
Preface

The material of this volume was inspired by papers presented at BIOSTAT2006,
an international conference organized by the University of Cyprus and the Eu-
ropean Seminar—“Mathematical Methods in Survival Analysis, Reliability and
Quality of Life.” The conference was a part of a series of conferences, work-
shops, and seminars organized or co-organized by the European Seminar over
the years. BIOSTAT2006 took place in Limassol, Cyprus between May 29 to 31,
2006 with great success. It attracted over 100 participants from 30 countries.
The aim of this event was to bring together scientists from all over the world
that work in statistics in general and advance knowledge in fields related to
biomedical and technical systems. The publication of this volume comes at a
very special time because this year we are celebrating the tenth anniversary of
the inauguration of the European Seminar.

The volume consists of selected papers presented at BIOSTAT2006 but it
also includes other invited papers. The included papers nicely blend current
concerns and research interests in survival analysis and reliability. There is a
total of 37 papers which for the convenience of the readers are divided into the
following nine parts.

• Cox Models, Analyses, and Extensions

• Reliability Theory - Degradation Models

• Inferential Analysis

• Analysis of Censored Data

• Quality of Life

• Inference for Processes

• Designs

• Measures of Divergence, Model Selection, and Survival

Models

• New Statistical Challenges

The editors would like to thank all the authors for contributing their work to
this book as well as all the anonymous referees for an excellent job in reviewing
the papers and making their presentation the best possible. We would also
like to thank Professor Alex Karagrigoriou whose help was invaluable during
the organization of the conference as well as the preparation of this volume.
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Summary: We consider Cox proportional hazards regression when the covari-
ate vector includes error-prone discrete covariates along with error-free covari-
ates that may be discrete or continuous. The misclassification in the discrete
error-prone covariates is allowed to be of arbitrary form. Building on work of
Nakamura and his colleagues, we develop a corrected score method for this set-
ting. The method can handle all three major study designs (internal validation
design, external validation design, and replicate measures design), both func-
tional and structural error models, and time-dependent covariates satisfying a
certain “localized error” condition. This chapter presents the method, briefly
describes its asymptotic properties, and illustrates it on data from a study of the
relationship between dietary calcium intake and distal colon cancer. Zucker and
Spiegelman (2007, 2008) present further details on the asymptotic theory and
a simulation study under Weibull survival with a single binary covariate having
known misclassification rates. In these simulations, the method presented here
performed similarly to related methods we have examined in previous work.
Specifically, our new estimator performed as well as or, in a few cases, better
than the full Weibull maximum likelihood estimator. In further simulations for
the case where the misclassification probabilities are estimated from an exter-
nal replicate measures study our method generally performed well. The new
estimator has a broader range of applicability than many other estimators pro-
posed in the literature, including those described in our own earlier work, in
that it can handle time-dependent covariates with an arbitrary misclassification
structure.

Keywords and Phrases: Errors in variables, nonlinear models, proportional
hazards
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2.1 Introduction

Many regression analyses involve explanatory variables that are measured with
error. It is well known that failing to account for covariate error can lead to
biased estimates of the regression coefficients. For linear models, theory for han-
dling covariate error has been developed over the past 50 or more years; Fuller
(1987) provides an authoritative exposition. For nonlinear models, theory has
been developing over the past 25 or so years. Carroll et al. (2006) provide a com-
prehensive summary of the development to date; currently, the covariate error
problem for nonlinear models remains an active research area. In particular,
beginning with Prentice (1982), a growing literature has developed on the Cox
(1972) proportional hazards survival regression model when some covariates are
measured with error. In this chapter, we focus on discrete covariates subject to
misclassification, which are of interest in many epidemiological studies.

Three basic design setups are of interest. In all three designs, we have a
main survival cohort for which surrogate covariate measurements and survival
time data are available on all individuals. The designs are as follows: (1) the
internal validation design, where the true covariate values are available on a
subset of the main survival cohort; (2) the external validation design, where the
measurement error distribution is estimated from data outside the main survival
study; and (3) the replicate measurements design, where replicate surrogate
covariate measurements are available, either on a subset of the survival study
cohort or on individuals outside the main survival study. Also, two types of
models for the measurement error are of interest [see Fuller (1987, p. 2) and
Carroll et al. (2006, Section 1.2)]: structural models, where the true covariates
are random variables, and functional models, where the true covariates are fixed
values. Structural model methods generally involve estimation of some aspect
of the distribution of the true covariate values; in functional model methods,
this process is avoided.

The Cox model with covariate error has been examined in various settings.
Zucker and Spiegelman (2007, 2008) give a detailed review of the existing work.
Much of this work focuses on the independent additive error model, under which
the observed covariate value is equal to the true value plus a random error whose
distribution is independent of the true value. For discrete covariates subject
to misclassification, this model practically never holds, and so the methods
built upon it do not apply. Other methods exist, but are subject to various
limitations. There is a need for a convenient method for all three study designs
that can handle general measurement error structures, both functional and
structural models, and time-dependent covariates. The aim of our work is to
provide such a method for the case where the error-prone covariates are discrete,
with misclassification of arbitrary form. Our method builds on a corrected score
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approach developed by Akazawa et al. (1998) for generalized linear models. We
begin by reviewing their work, and we then present our extension to the Cox
model.

2.2 Review of the Corrected Score Technique

We work with a sample of n independent individuals. Associated with each
individual i is a response variable Ti and a p-vector of covariates Xi. The con-
ditional density or mass function of Ti given Xi is denoted by f(t|Xi,θ), where
θ is a q-vector of unknown parameters, which includes regression coefficients
and auxiliary parameters such as error variances. We have in mind mainly gen-
eralized linear models such as linear, logistic, and Poisson regression, but we
present the theory in a general way. We denote the true value of θ by θ0. Ex-
tending Akazawa et al. (1998), we partition the vector Xi into Wi and Zi,
where Wi is a p1-vector of error-prone covariates and Zi is a p2-vector of error-
free covariates. We denote the observed value of Wi by W̃i. The vector Wi is
assumed to be discrete, with its possible values (each one a p1-vector) denoted
by w1, . . . ,wK . The range of values of W̃i is assumed to be the same as that
for Wi. We denote by k(i) the value of k such that W̃i = wk. The vector Zi of
error-free covariates is allowed to be either discrete or continuous. We denote
A

(i)
kl = Pr(W̃i = wl|Wi = wk,Zi, Ti), which defines a square matrix A(i) of

classification probabilities. As the notation indicates, we allow the classification
probabilities to depend on Zi and Ti (e.g., through a suitable model). This
feature can be useful in certain applications; in others, it is sensible to assume
that the same classification probabilities apply to all individuals. We assume
for now that A(i) is known. We denote by B(i) the matrix inverse of A(i). We
assume this inverse exists, which will be the case if the misclassification is not
too extreme [cf. Zucker and Spiegelman, (2004, Appendix A.1)]. When individ-
ual i is a member of an internal validation sample, for the estimation of θ we
set W̃i = Wi and replace A(i) by the identity matrix.

Define u(t,w, z,θ) = [∂/∂θ] log f(t|w, z,θ) and ui(θ) = u(Ti,Wi,Zi,θ).
The classical normalized likelihood score function when there is no covariate
error is then given by U(θ) = n−1

∑

i ui(θ), and the maximum likelihood es-
timate (MLE) is obtained by solving the equation U(θ) = 0. Under classical
conditions, Eθ0 [U(θ0)] = 0 and the MLE is consistent and asymptotically nor-
mal. The idea of the corrected score approach is to find a function u∗(t, w̃, z,θ)
such that

E[u∗(Ti,W̃i,Zi,θ)|Wi,Zi, Ti] = u(Ti,Wi,Zi,θ). (2.1)

Then, with u∗
i (θ) = u∗(Ti,W̃i,Zi,θ), we use the modified likelihood score

function U∗(θ) = n−1
∑

i u
∗
i (θ) in place of U(θ) as the basis for estimation.
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The estimation equation thus becomes U∗(θ) = 0. In the case of discrete error-
prone covariates, as shown by Akazawa et al. (1998), a function u∗ satisfying
(2.1) is given by a simple formula:

u∗
i (θ) =

K
∑

l=1

B
(i)
k(i)lu(Ti,wl,Zi,θ). (2.2)

Let Ji(θ) be the matrix with elements Ji,rs(θ) = (∂/∂θs)ui,r(θ) and let J∗
i (θ)

be defined correspondingly with u∗
i in place of ui.

Under the typical conditions assumed in generalized estimation equations
(GEE) theory, the estimator θ̂ will be consistent and asymptotically normal.
The limiting covariance matrix V of

√
n(θ̂−θ0) can be estimated using the

sandwich estimator V̂ = D(θ̂)−1H(θ̂)D(θ̂)−1, where H(θ) = n−1
∑

i u
∗
i (θ)

u∗
i (θ)T and D(θ) = −n−1

∑

i J
∗
i (θ).

The case where there are replicate measurements W̃ij of W̃ on the individ-
uals in the main study can be handled in various ways. A simple approach is
to redefine the quantity u∗

i (θ) given in (2.2) by replacing B(i)
k(i)l with the mean

of B(i)
k(i,j)l over the replicates for individual i, with k(i, j) defined as the value

of k such that W̃ij = wk. The development then proceeds as before.

2.3 Application to the Cox Survival Model

2.3.1 Setup

We now show how to apply the foregoing corrected score approach to the
Cox model. Denote the survival time by T ◦

i and the censoring time by Ci.
The observed survival data then consist of the observed follow-up time Ti =
min(T ◦

i , Ci) and the event indicator δi = I(T ◦
i ≤ Ci). We let Yi(t) = I(Ti ≥ t)

denote the at-risk indicator. We assume the failure process and the censoring
process are conditionally independent given the covariate process in the sense
described by Kalbfleisch and Prentice (2002, Sections 6.2 and 6.3).

The covariate structure is as described in the preceding section, except that
the covariates are allowed to be time-dependent, so that we write k(i, t) and
Zi(t). We assume that the measurement error process is “localized” in the
sense that it depends only on the current true covariate value. More precisely,
the assumption is that, conditional on the value of Xi(t), the value of W̃i(t) is
independent of the survival and censoring processes and of the values of Xi(s)
for s �= t. This assumption is plausible in many settings, for example, when the
main source of error is technical or laboratory error, or reading/coding error,
as with diagnostic X-rays and dietary intake assessments. With no change in
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the theory, the classification probabilities A(i)
kl can be allowed to depend upon t.

This extension permits accounting for improvements in measurement techniques
over time. In addition, if internal validation data are available, this extension
allows us to dispense with the localized error assumption.

In the proportional hazards model, the hazard function is taken to be of
the form λ(t|X(t)) = λ0(t)ψ(X(t);β), with λ0(t) being a baseline hazard func-
tion of unspecified form. The function ψ(x;β), which involves a p-vector β of
unknown regression parameters which are to be estimated, represents the rel-
ative risk for an individual with covariate vector x. The classical Cox model
assumes ψ(x;β) = eβ

T x. In line with Thomas (1981) and Breslow and Day
(1993, Section 5.1(c)), we allow a general relative risk function ψ(x;β) which
is assumed to be positive in a neighborhood of the true β for all x and to be
twice differentiable with respect to the components of β. We assume further
that ψ(x;0) = 1, which simply means that β = 0 corresponds to no covariate
effect. In many applications, it will be desirable to take ψ(x;β) to be a function
that is monotone in each component of x for all β. We let β0 denote the true
value of β.

2.3.2 The method

We now describe the method. Let ψ′
r(x;β) denote the partial derivative of

ψ(x;β) with respect to βr and define ξr(x;β) = ψ′
r(x;β)/ψ(x;β). Then the

classical Cox partial likelihood score function in the case with no measurement
error is given by

Ur(β) =
1
n

n
∑

i=1

δi

(

ξr(Xi(Ti);β) − e1r(Ti)
e0(Ti)

)

, (2.3)

where

e0(t) =
1
n

n
∑

j=1

Yj(t)ψ(Xj(t);β), e1r(t) =
1
n

n
∑

j=1

Yj(t)ψ′
r(Xj(t);β).

Now define

ψ∗
i (t,β) =

K
∑

l=1

B
(i)
k(i,t)lψ(wl,Zi(t);β), ηir(t,β) =

K
∑

l=1

B
(i)
k(i,t)lψ

′
r(wl,Zi(t);β),

ξ∗ir(t,β) =
K

∑

l=1

B
(i)
k(i,t)lξr(wl,Zi(t);β), e∗0(t) =

1
n

n
∑

j=1

Yj(t)ψ∗
j (t,β),

e∗1r(t) =
1
n

n
∑

j=1

Yj(t)ηjr(t,β).
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Then our proposed corrected score function is the following obvious analogue
of (2.3):

U∗
r (β) =

1
n

n
∑

i=1

δi

(

ξ∗ir(Ti,β) − e∗1r(Ti)
e∗0(Ti)

)

. (2.4)

As before, the proposed corrected score estimator is the solution to U∗(β) = 0,
where U∗ denotes the vector whose components are U∗

r .
Using an iterated expectation argument, under the localized error assump-

tion, we can show that

E[Yi(t)ψ∗
i (t,β)|Xi(t)] = E[Yi(t)ψ(Xi(t);β)|Xi(t)], (2.5)

E[Yi(t)η∗ir(t,β)|Xi(t)] = E[Yi(t)ψ′
r(Xi(t),β)|Xi(t)], (2.6)

E[Yi(t)ξ∗ir(t,β)|Xi(t)] = E[Yi(t)ξr(Xi(t),β)|Xi(t)]. (2.7)

Thus, referring to the quantity in parentheses in (2.4), the first term and the
numerator and denominator of the second term all have the correct expectation.
It follows that U∗(β) is an asymptotically unbiased score function.

Accordingly, under standard conditions such as those of Andersen and
Gill (1982) and of Prentice and Self (1983), our corrected score estima-
tor will be consistent and asymptotically normal. The asymptotic covari-
ance matrix of

√
n(β̂ − β0) may be estimated by the sandwich formula V̂ =

D(β̂)−1H(β̂)D(β̂)−1. Here D(β) is −1 times the matrix of derivatives of U∗(β)
with respect to the components of β and H(β) is an empirical estimate of the
covariance matrix of

√
nU∗(β).

We note again that, for the internal validation design, the available true W
values can be used in the estimation of β by replacing W̃i with Wi and A(i)

by the identity matrix when individual i is in the internal validation sample.
Alternatively, the hybrid scheme of Zucker and Spiegelman (2004, Section 5)
can be used. Also, the case where there are replicate measurements W̃ij of W̃
on the individuals in the main study can be handled as described at the end of
the preceding section.

In Zucker and Spiegelman (2007, 2008) we give an outline of the asymptotic
argument, explicit expressions for the matrices H and D, an estimator of the
cumulative hazard function, and an extension of the theory to the case where
the classification matrix A(i) is estimated. We also give results of a finite-sample
simulation study under Weibull survival with a single binary covariate having
known misclassification rates. The performance of the method described here
was similar to that of related methods we have examined in previous work
[Zucker and Spielgelman (2004) and Zucker (2005)]. Specifically, our new esti-
mator performed as well as or, in a few cases, better than the full Weibull max-
imum likelihood estimator. We also present simulation results for our method
for the case where the misclassification probabilities are estimated from an ex-
ternal replicate measures study. Our method generally performed well in these
simulations.
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2.4 Example

We illustrate our method on data from the Nurses Health Study concerning the
relationship between dietary calcium (Ca) intake and incidence of distal colon
cancer [Wu et al. (2002, Table 4)]. The data consist of observations on female
nurses whose calcium intake was assessed through a food frequency question-
naire (FFQ) in 1984 and were followed up to May 31, 1996 for distal colon
cancer occurrence. Our analysis includes data on 60,575 nurses who reported in
1984 that they had never taken calcium supplements, and focuses on the effect
of baseline calcium intake after adjustment for baseline body mass index (BMI)
and baseline aspirin use. In line with Wu et al.’s analysis, we use the classical
Cox relative risk function ψ(β;x) = eβ

T x, and, as in Wu et al.’s Table 4, we
work with a binary “high Ca” risk factor defined as 1 if the calcium intake was
greater than 700 mg/day and 0 otherwise. Note that one glass of milk contains
approximately 300 mg of calcium. BMI is expressed in terms of the following
categories: <22 kg/m2, 22 to <25 kg/m2, 25 to <30 kg/m2, and 30 kg/m2 or
greater. Aspirin use is coded as yes (1) or no (0). Thus, our model has five ex-
planatory variables, one for the binary risk factor (W ), three dummy variables
for BMI (Z1, Z2, Z3), and one for aspirin use (Z4). BMI and aspirin use status
are assumed to be measured without error.

It is well known that the FFQ measures dietary intake with some degree of
error and more reliable information can be obtained from a diet record (DR)
[Willett (1998, Chapter 6)]. We thus take W to be the Ca risk factor indica-
tor based on the DR and W̃ to be the Ca risk factor indicator based on the
FFQ. The classification probabilities are estimated using data from the Nurse’s
Health Study validation study [Willett (1998, pp. 122–126)]. The estimates ob-
tained were Pr(W̃ = 0|W = 0) = 0.78 and Pr(W̃ = 1|W = 1) = 0.72, with
corresponding estimated standard errors of 0.042 and 0.046.

Table 2.1 presents the results of the following analyses: (1) a naive classical
Cox regression analysis ignoring measurement error, corresponding to an as-
sumption that there is no measurement error; (2) our method with A assumed
known and set according to the foregoing estimated classification probabilities,
ignoring the estimation error in these probabilities; and (3) our method with
A estimated as above with the estimation error in the probabilities taken into
account (main study/external validation study design).

The results followed the expected pattern. Adjusting for the misclassifica-
tion in calcium intake had a marked effect on the estimated relative risk for
high calcium intake. Accounting for the error in estimating the classification
probabilities increased (modestly) the standard error of the log relative risk
estimate. The relative risk estimates for high calcium intake and corresponding
95% confidence intervals obtained in the three analyses were as follows.
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Method Estimate 95% CI
Naive Cox 0.71 [0.51,0.99]
A known 0.49 [0.24,1.01]
A estimated 0.49 [0.23,1.04]

The misclassification adjustment had a small effect on the estimated regres-
sion coefficients for the BMI dummy variables and essentially no effect on the
estimated regression coefficient for aspirin use.
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