
Chapter 2 

VAGUE CONCEPTS AND FUZZY SETS 

Vague or fuzzy concepts are fundamental to natural language, playing a 
central role in communications between individuals within a shared linguistic 
context. In fact Russell [90] even goes so far as to claim that all natural language 
concepts are vague. Yet often vague concepts are either viewed as problematic 
because of their susceptibility to Sorities paradoxes or at least as somehow 
'second rate' when compared with the more precise concepts of the physical 
sciences, mathematics and formal logic. This view, however, does not properly 
take account of the fact that vague concepts seem to be an effective means 
of communicating information and meaning. Sometimes more effective, in 
fact, than precise alternatives. Somehow, knowing that 'the robber was tall' 
is more useful to the police patrolling the streets, searching for suspects, than 
the more precise knowledge that 'the robber was exactly 1.8 metres in height'. 
But what is the nature of the information conveyed by fuzzy statements such 
as 'the robber was tall' and what makes it so useful? It is an attempt to answer 
this and other related questions that will be the central theme of this volume. 
Throughout, we shall unashamedly adopt an Artificial Intelligence perspective 
on vague concepts and not even attempt to resolve longstanding philosophical 
problems such as Sorities paradoxes. Instead, we will focus on developing an 
understanding of how an intelligent agent can use vague concepts to convey 
information and meaning as part of a general strategy for practical reasoning 
and decision making. Such an agent could be an artificial intelligence program 
or a human, but the implicit assumption is that their use of vague concepts is 
governed by some underlying internally consistent strategy or algorithm. For 
simplicity this agent will be referred to using the pronoun You. This convention 
is borrowed from Smets work on the Transferable Belief Model (see for example 
[97]) although the focus of this work is quite different. We shall immediately 
attempt to reduce the enormity of our task by restricting the type of vague 
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concept to be considered. For the purposes of this volume we shall restrict our 
attention to concepts as identified by words such as adjectives or nouns that can 
be used to describe a object or instance. For such an expression 0 it should be 
meaningful to state that 'x is 0' or that 'x is a 0' l .  Given a universe of discourse 
R containing a set of objects or instances to be described, it is assumed that all 
relevant expression can be generated recursively from a finite set of basic labels 
LA. Operators for combining expressions are restricted to the standard logical 
connectives of negation ( l ) ,  conjunction (A), disjunction (V) and implication 
(+). Hence, the set of label expressions identifying vague concepts can be 
formally defined as follows: 

DEFINITION 1 Label Expressions 
The set of label expressions of LA, LE, is dejined recursively as follows: 

(ii) IfO, cp E LE then 10,O A c p ,  0 V cp ,  0 + cp E LE 

For example, R could be the set of suspects for a rob- 
bery and LA might correspond to a set of basic labels 
used by police for identifying individuals, such as LA = 
{tall, medium, short, medium build, heavy build, stocky, th in ,  . . . 
blue eyes, brown eyes . . .). In this case possible expressions in LE include 
medium A l ta l l  A brown eyes ('medium but not tall with brown eyes') 
and short A (medium build V heavy build) ('short with medium or heavy 
build'). 

Since it was first proposed by Zadeh in 1965 [I 101 the treatment of vague 
concepts in artificial intelligence has been dominated by fuzzy set theory. In 
this volume, we will argue that aspects of this theory are difficult to justify, 
and propose an alternative perspective on vague concepts. This in turn will 
lead us to develop a new mathematical framework for modelling and reasoning 
with imprecise concepts. We begin, however, in this first chapter by reviewing 
current theories of vague concepts based on fuzzy set theory. This review 
will take a semantic, rather than purely axiomatic, perspective and investigate 
a number of proposed operational interpretations of fuzzy sets, taking into 
account their consistency with the mathematical calculus of fuzzy theory. 

2.1 Fuzzy Set Theory 
The theory of fuzzy sets, based on a truth-functional calculus proposed by 

Zadeh [I 101, is centred around the extension of classical set theoretic operations 
such as union and intersection to the non-binary case. Fuzzy sets are generali- 
sations of classical (crisp) sets that allow elements to have partial membership. 
Every crisp set A is characterised by its membership function X A  : R --t { O , 1 )  
where X A  ( x )  = 1 if and only if x E A and where X A  ( x )  = 0 otherwise. For 
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fuzzy sets this definition is extended so that XA : R --+ [O, 11 allowing x to have 
partial membership XA (x) in A. 

Fuzzy sets can be applied directly to model vague concepts through the notion 
of extension. The extension of a crisp (non-fuzzy) concept 0 is taken to be those 
objects in the universe R which satisfy 0 i.e {x E R : 'x is 0' is true). In the 
case of vague concepts it is simply assumed that some elements have only partial 
membership in the extension. In other words, the extension of a vague concept 
is taken to be a fuzzy set. Now in order to avoid any cumbersome notation 
we shall also use 0 to denote the extension of an expression 0 E LE. Hence, 
according to fuzzy set theory [I 101 the extension of a vague concept 0 is defined 
by a fuzzy set membership function xe : R --+ [0, 11. Now given this possible 
framework You are immediately faced with a difficult computational problem. 
Even for a finite basic label set LA there are infinitely many expressions in LE 
generated by the recursive definition 1. You cannot hope to explicitly define a 
membership function for any but a small subset of these expressions. Fuzzy set 
theory attempts to overcome this problem by providing a mechanism according 
to which the value for xe (x) can be determined uniquely from the values 
XL (x) : L E LE. This is achieved by defining a mapping function for each 
of the standard logical connectives; fA  : [O, 112 -+ [O,l], fv  : [O, 112 --+ [O, 11, 
f+ : [O, 112 --+ [O,1] and f, : [O, 11 -+ [O, I]. The value of xe (x) for any 
expression 0 and value x E R can then be determined from XL (x) : L E LA 
according to the following recursive rules: 

This assumption is referred to as truth-functionality due to the fact that it 
extends the recursive mechanism for determining the truth-values of compound 
sentences from propositional variables in propositional logic. In fact, a funda- 
mental assumption of fuzzy set theory is that the above functions coincide with 
the classical logic operators in the limit case when xe (x) , x,+, (x) E (0, 1). 
Beyond this constraint it is somewhat unclear as to what should be the precise 
definition of these combination functions. However, there is a wide consensus 
that fA, fv and f, [54] should satisfy the following sets of axioms: 

Conjunction 

C1 'da E [ O , 1 ]  f A  (a, 1) = a 

C2 'da, b, c E [O, 11 if b 5 c then f A  (a, b) 5 fA  (a, c) 
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D l  'da E [O,1] fv  ( a ,  0 )  = a 

D2 'da, b, c  E [0, 11 if b 5 c  then fv  ( a ,  b) < fv  ( a ,  c )  

Negation 

N1 f ,  ( 1 )  = 0 and f ,  ( 0 )  = 1 

N2 f ,  is a continuous function on [O,1] 

N3 f ,  is a decreasing function on [O,1] 

N4 'da E [ O , l ]  f ,  ( f ,  ( a ) )  = a 

Axioms C1-C4 mean that f A  is a triangular norm or (t-norm) as defined by [94] 
in the context of probabilistic metric spaces. Similarly according to D1-D4 fv 
is a triangular conorm (t-conorm). An infinite family of functions satisfy the 
t-norm and t-conorm axioms including fA = min and fv = max proposed by 
Zadeh [I 101. Other possibilities are, for conjunction, fA ( a ,  b) = a x b  and 
f A  ( a ,  b) = max (0 ,  a  + b - 1)  and, for disjunction, fv ( a ,  b) = a + b - a x b 
and min (1 ,  a  + b). Indeed it can be shown [54] that fA and fv are bounded as 
follows: 

where fA is the drastic t-norm defined by: - 

a : b = l  
' d a , b ~ [ O , l ] & ( a , b ) =  

0  : otherwise 

and fv is the drastic t-conorm defined by: 

a : b=O 
'da, b  E [O,1] fv ( a ,  b) = b : a = O  

1 : otherwise 
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Interestingly, adding the additional idempotence axioms restricts t-norms to 
min and t-conorms to max: 

Idempotence Axioms 

D5 'v'a E [0, 11 fv ( a ,  a )  = a 

THEOREM 2 f A  satisfies CI-C.5 ifand only if f A  = min 
Proof 
(+) Trivially min satisfies CI-C.5 
(+) Assume f A  satisfies Cl -C5 
For a ,  b  E [O,1] suppose a  I b then 

by axioms CI, C2 and C5 and therefore f A  ( a ,  b) = a = min ( a ,  b) 
Alternatively, for a ,  b E [O,1] suppose b  5 a then 

by axioms CI, C2, C3 and C.5 and therefore f A  ( a ,  b) = b = min ( a ,  b) 

THEOREM 3 fv satisfies Dl-D5 ifand only i f f v  = max 

The most common negation function f, proposed is f, ( a )  = 1 - a although 
there are again infinitely many possibilities including, for example, the family 
of parameterised functions defined by: 

Somewhat surprisingly, however, all negation functions essentially turn out to 
be rescalings of f, ( a )  = 1 - a as can be seen from the following theorem due 
to Trillas [ l o l l .  

THEOREM 4 Iff, satisfies NI-N4 then ( [ O , l ] ,  f,, <) is isomorphic to 
( [ O ,  11,l - x ,  4 
Proof 
Since f, ( 1 )  = 0 and f, (0 )  = 1 then by continuity (N2) it follows that there is 
some value k  such that f, ( k )  = k  (seefigure 2.1). Now define 
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Then g ( 0 )  = 0, g ( 1 )  = 1  and g ( k )  = 0.5. Also, it is easy to check that g is 
strictly increasing and continuous and hence onto. 
Finally, for x  5 k f ,  ( x )  2 f ,  ( I c )  = k  (by N3) and therefore 

Similarly, for x  > k  then f ,  ( x )  5 f ,  ( k )  = k  and therefore 

Figure 2.1: Plot of a possible f, function and its associated k value 

In view of this rather strong result we shall now assume that f ,  ( a )  = 1  - a  
and move on to consider possible relationships between t-norms and t-conorms. 
Most of the constraints relating t-norms and t-conorms come from the impo- 
sition of classical logic equivalences on vague concepts. Typical of these is 
the duality relationship that emerges from the assumption that vague concepts 
satisfy de Morgan's Law i.e. that 8 V cp r 1 0  A l c p .  In the context of truth- 
functional fuzzy set theory this means that: 

tla, b  E [O,1] f v  ( a ,  b) = 1  - f A  ( 1  - a ,  1  - b) 

Accordingly the table in figure 2.2 shows a number of well known t-norms with 
their associated t-conorm duals: 

Another obvious choice of logical equivalence that we might wish vague 
concepts to preserve is 8 A 8 - 8 (similarly 8 V 8 - 8). In terms of t-norms 
(t-conorms) this leads to the idempotence axiom C5 (D5) which as we have 
seen from theorem 2 (theorem 3) restricts us to min (max). 



Vague Concepts and Fuzzy Sets 

t-norm fA ( a ,  b) t-conorm dual fv (a, b) 
min ( a ,  b) max ( a ,  b) 

a + b - a x b  
max(O,a+ b -  1)  min (1 ,  a + b) 

Figure 2.2: t-norms with associated dual t-conorms 

In additional, to constraints based on classical logical equivalences it might 
also be desirable for fuzzy memberships to be additive in the sense that 

This generates the following equation relating t-norms and t-conorms: 

'Ja, b E [O,1] f~ (a ,  b) = a + b - fA ( a ,  b) 

Making the additional assumption that fv is the dual of fA we obtain Frank's 
equation [31]: 

'Ja, b E [0, I ]  fA ( a ,  b) - fA ( 1  - a ,  1 - b) = a + b + 1 

Frank [3 11 showed that for fA to satisfy this equation it must correspond to an 
ordinal sum of members of the following parameterised family of t-norms: 

DEFINITION 5 Forparameter s E [0, m) 

In Frank's t-norms the parameter s in fA,, (xe (x), xv ( x ) )  effectively pro- 
vides a measure of the dependence between the membership functions of the 
expressions 0 and cp. The smaller the value of s the stronger the dependence 
(see for example [2] or [46]). 

2.2 Functionality and Truth-Functionality 
As described in the previous section fuzzy logic [I 101 is truth-functional, 

a property which significantly reduces both the complexity and storage re- 
quirements of the calculus. Truth-functionality is, however, a rather strong 
assumption that significantly reduces the number of standard Boolean prop- 
erties that can be satisfied by the calculus. For instance, Dubois and Prade 
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[20] effectively showed that no non-trivial truth-functional calculus can satisfy 
idempotence together with the law of excluded middle. , 

THEOREM 6 Dubois and Prade [20] 
I f x  is truth-functional and satisjies both idempotence and the law of excluded 
middle then VO E LE Vx E R xe ( x )  E { O , l )  
Proof 
From theorem 3 we have that the only idempotent t-conorm is max. Now 
VO E LE Vx E R x,e ( x )  = f ,  (xe  (x)) .  Hence, by the law of excluded 
middle max (xe ( x )  , f ,  ( X Q  ( x ) ) )  = 1. Now i f  xe ( x )  = 1 then the result is 
proven. Otherwise i f f ,  (xe ( x ) )  = 1  then by negation axiom N4 xe ( x )  = 
f ,  ( f ,  (xe ( x ) ) )  = f ,  (1)  = 0  by negation axiom N 1  as required. 

Elkan [30] somewhat controversially proved a related result for Zadeh's orig- 
inal min / rnax calculus. Elkan's result focuses on the restrictions imposed on 
membership values if this calculus is to satisfy a particular classical equivalence 
relating to re-expressions of logical implication. Clearly this theorem is weaker 
than that of Dubois and Prade [20] in that it only concerns one particular choice 
of t-norm, t-conorm and negation function. 

THEOREM 7 Elkan [30] 
Let f A  (a, b)  = min(a, b), f v  (a, b)  = max(a, b)  and f ,  (a)  = 1  - a. For 

this calculus if YO, cp E LE and Vx E R x,(e,,,,) ( x )  = ~,~(,e,,,,) (2 )  then 
YO, cp E LE and Vx E R either xe ( x )  = X ,  ( x )  or X ,  ( x )  = 1 - X e  ( x )  

The controversy associated with this theorem stems mainly from Elkan's 
assertion in [30] that such a result means that previous successful practical ap- 
plications of fuzzy logic are somehow paradoxical. The problem with Elkan's 
attack on fuzzy logic is that it assumes a priori that vague concepts should satisfy 
a specific standard logical equivalence, namely 1 (0 A l c p )  = cp V (70 A l c p ) .  
No justification is given for the preservation of this law in the case of vague 
concepts, except that it corresponds to a particular representation of logical 
implication. Given such an equivalence and assuming the truth-functional 
min / max calculus of Zadeh then the above reduction theorem (theorem 7) 
follows trivially. 

In their reply to Elkan, Dubois etal. [23] claim that he has confused the 
notions of epistemic uncertainty and degree of truth. Measures of epistemic 
uncertainty, they concede, should satisfy the standard Boolean equivalences 
while degrees of truth need not. In one sense we agree with this point in 
that Elkan seems to be confusing modelling the uncertainty associated with the 
object domain R with modelling the vagueness of the concepts in the underlying 
description language LE. On the other hand we do not agree that you can 
completely separate these two domains. When You make assertions involving 
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vague concepts then Your intention is to convey information about R (a fact 
recognized in fuzzy set theory by the linking of fuzzy membership functions 
with possibility distributions [115]). It does not seem reasonable that questions 
related to this process should be isolated from those relating to the underlying 
calculus for combining vague concepts. The way in which You conjunctively 
combine two concepts L1 and L2 must be dependent on the information You 
want to convey about x when You assert 'x is L1 A La' and the relationship 
of this information with that conveyed by the two separate assertions 'x is L1' 
and 'x is L2'. Furthermore, it is not enough to merely state that truth-degrees 
are different from uncertainty and are (or can be) truth-functional. Rather, 
we claim that the correct approach is to develop an operational semantics for 
vague concepts and investigate what calculi emerge. Indeed this emphasis on 
a semantic approach forms the basis of our main object to Elkan's work. The 
problem of what equivalences must be satisfied by vague concepts should be 
investigated within the context of a particular semantics. It is not helpful to 
merely select such an equivalence largely arbitrarily and then proceed as if the 
issue had been resolved. 

The theme of operation semantics for vague concepts is one that we will 
return to in a later section of this chapter and throughout this volume. However, 
for the moment we shall take a different perspective on the result of Dubois 
and Prade (and to a lesser degree that of Elkan) by noting that it provides 
an insight into what a strong assumption truth-functionality actually is. We 
also suggest that truth-functionality is a special case of a somewhat weaker 
assumption formalizing the following property: Functionality assumes that 
for any sentence 0 E L E  there exists some mechanism by which Vx E R 
Xe (x) can be determined only from the values {xL (x) : L E LA) (i.e. the 
membership values of x across the basic labels). This notion seems to capture 
the underlying intuition that the meaning of compound vague concepts are 
derived only from the meaning of their component concepts while, as we shall 
see in the sequel, avoiding the problems highlighted by the theorems of Dubois 
and Prade and of Elkan. 

DEFINITION 8 The measure v on L E  x R is said to be functional ifV0 E 
L E  there is function fe : [0, lIn -t [ O , 1 ]  such that Vx E fl ve (x) = 

fe (VL~ (4,. . a ,  VL, ( 4 )  

The following example shows that functional measures are not necessarily 
subject to the triviality result of Dubois and Prade [20]. 

EXAMPLE 9 Functional but Non-Truth Functional Calculus 
Let LA = {L1, La) and for 0 E L E  let Ox denote the proposition 'x is 6'. 
Now let ve (x) denote P (Ox) where P is a probability measure on the set of 
propositions {Ox : 0 E LE). Suppose then that according to the probability 



18 MODELLING AND REASONING WITH VAGUE CONCEPTS 

measure P the propositions (L1), and (L2), are independent for all x E R. 
In this case v is a functional but not truth functional measure. For example, 

Howevel; since v is defined by a probability measure P then 

except when v ~ ,  (x) = 0 or VL, (x) = 1 
Clearly, howevel; ~ L ~ A L ~  (x) can be determined directly from VL, (x) and 

V L ~  (x) according to the function fLIALl (a, b)  = a. Indeed ve (x), for any 
compound expression 8, can be evaluated recursively from UL, (x) and v ~ ,  (x) 
as a unique linear combinations of vai (x) : i = 1, . . . ,4. For instance, 

In General 

Hence, we have that 

vffi (x) = vffi (x) = ve (x) and 

Clearly then v satisfies idempotence and the law of excluded middle, and hence 
functional calculi are not in general subject to the restrictions of Dubois and 
Prude's theorem [20] 

2.3 Operational Semantics for Membership Functions 
In [I031 Walley proposes a number of properties that any measure should sat- 

isfy if it is to provide an effective means of modelling uncertainty in intelligent 
systems. These include the following interpretability requirement: 

'the measure should have a clear interpretation that is sufficiently defined to guide 
assessment, to understand the conclusions of the system and use them as a basis for 
action, and to support the rules for combining and updating measures' 
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Thus according to Walley an operational semantics should not only provide 
a means of understanding the numerical levels of uncertainty associated with 
propositions but must also provide some justification for the underlying cal- 
culus. In the case of fuzzy logic [I101 this means than any interpretation of 
membership functions should be consistent with truth-functionality. If this 
turns out not to be the case then it may be fruitful to investigate new calculi for 
combining imprecise concepts. 

In [25] Dubois and Prade suggest three possible semantics for fuzzy logic. 
One of these is based on the measure of similarity between elements and pro- 
totypes of the concept, while two are probabilistic in nature. In this section we 
shall review all three semantics and discuss their consistency with the truth- 
functionality assumption of fuzzy logic. We will also describe a semantics 
based on the risk associated with making an assertion involving vague concepts 
(Giles [34]). 

2.3.1 Prototype Semantics 
A direct link between membership functions and similarity measures has 

been proposed by a number of authors including Ruspini [89] and Dubois and 
Prade [25], [28]. The basic idea of this semantics is a follows: For any concept 0 
it is assumed that there a set of prototypical instances drawn from the universe 
R of which there is no doubt that they satisfy 0. Let 'Po denote this set of 
prototypes for 0. It is also assumed that You have some measure of similarity 
according to which elements of the domain can be compared. Typically this is 
assumed to be a function S : R2 + [O, 11 satisfying the following properties: 

S1 V X , ~  E RS(x,y) = S(y,x) 

S2 Vx E RS(x,x) = 1 4 

The membership function for the concept is then defined to be a subjective 
measure of the similarity between an element x and the closest prototypical 
element from 'Po: 

Clearly then if x E Po then xo (x) = 1 and hence if # 8 then 
sup {xe (x) : x E R) = 1. Also, if % = 0 then Vx E R xo (x) = 0 and 
hence according to prototype semantics all non-contradictory concepts have 
normalised membership functions. 

We now consider the type of calculus for membership functions that could 
be consistent with prototype semantics. Clearly this can be reduced to the 
problem of deciding what relationships hold between the prototypes of concepts 
generated as combinations of more fundamental concepts and the prototypes 
of the component concepts. In other words, what are the relationships between 

and PQ, between 'Per\, and 'Po and 'P,, and between 'Pev, and 'Po and P,. 
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For the case of 18 it would seem uncontroversial to assume that PYe C (%)". 
Clearly, a prototypical not tall person cannot also be a prototypical tall person. 
In general, however, it would not seem intuitive to assume that PYe = (Po)" 
since, for example, someone who is not prototypically tall may not necessarily 
be prototypically not tall. 

For conjunctions of concepts one might naively assume that the prototypes 
for 8 A p might correspond to the intersection Pe n 'P,. In this case it can easily 
be seen that: 

However, on reflection we might wonder whether a typical tall and medium 
person would be either prototypically tall or prototypically medium. This is 
essentially the basis of the objection to prototype theory (as based on Zadeh's 
min-max calculus) raised by Osherson etal. [75]. For example, they note 
that when considering the concepts pet and fish then a guppie is much more 
prototypical of the conjunction pet jsh than it is of either of the conjuncts. 
Interestingly when viewed at the membership function level this suggests that 
the conjunctive combination of membership functions should not be monotonic 
(as it is for t-norms) since we would intuitively expect guppie to have a higher 
membership in the extension of petjsh than in either of the extensions of pet 
orjsh.  

In the case of disjunctions of concepts it does seem rather more intuitive 
that POv, = Pe U P,. For example, the prototypical happy or sad people 
might reasonably be thought to be composed of the prototypically happy people 
together with the prototypically sad people. In this case we obtain the strict 
equality: 

Osherson etal. [75] argue against the use of prototypes to model disjunctions 
using a counter example based on the concepts wealth, liquidity and investment. 
The argument presented in [75] assumes that wealth corresponds to liquidity 
or investment, however, while there is certainly a relationship between these 
concepts it is not at all clear that it is a disjunctive one. 

EXAMPLE 10 Suppose the universe $2 is composed ofjvepeople: 

with the following similarity measure S 
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The membership functions for tall, medium, not tall and not medium are then 
determined as follows: 

Xtall ( B )  = Xtall ( F )  = 1 
xta l l  ( M )  = rnax ( S  ( M ,  B )  , S  ( M ,  F ) )  = rnax (0.2,0.5) = 0.5 
xt,n ( E )  = rnax ( S  ( E ,  B )  , S  ( E ,  F ) )  = rnax (0.8,O.l) = 0.8 

xta l l  ( J )  = max ( S  ( J ,  B )  , S  ( J ,  F ) )  = rnax (0.7,O.G) = 0.7 
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Clearly then 

Alternatively, we might expect that Ethel would be a prototypical tall Amedium 
person since she has high membership both in tall and medium. Taking 
ptall~medium = { E )  gives: 

What seems clear from the above discussion and example is that membership 
functions based on similarity measures are almost certainly not truth-functional 
and probably not even functional. For instance, the precise relationship between 

and Pe and between Pel\, and Pe and P, is problem specific. In other 
words, such relationships are strongly dependent on the meanings of 8 and 
9. It is the case, however, that if we take the prototypes of disjunctions as 
corresponding to the union of prototypes of the disjuncts then the resulting 
calculus will be partially-functional. 

The fundamental problem with similarity semantics, however, is not princi- 
pally related to the functionality of the emergent calculus. Rather it lies with the 
notion of similarity itself. In some concepts it may be straightforward to define 
the level of similarity between objects and prototypes. For example, in the case 
of the concept tall we might reasonably measure the similarity between indi- 
viduals in terms of some monotonically decreasing function of the Euclidean 
distance between their heights. For other concepts, however, the exact nature 
of the underlying similarity measure would seem much harder to identify. For 
instance, consider the concept 'tree'. Now supposing we could identify a set of 
prototypical trees, itself a difficult task, how could we quantify the similarity 
between a variety of different plants and the elements of this prototype set? It 
is hard to identify an easily measurable attribute of plants that could be used 
to measure the degree of 'treeness'. To put it bluntly, the degree of similarity 
would seem as hard to define as the degree of membership itself! 

2.3.2 RiskIBetting Semantics 
Risk or betting semantics was proposed by Giles in a series of papers in- 

cluding [34] and [35]. In this semantics the fundamental idea (as described in 
[34]) is that the membership X e  (x) quantifies the level of risk You are taking 
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when You assert that 'x is 0'. Formally, let 8, denote the proposition 'x is 8' 
then by asserting 8, You are effectively saying that You will pay an opponent 
1 unit if 8, is false. Given this gamble we may then suppose that You associate 
a risk value (8,) E [0, I] with the assertion 8,. Such values are likely to be 
subjective probabilities and vary between agents, however, if (8,) = 0 we may 
reasonably suppose that You will be willing to assert 8, and if (0,) = 1 You 
will certainly be unwilling to make such an assertion. We then define Your 
membership degree of x in 8 as: 

this being the subjective probability that 8, is true. The standard connectives 
are then interpreted as follows: 
Negation: You asserting 18, means that You will pay your opponent 1 unit if 
they will assert 8,. 

In this case You will be willing to assert 18, if You are sufficiently sure that 
8, is false, since in this case You will be repaid Your 1 unit by Your opponent. 
Hence, Your risk when asserting 18, is equivalent to one minus Your risk when 
asserting 8,. Correspondingly, 

Conjunction: You asserting (8 A cp), means that You agree to assert 8, or cp,, 
where the choice is made by Your opponent. 

In this case the risk of asserting (8 A cp), is the maximum of the risks associated 
with asserting 8, and cp,, since You have no way of knowing which of these 
two options Your opponent will choose. Hence, given the defined relationship 
between membership and risk we have 

Disjunction: You asserting (8 V cp), means that You agree to assert either 8, 
or cp,, where the choice is made by You. 

In this case, since You have the choice of which of the two statements to assert 
it is rational for You to choose the statement with minimum associated risk. 
In other words, ((8 V cp),) should correspond to min ((8,) , (9,)). Hence, the 
corresponding membership degree will satisfy: 

Although this semantics captures the fuzzy set calculus proposed by Zadeh 
[I 101, there is something odd about the truth-functional way in which the risks 
associated with asserting a compound expression are calculated. For instance, 
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the rule for evaluating the risk of conjunction seems to implicitly assume that 
there is no logical relationship between the conjuncts. To see this consider 
the contradictory assertion (0 A lo),. In betting semantics this means that 
You are willing to either pay one unit to your opponent if 0, is false (bet l),  
or to pay Your opponent one unit if they will assert 0, (bet 2). The choice 
between these two bets is then made by Your opponent. The main problem 
with this assertion is that given an informed opponent You are certain to lose. 
For instance, assuming Your opponent knows the truth value of 0, then they 
would choose between bets 1 and 2 accordingly, as follows: If 0, is true then 
Your opponent will pick bet 2 and You will lose 1 unit. Alternatively, if 0, is 
false then Your opponent will pick bet 1 and You will lose 1 unit. Hence, given 
an informed opponent with knowledge of the truth value of 0,, You are certain 
to lose 1 unit. In fact even when there is some doubt regarding the judgement 
of Your opponent You will tend to lose on average. For instance, if p is the 
probability that Your opponent will be correct regarding the truth value of 0, 
then Your expected loss will be p x 1 + (1 - p) x 0 = p. This suggests that 
Your actual risk when asserting (0 A TO), is directly related t o p  and relatively 
independent of (0,). Furthermore, since You will expect to lose in all cases 
except when p = 0, this being when Your opponent is definitely going to be 
wrong regarding Ox, it is hard to imagine a scenario in which You would ever 
assert such a contradiction. 

This problem with assuming a truth-functional calculus seems to have been 
recognised by Giles in later work [35] where he related the degree of mem- 
bership X e  (x) to a more general utility function hg (x). The latter is intended 
to quantify the degree of utility, possibly negative, which You will receive on 
asserting 0,. There is no reason, however, why such a utility measure should 
be truth-functional, a fact highlighted by Giles [35] who comments that his 
research suggests 'that there is no viable truth-functional representation for 
conjunction and disjunction of fuzzy sentences'. 

2.3.3 Probabilistic Semantics 
Of the three semantics proposed by Dubois and Prade [25] two are prob- 

abilistic in nature. However, they do not offer a naive interpretation of fuzzy 
membership functions by, for example, claiming that they are simply probability 
distributions or density function that have not been normalised (e.g. Laviolette 
etal. [58] propose modelling linguistic concepts such as 'medium' and 'fast' us- 
ing probability density functions). Rather they aim to model vague concepts in 
terms of the underlying uncertainty or variance associated with their meaning. 
In this section we discuss three such probabilistic semantics. This will include 
an in depth examination of random set semantics as mentioned by Dubois and 
Prade in [25] and developed at length by Goodman and Nguyen in a number of 
articles including [36], [37], [38], [72] and [73]. This work will be related to 
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the voting model ([9], [32] and [59]) and the context model ([33] and [47]). We 
would ask for the reader's indulgence with respect to this extended discussion 
of random set interpretations of membership functions on the grounds that it is 
closely related to the semantics proposed subsequently in this volume. In addi- 
tion, we will outline the likelihood interpretation of fuzzy sets as suggested by 
Hisdal [44] and show that, as indicated by Dubois and Prade [25], it is strongly 
related to the random set approach. 

2.3.3.1 Random Set Semantics 
In essence random sets are set valued variables and hence can be defined in 

terms of a mapping between two measurable domains as follows: 

DEFINITION 11 Let t? be a a-algebra on a universe Ul and let A be a a-  
algebra on 2U2, the power set of a second universe U2. Then R is a random set 
from (Ul , t?) into (2U2, A) if R : Ul + 2U2 is a t? - A measurable function. 

If U2 is finite and P is a probability measure on B then we can define a mass 
assignment (i.e. a probability distribution for R) according to: 

This then generates a probability measure M on A as follows: 

DEFINITION 12 Let R be a random set into 2'~ then thefied (or sing1e)point 
coverage function is a function cfR : U2 -+ [0, 11 such that: 

EXAMPLE 13 Let Ul = { a l ,  a2, as,  a4, a s )  and U2 = {bl , b2, b3), and let 
B  = 2'' and A = 22u1. Also, let P be dejined according to the following 
values on the singleton sets: 

A possible random set from (Ul , B) into (2'2, A) is: 
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The corresponding mass assignment is given by: 

The f ied point coverage function can then be evaluated as follows: 

It is interesting to note that although any given mass assignment on 2'~ yields 
a unique coverage function the converse does not hold. That is, there is gener- 
ally a (sometimes infinite) set of mass assignments with the same fixed point 
coverage function. For instance, consider the coverage function given in exam- 
ple 13. What other mass assignments also have this coverage function? Since 
c fR (b2)  = 1 it follows that, for any such mass assignment, m (T) = 0 for any 
subset T of U2 not containing b2. Now let: 

Now from the equation for the fixed point coverage function given in definition 
12 we have that: 

ml + m2 + m3 + m4 = 1, ml + m2 = 0.4, ml + m3 = 0.9 so that 

ma = 0.4 - ml, m3 = 0.9 - ml and m4 = ml - 0.3 where ml E [0.3,0.4] 

Clearly, the mass assignment in example 13 corresponds to the case where 
ml = 0.3. Another, interesting case is where ml = 0.4 giving the mass 
assignment: 

In this case where the subsets with non-zero mass form a nested hierarchy the 
underlying random set is referred to as consonant: 

DEFINITION 14 A consonant random set R into 2'~ is such that 

U R ( a )  = {GI, .  . . , Gt) where GI c G2 c . . . c Gt C U2 
aEUl 

In fact, as the following theorem shows, there is a unique consonant mass 
assignment consistent with any particular coverage function. 
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THEOREM 15 Given a@ed point coverage function c fR for which 
{C f~ (b) : b E U2) = {yl, . . . , yn) ordered such that yi > yi + 1 : i = 
1, . . . , n - 1 then any consonant random set with this coverage function must 
have the following mass assignment: 

For Fi = {b E U2 : cfR (b) 2 yi) 

m (Fn) = y,, m (Fi) = yi - yi+l : i = 1, .  . . , n - 1 and m (0) = 1 - yl 

Proof 
Since R is consonant we have that 

{T : m ( T )  > 0) = {GI,.  . . , Gt) where GI C G2 c . . . c Gt C U2 

Let & = (b E U2 : c fR (b) = yi) then there is a minimal value i* E (1, . . . t )  
such that bi C Gi* and & f l  G j  = 0 for j < i*. Hence, 

Now ifj < i then bj C Gi* since otherwise j* > i* so that 

which is a contradiction. Also for j > i bj n Gi* = 0 since otherwise j* < i* 
so that 

which is a contradiction. From this is follows that: 

Now it can easily be seem that (i + 1)* = i* + 1 hence 

m (Gi*) = C m (G*) - m (Gr) = yi - yi+1 for i = 1, .  . . n - 1 
k=i* k=i* +l 

Now Gn* = {b E U2 : c fR (b) > 0) and therefore n* = t. From this it follows 
that 
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Also, suppose that j < l* then either G j  = 0 or 3b E G j  such that b  $ GI* 
which implies that cfR (b) > yl. This is a contradiction, so either I* = 1 or 
I* = 2 and G I  = 0. Hence, w.1.o.g and by relabelling the relevant sets we may 
assume that: 

{T : m ( T )  > 0 )  = (0, Fl ,  . . . , Fn) where Fi = Gi* : i = 1 , .  . . , n 

Finally, as required 

Another interesting mass assignment sharing the same coverage function as 
given in example 13 is obtained by setting ml = 0.4 x 0.9 x 1 = 0.36. This 
is the solution with maximum entropy and has the general form: 

Essentially, the idea of random set semantics is that vague concepts are concepts 
for which the exact definition is uncertain. In this case the extension of a 
vague concept 0  is defined by a random set Re into 2" (i.e. U2 = $2) with 
associated mass assignment m. The membership function X e  ( x )  is then taken 
as coinciding with the fixed point coverage function of Re so that: 

Within the context of random set semantics, given that for a particular element 
of Ul the extension of a concept is a crisp set of elements from 0, it is perhaps 
natural to assume that the following classical laws hold when combining vague 
concepts: 

b'0 E L E  b'a E Ul R,e (a )  = Re (a)" 

b'0, cp E L E  b'a E Ul R ~ A ,  (a )  = Re ( a )  n R, (a )  

b'0, cp E L E  b'a E Ul Rev, ( a )  = Re (a )  U R, (a )  

In this case it can easily seen that the associated calculus of membership 
(fixed point coverage) functions will, in general, be neither functional or truth- 
functional. Certainly such a calculus would satisfy the standard Boolean laws 
including idempotence (since Re (a )  n Re (a )  = Re (a) ) ,  the law of excluded 
middle (since Re ( a )  U Re (a)' = fl) and the law of non-contradiction (since 
Re (a )  n Re (a)" = 0). 
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2.3.3.2 Voting and Context Model Semantics 
One aspect of the random set semantics that remains unclear from the above 

discussion is the exact nature of the uncertainty regarding the extension of 0. 
In more formal terms this corresponds to asking what is the exact nature of the 
universe Ul. One possibility is to assume that the random set uncertainty comes 
from the variation in the way that concepts are defined across a population. That 
is we take Ul to be a population of individuals V each of whom are asked to 
provide an exact(crisp) extension of 0. Alternatively, for finite universes with 
small numbers of elements, these extensions may be determined implicitly by 
asking each individual whether of not they think that each element satisfies 0. 
This is the essence of the voting model for fuzzy sets proposed originally by 
Black [9] and later by Gaines [32]. Hence, in accordance with the random set 
model of fuzzy membership we have that 

xe (x) = P({v E V : x E Re(v))) 
and assuming P is the uniform distribution then 

- - I{v E V :  x E Re(v))l 

I v I 
Hence, when P is the uniform distribution on voters then Xe (x) is simply the 
proportion of voters that include x in the extension of 0 (or alternatively agree 
that 'x is 8'). Now assuming that voters apply the classical rules for the logical 
connectives then as discussed above such a random set based model will not 
be truth-functional. In fact it is well known that such measures of uncertainty 
defined in terms of relative frequency are probability measures (see Paris [78] 
for an exposition). As an alternative, Lawry [59] proposed a non-classical 
mechanism according to which voters could decide whether or not an element 
satisfied a concept as defined in terms of a logical combinations of labels. This 
mechanism corresponds to the following non-standard extension of the classical 
logic notion of a valuation. 

DEFINITION 16 A fuzzy valuation for instance x E fl is a function Fx : 
LE x [O,1] + { l , O )  satisfying the following conditions (see$gure 2.3): 

( i)  V8 E LE and Vy, y' E [O,1] such that y I y' then Fx (0, y) = 0 + 
Fx (8, Y') = 0 

(ii) V8,p E LE and Vy E [O,1]  Fx (OAcp,y) = 1 if Fx (0,y) = 1 and 
Fx (9, y) = 1 (see $figure 2.4) 

(iii) V0,y E LE and Vy E [0,1] F , ( 0 ~ c p , y )  = 1 8 Fx (8,y) = 1 or 
Fx (9 ,  Y) = 1 

(iv) V0 E LE and Vy E [O, 11 Fx (70, y) = 1 i f F x  (8 , l  - y) = 0 (seejgure 
2.5) 
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Fuzzy valuations are an extension of classical valuations where the truth 
value assigned is dependent not only on the expression but also on a parameter 
y between 0 and 1 representing the degree of scepticism of the voter. The 
closer y is to 0 the less sceptical the voter and the more likely they are to be 
convinced of the truth of any given statement (i.e. to assign a truth-value of 1) 
and conversely the closer y is to 1 the more sceptical the voter and the more 
likely it is that they will not be convinced of the truth of the expression (i.e. to 
assign a truth-value of 0). The scepticism level, then, should be thought of as 
representing an internal state of the agent according to which their behaviour 
is more of less cautious. Fuzzy valuations attempt to capture formally the 
following description of voter behaviour as given by Gaines [32]: 

'members of the population each evaluated the question according to the same criteria 
but applied a different threshold to the resulting evidence, or 'feeling'. The member 
with the lowest threshold would then always respond with a yes answer when any other 
member did, and so on up the scale of thresholds.' 

Now assuming y varies across voters we may suppose that the probability 
distribution on scepticism levels is given by a probability measure p on the Bore1 
subsets of [0, 11. Given this measure, the membership degree xe (x) relative to 
a fuzzy valuation Fx can then be defined as the probability of that a voter has a 
scepticism level y such that Fx (0, y) = 1. More formally, 

DEFINITION 17 Given a fuzzy valuation Fx we can dejine a corresponding 
membership function for any 0 E LE according to: 

high scepticism 

low scepticism 

Figure 2.3: Diagram showing how fuzzy valuation F, varies with scepticism level y 
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Figure 2.4: Diagram showing the rule for evaluating the fuzzy valuation of a conjunction at 
varying levels of scepticism 

Figure 2.5: Diagram showing the rule for evaluating the fuzzy valuation of a negation at varying 
levels of scepticism 

THEOREM 18 For membership degrees based on fuzzy valuation Fx we have 
that 

Proof 
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Now V8 E L E  let 

so = sup { y  E [0, 11 : Fx (0 ,  y )  = 1 )  so that either 

{Y E [O,  11 : Fx (0 ,  Y )  = 1 )  = [O,  sel or = [O,  so) 

Then w.1.o.g suppose that X ,  ( x )  5 X Q  ( x )  which implies that s,,, 5 so . In this 
case (seejgure 2.4), 

In all of these cases 

and hence XO*, ( x )  = xV ( x )  as required. 

THEOREM 19 For membership degrees based on fuzzy valuation Fx we have 
that 

cp E L E  X O V ~  ( x )  = max (xe ( x )  , X ,  ( x ) )  

Proof 
Follows similar lines to theorem 18. 

THEOREM 20 Provided that p is a symmetric probability measure satisfying 
Va,  b  E [O,1] p ( [ a ,  b])  = p ( [ I  - b, 1  - a ] )  then for membership degrees based 
on fuzzy valuation Fx we have that 

V8 E L E  X-0 ( x )  = 1 - xe ( x )  

Proof 
By the symmetry condition on p it follows that V a  E [O,1] p ( [0 ,  a ] )  = 
p ( [ I  - a ,  11) and p ( [0 ,  a ) )  = p ( ( 1  - a ,  11). Also recall that either { y  E 
[O,  11 : Fx (8 ,  y )  = 1 )  = [0, so] or = [0, so). 
Now 

x-0 ( x )  = p ( { y  E [O,  11 : Fx ( 1 0 ,  y )  = 1 ) )  = by definition 16part (iv) 

P ( { Y  E [O,  11 : Fx (0 ,  1  - Y )  = 0 ) )  

Supposing that 

{ y  E [O,1] : Fx (0, y)  = 1 )  = [0, so] then by definition 16 part (iv) 

Fz ( 1 0 ,  y )  = 1  iff1 - y  > so i f fy < 1  - so and therefore (seejgure 2.5) 

{ y  E [O,1] : Fx ( 1 8 ,  y)  = 1 )  = [O,  1  - so )  = [I - so, 11' therefore 

P ( {Y  E [O,  11 : Fx ( 1 8 ,  Y )  = 1 ) )  = 1  - P ( [ l  - so, 11) = 1  - P ( [ O ,  sol) 
= 1  - xo ( x )  by the symmetry condition on p 
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Alternatively supposing that 

{y E [0, I] : Fx (0, y) = 1) = [0, se) then 

{y E [ O , l ]  : Fx (10, y) = 1) = [O, 1 - se] = (1 - so, 1IC and therefore 

P ({Y E [O, 11 : Fx ( 7 9 , ~ )  = 1)) = 1 - P ((1 - se, 11) = 1 - P ([O, a ) )  
= 1 - Xe (x) 

Stall 

I 
I 
I F,, (tall, y) = 1 

I 

Figure 2.6: Diagram showing how the range of scepticism values for which an individual is 
considered tall increases with height 

Stall 

3- 

s- 

0 height > 
Figure 2.7: Diagram showing how the extension of tall varies with the y 

Now as for each x E R it is assumed that every voter defines a distinct fuzzy 
valuation Fx across which the upper bound on scepticism levels for which 0 
is true, so, will vary. Hence, we can view se  : R -+ [O,1] as a function of x. 
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For example, we might expect the value of stall to be an increasing function 
of height since the greater the height of an individual the more likely a voter 
will be to agree that this individual is tall even if that voter has a relatively 
high scepticsm level (see figure 2.6). Also, given such a set of fuzzy valuations 
then for each level y  we can naturally generate the extension of a concept 8  
by considering all elements x  for which F, (8 ,  y )  = 1  (see figure 2.7). This 
motivates the following definition: 

DEFINITION 21 Given a set of fuzzy valuations F, for every x  E R then for 
any 8  E LA the extension of 8  is naturally dejined by the function Re : [O,  11 -+ 

2 U 2  as follows: 

V y  E [0, 11 Re ( 9 )  = { x  E : Fx (8 ,  y )  = 1) 

The extension of a concept defined in this way, relative to a set of fuzzy 
valuations, corresponds to a consonant random set as shown by the following 
theorem. 

THEOREM 22 Forany 8  E LE, givenaset offuzzy valuations F, forevery x  E 
0, then Re as dejined in dejkition 21 is consonant random set from ( [0 ,  11, B) 
into 2', 22R where B are the Borel subsets of [O,1] and (for mathematical ( ) 
simplicity) it is assumed that R isjinite. 
Proof 

For T R ( T )  = { y  E [0, I ]  : Re ( 9 )  = T )  can be determined as 
follows: Let 

- sT = min (so  ( x )  : x  E T )  and zT = max (so  ( x )  : x  $! T )  

Now if y  E R B I  (T )  then y  < ST since otherwise 3% E T such that y  > s,g ( x )  
which implies F, (8 ,  y )  = 0  and hence x  $! Re ( y )  which would mean that 
Rs ( 9 )  # T. Similarly, i f y  E ( T )  then y 2 zT since otherwise 3 2  E TC 
such that y  < ( x )  which implies F, (8 ,  y )  = 1  and hence x  E Re ( y )  which 
would mean that Re ( y )  # T. Also, i f  y  < 37- and y  > zT then b'x E T 
F, (8 ,  y )  = 1  and V x  E TC F, (8 ,  y )  = 0  so that Re ( y )  = T. 
From this we can see that 

All of these sets are Borel measureable as required. 
We now show that Re is consonant. If y' > y  then by dejinition 16part ( i)  it 
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follows that 

{x E E : Fx (0, y) = 0) C {x E R : Fx (0, y') = 0) and therefore 

{x E E : Fz (0, y') = 0)' C {x E R : Fz (0, y) = 0)' which implies 

{x E R : Fx (8, y') = 1) C {x E E : Fx (8, y) = 1) and hence that 

Re (y') C Re (9) as required. 

THEOREM 23 Given Re as dejined in dejinition 21 and X e  as dejined in defi- 
nition 17 then 

Proof 

While fuzzy valuations provide an interesting mechanism according to which 
a truth-functional calculus can emerge from a random set interpretation of mem- 
bership functions the theory remains problematic with respect to its treatment 
of negation. Specifically the negation rule given in definition 16 part (iv) is 
hard to justify. Lawry [59] suggests that: 

'In order to determine a truth value for -0 while in state y the agent converts to a dual 
state 1 - y to evaluate the truth value of 0. The truth value of -0 is then taken to be the 
opposite of this truth value for 0.' 

This, however, would appear to be a somewhat convoluted method for evaluating 
the negation of an expression without a clear semantic justification. Paris [80] 
proposes the following alternative justification: 

'if voters with a low degree of scepticism y reject 0 (i.e. F (0, y) = 0 for some low 
value of y) then other voters, even those with a relatively high degree of scepticism, 
would see this as support for -4 and be influenced to vote accordingly' 

The problem with this argument is that it presupposes that individual voters 
will have access not only to the voting response of other voters but also their 
scepticism level at the time of voting. This would seem a very unrealistic 
assumption. 

In [33] Gebhardt and Kruse proposed a variant on the voting model in which 
the elements of Ul are interpreted as different contexts across which vague 
concepts have different extensions . For example, in [47] it is suggested that in 
the case where LA = {very short, short, medium, . . .) the contexts (i.e. 
elements of Ul) might correspond to nationalities such as Japanese, American, 
Swede, etc. Once again, however, it is clear that such a calculus will not in 
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general be functional and as stated in [47] it is only possible to restrict XeA, (x) 
to the standard probabilistic interval so that: 

Interestingly, 1471 indentify a special case of the context model for which a 
limited form of functionality does exist. Here it is supposed that the total set of 
labels is comprised of two distinct subsets LA1 and LA2 with different sets of 
contexts (Cl and C2 respectively) so that Ul = C1 x C2. For example, LA1 
might be the set of height labels described above with C1 the associated set of 
nationality contexts, while LA2 might be a set of labels relating to income (e.g. 
high, low) and C2 a set of residential areas. Now it is reasonable to assume that 
for such different sets of contexts the occurence of a particular context from 
C1 will be independent of the occurrence of any context from C2. Hence, if 
PI is the probability distribution on C1 and P2 is the probability distribution 
on C2 then the probability distribution on the joint space of contexts Ul will be 
PI x Pz. In this case, if LE1 is the set of expression generated from labels LA1 
and LE2 is the set of expression generated from labels LA2 then for 0 E LEI 
and cp E LE2 is can easily be seen that: 

Yx E Q XOA, (x) = x e  (2) x X, (x) 

Yx L: 0 x e v V  (2) = xe (x) + xv (x) - x e  (x) x xV (x) 
2.3.3.3 Likelihood Semantics 

Likelihood semantics was first proposed as part of the TEE (Threshold, Error, 
Equivalence) model by Hisdal[44] and, as point out by Dubois and Prade [25], is 
closely related to random set semantics. Hisdal [44] suggests that membership 
functions can be derived from so-called yes-no experiments where a population 
of individuals are asked whether or not a particular label expression 0 can be 
used to describe a certain value x. The membership of x in the extension of 0 
is then taken to be defined as follows: 

where the above probability corresponds to the likelihood that a randomly cho- 
sen individual will respond with a yes to the question 'is this value O?' given 
that the value is x. 

It is indeed not difficult to see connections between Hisdal's yes-no experi- 
ments and the voting model described above. For instance, we might assume 
that an individual (voter) will repond yes that 0 can describe x if and only if x 
is an element of that individual's extension of 0 generated as part of a voting 
experiment of the type discussed in the previous section. In this case 
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Given this relationship and indeed the fundamental properties of probability 
theory it is clear that fuzzy memberships based on likelihoods will not, in 
general, be truth-functional nor even functional. 

Summary 
In this chapter we have given an overview of the theory of fuzzy sets as 

proposed by Zadeh [I 111. This theory identifies a formal truth-functional cal- 
culus for membership functions where the membership value of a compound 
fuzzy set is obtain by applying truth functions for the various connectives to 
the component membership functions. Truth-functionality was then compared 
with a weaker form of functionality in terms of the Boolean properties that can 
be satisfied by the resulting calculus. 

The review of fuzzy set theory focused particularly on possible operational 
semantics for fuzzy membership functions and the consistency of each proposed 
semantics with Zadeh's truth-functional calculus was investigated. Indeed it 
is this semantic based analysis that highlights the real problem with truth- 
functional fuzzy set theory. For while a notion of membership function based on 
any of the interpretation discussed in this chapter may indeed prove to be a useful 
tool for modelling vague concepts none provide any convincing justification 
that the calculus for combining such membership function should be truth- 
functional. In other words, the real criticism of fuzzy logic is not that it fails to 
satisfy any particular Boolean property (as suggested by Elkan [30]) but rather 
that it has no operational semantics which is consistent with its truth-functional 
calculus. As such it fails to satisfy Walley's [I031 interpretability principle for 
uncertainty measures. 

There are two main responses to this criticism of fuzzy set theory. The first 
is that while no totally convincing semantics has been identified that justifies 
the truth-functionality assumption this does not mean that such a semantics 
will not be identified in the future. This is undeniably true but it will certainly 
necessitate that more attention is paid by the research community to the issue of 
operational semantics for membership functions than is currently the case. The 
second response is that the lack of a semantics does not matter since we can take 
membership values as primitives in the same way as crisp membership values 
are primitives. However, this position would seem somewhat hard to justify. 
For instance, unlike crisp sets there are no physical realisations of fuzzy sets. 
That is while there are crisp sets of objects that occur in the physical world, fuzzy 
sets, if they occur at all, can only really occur as subjective constructs within 
a certain linguistic context. For physical realisations of crisp sets membership 
functions are objective measurements of reality and it seems likely that it is 
from this connection to the physical world that many of our intuitions regarding 
the calculus for crisp memberships are derived. For fuzzy sets, even assuming 
truth-functionality based on the t-norm, t-conorm and negation axioms, there is 
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no consensus regarding the definition of truth functions for membership values. 
Indeed, as we have seen, there is does not seem to be any intuitive justification 
for the truth-functionality assumption itself. 

If membership functions for the extensions of vague concepts exist, or indeed 
even if they are 'convenient fictions' for modelling vagueness as suggested by 
Dubois and Prade [24], how can we evaluate them? Certainly we would not 
expect individuals to be able to reliably estimate their own fuzzy membership 
function for a vague concept through some process of introspection. Even if 
membership functions are in some way represented in an individual's head, 
as suggested by Hajek [42], there would be no reason to suppose that they 
would have access to them (as is admitted by Hajek). In this case we require 
some behavioural mechanism according to which we can elicit membership 
function from individuals, this in itself requiring a lower-level understanding 
of membership functions and the way they are used. 
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Notes 
1 One is tempted to say that either 'x is 0' or that 'x is a 0' should be a 

declarative statement but this would perhaps prejudge any discussion on the 
allocation of truth values to fuzzy statements 

2 alternatively full compositionality [22] or strong functionality [67] 
3 Weak Functionality in Lawry [67] 
4 In many cases the following generalization of the triangle inequality is also 

required as property: 'dx, y, z E R S (x, z) 2 fA (S (x, y) , S (y, z)) for 
some t-norm fA .  




