p

∑p
j=1 X̄j and S =

∑p
j=1(X̄j − X̄)2.

In a similar way,

π(μ|X) =
∫ p∏

j=1

π(μj |X̄j ,η)π(η|X̄) dη, (9.4)

where (μj |X̄j ,η) are independent normal with

mean as in (9.1) and variance
η2σ

2/n

η2 + σ2/n
(9.5)

and
π(η|X̄) = π(η1|X̄, η2)π(η2|X̄) (9.6)

is the product of a normal and inverse-Gamma (as given in (9.3)).
Construction of a credible interval for μj is, in principle, simple. Consider

π(μj |X̄) and fix 0 < α < 1. Calculate the posterior quantiles μ
j
(X̄), μ̄j(X̄)

of orders 100α/2 and 100(1 − α/2) for given data. Then

P{μ
j
(X̄) ≤ μj ≤ μ̄j(X̄)|X̄} = 1 − α.

In general, to calculate μ
j

and μ̄j one would have to resort to MCMC
which is explained in Subsection 9.1.1.

For large p, good approximations are available. To do this we anticipate
to some extent Section 9.2.

Because p is large, we can invoke the theorem on posterior normality
(Chapter 4). Thus the posterior for η is nearly normal with mean η̂ and
variances of order O(1/p), η̂ being the MLE of η based on the “likelihood”

p∏
j=1

f(x̄j |η).

Hence, π(η|x̄) is approximately (in the sense of convergence in distribution)
degenerate at η̂. This implies
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π(μj |X̄) =
∫
π(μj |X̄j ,η)π(η|X̄) dη

= π(μj |X̄j , η̂) (approximately) . (9.7)

This in turn implies the Bayes estimate of μj is

E(μj |X̄) = E(μj |X̄j , η̂) (approximately) (9.8)

which, by (9.1), is a shrinkage estimate that shrinks X̄j towards η̂1, and which
depends on all the sample means.

The approximation (9.8) is correct up to O(1/p). A similar argument pro-
vides an approximation to the posterior s.d. but the accuracy is only O(1/

√
p).

Simulations indicate the approximation for the Bayes estimate is quite
good but that for the posterior s.d. is much less accurate. It is known, vide
Morris (1983), that the approximation is also inadequate for credible intervals.

As a final application of this approximation we indicate it is possible to
check whether the prior π(μj |η) is consistent with data. More precisely, we
check the consistency of f(x̄j |η) with data, but a check for f(x̄j |η) is indirectly
a check for π(μj |η).

In the light of the data, η = η̂ is the most likely value of the hyperparam-
eter η. Under η̂, X̄j ’s are i.i.d normal with mean and variance given by (9.2)
with η replaced by η̂. We can now check the fit of this model to the empirical
distribution via the Q-Q plot. For each 0 < p < 1, we plot the 100pth quan-
tiles for the theoretical and empirical distributions as (x(p), y(p)). If the fit is
good, the resulting curve {(x(p), y(p)), 0 < p < 1} should scatter around an
equiangular line passing through the origin.

9.1.1 MCMC and E-M Algorithm

We begin with p exponential densities of the same form, namely,

exp

{
nc(θj) +

k∑
i=1

tji(xj)θji

}
h(xj), j = 1, . . . , p. (9.9)

The conjugate prior density for the jth model is proportional to

exp{η0c(θj) +
k∑

i=1

ηiθji}, j = 1, . . . , p. (9.10)

Note that the hyperparameters (η0, η1, . . . , ηk) are the same for all j. Finally,
consider a prior π(η) for the hyperparameters.

Let X = (X1, . . . ,Xp) and θ = (θ1, . . . ,θp). The conditional density of
θ given X,η is

π(θ|X,η) ∝
p∏

j=1

exp{(η0 + n)c(θj) +
k∑

i=1

(tji(xj) + ηi)θji} (9.11)
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which shows conditionally θj ’s remain independent. Also

π(η|X,θ) ∝ exp{pd(η) + (η0 + n)
p∑

j=1

c(θj) +
p∑

j=1

k∑
i=1

(ηi + tji(xj))θji}π(η)

(9.12)
where exp(d(η)) is the normalizing constant of the expression in (9.10).

By (9.12), the Bayes formula and cancellation of some common terms in
the numerator and denominator of the Bayes formula,

π(η|X,θ) ∝ exp{pd(η) + η0

p∑
j=1

c(θj) +
p∑

j=1

k∑
i=1

ηiθji}π(η).

If d(η) has an explicit form, as is often the case, one can apply Gibbs sam-
pling to draw samples from the joint posterior of θ and η using the conditionals
π(θ|X,η) and π(η|X,θ). Otherwise one can apply Metropolis-Hastings.

In general, the approximations based on η̂ are still valid but computation
of η̂ is non-trivial. It turns out that the E-M algorithm can be applied, vide
Gelman et al. (1995, Chapter 9).

We illustrate the algorithms for MCMC and E-M in the case of N(μj , σ
2),

j = 1, . . . , p, with (μ1, . . . , μp) and σ2 unknown. MCMC is quite straightfor-
ward here. Recall Example 7.13 from Chapter 7. The hierarchical Bayesian
analysis of the usual one-way ANOVA was discussed there. With minimal
modification, the same algorithm fits here to allow Gibbs sampling. Ap-
plication of the E-M algorithm is also easy, as discussed in Gelman et al.
(1995). We assume as before that μj are i.i.d. N(η1, η2), and further take
π(η1, σ2, η2) = 1/σ2. Then, recall from Section 7.2 that we need to apply the
E and M steps to

log π(μ, η1, σ2, η2|X) = −(
n

2
+ 1) log σ2 − p

2
log η2 − 1

2η2

p∑
j=1

(μj − η1)2

− 1
2σ2

p∑
j=1

n∑
i=1

(Xij − μj)2 + constants . (9.13)

The E-step requires the conditional distribution of (μ, σ2) given X and the
current value (η(c)

1 , η
(c)
2 ) of (η1, η2). This is just the normal, inverse Gamma

model. In the M-step we need to maximize E(c)(log π(μ, η1, σ2, η2|X)) as a
function of (η1, η2) which is straightforward.

9.2 Parametric Empirical Bayes

To explain the basic ideas, we consider once more the special case ofN(μj , σ
2),

σ2 known. Explicit formulas are available in this special case for comparison
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with the estimates of Stein. Another interesting special case is discussed in
Carlin and Louis (1996, Chapter 3).

The PEB approach was introduced by Efron and Morris in a series of
papers including Efron and Morris (1971, 1972, 1973a, 1973b, 1975, 1976).
In this section we generally follow Morris (1983).

Efron and Morris tried to take an intermediate position between a fully
Bayes and a fully frequentist approach by treating the likelihood as given by
f(x̄j |η) obtained by integrating out the μj ’s as in (9.2). The η’s are treated
as unknown parameters as in frequentist analysis whereas the μj ’s are treated
as random variables as in Bayesian analysis. This leads to a reduction of a
high-dimensional frequentist problem about μj ’s to a low-dimensional semi-
frequentist problem about η, about which there is a lot of information in the
data. The fully Bayesian and the PEB approach differ in that no prior is as-
signed to η, and η is estimated by MLE or by a suitable unbiased estimate.
So one may, if one wishes, think of the PEB approach as an approximation
to the hierarchical Bayes approach of Section 9.1. A disadvantage of PEB is
that accounting for the uncertainty about η is more difficult than in hierar-
chical Bayes – a point that would be discussed again in subsection 9.2.1. An
advantage is that one gets an explicit estimate for μj , namely, (9.1) with η
replaced by an estimate of η.

Note that under the likelihood (9.2), the complete sufficient statistic is the
pair

(X̄ =
1
p

p∑
j=1

X̄j , S =
p∑

j=1

(X̄j − X̄)2). (9.14)

Also, X̄ and

B̂ = (p− 3)
σ2/n

S
(9.15)

are unbiased estimates of η1 and

B =
σ2/n

σ2/n+ η2
. (9.16)

Then the best unbiased predictor of the RHS of (9.1) is

μ̂j = (1 − B̂)X̄j + B̂X̄ (9.17)

which is the famous James-Stein-Lindley estimate of μj . It shrinks X̄j towards
the overall mean X̄.

The amount of shrinkage is determined by B̂, which is close to 1 if S/(p−3)
is close to σ2/n and close to zero if S/(p− 3) is much larger than σ2/n. Note
that if S/(p − 3) is small, as in the first case, then the X̄j ’s are close to X̄
indicating μj ’s are close to each other. This justifies a fairly strong shrinkage
towards the grand mean. On the other hand, a large S/(p − 3) indicates
heterogeneity among the μj ’s, suggesting relatively large weight for X̄j .

Because
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E(S/(p− 1)) =
σ2

n
+ η2, (9.18)

an unbiased estimate of η2 is η̂2 = S/(p − 1) − σ2/n. Because η2 ≥ 0, a
more plausible estimate is η̂+

2 = max(0, η̂2), the positive part of the unbiased
estimate. This suggests changing the estimate of B to

B̃ =
(p− 3)
(p− 1)

σ2

n

/
(
σ2

n
+ η̂+

2 ), (9.19)

which is the James-Stein-Lindley positive part estimate.
If we take η1 = 0, i.e., μj ’s are i.i.d N(0, η2), then the two estimates are

of the form
μ̂j = (1 − B̂)X̄j and μ̃j = (1 − B̃)X̄j . (9.20)

These are the James-Stein and James-Stein positive part estimates. They
shrink the estimate towards an arbitrary point zero and so do not seem at-
tractive in the exchangeable case. But they have turned out to be quite useful
in estimating coefficients in an orthogonal expansion of an unknown func-
tion with white noise as error, vide Cai et al. (2000). We study frequentist
properties of these two estimates in Section 9.4.

9.2.1 PEB and HB Interval Estimates

Morris defines a random confidence interval (μ
j
(X̄), μ̄j(X̄)) for μj to have

PEB confidence coefficient (1 − α) if

Pη{μ
j

≤ μj ≤ μ̄j} ≥ 1 − α. (9.21)

Let S2
j = [1 − ((p− 1)/p)B̂]σ2/n+ (2/(p− 3))B̂2(X̄j − X̄)2. Morris has con-

jectured
X̄j ± zα/2Sj (9.22)

is a PEB confidence interval with confidence coefficient 1 − α.
It is shown in Basu et al. (2003) that the conjecture is not true but the

violations are so rare and so small in magnitude that it hardly matters. Basu
et al. (2003) suggest an adjustment that would make (9.22) true up to O(p−2).
It is also shown there that asymptotically the adjusted interval is equivalent
to a PEB interval proposed by Carlin and Louis (1996, Chapter 3).

A trouble with Morris’s interval is that it is somewhat ad hoc. We are
not told how exactly it is derived. It seems he puts a noninformative prior
on η1, η2 and adjusts somewhat the HB credible interval to get a conservative
frequentist coverage probability.

There is a natural alternative that does not require additional adjustment
and ensures (9.21) with the inequality replaced by an equality up to O(p−2).
To do this, one has to choose a prior for η that is probability matching in the
sense of
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Pη{μj
≤ μj ≤ μ̄j} = 1 − α+O(p−2), (9.23)

where

P{μj > μ̄j |X̄} = α/2,
P{μj < μ

j
|X̄} = α/2, (9.24)

and the probabilities in (9.24) are the posterior probabilities under the prior
for η. This leads to probability matching differential equations. A solution is

π(η) =
σ2/n

η2 + σ2/n
, (9.25)

vide Datta, Ghosh, and Mukerjee (2000).

9.3 Linear Models for High-dimensional Parameters

We can extend the HB and PEB approach to a more general setup using
covariates and linear models. The parameters are no longer exchangeable but
are affected by a common set of low-dimensional hyperparameters assuming
the role of η. The model in Sections 9.1 and 9.2 is a special case of the linear
model below.

Following Morris (1983), we change our notations slightly

Yj |θj ∼ N(θj , V ), j = 1, . . . , p independent, (9.26)

and given β, A,
θp×1 = Zp×rβr×1 + εp×1, (9.27)

εj ’s are i.i.d N(0, A). Here p is at least moderately large, r is relatively small.
Morris allows the variance of εj to depend on j, which is often a more realis-
tic assumption. Keeping the same variance A for all j simplifies the algebra
considerably.

In the HB analysis we need to put a further prior on β. A conjugate prior
for β given A is

β ∼ N(γ1, γ2(Z ′Z)−1). (9.28)

Finally, A is given an inverse Gamma or a uniform or the standard prior
1/A for scale parameters. Assuming V is known, our specification of priors is
complete.

To do MCMC we partition the parameters and (random) hyperparameters
into three sets (θ,β, A). The conditionals are as follows.
(1) Given β, A (and Y ), θ is multivariate normal.
(2) Given θ, A ( and Y ), β is multivariate normal.
(3) Given θ,β ( and Y ), A has an inverse Gamma distribution. You are asked
to find the parameters of these conditionals in Problem 6.
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In the PEB approach, one first notes

θi|Yi,β, A ∼ N(θ∗
i , V (1 −B)), (9.29)

where
θ∗

i = (1 −B)Yi +BZ ′
iβ (9.30)

with B = V/(V + A). Here Zi is the ith column vector of Z. This is the
shrinkage estimate corresponding with (9.1) of Section 9.1.

In the PEB approach one has to estimate β and B either by maximizing
the likelihood of the independent Yi’s with

Yi|β, A ∼ N(Z ′
iβ, V +A) (9.31)

or by finding a suitable unbiased estimate as in (9.18). Let

β̂ = (Z ′Z)−1(Z ′Y).

The statistic β̂ and
S = (Y − Zβ̂)′(Y − Zβ̂)

are independent, complete sufficient statistics for (β, A). Hence the best un-
biased estimates for β and B are β̂ and

B̂ = (p− r − 2)V/S

(vide Problem 10). Substituting in the shrinkage estimate θ∗
i for θi, one gets

θ̂i = (1 − B̂)Yi + B̂Z ′β̂.

This is the analogue of James-Stein-Lindley estimate under the regression
model.

In Problem 8, you are asked to show that the PEB risk of θ̂i, namely
Eβ,A(θ̂i −θi)2 is smaller than the PEB risk of Yi, namely, Eβ,A(Yi −θi)2. The
relative strength of the PEB estimate comes through the use of β̂, which is
based on the full data set Y .

In Section 8.3, linear regression is discussed as a common statistical prob-
lem where an objective Bayesian analysis is done. You may wish to explore
how similar ideas are used in this section to model a high-dimensional prob-
lem.

9.4 Stein’s Frequentist Approach to a High-dimensional
Problem

Once again we study Example 9.1. Let X̄j ’s be independent, X̄j ∼ N(μj , σ
2/n).

Classical criteria like maximum likelihood, minimaxity or minimizing variance
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among unbiased estimates, all lead to (X̄1, . . . , X̄p) as estimate of (μ1, . . . , μp).
Let p ≥ 3. Stein, in a series of papers, Stein (1956), James and Stein (1960),
Stein (1981), showed that if we define a loss function

L(X̄,μ) =
p∑

j=1

(X̄j − μj)2 (9.32)

and generally

L(T ,μ) =
p∑

j=1

(Tj(X̄) − μj)2 (9.33)

for a general estimate T , it is possible to choose a T that is better than X̄ in
the sense

Eμ(L(T ,μ)) < Eμ(L(X̄,μ)) for all μ. (9.34)

Stein (1956) provides a heuristic motivation that suggests X̄ is too large
in a certain sense explained below. To see this compare the expectation of the
squared norm of X̄ with the squared norm of μ.

Eμ(‖X̄‖2) = ‖μ‖2 + pσ2/n > ‖μ‖2. (9.35)

The larger the p the bigger the deviation between the LHS and RHS. So
one would expect at least for sufficiently large p, one can get a better estimate
by shrinking each coordinate of X̄ suitably towards zero. We present below
two of the most well-known shrinkage estimates, namely, the James-Stein
and the positive part James-Stein estimate. Both have already appeared in
Section 9.2 as PEB estimates. It seems to us that the PEB approach provides
the most insight about Stein’s estimates, even though the PEB interpretation
came much later.

Morris points out that there is no exchangeability or prior in Stein’s ap-
proach but summing the individual losses produces a similar effect. Moreover,
pooling the individual losses would be a natural thing to do only when the dif-
ferent μj ’s are related in some way. If they are totally unrelated, Stein’s result
would be merely a curious fact with no practical significance, not a profound
new data analytic tool. It is in the case of exchangeable high-dimensional
problems that it provides substantial improvement.

We present two approaches to proving that the Stein-James estimate is
superior to the classical estimate. One is based on Stein (1981) with details
as in Ibragimov and Has’minskii (1981). The other is an interesting variation
on this due to Schervish (1995).

Stein’s Identity. Let X ∼ N(μ, σ2) and φ(x) be a real valued function dif-
ferentiable on R with

∫ x

a
φ′(u)du = φ(x) − φ(a). Then

σ2E(φ′(X)) = E((X − μ)φ(X)).
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Proof. Integrating by parts or changing the order of integration

E(φ′(X)) =
1√
2πσ

∫ ∞

−∞
φ′(x) exp

{
−(x− μ)2

2σ2

}
dx

= − 1√
2πσ

∫ ∞

−∞
φ(x)

d

dx
exp

{
−(x− μ)2

2σ2

}
dx

= σ−2E(φ(X)(X − μ)).�	 (9.36)

For more details see the proof in Stein (1981).
As a corollary we have the following result.

Corollary. Let (X1, X2, . . . , Xp) be a random vector ∼ Np(μ, σ2

n I). Let φ =
(φ1, φ2, . . . , φp) : Rp → Rp be differentiable, E| ∂φj

∂Xj
| < ∞,

φj(x1, . . . , xj−1, x, xj+1, . . . , xp) =
∫ x

a
∂φj

∂xj
dxj and assume that

φj(x1, . . . , xj−1, x, xj+1, . . .) exp{−(x−μj)2

2σ2/n } → 0 as |x| → ∞. Then

E

{
σ2 ∂φj

∂Xj

}
= E((Xj − μj)φj). (9.37)

We now return to Example 9.1. The classical estimate for μ is X̄ =
(X̄1, X̄2, . . . , X̄p). Consider an alternative estimate of the form

μ̃ = X̄ + n−1σ2g(X̄), (9.38)

where g(x) = (g1, g, . . . , gp) : Rp → Rp with g satisfying the conditions in the
corollary.

Then, by the corollary,

Eμ‖X̄ − μ‖2 − Eμ‖X̄ + n−1σ2g(X̄) − μ‖2

= −2n−1σ2Eμ{(X̄ − μ)′g(X̄)} − n−2σ4Eμ‖g(X̄)‖2

= −2n−2σ4Eμ{
p∑
1

∂gj

∂Xj
} − n−2σ4Eμ‖g(X̄)‖2. (9.39)

Now suppose g(x) = grad(logφ(x)), where φ is a twice continuously differen-
tiable function from Rp into R. Then

p∑
1

∂gj

∂xj
= −‖g‖2 +

1
φ
Δφ (9.40)

where Δ =
∑p

1
∂2

∂x2
j

. Hence

Eμ‖X̄ − μ‖2 − Eμ‖μ̃− μ‖2 = n−2σ4Eμ‖g‖2 − n−2σ4Eμ

{
1

φ(X̄)
Δφ(X̄)

}
(9.41)
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which is positive if φ(x) is a positive non-constant superharmonic function,
i.e,

Δφ ≤ 0. (9.42)

Thus μ̃ is superior to X̄ if (9.42) holds. It is known that such functions exist
if and only if p ≥ 3.

To show the superiority of the James-Stein positive part estimate for p ≥ 3,
take

φ(x) =
{

‖x‖−(p−2) if ‖x‖ ≥
√
p− 2

(p− 2)−(p−2)/2 exp
{ 1

2 (p− 2) − ‖x‖2)
}

otherwise.
(9.43)

Then grad(log φ) is easily verified to be the James-Stein positive part es-
timate.

To show the superiority of the James-Stein estimate, take

φ(x) = ‖x‖p−2. (9.44)

We observed earlier that shrinking towards zero is natural if one modeled
μj ’s as exchangeable with common mean equal to zero. We expect substantial
improvement if μ = 0.

Calculation shows

Eμ‖μ̃− μ‖2 =
2
p
Eμ‖X̄ − μ‖2 = 2 (9.45)

if μ = 0, σ2 = 1, n = 1.
It appears that borrowing strength in the frequentist formulation is possi-

ble because Stein’s loss adds up the losses of the component decision problems.
Such addition would make sense only when the different problems are con-
nected in a natural way, in which case the exchangeability assumption and
the PEB or hierarchical models are also likely to hold. It is natural to ask how
good are the James-Stein estimates in the frequentist sense. They are certainly
minimax since they dominate minimax estimates. Are they admissible? Are
they Bayes (not just PEB)? For the James-Stein positive part estimate the
answer to both questions is no, see Berger (1985a, pp. 542, 543). On the other
hand, Strawderman (1971) constructs a proper Bayes minimax estimate for
p ≥ 5. Berger (1985a, pp. 364, 365) discusses the question of which among the
various minimax estimates to choose. Note that the PEB approach leads in
a natural way to James-Stein positive part estimate, suggesting that it can’t
be substantially improved even though it is not Bayes. See in this connection
Robert (1994, p. 66). There is a huge literature on Stein estimates as well as
questions of admissibility in multidimensional problems. Berger (1985a) and
Robert (1994) provide excellent reviews of the literature. There are intrigu-
ing connections between admissibility and recurrence of suitably constructed
Markov processes, see Brown (1971), Srinivasan (1981), and Eaton (1992,
1997, 2004).
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When extreme μ’s may occur, the Stein estimates do not offer much im-
provement. Stein (1981) and Berger and Dey (1983) suggest how this problem
can be solved by suitably truncating the sample means. For Stein type results
for general ridge regression estimates see Strawderman (1978) where several
other references are given.

Of course, instead of zero we could shrink towards an arbitrary μ0. Then
a substantial improvement will occur near μ0. Exactly similar results hold for
the James-Stein-Lindley estimate and its positive part estimate if p ≥ 4.

For the James-Stein estimate, Schervish (1995, pp. 163–165) uses Stein’s
identity as well as (9.40) but then shows directly (with σ2 = 1, n = 1)

‖g‖2 + 2
p∑

j=1

∂

∂xj
gj =

−(p− 2)2∑p
1 x

2
j

< 0.

Clearly for μ̃ = James-Stein estimate,

Eμ‖μ̃− μ‖2 = p− Eμ

{
(p− 2)2∑

X̄2
j

}
,

which shows how the risk can be evaluated by simulating a noncentral χ2

-distribution.

9.5 Comparison of High-dimensional and
Low-dimensional Problems

In the low-dimensional case, where n is large or moderate and p small, the
prior is washed away by the data, the likelihood influences the posterior more
than the prior. This is not so when p is much larger than n – the so-called
high-dimensional case. The prior is important, so elicitation, if possible, is
important. Checking the prior against data is possible and should be explored.
We discuss this below.

In the high-dimensional cases examined in Sections 9.2 and 9.3 some as-
pects of the prior, namely π(μj |η̂), can be checked against the empirical distri-
bution. We have discussed this earlier mathematically, but one can approach
this from a more intuitive point of view. Because we have many μj ’s as sample
from π(μj |η̂) and X̄j ’s provide approximate estimates of μj ’s, the empirical
distribution of the X̄j ’s should provide a check on the appropriateness of
π(μj |η̂).

Thus there is a curious dichotomy. In the low-dimensional case, the data
provide a lot of information about the parameters but not much informa-
tion about their distribution, i.e., the prior. The opposite is true in high-
dimensional problems. The data don’t tell us much about the parameters but
there is information about the prior.
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This general fact suggests that the smoothed empirical distribution of es-
timates could be used to generate a tentative prior if the likelihood is not
exponential and so conjugate priors cannot be used. Adding a location-scale
hyperparameter η could provide a family of priors as a starting point of ob-
jective high-dimensional Bayesian analysis.

Bernardo (1979) has shown that at least for Example 9.1 a sensible
Bayesian analysis can be based on a reference prior with a suitable repa-
rameterization. It does seem very likely that this example is not an exception
but a general theory of the right reparameterization needs to be developed.

9.6 High-dimensional Multiple Testing (PEB)

Multiple tests have become very popular because of application in many areas
including microarrays where one searches for genes that have been expressed.
We provide a minimal amount of modeling that covers a variety of such appli-
cations arising in bioinformatics, statistical genetics, biology, etc. Microarrays
are discussed in Appendix D. Whereas PEB or HB high-dimensional estima-
tion has been around for some time, PEB or HB high-dimensional multiple
testing is of fairly recent origin, e.g., Efron et al. (2001a), Newton et al. (2003),
etc.

We have p samples, each of size n, from p normal populations. In the
simplest case we assume the populations are homoscedastic. Let σ2 be the
common unknown variance, and the means μ1, . . . , μp.

For μj , consider the hypotheses H0j : μj = 0, H1j : μj ∼ N(η1, η2), j =
1, . . . , p. The data are Xij , i = 1, . . . n, j = 1, . . . , p. In the gene expression
problem, Xij , i = 1, . . . n are n i.i.d. observations on the expression of the
jth gene. The value of |Xij | may be taken as a measure of observed intensity
of expression. If one accepts H0j , it amounts to saying the jth gene is not
expressed in this experiment. On the other hand, accepting H1j is to assert
that the jth gene has been expressed. Roughly speaking, a gene is said to be
expressed when the gene has some function in the cell or cells being studied,
which could be a malignant tumor. For more details, see the appendix. In
addition to H0j and H1j , the model involves π0 = probability that H0j is true
and π1 = 1 − π0 = probability that H1j is true. If

Ij =
{

1 if H1j is true;
0 if H0j is true,

then we assume I1, . . . , Ip are i.i.d. ∼ B(1, π1).
The interpretation of π1 has a subjective and a frequentist aspect. It rep-

resents our uncertainty about expression of each particular gene as well as
approximate proportion of expression among p genes.

If σ2, π1, η1, η2 are all known, X̄j is sufficient for μj and a Bayes test is
available for each j. Calculate the posterior probability of H1j :
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π1j =
π1f1(X̄j)

π1f1(X̄j) + π0f0(X̄j)

which is a function of X̄j only. Here f0 and f1 are densities of X̄j under H0j

and H1j .

If π1j >
1
2

accept H1j and

if π1j <
1
2

accept H0j .

This test is based only on the data for the jth gene.
In practice, we do not know π1, η1, η2. In PEB testing, we have to estimate

all three. In HB testing, we have to put a prior on (π1, η1, η2). To us a natural
prior would be a uniform for π1 on some range (0, δ), δ being upper bound to
π1, uniform prior for η1 on R and uniform or some other objective prior for
η2.

In the PEB approach, we have to estimate π1, η1, η2. If σ2 is also unknown,
we have to put a prior on σ2 also or estimate it from data. An estimate of σ2

is
∑

i

∑
j(Xij − X̄j)2/{p(n− 1)}.

For fixed π1, we can estimate η1 and η2 by the method of moments using
the equations,

X̄ ≡ 1
p

∑
X̄j = π1η1, (9.46)

1
p

∑
(X̄j − X̄)2 =

σ2

n
+ π1η2 + π1(1 − π1)η2

1 , (9.47)

from which it follows that

η̂1 =
1
π1
X̄, (9.48)

η̂2 =
1
π1

{
1
p

∑
(X̄j − X̄)2 − σ2

n
− 1 − π1

π1

(
X̄
)2
}+

. (9.49)

Alternatively, if it is felt that η1 = 0, then the estimate for η2 is given by

η̂2 =
1
π1

{
1
p

∑
(X̄j − X̄)2 − σ2

n

}+

. (9.50)

Now we may maximize the joint likelihood of X̄j ’s with respect to π1.
Using these estimates, we can carry out the Bayes test for each j, provided

we know π1 or put a prior on π1. We do not know of good PEB estimates of
π1.

Scott and Berger (2005) provide a very illuminating fully Bayesian analysis
for microarrays.
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9.6.1 Nonparametric Empirical Bayes Multiple Testing

Nonparametric empirical Bayes (NPEB) solutions were introduced by Robbins
(1951, 1955, 1964). It is a Bayes solution based on a nonparametric estimate of
the prior. Robbins applied these ideas in an ingenious way in several problems.
It was regarded as a breakthrough, but the method never became popular
because the nonparametric methods did not perform well even in moderately
large samples and were somewhat unstable.

Recently Efron et al. (2001a, b) have made a successful application to a
microarray with p equal to several thousands. The data are massive enough
for NPEB to be stable and perform well.

After some reductions the testing problem takes the following form.
For j = 1, 2, . . . , p, we have random variables Zj . Zj ∼ f0(z) under H0j and
Zj ∼ f1(z) under H1j where f0 is completely specified but f1(z) 
= f0(z) is
completely unknown. This is what makes the problem nonparametric. Finally,
as in the case of parametric empirical Bayes, the indicator of H1j is Ij = 1
with probability π1 and = 0 with probability π0 = 1 − π1. If π1 and f1 were
known we could use the Bayes test of H0j based on the posterior probability
of H1j

P (H1j |zj) =
π1f1(zj)

π1f1(zj) + (1 − π1)f0(zj)
.

Let f(z) = π1f1(z) + (1 − π1)f0(z). We know f0(z). Also we can estimate
f(z) using any standard method – kernel, spline, nonparametric Bayes, vide
Ghosh and Ramamoorthi (2003) – from the empirical distribution of the zj ’s.
But since π1 and f1 are both unknown, there is an identifiability problem and
hence estimation of π1, f1 is difficult. The two papers, Efron et al. (2001a, b),
provide several methods for bounding π1.

One bound follows from

π0 ≤ min
z

[f(z)/f0(z)],

π1 ≥ 1 − min
z

[f(z)/f0(z)].

So the posterior probability of H1j is

P{H1j |zj} = 1 − π0f0(zj)
f(zj)

≥ 1 −
{

min
z

f(z)
f0(z)

}
f0(zj)
f(zj)

which is estimated by 1 −
{

minz
f̂(z)
f0(z)

}
f0(zj)
f̂(zj)

, where f̂ is an estimate of f as
mentioned above. The minimization will usually be made over observed values
of z.

Another bound is given by

π0 ≤
∫

A
f(z)dz∫

A
f0(z)dz

.
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Now minimize the RHS over different choices of A. Intuition suggests a good
choice would be an interval centered at the mode of f0(z), which will usually
be at zero. A fully Bayesian nonparametric approach is yet to be worked out.
Other related papers are Efron (2003, 2004). For an interesting discussion of
microarrays and the application of nonparametric empirical Bayes methodol-
ogy, see Young and Smith (2005).

9.6.2 False Discovery Rate (FDR)

The false discovery rate (FDR) was introduced by Benjamini and Hochberg
(1995). Controlling it has become an important frequentist concept and
method in multiple testing, specially in high-dimensional problems. We pro-
vide a brief review, because it has interesting similarities with NPEB, as noted,
e.g., in Efron et al. (2001a, b). We consider the multiple testing scenario in-
troduced earlier in this section. Consider a fixed test. The (random) FDR for
the test is defined as U(z)

V (z)I{V (z)>0}, where U = total number of false discov-
eries, i.e., number of true H0j ’s that are rejected by the test for a z, and V =
total number of discoveries, i.e., number of H0j ’s that are rejected by a test.
The (expected) FDR is

FDR = Eμ

(
U

V
I{V >0}

)
.

To fix ideas suppose all H0j ’s are true, i.e., all μj ’s are zero, then U = V and
so

U

V
I{V >0} = I{V >0}

and

FDR = Pμ=0( at least one H0j is rejected )
= Type 1 error probability under the full null.

This is usually called family wise error rate (FWER). The Benjamini-Hochberg
(BH) algorithm (see Benjamini and Hochberg (1995)) for controlling FDR is
to define

j0 = max{j : P(j) ≤ j

p
α}

where Pj = the P-value corresponding with the test for jth null and P(j) =
jth order statistic among the P-values with P(1) = the smallest, etc.

The algorithm requires rejecting all H0j for which Pj ≤ P(j0). Benjamini
and Hochberg (1995) showed this ensures

Eμ

(
U

V
I{V >0}

)
≤ p0

p+ 1
α ≤ α ∀μ

where p0 is the number of true H0j ’s. It is a remarkable result because it is
valid for all μ. This exact result has been generalized by Sarkar (2003).
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Benjamini and Liu (1999) have provided another algorithm. See also Ben-
jamini and Yekutieli (2001). Genovese and Wasserman (2001) provide a test
based on an asymptotic evaluation of j0 and a less conservative rejection rule.
An asymptotic evaluation is also available in Genovese and Wasserman (2002).
See also Storey (2002) and Donoho and Jin (2004). Scott and Berger (2005)
discuss FDR from a Bayesian point of view.

Controlling FDR leads to better performance under alternatives than con-
trolling FWER. Many successful practical applications of FDR control are
known. On the other hand, from a decision theoretic point of view it seems
more reasonable to control the sum of false discoveries and false negatives
rather than FDR and proportion of false negatives.

9.7 Testing of a High-dimensional Null as a Model
Selection Problem1

Selection from among nested models is one way of handling testing problems
as we have seen in Chapter 6. Parsimony is taken care of to some extent
by the prior on the additional parameters of the more complex model. As
in estimation or multiple testing, consider samples of size r from p normal
populations N(μi, σ

2). For simplicity σ2 is assumed known. Usually σ2 will
be unknown. Because S2 =

∑
i

∑
j(Xij−X̄i)2/p(r−1) is an unbiased estimate

of σ2 with lots of degrees of freedom, it does not matter much whether we put
one of the usual objective priors for σ2 or pretend that σ2 is known to be S2.

We wish to test H0 : μi = 0 ∀i versus H1: at least one μ 
= 0. This
is sometimes called Stone’s problem, Berger et al. (2003), Stone (1979). We
may treat this as a model selection problem with M0 ≡ H0 : μi = 0 ∀i and
M1 = H0 ∪H1, i.e., M1 : μ ∈ Rp. In this formulation, M0 ⊂ M1 whereas H0
and H1 are disjoint. On grounds of parsimony, H0 is favored if both M0 and
M1 are equally plausible.

To test a null or select a model, we have to define a prior π(μ) under M1
and calculate the Bayes factor

B01 =
∏p

i=1 f0(Xi)∫
Rp

∏p
i=1 f1(Xi|μi)π(μ)dμ

.

There is no well developed theory of objective priors, specially for test-
ing problems. However as in estimation it appears natural to treat μj ’s as
exchangeable rather than independent. A popular prior in this context is the
Zellner and Siow (1980) multivariate Cauchy prior

π(μ) =
Γ ( (p+1)

2 )

π
p+1
2 σp

(1 +
μ′μ
σ2 )− (p+1)

2

1 Section 9.7 may be omitted at first reading.
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=

∞∫
0

t
p
2

(2π)
p
2 σp

e− t
2σ2 μ

′μ 1√
2π
e− t

2 t−
1
2 dt.

(9.51)

Another plausible prior is the smooth Cauchy prior given by

πsc(μ) =
Γ (p+1

2 )
Γ (p+2

2 )Γ ( 1
2 )(2πσ2)

p
2
e− μ′μ

2σ2 M(
1
2
,
p+ 2

2
,
μ′μ
2σ2 )

=

1∫
0

t
p
2

(2π)
p
2 σp

e− t
2σ2 μ

′μ dt

π
√
t(1 − t)

,

where M( 1
2 ,

p+2
2 , μ

′μ
2σ2 ) is the hypergeometric 1F1 function of Abramowitz and

Stegun (1970).
It is tempting to use the difference (between the two models) of BIC as

an approximation to the logarithm of Bayes factor (BF) even though it was
developed by Schwarz for low-dimensional problems. Stone was the first to
point out that the use of BIC is problematic in high-dimensional problems.
Berger et al. (2003) have developed a generalization of BIC called GBIC, which
provides a good approximation to the integrated likelihood for priors like the
above Cauchy priors which are obtained by integrating the scale parameter
for N(μi, σ

2). In Stone’s problem one has the normal linear model setup

Xij = μi + εij ; i = 1, . . . , p; j = 1, . . . , r; n = pr. (9.52)

It is assumed that as n → ∞, p → ∞ and r is fixed. Under these assumptions,
Berger et al. (2003) provide a Laplace approximation and a GBIC. The GBIC
also approximates the BIC for low-dimensional problems. The formula for
ΔGBIC (the difference of GBIC for the comparison of M1 and M0) is given
by

ΔGBIC = (
r

2
X̄′X̄ − p

2
log(rcp) − p

2
)+ − log p

2
, (9.53)

where cp = 1
p

p∑
i=1

X̄i
2. Table 9.1, taken from Berger et al. (2003) provides

some idea of the accuracy of BIC, GBIC and Laplace approximation. One has
p = 50 and r = 2 for these calculations and the multivariate Cauchy prior
was used.

Substantial new results appear in Liang et al. (2005). They propose a
mixture of Zellner’s (Zellner (1986)) popular g-prior. In Zellner’s form, the
prior looks like μ|M1 ∼ N(0, g

σ2 (Z′Z)−1) where Z is the design matrix (in
our problem only composed of 0’s and 1’s). This g is usually elicited through
an empirical Bayes method. The above authors consider a family of mixtures
of g-priors (under which the Zellner-Siow Cauchy prior is a special case) and
use those for model selection. They propose Laplace approximations to the
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Table 9.1. Comparison of the Performance of GBIC and Laplace Approximation
with BIC

cp True Log Bayes Factor ΔBIC ΔGBIC ΔLaplace Approx
0.1 -8.5348 -110.129 -1.956 -8.5776
0.5 -3.8251 -90.129 -1.956 -3.9083
1.0 6.0388 -65.129 5.715 5.9236
1.5 20.8203 -40.129 20.579 20.7564
2.0 38.4814 -15.129 38.387 38.4408
10.0 397.369 384.871 398.151 397.369

marginal likelihood under these general priors and show that the models thus
selected are generally correct asymptotically if the complex model is true.
Under the null model, this type of consistency still holds under the Zellner-
Siow prior.

Further generalizations to non-normal problems appear in Berger (2005)
and Chakrabarti and Ghosh (2005a). Both papers provide generalizations of
BIC when the observations come from an exponential family of distributions in
high-dimensional problems. In Table 9.2, using simulation results reported in
Chakrabarti and Ghosh (2005a), the performance of GBIC and the Laplace
approximation (log m̂2) with BIC are compared in approximating the inte-
grated likelihood under the more complex model (denoted by m2) when the
more complex model is actually true and observations come from Bernoulli,
exponential, and Poisson distributions. In this case one has p groups of obser-
vations, each group having a (potentially) different parameter value and each
group has r observations. Under the simpler model, these different groups are
assumed to have the same (specified) parameter value, while for the more
complex model the parameter vector is assumed to belong to Rp. See the
paper for details on the priors used.

In principle, the same methods apply to any two nested models
M0 : μi = 0, 1 ≤ i ≤ p1, p1 < p versus M1 : μ ∈ Rp.

Table 9.2. Approximation to Integrated Likelihood in the Exponential Family

Distribution p r log m2 log m̂2 BIC GBIC

Bernoulli 50 10 -327.45 -327.684 -349.577 -327.863
Bernoulli 50 200 -4018.026 -4018.072 -4052.757 -4018.587

Exponential 50 10 -662.526 -661.979 -640.320 -660.384
Exponential 50 200 -22186.199 -22186.100 -22178.759 -22186.117

Poisson 50 10 -671.504 -670.775 -683.383 -671.374
Poisson 50 200 -15704.585 -15704.618 -15713.139 -15705.010
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9.8 High-dimensional Estimation and Prediction Based
on Model Selection or Model Averaging2

Given a set of data from an experiment or observational study done on a
given population, a statistician is asked the following three questions quite
frequently. First, which among a given set of possible statistical models seems
to be the correct model describing the underlying mechanism producing the
data? Second, what will be the predicted value of a future observation, if
the experimental conditions are kept at predetermined levels? Third, what is
the estimate of a single parameter or a vector (may be infinite dimensional)
of parameters? We will focus in this section on some Bayesian approaches
to answer the last two types of questions. But before going into the details,
we will explain briefly in the next paragraph how one would pose the above
three questions from a decision theoretic point of view and what is the basic
difference in the Bayesian approaches in tackling such questions.

Bayesian approaches to such questions are basically dictated by the goal of
obtaining decision theoretic optimality, and hence the solutions are also heav-
ily dependent upon the type of loss functions being used. The loss function, on
the other hand, is mostly determined by the goal of the statistician or practi-
tioner. The goal of the statistician in the first problem above is to select the
correct model (which is assumed to be one in the list of models considered).
The loss function often used in this problem is the 0-1 loss function. In the
Bayesian approach to model selection, the statistician would put prior proba-
bilities on the set of candidate models and a simple argument shows that for
this loss, the optimum Bayesian model would be the posterior mode, i.e., the
model that has the maximum posterior probability. As explained in the ear-
lier section, BIC and GBIC can be used to select a model using the Bayesian
paradigm with 0-1 loss if the sample size is large, in appropriate situations, as
they approximate the integrated likelihood and hence can be used to find the
model with highest posterior probability. On the other hand, if one is inter-
ested in answering the second or third question above (i.e., if one is interested
in prediction or estimation of a parameter), the problem can be approached in
two different ways. First, one might be interested in finding a particular model
that does the best job of prediction (in some appropriate sense). Secondly, one
might only want a predicted value, not a particular model for repeated fu-
ture use in prediction. In either case, the most popular loss function is the
squared prediction error loss, i.e., the square of the difference between the
predicted/estimated value and the value being predicted/estimated. The best
predictor/estimator turns out to be the Bayesian model averaging estimate (to
be explained later) and the best predictive model is the one which minimizes
the expected posterior predictive loss.

We now consider the problem of optimal prediction from a Bayesian ap-
proach. We use the ideas, notations, and results of Barbieri and Berger (2004)

2 Section 9.8 may be omitted at first reading.
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for this part. Consider the canonical model

y = Xβ + ε, (9.54)

where y is an n × 1 vector of observations, X is the n × k full rank design
matrix, β is the unknown k × 1 vector of regression coefficients and ε is the
n × 1 vector of random errors, which are i.i.d. N(0, σ2), σ2 being known or
unknown. Our goal is to predict a future observation y∗, given by

y∗ = x∗β + ε, (9.55)

where x∗ = (x∗
1, . . . , x

∗
k) is the value of the covariate vector for which the

prediction is to be made. We consider the loss in predicting y∗ by ŷ∗ as

L(ŷ∗, y∗) = (ŷ∗ − y∗)2; (9.56)

i.e., the squared error prediction loss. Assume that we have submodels

Ml : y = Xlβl + ε, (9.57)

where l = (l1, . . . , lk) with li = 1 or 0 according as the ith covariate is in the
model Ml or not, Xl is a matrix containing columns of X corresponding with
the nonzero coordinates of l and βl is the corresponding vector of regression
coefficients. Let kl denote the number of covariates included in the model;
then Xl is of dimension (n× kl) and βl is a (kl × 1) vector.

We put prior probabilities P (Ml) to each model Ml included in the model
space such that

∑
l P (Ml) = 1, and given model Ml, a prior πl(βl, σ) is as-

sumed on the parameters (βl, σ) included in model Ml. Using standard pos-
terior calculations, one obtains the quantities (a) pl = P (Ml|y), the posterior
probability of model Ml and (b) πl(βl, σ|y), the posterior distribution of the
unknown parameters in Ml. With this setup in mind, we shall now discuss
two optimal prediction strategies, as described below.

First note that the best predictor of y∗ for a given value of x∗ comes
out as ȳ∗ = E(y∗|y), where the expectation is taken with respect to the
posterior/predictive distribution of y∗ given y. This follows by noting that

E[(y∗ − ŷ∗)2] = EyE[(y∗ − ŷ∗)2|y], (9.58)

where the expectation inside is taken with respect to the posterior distribution
of y∗ given y. But note that

ȳ∗ = E(y∗|y) =
∑
l

plE(y∗|y,Ml) = x∗ ∑
l

plHlβ̃l, (9.59)

where Hl is a (k×kl) matrix such that x∗Hl is the subvector of x∗ correspond-
ing to the nonzero coordinates of l and β̃l is the posterior mean of βl with
respect to πl(βl, σ|y). Noting that if we knew that Ml were the true model,
then the optimal predictor of y∗ for x fixed at x∗ would be given by
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ŷ∗
l = x∗Hlβ̃l, we have (9.60)

ȳ∗ = E(y∗|y) = x∗β̄ ≡ x∗ ∑
l

plHlβ̃l =
∑
l

plŷ
∗
l . (9.61)

ȳ∗ is called the Bayesian model averaging estimate, in that it is a weighted
average of the optimal Bayesian predictors under each individual model, the
weights being the posterior probabilities of each model. Many authors have
argued the use of the model averaging estimate as an appropriate predictive
estimate. They justify this by saying that in using model selection to choose
the best model and then making inference based on the assumption that the
selected model is true, does not take into account the fact that there is un-
certainty about the model itself. As a result, one might underestimate the
uncertainty about the quantity of interest. See, for example, Madigan and
Raftery (1994), Raftery, Madigan, and Hoeting (1997), Hoeting, Madigan,
Raftery, and Volinsky (1999), and Clyde (1999); just to name a few, for de-
tailed discussion on this point of view. However if the number of models in the
model space is very large (e.g., in case all subsets of parameters are allowed in
the model space, as will happen in high or even moderately high dimensions),
the task of computing the Bayesian model averaging estimate exactly might
be virtually impossible. Moreover, it is not prudent to keep in the model av-
erage those models that have small posterior probability indicating relative
incompatibility with observed data. There are some proposals to get around
this difficulty, as discussed in the literature cited above. Two of them are
based on the ‘Occam’s window’ method of Madigan and Raftery (1994) and
the Markov chain Monte Carlo approach of Madigan and York (1995).

In the first approach, the averaging is done over a small set of appro-
priately selected models, which are parsimonious and supported by data. In
the second approach, one constructs a Markov chain with state space same
as the model space and equilibrium distribution {P (Ml|y)} where Ml varies
over the model space. Upon simulation from this chain, the Bayesian model
averaging estimator is approximated by taking average value of the posterior
expectations under each model visited in the chain. But it must be commented
that Bayesian model averaging (BMA) has its limitations in high-dimensional
problems. Each approach addresses both issues but it is unclear how well.

Although BMA is the optimal predictive estimation procedure, often a
single model is desired for prediction. For example, choice of a single model
will require observing only the covariates included in the model. Also, as noted
earlier, in high dimensions, BMA has its problems. We will assume now that
the future predictions will be made for covariates x∗ such that

Q = E(x∗′x∗)

exists and is positive definite. A frequent choice of Q is Q = X′X, i.e., the
future covariates will be like the ones observed in the past. In general, the best
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single model will depend on x∗, but we present here some general characteri-
zations which give the optimal predictive model without this dependence. In
general, the optimal predictive model is not the one with the highest poste-
rior probability. However, there are interesting exceptions. If there are only
two models, it is easy to show the posterior mode with shrinkage estimate is
optimal for prediction (Berger (1997) and Mukhopadhyay (2000)). This also
holds sometimes in the context of variable selection for linear models with or-
thogonal design matrix, as in Clyde and Parmigiani (1996). As Berger (1997)
notes, it is easy to see that if one is considering only two models, say M1
and M2 with prior probabilities 1

2 each and proper priors are assigned to the
unknown parameters under each model, the best predictive model turns out
to be M1 or M2 according as the Bayes factor of M1 to M2 is greater than
one or not, and hence the best predictive model is the one with the highest
posterior probability. The characterizations we will describe here are in terms
of what is called the ‘median probability model.’ If it exists, the median prob-
ability model Ml∗ is defined to be the model consisting of those variables only
whose posterior inclusion probabilities are at least 1

2 . The posterior inclusion
probability for variable i is

pi =
∑

l:li=1

P (Ml|y). (9.62)

So, l∗ is defined coordinatewise as li = 1 if pi ≥ 1
2 and li = 0 otherwise.

It is possible that the median probability model does not exist, in that the
variables included according to the definition of l∗ do not correspond with
any model under consideration. But in the variable selection problem, if we
are allowed to include or exclude any variable in the possible models, i.e.,
all possible values of l are allowed, then the median probability model will
obviously exist. Another important class of models is a class of models with
‘graphical model structure’ for which the median probability model will always
exist (this fact follows directly from the definition below).

Definition 9.4. Suppose that for each variable index i, there is a correspond-
ing index set I(i) of other variables. A subclass of linear models is said to have
‘graphical model structure’ if it consists of all models satisfying the condition
‘for each i, if variable xi is in the model, then variables xj with j ∈ I(i) are
in the model.’

The class of models with ‘graphical model structure’ includes the class of
models with all possible subsets of variables and sequences of nested models,
Ml(j), j = 0, 1, . . . , k, where l(j) = (1, . . . , 1, 0, . . . , 0) with j ones and k − j
zeros. For the all subsets scenario, I(i) is the null set while in the nested
case I(i) = {j : 1 ≤ j < i} for i ≥ 2 and I(i) is the null set for i = 0 or
1. The latter are natural in many examples including polynomial regression
models, where j refers to the degree of polynomial used. Another example
of nested models is provided by nonparametric regression (vide Chapter 10,
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Sections 10.2, 10.3). The unknown function is approximated by partial sums
of its Fourier expansion, with all coefficients after stage j assumed to be
zero. Note that in this situation, the median probability model has a simple
description; one calculates the cumulative sum of posterior model probabilities
beginning from the smallest model, and the median probability model is the
first model for which this sum equals or exceeds 1

2 . Mathematically, the median
probability model is Ml(j∗), where

j∗−1∑
i=0

P (Ml(i)|y) <
1
2

and
j∗∑

i=0

P (Ml(i)|y) ≥ 1
2
. (9.63)

We present some results on the optimality of the posterior median model in
prediction. The best predictive model is found as follows. Once a model is
selected, the best Bayesian predictor assuming that model is true is obtained.
In the next stage, one finds the model such that the expected prediction loss
(this expectation does not assume any particular model is true, but is an over-
all expectation) using this Bayesian predictor is minimized. The minimizer is
the best predictive model. There are some situations where the median prob-
ability model and the highest posterior probability are the same. Obviously, if
there is one model with posterior probability greater than 1

2 , this will be triv-
ially true. Barbieri and Berger (2004) observe that when the highest posterior
probability model has substantially larger probability than the other models,
it will typically also be the median probability model. We describe another
such situation later in the corollary to Theorem 9.8.

We state and prove two simple lemmas.

Lemma 9.5. (Barbieri and Berger, 2004) Assume Q exists and is positive
definite. The optimal model for predicting y∗ under the squared error loss, is
the unique model minimizing

R(Ml) ≡ (Hlβ̃l − β̄)′Q(Hlβ̃l − β̄), (9.64)

where β̄ is defined in (9.61).

Proof. As noted earlier, ŷ∗
l is the optimal Bayesian predictor assuming Ml is

the true model. The optimal predictive model is found by minimizing with
respect to l, where l belongs to the space of models under consideration, the
quantity E(y∗ − ŷ∗

l )2. Minimizing this is equivalent to minimizing for each y
the quantity E[(y∗ − ŷ∗

l )2|y]. It is easy to see that for a fixed x∗,

E[(y∗ − ŷ∗
l )2|y] = C + (ȳ∗ − ŷ∗

l )2, (9.65)

where the symbols have been defined earlier and C is a quantity independent
of l. The expectation above is taken with respect to the predictive distribution
of y∗ given y and x∗. So the optimal predictive model will be found by finding
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the minimizer of the expression obtained by taking a further expectation over
x∗ on the second quantity on the right hand side of (9.65). By plugging in the
values of ŷ∗

l and ȳ∗, we immediately get

(ȳ∗ − ŷ∗
l )2 = (Hlβ̃l − β̄)′x∗′x∗(Hlβ̃l − β̄). (9.66)

The lemma follows. The uniqueness follows from the fact that Q is positive
definite. �	

Lemma 9.6. (Barbieri and Berger, 2004) If Q is diagonal with diagonal ele-
ments qi > 0, and the posterior means β̃l satisfy β̃l = Hl

′β̃ (where β̃ is the
posterior mean under the full model as in (9.54)) then

R(Ml) =
k∑

i=1

β̃i
2
qi(li − pi)2. (9.67)

Proof. From the fact β̃l = Hl
′β̃, it follows that

β̄ =
∑
l

plHlβ̃l =
∑
l

plHlHl
′β̃ = D(p)β̃, (9.68)

where D(p) is the diagonal matrix with diagonal elements pi, by noting that

Hl(i, j) = 1 if li = 1 and j =
i∑

r=1
lr and Hl(i, j) = 0 otherwise. Similarly,

R(Ml) = (HlHl
′β̃ −D(p)β̃)′Q(HlHl

′β̃ −D(p)β̃)

= β̃
′
(D(l) −D(p))Q(D(l) −D(p))β̃, (9.69)

from where the result follows. �	

Remark 9.7. The condition β̃l = Hl
′β̃, simply means that the posterior mean

of β̃l is found by taking the relevant coordinates of the posterior mean in
the full model as in (9.54). As Barbieri and Berger (2004) comment, this
will happen in two important cases. Assume X ′X is diagonal. In the first
case, if one uses the reference prior πl(βl, σ) = 1/σ or a constant prior if σ
is known, the LSE becomes same as the posterior means and the diagonality
of (X′X) implies that the above condition will hold. Secondly, suppose in the
full model π(β, σ) = Nk(μ, σ2Δ) where Δ is a known diagonal matrix, and for
the submodels the natural corresponding prior Nkl(Hl

′μ, σ2Hl
′ΔHl). Then

it is easy to see that for any prior on σ2 or if σ2 is known, the above will hold.

We now state the first theorem.

Theorem 9.8. (Barbieri and Berger, 2004) If Q is diagonal with qi > 0 and
β̃l = Hl

′β̃, and the models have graphical model structure, then the median
probability model is the best predictive model.
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Proof. Because qi > 0, β̃i
2 ≥ 0 for each i and pi (defined in (9.62)) does

not depend on l, to minimize R(Ml) among all possible models, it suffices
to minimize (li − pi)2 for each individual i and that is achieved by choosing
li = 1 if pi ≥ 1

2 and li = 0 if pi <
1
2 , whence l as defined will be the median

probability model. The graphical model structure ensures that this model is
among the class of models under consideration. �	

Remark 9.9. The above theorem obviously holds if we consider all submodels,
this class having graphical model structure; provided the conditions of the
theorem hold. By the same token, the result will hold under the situation
where the models under consideration are nested.

Corollary 9.10. (Barbieri and Berger, 2004) If the conditions of the above
theorem hold, all submodels of the full model are allowed, σ2 is known, X′X
is diagonal and βi’s have N(μi, λiσ

2) distributions and

P (Ml) =
k∏

i=1

(p0
i )

li(1 − p0
i )

(1−li), (9.70)

where p0
i is the prior probability that variable xi is in the model, then the

optimal predictive model is the model with highest posterior probability which
is also the median probability model.

Proof. Let β̂i be the least squares estimate of βi under the full model. Because
X ′X is diagonal, β̂i’s are independent and the likelihood under Ml factors as

L(Ml) ∝
k∏

i=1

(λ0
i )

li(λ′
i)

1−li

where λ0
i depends only on β̂i and βi, λ′

i depends only on β̂i and the constant
of proportionality here and below depend an Y and β̂i’s.

Also, the conditional prior distribution of βi’s given Ml has a factorization

π(β|Ml) =
k∏

i=1

[N(μi, λiσ
2)]li [δ{0}]1−li

where δ{0} = degenerate distribution with all mass at zero.
It follows from (9.70) and the above two factorizations that the posterior

probability of Ml has a factorization

P (Ml|Y )α
k∏

i=1

{p0
i

∫ ∞

−∞
λ0

iN(μi, λiσ
2)dβ}li{(1 − p0

i )λ
′
iδ{0}}1−li

which in turn implies that the marginal posterior of including or not including
ith variable is proportional to the two terms respectively in the ith factor. This
completes the proof, vide Problem 21. (The integral can be evaluated as in
Chapter 2.) �	
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We have noted before that if the conditions in Theorem 9.8 are satis-
fied and the models are nested, then the best predictive model is the median
probability model. Interestingly even if Q is not necessarily diagonal, the best
predictive model turns out to be the median probability model under some
mild assumptions, in the nested model scenario. Consider
Assumption 1: Q = γX′X for some γ > 0, i.e., the prediction will be made
at covariates that are similar to the ones already observed in the past.
Assumption 2: β̃l = bβ̂l, where b > 0, i.e, the posterior means are propor-
tional to the least squares estimates.

Remark 9.11. Barbieri and Berger (2004) list two situations when the second
assumption will be satisfied. First, if one uses the reference prior πl(βl, σ) =
1/σ, whereby the posterior means will be the LSE’s. It will also be satisfied
with b = c/(1 + c), if one uses g-type normal priors of Zellner (1986), where
πl(βl|σ) ∼ Nkl(0, cσ

2(X′
lXl)−1) and the prior on σ is arbitrary.

Theorem 9.12. For a sequence of nested models for which the above two
conditions hold, the best predictive model is the median probability model.

Proof. See Barbieri and Berger (2004). �	

Barbieri and Berger(2004, Section 5) present a geometric formulation for
identification of the optimal predictive model. They also establish conditions
under which the median probability model and the maximum posterior prob-
ability model coincides; and that it is typically not enough to know only
the posterior probabilities of each model to determine the optimal predictive
model.

Till now we have concentrated on some Bayesian approaches to the predic-
tion problem. It turns out that model selection based on the classical Akaike
information criterion (AIC) also plays an important role in Bayesian pre-
diction and estimation for linear models and function estimation. Optimality
results for AIC in classical statistics are due to Shibata (1981, 1983), Li (1987),
and Shao (1997).

The first Bayesian result about AIC is taken from Mukhopadhyay (2000).
Here one has observations {yij : i = 1, . . . , p, j = 1, . . . , r, n = pr} given by

yij = μi + εij , (9.71)

where εij are i.i.d. N(0, σ2) with σ2 known. The models are M1 : μi = 0 for all
i and M2 : η2 = limp−>∞ 1

p

∑p
i=1 μ

2
i > 0. Under M2, we assume a N(0, τ2Ip)

prior on μ where τ2 is to be estimated from data using an empirical Bayes
method. It is further assumed that p → ∞ as n → ∞. The goal is to predict a
future set of observations {zij} independent of {yij} using the usual prediction
error loss, with the ‘constraint’ that once a model is selected, least squares
estimates have to be used to make the predictions. Theorem 9.13 shows that
the constrained empirical Bayes rule is equivalent to AIC asymptotically. A
weaker result is given as Problem 17.
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Theorem 9.13. (Mukhopadhyay, 2000) Suppose M2 is true, then asymptot-
ically the constrained empirical Bayes rule and AIC select the same model.
Under M1, AIC and the constrained empirical Bayes rule choose M1 with
probability tending to 1. Also under M1, the constrained empirical Bayes rule
chooses M1 whenever AIC does so.

The result is extended to general nested problems in Mukhopadhyay and
Ghosh (2004a). It is however also shown in the above reference that if one
uses Bayes estimates instead of least squares estimates, then the unconstrained
Bayes rule does better than AIC asymptotically. The performance of AIC in
the PEB setup of George and Foster (2000) is studied in Mukhopadhyay and
Ghosh (2004a).

As one would expect from this, AIC also performs well in nonparametric
regression which can be formulated as an infinite dimensional linear prob-
lem. It is shown in Chakrabarti and Ghosh (2005b) that AIC attains the
optimal rate of convergence in an asymptotically equivalent problem and is
also adaptive in the sense that it makes no assumption about the degree of
smoothness. Because this result is somewhat technical, we only present some
numerical results for the problem of nonparametric regression.

In the nonparametric regression problem

Yi = f(
i

n
) + εi, i = 1, . . . , n, (9.72)

one has to estimate the unknown smooth function f . In Table 9.3, we con-
sider n = 100 and f(x) = (sin (2πx))3, (cos (πx))4, 7+cos (2πx), and esin (2πx),
the loss function L(f, f̂) ≡

∫ 1
0 (f(x) − f̂(x))2dx, and report the average loss

of modified James-Stein estimator of Cai et al. (2000), AIC, and the ker-
nel method with Epanechnikov kernel in 50 simulations. To use the first two
methods, we express f in its (partial sum) Fourier expansion with respect to
the usual sine-cosine Fourier basis of [0, 1] and then estimate the Fourier coef-
ficients by the regression coefficients. Some simple but basic insight about the
AIC may be obtained from Problems 15–17. It is also worth remembering that
AIC was expected by Akaike to perform well in high-dimensional estimation
or prediction problem when the true model is too complex to be in the model
space.

9.9 Discussion

Bayesian model selection is passing through a stage of rapid growth, especially
in the context of bioinformatics and variable selection. The two previous sec-
tions provide an overview of some of the literature. See also the review by
Ghosh and Samanta (2001). For a very clear and systematic approach to dif-
ferent aspects of model selection, see Bernardo and Smith (1994).

Model selection based on AIC is used in many real-life problems by Burn-
ham and Anderson (2002). However, its use for testing problems with 0-1
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Table 9.3. Comparison of Simulation Performance of Various Estimation Methods
in Nonparametric Regression

Function Modified James-Stein AIC Kernel Method
[Sin(2πx)]3 0.2165 0.0793 0.0691
[Cos(πx)]4 0.2235 0.078 0.091

7 + Cos(2πx) 0.2576 0.0529 0.5380
eSin(2πx) 0.2618 0.0850 0.082

loss is questionable vide Problem 16. A very promising new model selection
criterion due to Spiegelhalter et al. (2002) may also be interpreted as a gen-
eralization of AIC, see, e.g., Chakrabarti and Ghosh (2005a). In the latter
paper, GBIC is also interpreted from the information theoretic point of view
of Rissanen (1987).

We believe the Bayesian approach provides a unified approach to model
selection and helps us see classical rules like BIC and AIC as still important
but by no means the last word in any sense. We end this section with two
final comments.

One important application of model selection is to examine model fit.
Gelfand and Ghosh (1998) (see also Gelfand and Dey (1994)) use leave-k-
out cross-validation to compare each collection of k data points and their
predictive distribution based on the remaining observations. Based on the
predictive distributions, one may calculate predicted values and some measure
of deviation from the k observations that are left out. An average of the
deviation over all sets of k left out observations provides some idea of goodness
of fit. Gelfand and Ghosh (1998) use these for model selection. Presumably, the
average distance for a model can be used for model check also. An interesting
work of this kind is Bhattacharya (2005).

Another important problem is computation of the Bayes factor. Gelfand
and Dey (1994) and Chib (1995) show how one can use MCMC calcula-
tions by relating the marginal likelihood of data to the posterior via P (y) =
L(θ|y)P (θ)/P (θ|y). Other relevant papers are Carlin and Chib (1995), Chib
and Greenberg (1998), and Basu and Chib (2003). There are interesting sug-
gestions also in Gelman et al (1995).

9.10 Exercises

1. Show that π(η2|X) is an improper density if we take π(η1, η2) = 1/η2 in
Example 9.3.

2. Justify (9.2) and (9.3).
3. Complete the details to implement Gibbs sampling and E-M algorithm in

Example 9.3 when μ and σ2 are unknown. Take π(η1, σ2, η2) = 1/σ2.
4. Let Xi’s be independent with density f(x|θi), i = 1, 2, . . . , p, θi ∈ R.

Consider the problem of estimating θ = (θ1, . . . , θp)′ with loss function
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L(θ,a) =
p∑

i=1

L(θi, ai) =
p∑

i=1

(θi − ai)2, θ,a ∈ Rp.

i.e., the total loss is the sum of the losses in estimating θi by ai. An
estimator for θ is the vector (T1(X), T2(X), . . . , Tp(X)). We call this a
compound decision problem with p components.
(a) Suppose supδ f(x|δ) = f(x|T (x)), i.e., T (x) is the MLE (of θj in
f(x|θj)). Show that (T (X1), T (X2), . . . T (Xp)) is the MLE of θ.
(b) Suppose T (X) (not necessarily the T (X) of (a)) satisfies the suffi-
cient condition for a minimax estimate given at the end of Section 1.5.
Is (T (X1), T (X2), . . . , T (Xp)) minimax for θ in the compound decision
problem?
(c) Suppose T (X) is the Bayes estimate with respect to squared error loss
for estimating θ of f(x|θ). Is (T (X1), . . . , T (Xp)) a Bayes estimate for θ?
(d) Suppose T = (T1(X1), . . . , Tp(Xp)) and Tj(Xi) is admissible in the
jth component decision problem. Is T admissible?

5. Verify the claim of the best unbiased predictor (9.17).
6. Given the hierarchical prior of Section 9.3 for Morris’s regression setup,

calculate the posterior and the Bayes estimate as explicitly as possible.
Find the full conditionals of the posterior distribution in order to imple-
ment MCMC.

7. Prove the claims of superiority made in Section 9.4 for the James-Stein-
Lindley estimate and the James-Stein positive part estimate using Stein’s
identity.

8. Under the setup of Section 9.3, show that the PEB risk of θ̂i is smaller
than the PEB risk of Yi.

9. Refer to Sections 9.3 and 9.4. Compare the PEB risk of θ̂i and Stein’s
frequentist risk of θ̂ and show that the two risks are of the same form but
one has E(B̂) and the other Eθ(B̂). (Hint: See equations (1.17) and (1.18)
of Morris (1983)).

10. Consider the setup of Section 9.3. Show that B̂ is the best unbiased esti-
mate of B.

11. (Disease mapping) (See Section 10.1 for more details on the setup.) Sup-
pose that the area to be mapped is divided into N regions. Let Oi and Ei

be respectively the observed and expected number of cases of a disease in
the ith region, i = 1, 2, . . . , N . The unknown parameters of interest are θi,
the relative risk in the ith region, i = 1, 2, . . . , N . The traditional model
for Oi is the Poisson model, which states that given (θ1, . . . , θN ), Oi’s are
independent and

Oi|θi ∼ Poisson (Eiθi).

Let θ1, θ2, . . . , θN be i.i.d. ∼ Gamma(a, b). Find the PEB estimates of
θ1, θ2, . . . , θN . In Section 10.1, we will consider hierarchical Bayes analysis
for this problem.
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12. Let Yi be i.i.d N(θi, V ), i = 1, 2, . . . , p. Stein’s heuristics (Section 9.4)
shows ‖Y ‖2 is too large in a frequentist sense. Verify by a similar argu-
ment that if θi are i.i.d uniform on R then ‖Y ‖2 is too small in an improper
Bayesian sense, i.e., there is extreme divergence between frequentist prob-
ability and naive objective Bayes probability in a high-dimensional case.

13. (Berger (1985a, p. 542)) Consider a multiparameter exponential family
f(x|θ) = c(θ) exp(θ′T (x))h(x), where x and θ are vectors of the same di-
mension. Assuming Stein’s loss, show that (under suitable conditions) the
Bayes estimate can be written as gradient(logm(x)) − gradient(log h(x))
where m(x) is the marginal density of x obtained by integrating out θ.

14. Simulate data according to the model in Example 9.3, Section 9.1.
(a) Examine how well the model can be checked from the data Xij , i =
1, 2, . . . n, j = 1, 2, . . . p.
(b) Suppose one uses the empirical distribution of X̄j ’s as a surrogate
prior for μj ’s. Compare critically the Bayes estimate of μ for this prior
with the PEB estimate.

15. (Stone’s problem) Let
Yij = α+μi+εij , εij ∼ N(0, σ2), i = 1, 2, . . . , p, j = 1, 2, . . . , r, n = pr with
σ2 assumed known or estimated by S2 =

∑p
i=1

∑r
j=1(Yij − Ȳi)2/p(r− 1).

The two models are

M1 : μi = 0∀i and M2 : μ ∈ Rp.

Suppose n → ∞, p logn/n → ∞ and
∑p

i=1(μi − μ̄)2/(p− 1) → τ2 > 0.
(a) Show that even though M2 is true, BIC will select M1 with probability
tending to 1. Also show that AIC will choose the right model M2 with
probability tending to one.
(b) As a Bayesian how important do you think is this notion of consis-
tency?
(c) Explore the relation between AIC and selection of model based on
estimation of residual sum of squares by leave-one-out cross validation.

16. Consider an extremely simple testing problem. X ∼ N(μ, 1). You have to
test H0 : μ = 0 versus H1 : μ 
= 0. Is AIC appropriate for this? Compare
AIC, BIC, and the usual likelihood ratio test, keeping in mind the conflict
between P-values and posterior probability of the sharp null hypothesis.

17. Consider two nested models and an empirical Bayes model selection rule
with the evaluation based on the more complex model. Though you know
the more complex model is true, you may be better off predicting with
the simpler model.
Let Yij = μi + εij , εij i.i.d N(0, σ2), i = 1, 2, . . . , p, j = 1, 2, . . . , r with
known σ2. The models are

M1 : μ = 0
M2 : μ ∈ Rp,μ ∼ Np(0, τ2Ip), τ2 > 0.

(a) Assume that in PEB evaluation under M2 you estimate τ2 by the
moment estimate:
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τ̂2 =

[
1
p

p∑
i=1

Ȳ 2
i − σ2

r

]+

.

Show with PEB evaluation of risk under M2 and M1, Ȳ is preferred if and
only if AIC selects M2.
(b) Why is it desirable to have large p in this problem?
(c) How will you try to justify in an intuitive way occasional choice of the
simple but false model?
(d) Use (a) to motivate how the penalty coefficient 2 arises in AIC.
(This problem is based on a result in Mukhopadhyay (2001)).

18. Burnham and Anderson (2002) generated data to mimic a real-life exper-
iment of Stromberg et al. (1998). Select a suitable model from among
the 9 models considered by Ghosh and Samanta (2001). The main issue is
computation of the integrated likelihood under each model. You can try
Laplace approximation, the method based on MCMC suggested at the
end of Section 9.9, and importance sampling. All methods are difficult,
but they give very close answers in this problem. The data and the models
can be obtained from the Web page
http://www.isical.ac.in/˜tapas/book

19. Let Xi ∼ N(μ, 1), i = 1, . . . , n and μ ∼ N(η1, η2). Find the PEB estimate
of η1 and η2 and examine its implications for the inadequacy of the PEB
approach in low-dimensional problems.

20. Consider NPEB multiple testing (Section 9.6.1) with known π1 and an
estimate f̂ of (1−π1)f0 +π1f1. Suppose for each i, you reject H0i : μi = 0
if

f0(xi) ≤ f̂(xi)α, where o < α < 1.

Examine whether this test provides any control on the (frequentist) FDR.
Define a Bayesian FDR and examine if, for small π1, this is also con-
trolled by the test. Suggest a test that would make the Bayesian FDR
approximately equal to α. (The idea of controlling a Bayesian FDR is due
to Storey (2003). The simple rules in this problem are due to Bogdan,
Ghosh, and Tokdar (personal communication).)

21. For all subsets variable selection models show that the posterior median
model and the posterior mode model are the same if

P (Ml|X) =
p∏

i=1

pli
i (1 − pi)1−li

where li = 1 if the ith variable is included in Ml and li = 0 otherwise.
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Some Applications

The popularity of Bayesian methods in recent times is mainly due to their suc-
cessful applications to complex high-dimensional real-life problems in diverse
areas such as epidemiology, microarrays, pattern recognition, signal process-
ing, and survival analysis. This chapter presents a few such applications to-
gether with the required methodology. We describe the method without going
into the details of the critical issues involved, for which references are given.
This is followed by an application involving real or simulated data.

We begin with a hierarchical Bayesian modeling of spatial data in Sec-
tion 10.1. This is in the context of disease mapping, an area of epidemio-
logical interest. The next two sections, 10.2 and 10.3, present nonparametric
estimation of regression function using wavelets and Dirichlet multinomial al-
location. They may also be treated as applications involving Bayesian data
smoothing. For several recent advances in Bayesian nonparametrics, see Dey
et al. (1998) and Ghosh and Ramamoorthi (2003).

10.1 Disease Mapping

Our first application is from the area of epidemiology and involves hierarchical
Bayesian spatial modeling. Disease mapping provides a geographical distribu-
tion of a disease displaying some index such as the relative risk of the disease
in each subregion of the area to be mapped. Suppose that the area to be
mapped is divided into N regions. Let Oi and Ei be respectively the observed
and expected number of cases of a disease in the ith region, i = 1, 2, . . . , N .
The unknown parameters of interest are θi, the relative risk in the ith re-
gion, i = 1, 2, . . . , N . Here Ei is a simple-minded expectation assuming all
regions have the same disease rate (at least after adjustment for age), vide
Banerjee et al. (2004, p. 158). The relative risk θi is the regional effect in a
multiplicative model of expected number of cases: E(Oi) = Eiθi. If θi = 1, we
have E(Oi) = Ei. The objective is to make inference about θi’s across regions.
Among other things, this helps epidemiologists and public health professionals



290 10 Some Applications

to identify regions or cluster of regions having high relative risks and hence
needing attention and also to identify covariates causing high relative risk.
The traditional model for Oi is the Poisson model, which states that given
(θ1, . . . , θN ), Oi’s are independent and

Oi|θi ∼ Poisson (Eiθi). (10.1)

Under this model Ei’s are assumed fixed. The classical maximum likelihood
estimate of θi is θ̂i = Oi/Ei, known as the standardized mortality ratio (SMR)
for region i and Var(θ̂i) = θi/Ei, which may be estimated as θ̂i/Ei. However,
it was noted in Chapter 9 that the classical estimates may not be appropriate
here for simultaneous estimation of the parameters θ1, θ2, . . . , θN .

As mentioned in Chapter 9, because of the assumption of exchangeability
of θ1, . . . , θN , there is a natural Bayesian solution to the problem. A Bayesian
modeling involves specification of prior distribution of (θ1, . . . θN ). Clayton
and Kaldor (1987) followed the empirical Bayes approach using a model that
assumes

θ1, θ2, . . . , θN i.i.d. ∼ Gamma (a, b) (10.2)

and estimating the hyperparameters a and b from the marginal density of
{Oi} given a, b (see Section 9.2). Here we present a full Bayesian approach
adopting a prior model that allows for spatial correlation among the θi’s. A
natural extension of (10.2) could be a multivariate Gamma distribution for
(θ1, . . . , θN ). We, however, assume a multivariate normal distribution for the
log-relative risks log θi, i = 1, . . . , N . The model may also be extended to
allow for explanatory covariates xi which may affect the relative risk. Thus
we consider the following hierarchical Bayesian model

Oi|θi are independent ∼ Poisson (Eiθi) (10.3)
where log θi = x′

iβ + φi, i = 1, . . . , N.

The usual prior for φ = (φ1, . . . , φN ) is given by the conditionally autore-
gressive (CAR) model (Besag, 1974), which is briefly described below. For
details see, e.g., Besag (1974) and Banerjee et al. (2004, pp. 79–83, 163, 164).
Suppose the full conditionals are specified as

φi|φj , j 
= i ∼ N(
∑
j �=i

aijφj , σ
2
i ), i = 1, 2, . . . , N. (10.4)

These will lead to a joint distribution having density proportional to

exp
{

−1
2
φ′D−1(I −A)φ

}
(10.5)

where D = Diag(σ2
1 , . . . , σ

2
N ) and A = (aij)N×N . We look for a model that al-

lows for spatial correlation and so consider a model where correlation depends
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on geographical proximity. A proximity matrix W = (wij) is an N×N matrix
where wij spatially connects regions i and j in some manner. We consider here
binary choices. We set wii = 0 for all i, and for i 
= j, wij = 1 if i is a neighbor
of j, i.e., i and j share some common boundary and wij = 0 otherwise. Also,
wij ’s in each row may be standardized as w̃ij = wij/wio where wio =

∑
j wij

is the number of neighbors of region i. Returning to our model (10.5), we now
set aij = αwij/wio and σ2

i = λ/wio. Then (10.5) becomes

exp
{

− 1
2λ
φ′(Dw − αW )φ

}
where Dw = Diag(w10, w20, . . . , wN0). This also ensures that D−1(I − A) =
1
λ (Dw − αW ) is symmetric.

Thus the prior for φ is multivariate normal

φ ∼ N(0, Σ) with Σ = λ(Dw − αW )−1. (10.6)

We take 0 < α < 1, which ensures propriety of the prior and positive spatial
correlation; only the values of α close to 1 give enough spatial similarity. For
α = 1 we have the standard improper CAR model. One may use the improper
CAR prior because it is known that the posterior will typically emerge as
proper. For this and other relative issues, see Banerjee et al. (2004).

Having specified priors for all the unknown parameters including the spa-
tial variance parameter λ and propriety parameter α (0 < α < 1), one can
now do Bayesian analysis using MCMC techniques. We illustrate through an
example.

Example 10.1. Table 10.1 presents data from Clayton and Kaldor (1987) on
observed (Oi) and expected (Ei) cases of lip cancer during the period 1975–
1980 for N = 56 counties of Scotland. Also available are xi, values of a co-
variate, the percentage of the population engaged in agriculture, fishing, and
forestry (AFF), for the 56 counties. The log-relative risk is modeled as

log θi = β0 + β1xi + φi, i = 1, . . . , N (10.7)

where the prior for (φ1, . . . , φN ) is as specified in (10.6). We use vague priors
for β0 and β1 and a prior having high concentration near 1 for the parameter
α. The data may be analyzed using WinBUGS. A WinBUGS code for this
example is put in the web page of Samanta. A part of the results – the Bayes
estimates θ̃i of the relative risks for the 56 counties – are presented in Table
10.1. The θi’s are smoothed by pooling the neighboring values in an automatic
adaptive way as suggested in Chapter 9. The estimates of β0 and β1 are
obtained as β̂0 = −0.2923 and β̂1 = 0.3748 with estimates of posterior s.d.
equal to 0.3426 and 0.1325, respectively.
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Table 10.1. Lip Cancer Incidence in Scotland by County: Observed Numbers (Oi),
Expected Numbers (Ei), Values of the Covariate AFF (xi), and Bayes Estimates of
the Relative Risk (θ̃i).

County Oi Ei xi θ̃i County Oi Ei xi θ̃i

1 9 1.4 16 4.705 29 16 14.4 10 1.222
2 39 8.7 16 4.347 30 11 10.2 10 0.895
3 11 3.0 10 3.287 31 5 4.8 7 0.860
4 9 2.5 24 2.981 32 3 2.9 24 1.476
5 15 4.3 10 3.145 33 7 7.0 10 0.966
6 8 2.4 24 3.775 34 8 8.5 7 0.770
7 26 8.1 10 2.917 35 11 12.3 7 0.852
8 7 2.3 7 2.793 36 9 10.1 0 0.762
9 6 2.0 7 2.143 37 11 12.7 10 0.886
10 20 6.6 16 2.902 38 8 9.4 1 0.601
11 13 4.4 7 2.779 39 6 7.2 16 1.008
12 5 1.8 16 3.265 40 4 5.3 0 0.569
13 3 1.1 10 2.563 41 10 18.8 1 0.532
14 8 3.3 24 2.049 42 8 15.8 16 0.747
15 17 7.8 7 1.809 43 2 4.3 16 0.928
16 9 4.6 16 2.070 44 6 14.6 0 0.467
17 2 1.1 10 1.997 45 19 50.7 1 0.431
18 7 4.2 7 1.178 46 3 8.2 7 0.587
19 9 5.5 7 1.912 47 2 5.6 1 0.470
20 7 4.4 10 1.395 48 3 9.3 1 0.433
21 16 10.5 7 1.377 49 28 88.7 0 0.357
22 31 22.7 16 1.442 50 6 19.6 1 0.507
23 11 8.8 10 1.185 51 1 3.4 1 0.481
24 7 5.6 7 0.837 52 1 3.6 0 0.447
25 19 15.5 1 1.188 53 1 5.7 1 0.399
26 15 12.5 1 1.007 54 1 7.0 1 0.406
27 7 6.0 7 0.946 55 0 4.2 16 0.865
28 10 9.0 7 1.047 56 0 1.8 10 0.773

10.2 Bayesian Nonparametric Regression Using Wavelets

Let us recall the nonparametric regression problem that was stated in Exam-
ple 6.1. In this problem, it is of interest to fit a general regression function to
a set of observations. It is assumed that the observations arise from a real-
valued regression function defined on an interval on the real line. Specifically,
we have

yi = g(xi) + εi, i = 1, . . . , n, and xi ∈ T , (10.8)

where εi are i.i.d. N(0, σ2) errors with unknown error variance σ2, and g is a
function defined on some interval T ⊂ R1.
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It can be immediately noted that a Bayesian solution to this problem
involves specifying a prior distribution on a large class of regression functions.
In general, this is a rather difficult task. A simple approach that has been
successful is to decompose the regression function g into a linear combination
of a set of basis functions and to specify a prior distribution on the regression
coefficients. In our discussion here, we use the (orthonormal) wavelet basis.
We provide a very brief non-technical overview of wavelets including multi-
resolution analysis (MRA) here, but for a complete and thorough discussion
refer to Ogden (1997), Daubechies (1992), Hernández and Weiss (1996), Müller
and Vidakovic (1999), and Vidakovic (1999).

10.2.1 A Brief Overview of Wavelets

Consider the function

ψ(x) =

⎧⎨⎩ 1 0 ≤ x < 1/2;
−1 1/2 ≤ x ≤ 1;

0 otherwise.
(10.9)

which is known as the Haar wavelet, simplest of the wavelets. Note that its
dyadic dilations along with integer translations, namely,

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z, (10.10)

provide a complete orthonormal system for L2(R). This says that any f ∈
L2(R) can be approximated arbitrarily well using step functions that are
simply linear combinations of wavelets ψj,k(x). What is more interesting and
important is how a finer approximation for f can be written as an orthogonal
sum of a coarser approximation and a detail function. In other words, for
j ∈ Z, let

Vj =
{
f ∈ L2(R) : f is piecewise constant on intervals

[k2−j , (k + 1)2−j), k ∈ Z
}
. (10.11)

Now suppose P jf is the projection of f ∈ L2(R) onto Vj . Then note that

P jf = P j−1f + gj−1

= P j−1f +
∑
k∈Z

< f, ψj−1,k > ψj−1,k, (10.12)

with gj−1 being the detail function as shown, so that

Vj = Vj−1 ⊕Wj−1, (10.13)

whereWj = span {ψj,k, k ∈ Z}. Also, corresponding with the ‘mother’ wavelet
ψ (Haar wavelet in this case), there is a father wavelet or scaling function



294 10 Some Applications

φ = I[0,1] such that Vj = span {φj,k, k ∈ Z}, where φj,k is the dilation and
translation of φ similar to the definition (10.10), i.e.,

φj,k(x) = 2j/2φ(2jx− k), j, k ∈ Z, (10.14)

In fact, the sequence of subspaces {Vj} has the following properties:

1. · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·.
2. ∩j∈ZVj = {0},∪j∈ZVj = L2(R).
3. f ∈ Vj iff f(2.) ∈ Vj+1.
4. f ∈ V0 implies f(.− k) ∈ V0 for all k ∈ Z.
5. There exists φ ∈ V0 such that span {φ0,k = φ(.− k), k ∈ Z} = V0.

Given this φ, the corresponding ψ can be easily derived (see Ogden (1997)
or Vidakovic (1999)). What is interesting and useful to us is that there ex-
ist scaling functions φ with desirable features other than the Haar function.
Especially important are Daubechies wavelets that are compactly supported
and each having a different degree of smoothness.

Definition: Closed subspaces {Vj}j∈Z satisfying properties 1–5 are said to
form a multi-resolution analysis (MRA) of L2(R). If Vj = span {φj,k, k ∈ Z}
form an MRA of L2(R), then the corresponding φ is also said to generate this
MRA.

In statistical inference, we deal with finite data sets, so wavelets with
compact support are desirable. Further, the regression functions (or density
functions) that we need to estimate are expected to have certain degree of
smoothness. Therefore, the wavelets used here should have some smoothness
also. The Haar wavelet does have compact support but is not very smooth. In
the application discussed later, we use wavelets from the family of compactly
supported smooth wavelets introduced by Daubechies (1992). These, however,
cannot be expressed in closed form. A sketch of their construction is as follows.

Because, from property 5 above of MRA, φ ∈ V0 ⊂ V1, we have

φ(x) =
∑
k∈Z

hkφ1,k(x), (10.15)

where the ‘filter’ coefficients hk are given by

hk =< φ, φ1,k >=
√

2
∫
φ(x)φ(2x− k) dx. (10.16)

For compactly supported wavelets φ, only finitely many hk’s will be non-zero.
Define the 2π-periodic trigonometric polynomial

mo(ω) =
1√
2

∑
k∈Z

hke
−ikω (10.17)

associated with {hk}. The Fourier transforms of φ and ψ can be shown to be
of the form
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φ̂(ω) =
1√
2

∞∏
j=1

m0(2−jω), (10.18)

ψ̂(ω) = −e−iω/2m0(
ω

2
+ π)φ̂(

ω

2
). (10.19)

Depending on the number of non-zero elements in the filter {hk}, wavelets of
different degree of smoothness emerge.

It is natural to wonder what is special about MRA. Smoothing techniques
such as linear regression, splines, and Fourier series all try to represent a
signal in terms of component functions. At the same time, wavelet-based MRA
studies the detail signals or differences in the approximations made at adjacent
resolution levels. This way, local changes can be picked up much more easily
than with other smoothing techniques.

With this short introduction to wavelets, we return to the nonparametric
regression problem in (10.8). Much of the following discussion closely follows
Angers and Delampady (2001). We begin with a compactly supported wavelet
function ψ ∈ Cs, the set of real-valued functions with continuous derivatives
up to order s. We note that then g has the wavelet decomposition

g(x) =
∑

|k|≤K0

αkφk(x) +
∑
j≥0

∑
|k|≤Kj

βjkψj,k(x), (10.20)

with

φk(x) = φ(x− k), and
ψj,k(x) = 2j/2ψ(2jx− k),

where Kj is such that φk(x) and ψj,k(x) vanish on T whenever |k| > Kj , and
φ is the scaling function (‘father wavelet’) corresponding with the ‘mother
wavelet’ ψ. Such Kj ’s exist (and are finite) because the wavelet function that
we have chosen has compact support. For any specified resolution level J , we
have

g(x) =
∑

|k|≤K0

αkφk(x) +
J∑

j=0

∑
|k|≤Kj

βjkψj,k(x) +
∞∑

j=J+1

∑
|k|≤Kj

βjkψj,k(x)

= gJ(x) +RJ(x), (10.21)

where

gJ(x) =
∑

|k|≤K0

αkφk(x) +
J∑

j≥0

∑
|k|≤Kj

βjkψj,k(x), and

RJ(x) =
∞∑

j=J+1

∑
|k|≤Kj

βjkψj,k(x). (10.22)
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In the representation (10.22), we note that the φ functions appearing in the
first part detect the global features of g, and subsequently the ψ functions in
the second part check for local details.

To proceed further, many standard wavelet based procedures apply the
‘discrete wavelet transform’ to the data and work with the resulting wavelet
coefficients (see Vidakovic (1999), Müller and Vidakovic (1999)). We, how-
ever, use the familiar hierarchical Bayesian approach to specify the prior model
for g in (10.8). At the resolution level J , (10.8) can be expressed as

yi = gJ(xi) + ηi + εi, (10.23)

where ηi = RJ(xi). Because the amount of information available in the likeli-
hood function to estimate the infinitely many parameters βjk, j > J , |k| ≤ Kj

(arising from the higher levels of resolution and appearing in ηi) is very lim-
ited, it is best to treat these ηi as nuisance parameters and eliminate them
by integrating out with respect to the prior given in (10.24) while estimating
gJ . Otherwise, one will need to elicit some very informative prior on these pa-
rameters, thus attracting prior robustness issues as well. One other important
issue is how large J should be. Note that the number of unknown parameters
in the model grows exponentially with J , so it cannot be large for practical
reasons. Also, there is no need for large J because its purpose is to check for
local details only.

10.2.2 Hierarchical Prior Structure and Posterior
Computations

In the first-stage prior specification, αk and βjl are all assumed to be inde-
pendent normal random variables with mean 0. A common prior variance of
τ2 is assigned for αk, whereas to accommodate the decreasing effect of the
‘detail’ coefficients βjl, their variance is assumed to be 2−2jsτ2. Now a joint
prior distribution on σ2 and τ2 completes the prior specification. Even though
conditionally, given τ2, αk and βjl are normally distributed, unconditionally
they do have heavy tailed prior distributions possessing robustness properties.

Let us now introduce some notations to facilitate the derivation of pos-
terior quantities. Let γ = (α′,β′)′, where α = (αk)|k|≤K0 , and β =
(βjk)0≤j≤J,|k|≤Kj

. Then the first stage prior specified above is

γ|τ2 ∼ N2K0+1+Mβ
(0, τ2Γ ), where Γ =

(
I2K0+1 0

0 ΔMβ

)
,

with Mβ =
∑J

j=0(2Kj + 1) and the diagonal matrix Δ being the variance-
covariance matrix of β. Also,

η = (η1, . . . ηn)′|τ2 ∼ Nn(0, τ2Qn), (10.24)

where, to keep the covariance structure of ηi simple, we choose
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(Qn)ij = τ22−2Js exp(−c|xi − xj |),

for some moderate value of c. Further, let X = (Φ′, S′) with the ith row of Φ′

being {φk(xi)}′
|k|≤K0

and the ith row of S′ being {ψjk(xi)}′
0≤j≤J,|k|≤Kj

. Then,
given γ, σ2 and τ2, we have the following linear model for the observation
vector Y = (y1, . . . , yn)′:

Y = Xγ + u, (10.25)

where u = η + ε ∼ Nn(0, Σ) with Σ = σ2In + τ2Qn. This follows from the
fact that

Y|γ,η, σ2, τ2 ∼ Nn(Xγ + η, σ2In), (10.26)
η|τ2 ∼ Nn(0, τ2Qn).

From (10.25) and using standard hierarchical Bayes techniques (cf. Lindley
and Smith (1972)) and matrix identities (cf. Searle (1982)), it follows that

Y|σ2, τ2 ∼ Nn(0, σ2In + τ2 (XΓX ′ +Qn)), (10.27)
γ|Y, σ2, τ2 ∼ N(AY, B), (10.28)

where

A = τ2ΓX ′ (σ2In + τ2 (XΓX ′ +Qn)
)−1

,

B = τ2Γ − τ4ΓX ′ (σ2In + τ2 (XΓX ′ +Qn)
)−1

XΓ.

To proceed to the second-stage calculations, some algebraic simplifications are
needed (see Angers and Delampady (1992)). Spectral decomposition yields
XΓX ′ +Qn = HDH ′, where D = diag(d1, d2, . . . , dn) is the matrix of eigen-
values and H is the orthogonal matrix of eigenvectors. Thus,

σ2In + τ2 (XΓX ′ +Qn) = H
(
σ2In + τ2D

)
H ′

= τ2H (vIn +D)H ′, (10.29)

where v = σ2/τ2. Using this spectral decomposition, the marginal density of
Y given τ2 and v can be written as

m(Y | τ2, v) =
1

(2πτ2)n/2

1
det(vIn +D)1/2

× exp
{

− 1
2τ2 Y′H(vIn +D)−1H ′Y

}
=

1
(2πτ2)n/2

1∏n
i=1(v + di)1/2 exp

{
− 1

2τ2

n∑
i=1

t2i
v + di

}
, (10.30)

where t = (t1, . . . , tn)′ = H ′Y.
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To derive the wavelet smoother, all that we need to do now is to eliminate
the hyper- and nuisance parameters from the first-stage posterior distribution
by integrating out these variables with respect to the second-stage prior on
them. This is what we will do now. Alternatively, one could employ an empiri-
cal Bayes approach and estimate σ2 and τ2 from equation (10.27) and replace
σ2 and τ2 by their estimates in equation (10.28) to approximate γ̂. However,
this will underestimate the variance of the wavelet estimator, Ŷ = Xγ̂. Sup-
pose, then, π2(τ2, v) is the second stage prior. It is well known in the context
of hierarchical Bayesian analysis (see Chapter 9, specially equation (9.7) and
Berger, 1985a) that the sensitivity of the second and higher stage hyper-priors
on the final Bayes estimator is somewhat limited. Therefore, for computational
ease, we choose π2(τ2, v) = π22(v)(τ2)−a for some suitable choice of a > 0;
π22 is the prior specified for v.

Once a and π22 are specified, using equation (10.28) along with (10.29)
and taking the expectation with respect to τ2, we have that

E (γ | Y) = γ̂ = ΓX ′HE
[
(vIn +D)−1 | Y

]
t, (10.31)

where the expectation is taken with respect to π22(v | Y). Again using equa-
tions (10.28) and (10.29), the posterior covariance matrix of γ can be written
as

V ar(γ | Y) =
1

n+ 2a
E

[
n∑

i=1

t2i
v + di

| Y
]
Γ

− 1
n+ 2a

ΓX ′HE

[(
n∑

i=1

t2i
v + di

)
(vIn +D)−1 | Y

]
H ′XΓ

+E [γ̂(v)γ̂(v)′ | Y] , (10.32)

where γ̂(v) = ΓX ′H(vIn +D)−1t.
To compute these expectations, one can use several techniques. Because

they involve only single dimensional integrals, standard numerical integration
methods will work quite well. Several versions of the standard Monte Carlo
approach can be employed quite satisfactorily and efficiently also. An example
illustrating the methodology follows.

Example 10.2. This is based on data provided by Prof. Abraham Verghese
(F.R.E.S.) of the Indian Institute of Horticultural Research, Bangalore, India
(personal communication), which have already been analyzed in Angers and
Delampady (2001). The variable of interest y that we have chosen from the
data set is the weekly average humidity level. The observations were made
from June 1, 1995, to December 13, 1998. (For some reason, the observations
were not recorded on the same day of the week every time.) We have chosen
time (day of recording the observation) as the covariate x. (Any other available
covariate can be used also because wavelet-based smoothing with respect to
any arbitrary covariate (measured in some general way) can be handled with
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Fig. 10.1. Wavelet smoother and its error bands for the Humidity data.

our methodology.) For illustration purposes, we have chosen the model with
J = 6; the hyperparameter a is 0.5 and the prior π22 corresponds with an
F distribution with degrees of freedom 24 and 4. We have used compactly
supported Daubechies wavelets for this analysis. As explained earlier, these
cannot be expressed in closed form, but computations with these wavelets
are possible using any of the several statistical and mathematical software
packages. In Figure 10.1, we have plotted ĝJ (solid line) along with its error
bands (dotted lines), ±2

√
V ar(y | Y), where

V ar(y | Y) = V ar(gJ(x) + η + ε | Y).

More details on this example as well as other studies can be found in
Angers and Delampady (2001).

10.3 Estimation of Regression Function Using Dirichlet
Multinomial Allocation

In Section 10.2, wavelets are used to represent the nonparametric regression
function in (10.8) and a prior is put on the wavelet coefficients. Here we
present an alternative approach based on the observation that the unknown
regression function is locally linear and hence one may use a high-dimensional
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parametric family for modeling locally linear regression. Suppose we have
a regression problem with a response variable Y and a regressor variable
X. Let (X1, Y1), . . . (Xn, Yn) be independent paired observations on (X,Y ).
Consider first the usual normal linear regression model where given values of
the regressor variables xi’s, the Yi’s are independently normally distributed
with common variance σ2

Y and mean E(Yi|xi) = β1 + β2xi, a linear function
of xi.

Let Zi = (Xi, Yi) be independent, Zi having the density

f(z|φi) = f(x, y|φi) = fX(x|μi, σ
2
i )fY (y|x, β1i, β2i, σ

2
Y )

where fX(x|μi, σ
2
i ) and fY (y|x, β1i, β2i, σ

2
Y ) denote respectivelyN(μi, σ

2
i ) den-

sity for Xi and N(β1i +β2ix, σ
2
Y ) density for Yi given x, φi = (μi, σ

2
i , β1i, β2i),

i = 1, . . . , n.
For simplicity we assume σ2

Y is known, say, equal to 1.
For the remaining parameters φi, i = 1, . . . , n, we have the Dirichlet multi-

nomial allocation (DMA) prior, defined in the next paragraph.
(1) Let k ∼ p(k), a distribution on {1, 2, . . . , n}.
(2) Given k, φi, i = 1, . . . , n have at most k distinct values θ1, . . . , θk,

where θi’s are i.i.d. ∼ G0 and G0 is a distribution on the space of (μ, σ2, β1, β2)
(our choice of G0 is mentioned below).

(3) Given k, the vector of weights (w1, . . . , wk) ∼ Dirichlet (δ1, . . . , δk).
(4) Allocation variables a1, . . . , an are independent with

P (ai = j) = wj , j = 1, . . . , k.

(5) Finally φi = θai , i = 1, . . . , n.
For simplicity, we illustrate with a known k (which will be taken ap-

propriately large). We refer to Richardson and Green (1997) for the treat-
ment of the case with unknown k; see also the discussion of this paper
by Gruet and Robert, and Green and Richardson (2001). Under this prior
φi = (μi, σ

2
i , β1i, β2i), i = 1, . . . , n are exchangeable. This allows borrowing

of strength, as in Chapter 9, from clusters of (xi, yi)’s with similar values. To
see how this works, one has to calculate the Bayes estimate through MCMC.

We take G0 to be the product of a normal distribution for μ, an inverse
Gamma distribution for σ2 and normal distributions for β1, and β2. The full
conditionals needed for sampling from the posterior using Gibbs sampler can
be easily obtained, see Robert and Casella (1999) in this context. For example,
the conditional posterior distribution of a1, . . . , an given other parameters are
as follows:

ai = j with probability wjf(Zi|θj)/
k∑

r=1

wrf(Zi|θr).

j = 1, . . . , k, i = 1, . . . , n and a1, . . . , an are independent.
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Due to conjugacy, the other full conditional distributions can be easily
obtained. You are invited to calculate the conditional posteriors in Problem 4.

Note that given k, θ1, . . . , θk and w1, . . . , wk, we have a mixture with k
components. Each mixture models a locally linear regression. Because θi and
wi are random, we have a rich family of locally linear regression models from
which the posterior chooses different members and assigns to each member
model a weight equal to its posterior probability density. The weight is a
measure of how close is this member model to data. The Bayes estimate of
the regression function is a weighted average of the (conditional) expectations
of locally linear regressions.

We illustrate the use of this method with a set of data simulated form a
model for which

E(Y |x) = sin(2x) + ε.

We generate 100 pairs of observations (Xi, Yi) with normal errors εi. A
scatter plot of the data points and a plot of the estimated regression at each
Xi (using the Bayes estimates of β1i, β2i) together with the graph of sin(2x)
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Fig. 10.2. Scatter plot, estimated regression, and true regression function.



302 10 Some Applications

are presented in Figure 10.2. In our calculation, we have chosen hyperparam-
eters of the priors suitably to have priors with small information. Seo (2004)
discusses the choice of hyperpriors and hyperparameters in examples of this
kind.

Following Müller et al. (1996), Seo (2004) also uses a Dirichlet process
prior instead of the DMA. The Dirichlet process prior is beyond the scope of
our book. See Ghosh and Ramamoorthi (2003, Chapter 3) for details.

It is worth noting that the method developed works equally well if X is
non-stochastic (as in Section 10.2) or has a known distribution. The trick is
to ignore these facts and pretend that X is also random as above. See Müller
et al. (1996) for further discussion of this point.

10.4 Exercises

1. Verify that Haar wavelets generate an MRA of L2(R).
2. Indicate how Bayes factors can be used to obtain the optimal resolution

level J in (10.21).
3. Derive an appropriate wavelet smoother for the data given in Table 5.1

and compare the results with those obtained using linear regression in
Section 5.4.

4. For the problem in Section 10.3, explain how MCMC can be implemented,
deriving explicitly all the full conditionals needed.

5. Choose any of the high-dimensional problems in Chapters 9 or 10 and
suggest how hyperparameters may be chosen there. Discuss whether your
findings will apply to all the higher levels of hierarchy.



A

Common Statistical Densities

For quick reference, listed below are some common statistical densities that are
used in examples and exercise problems in the book. Only brief description
including the name of the density, the notation (abbreviation) used in the
book, the density itself, the range of the variable argument, and the parameter
values and some useful moments are supplied.

A.1 Continuous Models

1. Univariate normal (N(μ, σ2)):

f(x|μ, σ2) = (2πσ2)−1/2 exp
(
−(x− μ)2/(2σ2)

)
,

−∞ < x < ∞, −∞ < μ < ∞, σ2 > 0.
Mean = μ, variance = σ2.
Special case: N(0, 1) is known as standard normal.

2. Multivariate normal (Np(μ, Σ)):

f(x|μ, Σ) = (2π)−p/2|Σ|−1/2 exp
(
−(x − μ)′Σ−1(x − μ)

)
,

x ∈ Rp,μ ∈ Rp, Σp×p positive definite.
Mean vector = μ, covariance or dispersion matrix = Σ.

3. Exponential (Exp(λ)):

f(x|λ) = λ exp(−λx), x > 0, λ > 0.

Mean = 1/λ, variance = 1/λ2.
4. Double exponential or Laplace (DExp(μ, σ)):

f(x|μ, σ) =
1
2σ

exp
(

−|x− μ|
σ

)
,

−∞ < x < ∞, −∞ < μ < ∞, σ > 0.
Mean = μ, variance = 2σ2.
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5. Gamma (Gamma(α, λ)):

f(x|α, λ) =
λα

Γ (α)
xα−1 exp(−λx), x > 0, α > 0, λ > 0.

Mean = α/λ, variance = α/λ2.
Special cases:
(i) Exp(λ) is Gamma(1, λ).
(ii) Chi-square with n degrees of freedom (χ2

n) is Gamma(n/2, 1/2).
6. Uniform (U(a, b)):

f(x|a, b) =
1

b− a
I(a,b)(x),−∞ < a < b < ∞.

Mean = (a+ b)/2, variance = (b− a)2/12.
7. Beta (Beta(α, β)):

f(x|α, β) =
Γ (α+ β)
Γ (α)Γ (β)

xα−1(1 − x)β−1I(0,1)(x), α > 0, β > 0.

Mean = α/(α+ β), variance = αβ/{(α+ β)2(α+ β + 1)}.
Special case: U(0, 1) is Beta(1, 1).

8. Cauchy (Cauchy(μ, σ2)):

f(x|μ, σ2) =
1
πσ

(
1 +

(x− μ)2

σ2

)−1

,−∞ < x < ∞,

−∞ < μ < ∞, σ2 > 0. Mean and variance do not exist.
9. t distribution (t(α, μ, σ2)):

f(x|α, μ, σ2) =
Γ ((α+ 1)/2)
σ
√
απΓ (α/2)

(
1 +

(x− μ)2

ασ2

)−(α+1)/2

,

−∞ < x < ∞, α > 0,−∞ < μ < ∞, σ2 > 0.
Mean = μ if α > 1, variance = ασ2/(α− 2) if α > 2.
Special cases:
(i) Cauchy(μ, σ2) is t(1, μ, σ2).
(ii) t(k, 0, 1) = tk is known as Student’s t with k degrees of freedom.

10. Multivariate t (tp(α,μ, Σ)):

f(x|μ, Σ) =
Γ ((α+ p)/2))
(απ)p/2Γ (α/2)

|Σ|−1/2
(

1 +
1
α

(x − μ)′Σ−1(x − μ)
)−(α+p)/2

,

x ∈ Rp, α > 0,μ ∈ Rp, Σp×p positive definite.
Mean vector = μ if α > 1, covariance or dispersion matrix =
αΣ/(α− 2) if α > 2.
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11. F distribution with degrees of freedom α and β (F (α, β)):

f(x|α, β) =
Γ ((α+ β)/2)
Γ (α/2)Γ (β/2)

(
α

β

)α/2
xα/2−1(

1 + α
βx

)(α+β)/2 , x > 0, α > 0, β > 0.

Mean = β/(β−2) if β > 2, variance = 2β2(α+β−2)/{α(β−4)(β−2)2}
if β > 4.
Special cases:
(i) If X ∼ t(α, μ, σ2), (X − μ)2/σ2 ∼ F (1, α).
(ii) If X ∼ tp(α,μ, Σ), 1

p (X − μ)′Σ−1(X − μ) ∼ F (p, α).
12. Inverse Gamma (inverse Gamma(α, λ)):

f(x|α, λ) =
λα

Γ (α)
x−(α+1) exp(−λ/x), x > 0, α > 0, λ > 0.

Mean = λ/(α− 1) if α > 1, variance = λ2/{(α− 1)2(α− 2)} if α > 2.
If X ∼ inverse Gamma(α, λ), 1/X ∼ Gamma(α, λ).

13. Dirichlet (finite dimensional) (D(α)):

f(x|α) =
Γ (

∑k
i=1 αi)∏k

i=1 Γ (αi)

k∏
i=1

xαi−1
i ,

x = (x1, . . . , xk)′ with 0 ≤ xi ≤ 1, for 1 ≤ i ≤ k,
∑k

i=1 xi = 1 and
α = (α1, . . . , αk)′ with αi > 0 for 1 ≤ i ≤ k.
Mean vector = α/(

∑k
i=1 αi), covariance or dispersion matrix = Ck×k

where

Cij =

⎧⎪⎨⎪⎩
αi

∑
l�=i

αl(∑k

l=1
αl

)2(∑k

l=1
αl+1

) if i = j;

− αiαj(∑k

l=1
αl

)2(∑k

l=1
αl+1

) if i 
= j.

14. Wishart (Wp(n,Σ)):

f(A|Σ) =
1

2np/2Γp(n/2)
|Σ|−n/2 exp

(
−trace{Σ−1A}/2

)
|A|(n−p−1)/2,

Ap×p positive definite, Σp×p positive definite, n ≥ p, p positive integer,

Γp(a) =
∫

A positive definite
exp (−trace{A}) |A|a−(p+1)/2 dA,

for a > (p− 1)/2.
Mean = nΣ. For other moments, see Muirhead (1982).
Special case: χ2

n is W1(n, 1).
If W−1 ∼ Wp(n,Σ) then W is said to follow inverse-Wishart distribution.
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15. Logistic ((Logistic(μ, σ)):

f(x|μ, σ) =
1
σ

exp(−x−μ
σ )(

1 + exp(−x−μ
σ )

)2 ,

−∞ < x < ∞, −∞ < μ < ∞, σ > 0.
Mean = μ, variance = π2σ2/3.

A.2 Discrete Models

1. Binomial (B(n, p)):

f(x|n, p) =
(
n

x

)
px(1 − p)n−x,

x = 0, 1, . . . , n, 0 ≤ p ≤ 1, n ≥ 1 integer.
Mean = np, variance = np(1 − p).
Special case: Bernoulli(p) is B(1, p).

2. Poisson (P(λ)):

f(x|n, p) =
exp(−λ)λx

x!
,

x = 0, 1, . . ., λ > 0.
Mean = λ, variance = λ.

3. Geometric (Geometric(p)):

f(x|p) = (1 − p)xp,

x = 0, 1, . . ., 0 < p ≤ 1.
Mean = (1 − p)/p, variance = (1 − p)/p2.

4. Negative binomial (Negative binomial(k, p)):

f(x|k, p) =
(
x+ k − 1
k − 1

)
(1 − p)xpk,

x = 0, 1, . . ., 0 < p ≤ 1, k ≥ 1 integer.
Mean = k(1 − p)/p, variance = k(1 − p)/p2.
Special case: Geometric(p) is Negative binomial(1, p).

5. Multinomial (Multinomial(n,p)):

f(x|n,p) =
n!∏k

i=1 xi!

k∏
i=1

pxi
i ,

x = (x1, . . . , xk)′ with xi an integer between 0 and n, for 1 ≤ i ≤ k,∑k
i=1 xi = n and p = (p1, . . . , pk)′ with 0 ≤ pi ≤ 1 for 1 ≤ i ≤ k,∑k
i=1 pi = 1.

Mean vector = np, covariance or dispersion matrix = Ck×k where

Cij =
{
npi(1 − pi) if i = j;
−npipj if i 
= j.



B

Birnbaum’s Theorem on Likelihood Principle

The object of this appendix is to rewrite the usual proof of Birnbaum’s the-
orem (e.g., as given in Basu (1988)) using only mathematical statements and
carefully defining all symbols and the domain of discourse.

Let θ ∈ Θ be the parameter of interest. A statistical experiment E is
performed to generate a sample x. An experiment E is given by the triplet
(X ,A, p) where X is the sample space, A is the class of all subsets of X , and
p = {p(·|θ), θ ∈ Θ} is a family of probability functions on (X ,A), indexed by
the parameter space Θ. Below we consider experiments with a fixed parameter
space Θ.

A (finite) mixture of experiments E1, . . . , Ek with mixture probabilities
π1, . . . , πk (non-negative numbers free of θ, summing to unity), which may

be written as
k∑

i=1

πiEi, is defined as a two stage experiment where one first

selects Ei with probability πi and then observes xi ∈ Xi by performing the
experiment Ei.

Consider now a class of experiments closed under the formation of (finite)
mixtures. Let E = (X ,A, p) and E ′ = (X ′,A′, p′) be two experiments and
x ∈ X , x′ ∈ X ′. By equivalence of the two points (E , x) and (E ′, x′), we
mean one makes the same inference on θ if one performs E and observes x or
performs E ′ and observes x′, and we denote this as

(E , x) ∼ (E ′, x′).

We now consider the following principles.

The likelihood principle (LP): We say that the equivalence relation “∼”
obeys the likelihood principle if (E , x) ∼ (E ′, x′) whenever

p(x|θ) = c p′(x′|θ) for all θ ∈ Θ (B.1)

for some constant c > 0.
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The weak conditionality principle (WCP): An equivalence relation “∼”
satisfies WCP if for a mixture of experiments E =

∑k
i=1 πiEi,

(E , (i, xi)) ∼ (Ei, xi)

for any i ∈ {1, . . . , k} and xi ∈ Xi.

The sufficiency principle (SP): An equivalence relation “∼” satisfies SP if
(E , x) ∼ (E , x′) whenever S(x) = S(x′) for some sufficient statistic S for θ (or
equivalently, S(x) = S(x′) for a minimal sufficient statistic S).

It is shown in Basu and Ghosh (1967) (see also Basu (1969)) that for dis-
crete models a minimal sufficient statistic exists and is given by the likelihood
partition, i.e., the partition induced by the equivalence relation (B.1) for two
points x, x′ from the same experiment. The difference between the likelihood
principle and sufficiency principle is that in the former, x, x′ may belong to
possibly different experiments while in the sufficiency principle they belong
to the same experiment.

The weak sufficiency principle (WSP): An equivalence relation “∼” satis-
fies WSP if (E , x) ∼ (E , x′) whenever p(x|θ) = p(x′|θ) for all θ.

If follows that SP implies WSP, which can be seen by noting that

S(x) =

⎧⎨⎩ p(x|θ)
Σ

θ′∈Θ
p(x|θ′)

, θ ∈ Θ

⎫⎬⎭
is a (minimal) sufficient statistic. We assume without loss of generality that

Σ
θ∈Θ

p(x|θ) > 0 for all x ∈ X .

We now state and prove Birnbaum’s theorem on likelihood principle (Birn-
baum (1962)).

Theorem B.1. WCP and WSP together imply LP, i.e., if an equivalence
relation satisfies WCP and WSP then it also satisfies LP.

Proof. Suppose an equivalence relation “∼” satisfies WCP and WSP. Consider
two experiments E1 = (X1,A1, p1) and E2 = (X2,A2, p2) with same Θ and
samples xi ∈ Xi, i = 1, 2, such that

p1(x1|θ) = cp2(x2|θ) for all θ ∈ Θ (B.2)

for some c > 0.

We are to show that (E1, x1) ∼ (E2, x2). Consider the mixture experiment
E of E1 and E2 with mixture probabilities 1/(1+ c) and c/(1+ c) respectively,
i.e.,

E =
1

1 + c
E1 +

c

1 + c
E2.
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The points (1, x1) and (2, x2) in the sample space of E have probabilities
p1(x1|θ)/(1 + c) and p2(x2|θ)c/(1 + c), respectively, which are the same by
(B.2). WSP then implies that

(E , (1, x1)) ∼ (E , (2, x2)). (B.3)

Also, by WCP

(E , (1, x1)) ∼ (E1, x1) and (E , (2, x2)) ∼ (E2, x2). (B.4)

From (B.3) and (B.4), we have (E1, x1) ∼ (E2, x2). �	


