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The Magnetic Susceptibility

Any system may be characterized by its response to external stimuli. For
example, in electronics the proverbial “black box” is characterized by its
measured output voltage when an input current is applied. This transfer
impedance, as it is called, provides all the information necessary to understand
the operation of the black box. If we know what is in the black box – for
example, the detailed arrangement of resistors, diodes, etc. – then we can
predict, through analysis, what the transfer impedance will be.

Similarly, a system of charges and currents, such as a crystal, may be
characterized by a response function. In this text we shall be concerned
mainly with the response of such a system to a magnetic field. In this case
the “output” is the magnetization and the response function is the magnetic
susceptibility. A complete analysis of the magnetic susceptibility is virtually
impossible since the system consists of about 1021 particles. Therefore we usu-
ally look to a measured susceptibility for clues to the important mechanisms
active in the system and then use these to analyze the system. In order to
carry out such a program, we must know what possible mechanisms exist and
what effect they have on the susceptibility.

Determination of the susceptibility entails evaluation of the magnetization
produced by an applied magnetic field. In general, this applied field may
depend on space and time. The resulting magnetization will also vary in space
and time. If the spatial dependence of the applied field is characterized by a
wave vector q and its time dependence is characterized by a frequency ω,
and if we restrict ourselves for the time being to the magnetization with this
wave vector and frequency, we obtain the susceptibility χ(q, ω). As we shall
see shortly, the magnetization is the average magnetic moment. The magnetic
moment itself is a well-defined quantity. The problem, however, is the com-
putation of its average value. In order to compute this average it is necessary
to know the probabilities of the system being in its various configurations.
This information is contained in the distribution function associated with the
system.
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We shall see in this chapter that the distribution function depends on
the total energy, or Hamiltonian, of the system. Therefore the first step in
understanding magnetic properties is the identification of those interactions
relevant to magnetism. In Chap. 2 the origin of these interactions is discussed,
and they are expressed in a form which facilitates their application in later
chapters. The reader is asked to keep in mind that Chaps. 1 and 2 both con-
stitute background material for the theoretical development which begins in
Chap. 3. The motivation for the material in these first two chapters should
become clear as this theory unfolds.

In the absence of time-dependent fields we may assume that the system is
in thermal equilibrium. In this case the distribution function is easily obtained.
In Chap. 3 this is used to compute the response of noninteracting moments to
a static field. This computation leads to the susceptibility χ(q, 0). In Chaps. 4
and 5 the response χ(q, 0) of an interacting system of moments to a static
field is investigated in the random-phase approximation.

In the presence of time-dependent fields the distribution function must be
obtained from its equation of motion. In the case of localized moments this
consists of solving the Bloch equations. For itinerant moments the distribu-
tion function is obtained from a Boltzmann equation. In Chaps. 6 and 7 these
equations are solved for weakly interacting systems to obtain the generalized
susceptibility χ(q, ω). Finally, in Chap. 8 the generalized susceptibility asso-
ciated with strongly interacting systems is investigated. This function is of
particular interest because its singularities determine the magnetic-excitation
spectrum of the system.

With the development of thin film deposition techniques it became pos-
sible to fabricate inhomogeneous magnetic materials, particularly thin films.
Chapter 9 describes some of the phenomena associated with such structures.

One of the most powerful techniques for studying the spatial and temporal
behavior of magnetic materials is neutron scattering. While pulsed and “cold”
sources have expanded the range of neutron studies since the first edition of
this book, the scattering description provided in Chap. 10 remains valid.

The next few sections introduce the basic quantities with which we shall
be concerned throughout this text. Since these quantities may be defined in
various ways, the reader may find it informative to compare other approaches
(especially the classic work [1]).

1.1 The Magnetic Moment

Let us begin by discussing the magnetic moment. To see why this particular
object is of interest let us consider the classical description of a system of
charges and currents. Such a system is governed by Maxwell’s equations. The
appropriate forms of these equations in a medium are the so-called macro-
scopic Maxwell equations, which are obtained from the microscopic equations
by averaging over a large number of particles, see [2]. The microscopic equation
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in which we shall be particularly interested is the one representing Ampere’s
law, which has the differential form

∇× h =
4π

c
j +

∂e

∂t
. (1.1)

We define the average fields

〈h〉 ≡ B ,

〈e〉 ≡ E . (1.2)

Here 〈. . .〉 is a spatial average over a region which is small compared with
the size of the sample, yet large enough to contain many atomic systems (the
lower limit to the macroscopic domain would typically be 10 nm).

When we write B(r) or E(r), the coordinate r refers to the center of
the region over which the average is taken. Thus the first equation of (1.2)
might have been written as B(r) = 〈h〉r. In this description it is assumed
that any spatial variations are large in comparison with interatomic spacings.
The actual details of the averaging will be discussed in Sect. 1.2. With this
notation the macroscopic version of (1.1) becomes

∇× B =
4π

c
〈j〉 +

1
c

∂E

∂t
. (1.3)

The objective now is to calculate the average current density. To do this
we separate the total current density into two parts, that associated with
conduction electrons and that localized at an ionic site. The average value of
the conduction electron current density is the free current density jfree.

The ionic current density may be further separated into two contributions.
First of all, the ion may possess an electric-dipole moment which is charac-
terized by a dipole charge density ρdip. If this charge density is time depen-
dent, there is a polarization current density jpol which satisfies the continuity
equation

∇ · jpol = −∂ρdip

∂t
. (1.4)

Taking the average of this equation and assuming that the average commutes
with the time and space derivatives, we obtain〈∑

ions

jpol

〉
=

∂P

∂t
, (1.5)

where the sum is over those ions within the averaging volume and P is the
electric polarization defined by〈∑

ions

ρdip

〉
= −∇ · P .
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The second contribution to the ionic current density arises from the internal
motion of the ionic electrons. Since this current density jmag is stationary,
∇·jmag = 0. This is the current density responsible for the magnetic moment
m of the ion. If the center of mass of the ion is at R, the magnetic moment
is defined as

m =
1
2c

∫
dr(r − R) × jmag . (1.6)

A convenient representation for jmag which has zero divergence and satisfies
(1.6) is

jmag = −cm ×∇f(|r − R|) , (1.7)

where f(|r − R|) a smoothly varying function centered at R which goes to 0
at the ionic radius and is normalized to 1. In Chap. 2 we shall see that this
function has a quantum mechanical interpretation. Then〈∑

ions

jmag

〉
= c

〈∑
ions

∇f(|r − R|) × m

〉
= c∇×

〈∑
ions

f(|r − R|)m
〉

.

(1.8)
The last average in (1.8) is the magnetization M , defined by

M ≡
〈∑

ions

f(|r − R|)m
〉

. (1.9)

Combining these results, we may now write (1.3) as

∇× B =
4π

c
jfree +

4π

c

∂P

∂t
+ 4π∇× M +

1
c

∂E

∂t
. (1.10)

Defining
H = B − 4πM (1.11)

and
D = E + 4πP , (1.12)

we have the familiar result

∇× H =
4π

c
jfree +

1
c

∂D

∂t
. (1.13)

Thus we see that the magnetization which appears in the macroscopic
Maxwell’s equations is the average of the ionic magnetic moment density.
Since f(|r − R|) is normalized to the volume the magnetization is the mag-
netic moment per unit volume.

As an example of the use of definition (1.6), let us neglect the possibility of
nuclear currents and consider only the electron currents within the ion. Then



1.1 The Magnetic Moment 5

j free (fixed)

jmag

H
~

Fig. 1.1. Geometry envisioned in deriving the magnetic energy

jmag(r) =
∑
α

evαδ(r − rα) , (1.14)

where e is the charge on the electron, which is −|e|, and va is the velocity of
the αth electron. From (1.6) we find for the total magnetic moment of the ion

m =
e

2c

∑
α

rα × vα . (1.15)

Recalling that the orbital angular momentum of an electron is

lα = rα × mvα , (1.16)

we have
m =

∑
α

e

2mc
lα . (1.17)

Since e = −|e|, we see that the orbital magnetic moment of an electron is in
the opposite direction to its orbital angular momentum.

We shall find it convenient to adopt a more general definition of the mag-
netic moment than that given by (1.6). This definition is based on the energy
of the magnetic system (magnetic energy is discussed in [3] and [4]). The form
of the magnetic energy depends upon the definition of the magnetic system.
Let us define our magnetic system by the ionic magnetic current density jmag.
This excludes the free currents, jfree, which are assumed to be fixed and are
the source of an external field H in which our magnetic ion is to be located.1

We now want to know the change in energy of this magnetic system when
the field H is applied or, equivalently, we may think of bringing the currents
jmag in from infinity to a position in the field (see Fig. 1.1).

The energy difference results from the work done by the magnetic currents
as they accommodate to the increasing external field. Since the magnetic field
itself does no work on moving charges, we must use the induced electric field

1 The magnetic field H is understood to be the field in vacuum. Strictly speaking,
this is the magnetic induction on flux density, B. But in vacuum and in cgs units,
B = H . It has become common practice to denote the field in vacuum as H .
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which is present while the external magnetic field is being turned on (due to
the relative motion). This is given by

∇× E = −1
c

∂H

∂t
. (1.18)

The work done by the magnetic currents in a time δt is

δW =
∫

jmag · Edr δt . (1.19)

Making use of the representation (1.7) for jmag, integrating by parts, and then
using (1.18), we obtain

δW = −
∫

f(|r − R|)m · δH dr . (1.20)

If the field H is uniform over the ionic dimension, δH may be taken outside
the integral. Since m is just a constant vector and f(|r − R|) is normalized
to unity,

δW = −m · δH . (1.21)
This work corresponds to Kittel’s “scheme A” for applying the field [4]. Kittel
also calculates the work needed to create the magnetized material in zero
field in the first place (“scheme B”). The work associated with scheme A is
important because this is the work that results in the change in the energy of
the system given by its quantum mechanical eigenvalues [4].

Neither of these results give the total change in energy of the system when
the magnetic material is introduced into the field since they do not include
the work done by the source in keeping jfree fixed. Jackson shows that the
total change in energy is given by

W =
1
2

∫
M · H0dr ,

where H0 is the field (B0) in the absence of the magnetic material, and the
1
2 arises from an assumed linear relation between M and B.

The resulting change in the energy of the magnetic system is δE = W .
Thus from (1.21)

m = − ∂E

∂H
. (1.22)

As an example of the application of this definition, consider the ionic system
of electrons which gave rise to the current density of (1.14). In the presence
of a uniform field H, which may be obtained from a vector potential A by
H = ∇× A, the energy of such a system is

E =
∑
α

1
2
mv2

α +
∑
α

eφα , (1.23)
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where φα is the ionic potential. We see that the magnetic field H does not
appear explicitly in this energy. However, the velocity is, in fact, a function
of the field. In general, the task of finding the field dependence of the total
energy of the system is a difficult one. However, in this case the actual field
dependence is revealed by expressing the energy in terms of the canonical
coordinates of the system. The reason for this is that in a slowly varying
uniform field the canonical momentum does not change. When expressed in
canonical coordinates, the energy is the same as the Hamiltonian function.
For this reason the Hamiltonian H is often used in place of the energy E in
definition (1.22).

In Chap. 2 we shall find that the Hamiltonian is

H =
∑
α

1
2m

(
pα − e

c
A
)2

+
∑
α

eφα . (1.24)

With the gauge A = 1
2H × r this becomes

H =
∑

a

p2
a

2m
−
∑

a

e

2mc
(ra ×pa) ·H +

e2

8mc2

∑
a

(H ×ra)2 +
∑

a

eφa . (1.25)

Differentiating with respect to H and using the fact that the canonical
momentum is given by pα = mvα + (e/c)A, we obtain (1.15).

1.2 The Magnetization

The magnetization is obtained by averaging the ionic moments over a region
of space which is large enough to give such an average a meaning but smaller
than spatial variations in the system. In order to perform this average we
must know the ionic-current distributions. In general they are not known. In
fact, herein lies the principle difficulty in the theory of magnetism. In any
real system the motion of charge in one region is governed by the charge
and currents throughout the system. Thus we have a many-body problem.
Historically, there have been two ways of describing magnetic systems, that of
localized moments and that of itinerant moments. The choice between these
two descriptions depends on the nature of the material and in many cases is
a difficult one to make.

In certain cases the relevant current distributions are localized within
a lattice cell. In such cases the ionic magnetic moment is relatively unam-
biguous. The interaction with external charge and current distributions is
then expressed in terms of this moment. This approach leads to the spin
Hamiltonian, which has proved extremely useful. In other cases we begin by
assuming that the current distributions are those associated with free elec-
trons. Thus, although these electrons may extend throughout the lattice, the
fact that they may be approximated as a “gas” provides a certain simplifica-
tion. With these two types of current distributions-that corresponding to very
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localized electrons and that corresponding to itinerant electrons-we can pro-
ceed to determine the average moment. The computation of averages necessar-
ily relies on the techniques of statistical mechanics. Since this is not the place
to develop such techniques, they will be introduced in a rather ad hoc manner.
A more thorough derivation may be found in texts on statistical physics [5].

If the system possesses translational invariance, then the statistical aver-
age over numerous unit cells of the crystal is equivalent to the time average
over one cell. This average is determined by the probability that the system
will have some particular current distribution. For example, in the case of a
magnetic insulator the average over a cell is an average of the magnetic ion.
If this ion consists of h electrons, then, classically, the state of the ion is char-
acterized by the 6h coordinates and momenta, (q1, . . . , q3h, p1, . . . , p3h). The
magnetization is obtained by multiplying the magnetic moment, which is a
function of all the coordinates and momenta, by the probability that the sys-
tem is in the state (q1, . . . , p1, . . . ) and then integrating over all the coordinates
and momenta. This probability is determined by the ion’s environment, which
defines a temperature T . For the most part this will be the temperature of
the lattice in which the ions are located. Classically, the equilibrium probabil-
ity function is the Boltmann distribution function exp(−βHion), where Hion,
is the Hamiltonian for the ion and β = 1/kBT . Therefore the equilibrium
magnetization associated with N/V ions per unit volume is

M =
N

V
〈m〉 =

N

V

∫
. . .
∫

m exp (−βHion)dq1 . . . dp1 . . .∫
. . .
∫

exp(−βHion)dq1 . . . dp1 . . .
. (1.26)

It is interesting that this classical averaging procedure leads to the conclusion
that there can be no magnetism in thermodynamic equilibrium. The reason
for this is that the integrals over the momenta in (1.26) run from −∞ to +∞.
Therefore adding a vector potential may shift the momentum origin, but it
will not affect the limits of integration. Since the vector potential always enters
the integrand as an addition to the momentum, it may be transformed away.
This is readily seen by considering the partition function Z, which is just the
integral of exp(−βHion) over phase space,

Z =
∫ ∞

−∞
dx dy dz

∫ ∞

−∞
dpxdpydpz exp{−β[px−(e/c)Ax]2/2m+. . .} . (1.27)

This function is of importance because the equilibrium thermodynamic prop-
erties of the system can be calculated from it. For example, the energy is
E = −∂
nZ/∂β.

We introduce
u = px − e

c
Ax, . . . , (1.28)

where, in general, A may be a function of r. Then

Z = V

∫ ∞

−∞
du dv dw exp[−β(u2 + v2 + w2)/2m] , (1.29)
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which is independent of A. Therefore the derivative of Z with respect to the
field H, which can be shown to be proportional to the magnetization, is 0.
This result, known as Miss van Leeuwen’s theorem, forces us to consider the
discreteness of the eigenvalues of the system and hence its quantum-mechanical
nature. This interesting result has the following physical interpretation (see
the discussion in [1] Sect. 26). In the presence of a magnetic field the electrons
move in circular orbits in the plane perpendicular to the field. Those electrons
that complete such orbits contribute a diamagnetic moment. However, those
electrons which strike the boundary have their orbits interrupted with the result
that they creep around the boundary giving rise to a paramagnetic moment. It
turns out that this paramagnetic moment just cancels the diamagnetic moment.
Furthermore, it is independent of the size and nature of the boundary.

Quantum mechanically, the magnetic system is described by a Hamiltonian
operator H which has eigenfunctions ψ with eigenvalues E. The total magnetic
moment of the system when it is in the state ψ is, according to (1.22),

MV = − ∂E

∂H
. (1.30)

This may be written in a more useful form. First we differentiate the eigenvalue
relation

(H− E)ψ = 0 (1.31)

with respect to H to obtain(
∂H
∂H

− ∂E

∂H

)
ψ = −(H− E)

∂ψ

∂H
. (1.32)

Forming the scalar product with ψ and using the fact that H is a hermitian
operator, i.e., Hij = H∗

ji, we find
〈

ψ| ∂H
∂H

|ψ
〉
− ∂E

∂H
= −

〈
ψ|(H− E)| ∂ψ

∂H

〉

= −
〈

∂ψ

∂H
|(H− E)|ψ

〉∗
= 0 . (1.33)

Therefore

MV = −
〈

ψ

∣∣∣∣ ∂H∂H

∣∣∣∣ψ
〉

. (1.34)

This leads us to define a magnetic-moment operator

M = − ∂H
∂H

. (1.35)

Hereafter M will be understood to be an operator.
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Since the derivation above was independent of the detailed form of the
Hamiltonian and its eigenfunctions, the result (1.35) is quite general. For
example, the magnetic-moment operator for a particle governed by the non-
relativistic Schrödinger Hamiltonian (1.25) is

Mz =
e

2mc
(xpy − ypx) − He2

4mc2
(x2 + y2) =

e

2c
(xẏ − yẋ) . (1.36)

For a relativistic electron governed by the Dirac equation (which will be dis-
cussed briefly in Chap. 2) the magnetic moment becomes

Mz = −e

2
(αxy − αyx) . (1.37)

Since the α’s are 4 × 4 matrices acting on negative as well as positive energy
states, the physical meaning of the operator is not clear. However, if we apply
a transformation to this operator which separates the positive and negative
energy states, then we find that an intrinsic spin contribution to the magnetic
moment emerges automatically.

To find the magnetization we must take the expectation value of the mag-
netic moment operator,

〈M〉 =
∫

ψ∗MψΠ
i
dri . (1.38)

If we knew the wavefunction ψ this would be straightforward. But the fact
that we are describing the system at a temperature T implies that the system
is in equilibrium with some temperature bath. Let us describe the system in
terms of its eigenfunctions, ϕk(r1, r2, . . . , rN ). The effect of the temperature
bath is to cause the system to move through different states k much as a
classical system moves through phase space. That is, the wavefunction ψ may
be written as a superposition of states,

ψ (r1, r2, . . . , rN , t) =
∑

k

ck(t)ϕk (r1, r2, . . . , rN ) . (1.39)

The expectation value then becomes

〈M〉 =
∑

k

∑
k′

c∗k(t)ck′(t)Mkk′ , (1.40)

where
Mkk′ =

∫
ϕ∗

kMϕk′Π
i
dri . (1.41)

When we measure the magnetization we actually do a time average,

〈
M
〉

=
∑

k

∑
k′

c∗k(t)ck′(t)Mkk′ . (1.42)
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The quantity c∗k(t)ck′(t) is defined as the statistical density matrix, ρkk′ . Thus〈
M
〉

= Tr(ρM) . (1.43)

If the system is isolated from the temperature bath then the ck’s are inde-
pendent of time and ρkk′ = |ck|2δkk′ . The states comprise the microcanonical
ensemble. In contact with the temperature bath ρkk′ = exp(−βEk)δkk′ and
we speak of this weighted set of states as the canonical ensemble. In the pres-
ence of time-dependent fields it is necessary to solve for ρkk′ from its equation
of motion. From the Schrödinger equations

i�
∂φ(t)∗

∂t
= −Hφ(t)∗ , (1.44)

i�
∂φ(t)

∂t
= Hφ(t) , (1.45)

we obtain the equations for the expansion coefficients. From our definition of
the density matrix, we find that

i�
∂ρk′k

∂t
= −

∑
k′′

ρk′k′′Hk′′k +
∑
k′′

Hk′k′′ρk′′k (1.46)

or

i�
∂ρ

∂t
= [H, ρ] . (1.47)

This is often a more convenient approach to the density matrix, for, as we shall
see below, when perturbation theory applies, (1.47) may be solved iteratively.

Notice that (1.42) gives the average of the magnetic moment over the
entire system. If we are interested in the magnetization at point r, M(r) this
behavior can be projected out by introducing the Dirac delta function,

M(r) =
1
2

∑
α

[µαδ(r − rα) + δ(r − rα)µα] . (1.48)

Since the delta functions have dimensions of a reciprocal volume, M(r) is
the magnetic-moment operator per unit volume. Here µa is the magnetic-
moment operator associated with the αth electron. Notice that since this is
a function of rα and pα, we must form the symmetric product denoted by
{· · · }. Therefore the magnetization becomes

M(r) = Tr{ρM(r)} . (1.49)
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1.3 The Generalized Susceptibility

When we speak of a susceptibility, we are usually referring to a medium in
which the response is proportional in some sense to the excitation. If the
medium is linear, the response is directly proportional to the excitation. If
the medium is nonlinear, the proportionality involves higher powers of the
excitation. However, if the excitation is very small, the response will be given
to a good approximation by the linear susceptibility. Since time- and space-
varying magnetic fields are generally quite small, a linear response theory is
usually adequate. Nonlinear effects become important in dealing with hys-
teresis phenomena or high-power absorption in magnetic materials. For the
most part, then, we shall be concerned with a linear response theory. In this
section we shall define the wave-vector-dependent frequency-dependent linear
susceptibility and investigate some of its properties.

Let us consider the magnetization M(r, t) associated with a particu-
lar magnetic field H(r, t). These quantities are related to their Fourier
components by

M(r, t) =
1

2πV

∑
k

∫
dΩM(k, Ω)ei(k·r−Ωt) , (1.50)

H(r, t) =
1

2πV

∑
q

∫
dωH(q, ω)ei(q·r−ωt) . (1.51)

To invert these expansions we use the following relations:∫
dr ei(k−k′)·r = V ∆(k − k′) , (1.52)

∫
dt e−i(Ω−Ω′)t = 2πδ(Ω − Ω′) , (1.53)

∑
k

eik·(r−r′) =
V

(2π)3

∫
dk eik·(r−r′) = V δ(r − r′) . (1.54)

Here ∆(k−k′) is the Kronecker delta function and δ(r−r′) is the Dirac delta
function.

We now define the generalized wave-vector-dependent frequency-dependent
susceptibility by

Mν(k, Ω) =
∑

q

∫
dω
∑

µ

χνµ(k, q; Ω, ω)Hµ(q, ω) , (1.55)

where ν and µ = x, y, or z. This may be written in the more convenient
dyadic form

M(k, Ω) =
∑

q

∫
dω χ(k, q; Ω, ω) · H(q, ω) .
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In general χ(k, q; Ω, ω) will depend on the particular form of H(r, t), or
equivalently, H(q, ω); that is, the susceptibility is a functional of the field.
The susceptibility is also a tensor. Furthermore, since the magnetization may
be out of phase with the exciting field, the susceptibility is also complex.
Substituting this expression into (1.50) gives

M(r, t) =
1

2πV

∑
k

∫
dΩ
∑

q

∫
dωχ (k, q; Ω, ω) · H (q, ω) ei(k·r−Ωt)

(1.56)
or

M(r, t) =
∫ ∫

dr′ dt′

×
{[

1
2πV

∑
k

∫
dΩ
∑

q

∫
dωχ(k, q; Ω, )eik·(r−r′)e−iΩ(t−t′)

]

×ei(k−q)·r′
e−i(Ω−ω)t′

}
· H(r′, t′) , (1.57)

where the quantity in braces defines a general spatial-temporal susceptibility
density χ(r, r′; t, t′).

If the magnetic medium possesses translational invariance, then this sus-
ceptibility must be a function only of the relative coordinate r− r′. From the
expression above we see that this implies that in the wave-vector-dependent
susceptibility q is equal to k. Furthermore, if the medium is stationary, it can
be shown that the temporal dependence is t − t′, which implies a monochro-
matic response to a monochromatic excitation with the same frequency, that
is, Ω = ω. Therefore, when these conditions are satisfied, the susceptibility
takes the form

χ(k, q; Ω, ω) = χ(q, ω)∆(k − q)δ(Ω − ω) .

Thus
M(r, t) =

∫ ∫
dr′ dt′χ(r − r′, t − t′) · H(r′, t′) , (1.58)

where

χ (r − r′, t − t′) =
1

2πV

∑
q

∫
dωχ(q, ω)eiq·(r−r′)e−iω(t−t′) , (1.59)

and its Fourier transform is

χ(q, ω) =
∫

d(t − t′)
∫

d(r − r′)χ(r − r′, t − t′)e−iq·(r−r′)eiω(t−t′) . (1.60)

The more general susceptibility is required whenever the presence of impurities
destroys the translational invariance. The response of a typical paramagnet is
such a case.
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Since the susceptibility has such a general nature, it should not be
surprising that there are various important theorems involving this
quantity. We shall consider three of these now. The first theorem, known
as the Kramers–Kronig relations, relates the real and imaginary parts of the
susceptibility. The second is the fluctuation-dissipation theorem, which relates
the susceptibility to thermal fluctuations in the magnetization. Finally, we
shall present a derivation of the so-called Onsager relation that describes the
symmetry of the susceptibility tensor.

1.3.1 The Kramers–Kronig Relations

As a consequence of some rather general properties of

χ(q, ω) = χ′(q, ω) + iχ′′(q, ω) ,

its real part χ′(q, ω) and its imaginary part χ′′(q, ω) are connected on the
real axis ω by integral relations known as the Kramers–Kronig relations, or
just as dispersion relations. To the electrical engineer, the real and imaginary
parts of the response function are related by the Hilbert transform. Let us
consider a medium which is linear and stationary (and translationally invari-
ant, although this is not a necessary condition). Then χ(q, ω) is related to
χ(r − r′, t− t′) by (1.60). If the system obeys the principle of causality, then
χ(r − r′, t − t′) = 0 for t < t′. Hence the time integral in (1.60) runs only
from 0 to ∞; that is,

χ(q, ω) =
∫ ∞

0

dtχ(q, t)eiωt . (1.61)

Therefore the function χ(q, ω) is a complex function of ω which has no sin-
gularities at the ends of the real axis, provided that∫ ∞

0

χ(q, t)dt

is finite. This is equivalent to the assumption that the response to a finite
excitation is finite. The finite values of χ(q, ω) at the ends of the real axis
may be identified with the real part of the susceptibility χ′(q, ∞). The fact
that χ′′(q, ω) vanishes as ω → ∞ may be obtained from the following physical
argument. As we shall see in Chap. 5, the rate of energy absorption by a
magnetic system is proportional to ωχ′′(q, ω). If this is to remain finite as
ω → ∞, then χ′′(q, ω) must go to 0 as ω → ∞. This result may also be
derived from the finite-response assumption.

There is no reason for the real part of the susceptibility to vanish as
ω → ∞. Therefore let us define limω→∞ χ′(q, ω) = χ(q, ∞). The quan-
tity χ(q, ω)−χ(q, ∞) is then a complex function which vanishes at the ends
of the real axis. The theory of complex variables tells us that the function
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χ(q, z) − χ(q, ∞), where z is a complex variable, will be analytic in the
upper half plane. The residue theorem then says∮

c

χ(q, z) − χ(q, ∞)
z − ω

dz = 0 , (1.62)

where the contour C runs from −∞ to +∞ along the real axis and closes
in the upper half plane. In terms of its principal value, this integral may be
written as

P
∫ ∞

−∞

χ(q, ω′) − χ(q, ∞)
ω′ − ω

dω′ − iπ[χ(q, ω) − χ(q, ∞)] = 0 . (1.63)

Equating the real and imaginary parts to 0 separately gives the result

χ′(q, ω) − χ(q, ∞) =
1
π
P
∫ ∞

−∞

χ′′(q, ω′)
ω′ − ω

dω′ , (1.64)

χ′′(q, ω) =
1
π
P
∫ ∞

−∞

χ′(q, ω′) − χ(q, ∞)
ω′ − ω

dω′ . (1.65)

The usefulness of this result lies in the fact that χ′′ is proportional to the
absorption spectrum of the medium. Therefore (1.64) tells us, for example,
that the static susceptibility may be obtained by integrating over the absorp-
tion spectrum. This is, in fact, an experimental technique used to obtain the
static susceptibility of certain systems.

Since the response M(r, t), is a real quantity, it follows that χ′(q, ω) is
an even function of ω while χ′′(q, ω) is odd. This enables us to express the
Kramers–Kronig relations in terms of integrals over positive frequencies. In
particular,

χ′′(q, ω) = −2ω

π
P
∫ ∞

0

χ′(q, ω′)
ω′2 − ω2

dω′ . (1.66)

The term involving χ(q,∞) vanishes because the principal value of the integral
of 1/(ω′2 − ω2) is zero.

1.3.2 The Fluctuation-Dissipation Theorem

It is well known that a colloidal suspension of particles exhibits Brownian
motion; that is, the particles move about irregularly because they are being
bombarded by the molecules of the liquid. Now, suppose that these particles
are charged, and we attempt to accelerate them with an external electric
field. Because of the impacts with the molecules, the particles experience a
resistive force which is proportional to their velocity. Thus the mechanism
that produces the random fluctuations in the position of the particle is also
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responsible for its response to an external excitation. The relationship between
the response of a system and its thermal fluctuation spectrum is called the
fluctuation-dissipation theorem. This relationship is a very general one, and
we shall consider only its specific application to a magnetic medium.

Let us consider a linearly polarized magnetic field of amplitude Hµ cos(q·r)
oscillating at a frequency ω in the µ direction, Hµ cos(q · r) cos ωt. Since we
have a linear system, the principle of superposition applies. Therefore we may
construct the response to an arbitrary field if we know the response to this
particular field. The response in the ν direction to such an excitation is given
by (1.55). Since

Hµ(q′, ω′) =
πH1V

2
[∆(q′ − q)δ(ω′ + ω) + ∆(q′ − q)δ(ω′ − ω)

+∆(q′ + q)δ(ω′ + ω) + ∆(q′ + q)δ(ω′ − ω)] , (1.67)

we obtain

Mν(k, Ω) =
πH1V

2
[χνµ(k, q; Ω, −ω) + χνµ(k, q; Ω, ω)

+χνµ(k,−q; Ω, −ω) + χνµ(k, −q; Ω, ω)] . (1.68)

Let us now compute Mν(k, Ω), using the prescription given in Sect. 1.2. The
magnetization is

Mν(r, t) = Tr{ρMν(r)} . (1.69)

Although ρ is a function of time, we shall not display this dependence explic-
itly, for a reason that will be apparent later. Since the time-varying field now
disrupts the thermodynamic equilibrium, we must solve for ρ. We write the
total Hamiltonian as

H = H0 + H1 , (1.70)

where H1 = −
∫

drM(r) ·H(r, t). For the particular field we are considering
this becomes

H1 = −H1

∫
drMµ(r) cos (q · r) cos ωt = −H1

2
[Mµ(q) +Mµ(−q)] cos ωt .

(1.71)
The equation of motion for the density matrix is

∂ρ

∂t
=

i

�
[ρ, H0 + H1] . (1.72)

It is now convenient to introduce

ρ(t) ≡ exp
(

iH0t

�

)
ρ exp

(
−iH0t

�

)
. (1.73)
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Differentiating (1.73) and using (1.72) gives

dρ(t)
dt

=
i

�

[
ρ(t), exp

(
iH0t

�

)
H1 exp

(
−iH0t

h

)]
. (1.74)

This has the solution

ρ(t) = ρ(−∞) +
i

�

∫ t

−∞

[
ρ(t′), exp

(
iH0t

′

�

)
H1 exp

(
−iH0t

′

�

)]
dt′ . (1.75)

If the interaction is turned on adiabatically, then ρ(−∞) = ρ0, which is the
equilibrium density matrix ρ0 = exp(−βH0)/Z where Z = Tr{exp(−βH0)}.
Inverting (1.75), using (1.71), and replacing ρ within the commutator by ρ0,
we have

ρ � ρ0 − i
H1

2�

∫ ∞

0

{
ρ0, exp

(
−iH0t

′

�

)
[Mµ(q) + Mµ(−q)] exp

(
iH0t

′

�

)}
.

(1.76)
The magnetization is obtained from (1.69). If the system is ordered in the
absence of the applied field, then Tr {ρ0Mν} ≡ Mν(−∞) is nonzero. The
response of such a system is then defined by the difference Mν(r, t)−Mν(−∞)
resulting from the applied field. In the following we shall understand Mν(r, t)
to be the response to the applied field. Then,

Mν(r, t) = −i
H1

2�

×Tr
{∫ ∞

0

{
ρ0, exp

(
−iH0t

′

�

)
[Mµ(q) + Mµ(−q)]

× exp
(

iH0t
′

�

)}
Mν(r)

}
cos ω(t − t′)dt′ . (1.77)

Taking the Fourier transform of this equation gives

Mν(k, Ω) = −πH1

2�
Tr
{∫ ∞

0

[ρ0, Mµ(q, −t′)]Mν(k)
}

eiωt′dt′δ(Ω + ω)

+ (terms involving − q and − ω) . (1.78)

Here Mµ(q, t) is defined in a manner identical to (1.73). The delta function
involving the frequency results from our having linearized the expression for
ρ when we replaced ρ by ρ0 within the commutator.

If we now commute the integral with the trace in (1.78) and make use of
the cyclic invariance of the trace, we have

Tr
{∫ ∞

0

[ρ0, Mµ(q, −t′)]Mν(k)
}

e−iωt′dt′

=
∫
〈[Mµ(q, −t′), Mν(k)]〉eiωt′dt′ . (1.79)
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By comparing the resulting expression for Mν(k, Ω) with (1.68) we make the
following identification:

χνµ(k, q; Ω, ω) =
i

�V

∫ ∞

0

〈[Mν(k, t), Mµ(−q)]〉eiωtdt δ(Ω − ω) . (1.80)

Since the q component of the applied field couples to the −q component of
the magnetization, let us consider χνµ(q, q, ω) which we write as χνµ(q, ω).
Therefore,

χνµ(q, ω) =
i

�V

∫ ∞

0

〈[Mν(q, t), Mµ(−q)]〉eiωtdt . (1.81)

The quantity

(i/�)〈[Mν(q, t), Mµ(−q)]〉 ,

or equivalently

i

�
Tr{[Mµ(−q), ρ0]Mν(q, t)} ,

is referred to in the literature as the response function of the system. The
susceptibility may also be written as an integral over the full range of time by
multiplying the integrand by the theta function θ(t) which equals 1 for t > 0
and 0 for t < 0. The product of the response function and this theta function
is called the double-time-retarded Green’s function and represented by double
angular brackets:

〈〈Mν(q, t), Mµ(−q)〉〉 ≡ −i〈[Mν(q, t), Mµ(−q)]〉θ(t) .

These functions are very useful in calculating thermodynamic properties but
are beyond the scope of this monograph.

Since the response function does not have a classical analog and is not a
well-defined observable, it is more convenient to relate the susceptibility to the
correlation function 〈{Mν(q, t)Mµ(−q)}〉, where {· · · } is the symmetrized
product, which is defined by

{Mν(q, t)Mµ(−q)} ≡ 1
2
[Mν(q, t)Mµ(−q) + Mµ(−q)Mν(q, t)] ,

In order to relate the response function to the correlation function let us
consider their Fourier transforms,

fνµ(q, ω) =
i

�

∫ ∞

−∞
〈[Mν(q, t), Mµ(−q)]〉eiωtdt , (1.82)

gνµ(q, ω) =
∫ ∞

−∞
〈{Mν(q, t)Mµ(−q)}〉eiωtdt . (1.83)
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We can rewrite (1.82) by using the following relation:∫ ∞

−∞
dt〈Mµ(−q)Mν(q, t)〉eiωt

=
∫ ∞

−∞
dt Tr

{
exp(−βH0)Mµ(q) exp

(
iH0t

�

)
Mν(q) exp

(
−iH0t

�

)}
eiωt

=
∫ ∞

−∞
dt Tr

{
exp(−βH0) exp

(
iH0(t − i�β)

�

)
Mν(q)

× exp
[
−iH0(t − i�β)

�

]
Mµ(−q)

}
eiωt

= e−β�ω

∫ ∞

−∞
dt〈Mν(q, t)Mµ(−q)〉eiωt . (1.84)

Therefore

fνµ(q, ω) =
i

�
(1 − e−β�ω)

∫ ∞

−∞
dt〈Mν(q, t)Mµ(−q)〉eiωt . (1.85)

From the definition of gνµ we see that its relation to fνµ is

gνµ(q, ω) = (�/2i) coth(β�ω/2)fνµ(q, ω) . (1.86)

We can also relate fνµ to the susceptibility by separating the time integral as
follows:

fνµ(q, ω) =
i

�

∫ ∞

0

dt〈[Mν(q, t), Mµ(−q)]〉eiωt

+
i

�

∫ 0

−∞
dt〈[Mν(q, t), Mµ(−q)]〉eiωt . (1.87)

If we now make the transformation t → −t in the second integral and use the
fact that χµν(−q, −ω) = χ∗

µν(q, ω), which follows from (1.81), then

fνµ(q, ω) = [χνµ(q, ω) − χ∗
µν(q, ω)]V

and

gνµ(q, ω) = (�V/2i) coth(β�ω/2)[χνµ(q, ω) − χ∗
µν(q, ω)] .

Therefore

∫ ∞

−∞
dt〈{Mν(q, t)Mµ(−q)}〉seiωt = �V coth(β�ω/2)χ′′

νµ(q, ω)s, (1.88)

where the subscript s indicates the symmetric part of the tensor.
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This is the result we had set out to find. It tells us that the Fourier trans-
form of the correlation function is proportional to the imaginary part of the
susceptibility. The derivation has been presented here in detail because it is
a very important relationship, and we shall make frequent reference to this
result throughout the text.

The imaginary part of the susceptibility describes the absorptive or lossy,
response of the magnetic system. The fluctuation-dissipation theorem there-
fore relates the fluctuations in the magnetization to energy loss. This is a
general result that applies to many systems. One example that may be fa-
miliar to the reader is Johnson noise. This is the noise associated with ther-
mal fluctuations in a resistive electrical circuit element. The voltage noise
power is given by 〈v2〉/R. Since this power is due to thermal fluctuations it
may also be expressed as the unit of thermal energy, kBT , divided by the
measurement time, which is the reciprocal of the frequency bandwidth, ∆f .
A rigorous derivation gives

〈v2〉 = 4kBTR∆f .

This form of the fluctuation-dissipation theorem is known as the Nyquist
theorem.

1.3.3 Onsager Relation

Generally, when we probe a magnetic system it is in the presence of a dc
field H. Therefore H0 and hence the response function, is a function of this
field. In 1931 Onsager pointed out that microscopic reversibility requires the
simultaneous reversal of both the magnetic field and time. To see this, consider
the response function for the susceptibility:

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈n|ρ0(H0)[Mν(q, t),Mµ(−q)]|n〉 .

Let us introduce time reversal through the time reversal operator, T , which
satisfies the relation

〈ψ|ϕ〉 = 〈Tψ|Tϕ〉∗ . (1.89)

Therefore

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈Tn|Tρ0(H0)[Mν(q, t),Mµ(−q)]|n〉∗ . (1.90)

We now insert T−1T between all the factors. If the system is invariant under
time reversal then Tρ0(H0)T−1 = ρ0(H0), where any magnetic field has been
reversed. Let us display this explicitly as ρ0(−H). We also have factors like
TMν(q, t)T−1. Since the magnetic moment changes sign under time reversal,

TMν(q, t)T−1 = −Mν(q, −t) . (1.91)
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If we also recognize that the state T |n > is some eigenstate |m >, then the
sum over n is the same as the sum over m, which can then be relabled as
n. These steps enable us to carry out all the time reversal operations in the
expression for the response function above,

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈n|ρ0(−H)[Mν(q, t),Mµ(−q)]|n〉∗ . (1.92)

To remove the complex conjugation we introduce the Hermitian adjoint 0† of
an arbitrary operator 0 by the relation

〈ψ|0|ϕ〉∗ = 〈ϕ|0†|ψ〉 . (1.93)

The first term in the commutator becomes

(ρ0(−H)Mν(q, −t)Mµ(−q))† = Mµ(−q)†Mν(q, −t)†ρ0(−H)†

= Mµ(q)Mν(−q, −t)ρ0(−H) , (1.94)

where we have used the fact that the magnetic moment and the Hamiltonian
are Hermitian operators. We now use the cyclic invariance of the trace to write

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈n|ρ0(−H[Mµ(q),Mν(−q,−t)]|n〉

=
∑

n

〈n|ρ0(−H)[Mµ(q, t),Mν(−q)]|n〉 . (1.95)

Therefore we have the relation

χνµ(q, ω,H) = χµν(q, ω,−H) . (1.96)

which is known as the Onsager relation. Note that this tells us immediately
that the diagonal components of the susceptibility tensor must be even func-
tions of the field.

1.4 Second Quantization

Magnetism, particularly in metals, is a many-body phenomenon. It is therefore
important to incorporate the fermion statistics of the electrons that govern
the magnetic behavior. In this section we shall briefly develop the technique of
second quantization which facilitates this description. We shall have occasion
to use these results later, particularly in setting up the so-called Anderson
and Hubbard Hamiltonians.
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Let us begin by considering a system of N interacting particles described
by the Hamiltonian

H =
N∑

i=1

T (ri, ṙi) +
1
2

N∑
i, j = 1
i �= j

V (ri, rj) (1.97)

The many-body wave function ψ(ri, . . . , rN , t) satisfies the Schrödinger
equation

i�
∂

∂t
ψ(r1, . . . rN , t) = Hψ(r1, . . . , rN , t) . (1.98)

We now expand this wave function in terms of products of single-particle wave
functions characterized by quantum numbers Ei,

ψ(r1, . . . , rN , t) =
∑

(E1,...,EN )

c(E1, . . . , EN , t)ϕE1(r1)ϕE2(r2) . . . ϕEN
(rN ) ,

(1.99)
where the sum is over all possible sets of quantum numbers. The statistical
nature of the particles is contained in the coefficients c(E1, . . . , EN , t). For
example, if the particles are bosons, the sign of the coefficient is invariant
under particle interchange,

c(E1, . . . , Ek, . . . , Ei, . . . , EN , t) = c(E1, . . . , Ei, . . . , Ek, . . . , EN , t) , (1.100)

and any number of particles may occupy a given state. If the particles are
fermions,

c(E1, . . . , Ek, . . . , Ei, . . . , EN , t) = −c(E1, . . . , Ei, . . . , Ek, . . . , EN , t) .
(1.101)

This insures that there may not be more than one particle in a particular
state.

Since we shall be concerned mainly with electrons, which are fermions, we
shall be faced with the problem of keeping track of the minus sign introduced
when two electrons are interchanged. It is to facilitate this bookkeeping that
the concept of second quantization is introduced.

The coefficients in the expansion of ψ above are characterized by the set of
N quantum numbers. We could just as well, however, have chosen coefficients
characterized by the number of electrons in each of the possible states. That
is, instead of the set of N numbers {E1, . . . , EN} we could have used the
infinite set of numbers {n1, . . . , n∞}, where for fermions n = 0 or 1. We must
be very careful in making this transcription. For example, suppose that the
electron at ri is in a state Ei and the electron rk is in a state Ek. In this case
the occupation-number description would be the same as if the electron at ri,
were in state Ek and the electron at rk were in state Ei. However,
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c(E1, . . . , Ek, . . . , Ei, . . . , EN , t) = −c(E1, . . . , Ei, . . . , Ek, . . . , EN , t) .
(1.102)

If we wish to use the occupation-number scheme, we must account for this
minus sign. This is done by arbitrarily assigning a certain order to the par-
ticular set of quantum numbers {E1, . . . , EN}. Then the relative sign of any
permutation of the electrons from this order is automatically given by writing
the single-particle wave functions as a Slater determinant :

c(E1, . . . , EN , t)ϕE1(r1) . . . ϕEN
(rN )

+ (all permutations within the set {E1, . . . , EN})

= f(n1, . . . , n∞, t)

∣∣∣∣∣∣
ϕE1(r1) · · ·ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · ·ϕEN
(rN )

∣∣∣∣∣∣ (1.103)

where f(n1, . . . , n∞, t) has the sign and magnitude of the first c. Summing
over all sets {E1, . . . , EN} is equivalent to summing over all combinations of
occuped states. Therefore

ψ(r1, . . . , rN , t) =
∑

n1,··· ,n∞

f(n1, . . . , n∞, t)
1√
N !

∣∣∣∣∣∣
ϕE1(r1) · · · ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · · ϕEN
(rN )

∣∣∣∣∣∣ .

(1.104)

The states used in constructing the determinant are, of course, those occupied.
By using this occupation-number description we have succeeded in moving

the statistics from the expansion coefficients into the basis functions, which,
in fact, form an orthonormal antisymmetric set.

Let us now define an abstract vector space, or Hilbert space, spanned by
vectors |n1, n2, . . . , n∞〉. We introduce operators which satisfy the anticom-
mutation relations

{ai, a†
j} ≡ aia

†
j + a†

jai = δij , {ai, aj} = {a†
ia

†
j} = 0 . (1.105)

From these relations it can be shown that a†
i creates an entry in position i

(provided one does not already exist there) and ai destroys an entry at i.
Therefore we may represent a basis vector of our Hilbert space as

|n1, . . . , n∞〉 = (a†
1)

n1(a†
2)

n2(a†
∞)n∞ |0〉 . (1.106)

Now consider operating on this with ak. If nk = 0, then ak can be commuted
all the way over to the “vacuum”, where it gives 0. If nk = 1, then ak will
commute until it comes to a†

k.

ak|n1, . . . , nk, . . . , n∞〉 = (−1)
∑

k(a†
1)

n . . . aka†
k . . . (a†

∞)n∞ |0〉 . (1.107)
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Here
∑

k = n1 + n2 + · · ·nk−1 accounts for all the sign changes that ak left
in its wake as it commuted over to a†

k. We now use aka†
k = 1 − a†

kak. In the
second term ak may again commute over to the vacuum to give 0. Thus we
are left with

ak|n1, . . . , nk, . . . , n∞〉 =

{
0 nk = 0

(−1)
∑

k |n1, . . . , nk − 1, . . . , n∞〉 nk = 1 .

(1.108)

Similarly,

a†
k|n1, . . . , nk, . . . , n∞〉 =

{
(−1)

∑
k |n1, . . . , nk + 1, . . . , n∞〉 nk = 0

0 nk = 1 .

(1.109)

Since it can be shown that a†
kak has the eigenvalue nk, we can simplify these

results by writing

ak|n1, . . . , nk, . . . , n∞〉 = (−1)
∑

k
√

nk|n1, . . . , nk − 1, . . . , n∞〉 ,

a†
k|n1, . . . , nk, . . . , n∞〉 = (−1)

∑
k

√
nk + 1|n1, . . . , nk + 1, . . . n∞〉 .

(1.110)

Having developed the properties of the Hilbert space, we now use the expan-
sion coefficients f(n1, . . . , n∞, t) to define the abstract state vector

|ψ(t)〉 =
∑

n1,··· ,n∞

f(n1, . . . , n∞t)|n1, . . . , n∞〉 . (1.111)

The reason for this becomes clear when we consider the equation of motion
of this state vector. Taking the time derivative, we have

i�
∂|ψ(t)〉

∂t
= i�

∑
n1,··· ,n∞

∂f(n1, . . . , n∞, t)
∂t

|n1, . . . , n∞〉 . (1.112)

To evaluate this we go back to the real-space Schrödinger equation,

i�
∂|ψ(r1, . . . , rN , t)〉

∂t

= i�
∑

(n1,··· ,n∞)

∂(n1, . . . , n∞, t)
∂t

1√
N !

∣∣∣∣∣∣
ϕE1(r1) · · · ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · · ϕEN
(rN )

∣∣∣∣∣∣ ,

= H
∑

n1,··· ,n∞

f(n1, . . . , n∞, t)
1√
N !

∣∣∣∣∣∣
ϕE1(r1) · · · ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · · ϕEN
(rN )

∣∣∣∣∣∣ . (1.113)
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We now multiply through from the left by the conjugate Slater determinant
appropriate for some particular set of occupation numbers {n1, . . . , n∞}. The
left-hand side just gives

i�
∂f(n1, . . . , n∞, t)

∂t
. (1.114)

Consider the one-particle terms of the right-hand side of (1.113), which arise
from the T (ṙi) term in (1.97). We write the Slater determinant as

1√
N !

∑
p

(−1)pPϕE1(r1)ϕE2(r2) · · ·ϕEN
(rN ) , (1.115)

where P is an operator which permutes the order of the electrons and p is the
number of such permutations. Then the matrix element becomes

1
N !

∑
i

∑
n′

1,··· ,n′
∞

∑
p,p′

(−1)p+p′
f(n′

1, . . . , n
′
∞, t)

×
∫

Pϕ∗
E1

(r1) · · ·T (ṙi)P ′ϕE′
1
(r1) · · · dr1 · · · drN . (1.116)

Since T (ṙi) is a one-particle operator, the set of numbers {n′
1, . . . , n

′
∞} cannot

differ from the particular set {n1, . . . , n∞} by more than two numbers. In par-
ticular, let the set {n′

1, . . . , n
′
∞} contain the state Ei and the set {n1, . . . , n∞}

contain the state Ek. The sums over i, p, and p′ give N !, leaving us with

∑
k,l

(−1)
∑

k
+
∑

�

∫
drϕ∗

Ek
(r)T (ṙ)ϕEl

(r)f(n1, . . . , nk − 1, nl + 1, . . . , n∞, t) .

(1.117)
Therefore

i�
∂|ψ(t)〉

∂t
=

∑
n1,··· ,n∞

∑
k,l

〈k|T |l〉 (1.118)

×f(n1, . . . , nk = 0, . . . , nl = 1, . . . , n∞, t)(−1)
∑

k
+
∑

l

×|n1, . . . , nk = 1, . . . , nl = 0, . . . , n∞〉 + (interaction terms) .

We now recall from above that

(−1)
∑

k
+
∑

l |n1, . . . , nk, . . . nl, . . . , n∞〉

= a†
kal|n1, . . . , nk − 1, . . . , nl + 1, . . . , n∞〉 . (1.119)

Substituting this into the equation for ∂|ψ(t)〉/∂t, we see that the sum over
{n1, . . . , n∞} just gives |ψ(t)〉. Carrying through the same arguments for the
two-particle interaction terms, we find
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i�
∂|ψ(t)〉

∂t
= H|ψ(t)〉 , (1.120)

where
H =

∑
k,l

〈k|T |l〉a†
kal +

1
2

∑
k,l,s,t

〈kl|V |st〉a†
ka†

l atas . (1.121)

Thus we have the important result that in this occupation-number space the
state vector |ψ(t)〉, as defined above, also satisfies a Schrödinger-like equa-
tion, with the Hamiltonian expressed in this second-quantized form. It is
easy to show that the matrix elements of such second-quantized operators
between occupation-number states are the same as the matrix elements of
“first-quantized” operators between the usual states.

Since we shall often have occasion to express an operator in second-
quantized form, let us develop a prescription for doing this. For this purpose
it is convenient to define what is called the field operator in our Hilbert space,

ψ(r) =
∑

k

ϕk(r)ak . (1.122)

Here again the ϕk(r) are a complete set of single-particle states characterized
by the quantum numbers k, and ak is the fermion operator introduced above.
To second quantize a one-particle operator such as T (ṙi) we write ri → r,
sandwich this operator between ψ†(r) and ψ(r), and integrate over all space.
For a two-particle operator such as V (ri, rj) we let ri → r and rj → r′, sand-
wich it between ψ†(r)ψ†(r′) and ψ(r′)ψ(r), and integrate over dr and dr′.

1.4.1 Example: The Degenerate-Electron Gas

As an example of the use of this prescription let us second quantize the
Hamiltonian for a gas of electrons moving in the field of a uniform positive
charge distribution. The total Hamiltonian is

H = He1−e1 + He1−n + Hn−n . (1.123)

The electron-electron Hamiltonian is

He1−e1 =
∑

i

p2
i

2m
+

e2

2

∑
i�=j

exp(−µ|ri − rj |)
|ri − rj |

, (1.124)

where a screening factor has been inserted for mathematical convenience. The
interaction of the electrons with the positive background due to the nuclei is

He1−n = −e2
∑

i

∫
ρ(r′)

|ri − r′| exp(−µ|ri − r′|)dr′ , (1.125)
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where ρ(r) is the positive charge density, which for a uniform distribution is

ρ(r) =
N

V
. (1.126)

Thus He1−n becomes

He1−n = −e2

(
N

V

)∑
i

∫
exp(−µ|ri − r′|)

|ri − r′| dr′ . (1.127)

If µ−1 is much smaller than L, where L is the sample dimension, we may
replace the integral over dr′ by one over d(r′ − ri), which gives

He1−n = −e2 N2

V

4π

µ2
. (1.128)

Finally, the self-energy of the background charge is

Hn−n = −1
2
e2

∫
ρ(r)ρ(r′)
|r − r′| e−µ|r−r′|dr dr′ =

e2

2
N2

2
4π

µ2
. (1.129)

We must now decide what functions to use as a basis for our field operator.
Since the eigenfunctions for a gas of free electrons are plane waves, we shall
use these as our basis. These states are characterized by their wave vector k
and spin quantum number σ. Thus

ψ(r) =
∑
k,σ

1√
V

eik·rησakσ , (1.130)

where

η↑ =
(

1
0

)
and η↓ =

(
0
1

)
. (1.131)

Notice that ∫
ψ†(r)ψ(r)dr =

∑
kσ

a†
kσakσ

= N . (1.132)

Since the terms He1−n and Hn−n do not involve any electron coordinates,
they are carried over directly into our Hilbert space. The kinetic energy of the
electron-electron Hamiltonian becomes

∑
kσ

�
2k2

2m
a†

kσakσ . (1.133)
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For the Coulomb interaction we have

e2

2
1

V 2

∑
kσ

∑
k′σ′

∑
k′′,σ′′

∑
k′′′.σ′′′

∫
dr

∫
dr′e−i(k·r+k′·r′) e

−µ|r−r′|

|r − r′| ei(k′′′·r′+k′′·r)

×η†
σ(r)η†

σ′(r′)ησ′′′(r′)ησ′′(r)a†
kσa†

k′σ′ak′′′σ′′′ak′′σ′′

=
e2

2
1

V 2

∑
k,σ

∑
k′,σ′

∑
k′′,σ′′

∑
k′′′,σ′′′

δσ,σ′′δσ′,σ′′′

∫
dr

∫
dr′e−i(k+k′−k′′−k′′′)·r

×ei(k′−k′′′)·(r−r′)e−µ|r−r′|

|r − r′| a†
kσa†

k′σ′ak′′′σ′′′ak′′σ′′ . (1.134)

If we again treat r and r − r′ as independent variables, the integrations may
be carried out separately to give

e2

2
1
V

∑
k,σ

∑
k′,σ′

∑
k′′,σ′′

∑
k′′′,σ′′′

δσ,σ′′′δσ′,σ′′′∆(k + k′ − k′′ − k′′′)

× 4π

(k′ − k′′′)2 + µ2
a†

kσa†
k′σ′ak′′′σ′′′ak′′σ′′ . (1.135)

If we define k′−k′′′ ≡ q and collect all the terms, we obtain the total second-
quantized Hamiltonian,

H =
∑
kσ

�
2k2

2m
a†

kσakσ +
e2

2V

∑
k

∑
k′

∑
q

∑
σ,σ′

4π

q2 + µ2

×a†
k−q,σa†

k′+q,σ′ak′,σ′ak,σ − e2N2

2V

4π

µ2
. (1.136)

It is convenient to introduce an equivalent electron radius r0 by

4
3
πr3

0 =
V

N
. (1.137)

This is made dimensionless by dividing it by the Bohr radius a0 = �
2/me2. We

also define r0/a0 = rs and V/r3
0 ≡ Ω. Since 1 Rydberg = me4/�

2 = e2/2a0,
the Hamiltonian expressed in Rydbergs is

H =
1
r2
s

∑
k,σ

(r0k)2a†
kσakσ

+
1

rsΩ

∑
k,σ

∑
k′,σ′

∑
q

4π

r2
0(q2 + µ2)

×a†
k−q,σa†

k′+q,σ′ak′,σ′ak,σ − N2

rsΩ

4π

(r0µ)2
. (1.138)

Notice that the electron-electron interaction for q = 0 gives a term propor-
tional to N2, which cancels the contribution from the positive background,
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plus a term proportional to N , which vanishes by virtue of the condition
µ−1 
 L. Thus we finally have

H=
∑
k,σ

εka†
k,σak,σ+

∑
k,σ

∑
k′,σ′

∑
q �=0

V (q)a†
k−q,σa†

k′+q,σ′ak′,σ′ak,σ, (1.139)

where εk ≡ (r0k/rs)2 and V (q) ≡ 4π/[rsΩ(r0q)2].
Aside from its advantages for handling particle statistics, the second-

quantization formalism also lends itself readily to graphical interpretation.
For example, the interaction term above corresponds to the destruction of
two particles in states (k, σ) and (k′, σ) and the creation of two particles in
states (k′ + q, σ′) and (k − q, σ). This may be represented as

q( k − , ( k + q ,

)k( ,)( k ,

) )

In general, we shall also have particle-hole interactions which have the form

q( k − , ( k + q ,

)k( ,)( k ,

) )

We shall see that long-range magnetic order may be characterized as a coher-
ent electron-hole state just as superconductivity is characterized as a coherent
electron-electron state.

1.4.2 Example: The Zeeman Interaction

Finally, let us apply this second quantization prescription to the interaction
of an electron spin with a magnetic field H cos(q · r). In the next chapter we
shall show that this interaction has the form

H = µBσzH cos(q · r) ,

where µB is the Bohr magneton and σz the Pauli matrix

σz =
(

1 0
0 −1

)
.

In terms of the field operators (1.122) this becomes

H =
1
2
µBH

∑
k

(a†
k+q,↑ak↑ − a†

k+q,↓ak↓ + a†
k−q,↑ak↑ + a†

k−q,↓ak↓) .



30 Problems (Chapter 1)

Since H0 = 0 in this simple example, σz(t) = σz and the calculation of
the longitudinal susceptibility using (1.81) simply involves terms of the form
〈a†

k↑ak+q↑a
†
k+q,↑ak↑〉. This has the diagammatic representation

(q) =zz z

k ,

k+ q ,

z

In more complex systems it is convenient to characterize various approxima-
tions in terms of their diagrammatic representations.

Problems

1.1. The current density j associated with a wave function ψ is given by

j = eRe

(
ψ∗ �

im
∇ψ

)
.

Assuming a hydrogenic wave function of the form

ψ(r − R) = Rn�(r − R)Y m
� (θ, ϕ)

calculate the magnetic moment from (1.6).

1.2. Consider a two-dimensional harmonic oscillator with the Hamiltonian

H =
1

2m
(p2

x + m2ω2x2) +
1

2m
(p2

y + m2ω2y2) .

Introduce the operators

aµ =
(mω

2�

) 1
2

µ + i(2m�ω)−
1
2 pµ

a†
µ =

(mω

2�

) 1
2

µ − i(2m�ω)−
1
2 pµ , (µ = x, y)

(a) Compute the commutation relation [aµ, a†
µ] recalling [µ, pµ] = i�.

(b) Express the Hamiltonian in terms of the operators aµ, a†
µ

(c) Let |nµ〉 be an eigenvector of a†
µaµ with eigenvalue nµ. The spectrum of

these eigenvalues consists of the set of non-negative integers. Sketch the
lowest lying eigenvalues of the oscillator indicating any degeneracies.

(d) Treat the second term in (1.25) as a perturbation and calculate its affect
on the first excited state.
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1.3. If χ′(ω) = 1
1+ω2τ2 find χ′′(ω) from the relation (1.65).

Hint: The principal value is given by

lim
R→∞

[∫ ω−ε

−R

χ′

ω′ − ω
dω′ +

∫ R

ω+ε

χ′

ω′ − ω
dω′

]

=
∮

χ′

ω′ − ω
dω′ −

∫
c

χ′

ω′ − ω
dω′ −

∫
c′

χ′

ω′ − ω
dω′ ,

where the contour of integration is shown in the figure on page 31. Show that
the form (1.66) gives the same answer.

τ
i

c

c

ω R

1.4. Consider a gas of electrons. The particle density is

ρ(r) =
∑

i

δ(r − ri) .

The dynamic form factor is defined as

S(q, ω) =
∑

n

|〈n|ρ†q|0〉|2δ(ω − ωn0) ,

where the states |n〉 are the eigenstates of the electron system. We shall show
later that the scattering of electrons or neutrons from a metal is proportional
to this form factor.

(a) Second quantize

ρ†q =
∫

d3rρ(r)e−iq·r

in terms of normalized free electron plane wave states.
(b) Evaluate the form factor S0(q, ω) for a free electron system characterized

by a Fermi sphere of radius kF .


