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Continuity and Γ (X)

Par délicatesse j’ai perdu ma vie
(A. Rimbaud, “Chanson de la plus haute tour”)

Continuity, Lipschitz behavior, existence of directional derivatives, and differ-
entiability are, of course, topics of the utmost importance in analysis. Thus
the next two chapters will be dedicated to a description of the special features
of convex functions from this point of view. Specifically, in this chapter we
analyze the continuity of the convex functions and their Lipschitz behavior.

The first results show that a convex function which is bounded above
around a point is continuous at that point, and that if it is at the same
time lower and upper bounded on a ball centered at some point x, then it
is Lipschitz in every smaller ball centered at x. The above continuity result
entails also that a convex function is continuous at the interior points of its
effective domain. It follows, in particular, that a convex, real valued function
defined on a Euclidean space is everywhere continuous. This is no longer true
in infinite dimensions.

We then introduce the notion of lower semicontinuity, and we see that
if we require this additional property, then a real valued convex function is
everywhere continuous in general Banach spaces. Lower semicontinuity, on the
other hand, has a nice geometrical meaning, since it is equivalent to requiring
that the epigraph of f , and all its level sets, are closed sets: one more time
we relate an analytical property to a geometrical one. It is then very natural
to introduce, for a Banach space X, the fundamental class Γ (X) of convex,
lower semicontinuous functions whose epigraph is nonempty (closed, convex)
and does not contain vertical lines.

The chapter ends with a very fundamental characterization of a function
in Γ (X): it is the pointwise supremum of all affine functions minorizing it. Its
proof relies, quite naturally, on the Hahn-Banach separation theorems recalled
in Appendix A.
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2.1 Continuity and Lipschitz behavior

Henceforth, as we shall deal with topological issues, every linear space will be
endowed with a norm.

Convex functions have remarkable continuity properties. A key result is
the following lemma, asserting that continuity at a point is implied by upper
boundedness in a neighborhood of the point.

Lemma 2.1.1 Let f : X → [−∞,∞] be convex, let x0 ∈ X. Suppose there
are a neighborhood V of x0 and a real number a such that f(x) ≤ a ∀x ∈ V .
Then f is continuous at x0.

Proof. We show the case when f(x0) ∈ R. By a translation of coordinates,
which obviously does not affect continuity, we can suppose x0 = 0 = f(0). We
can also suppose that V is a symmetric neighborhood of the origin. Suppose
x ∈ εV . Then x

ε ∈ V and we get

f(x) ≤ (1− ε)f(0) + εf(
x

ε
) ≤ εa.

Now, write 0 = ε
1+ε(−x

ε ) + 1
1+εx to get

0 ≤ ε

1 + ε
f(−x

ε
) +

1
1 + ε

f(x),

whence
f(x) ≥ −εf(−x

ε
) ≥ −εa.

�	
From the previous result, it is easy to get the fundamental

Theorem 2.1.2 Let f ∈ F(X). The following are equivalent:
(i) There are a nonempty open set O and a real number a such that f(x) ≤ a

∀x ∈ O;
(ii) int dom f �= ∅, and f is continuous at all points of int dom f .

Proof. The only nontrivial thing to show is that, whenever (i) holds, f is
continuous at each point x ∈ int dom f . We shall exploit boundedness of f
in O to find a nonempty open set I containing x where f is upper bounded.
Suppose f(z) ≤ a ∀z ∈ O and, without loss of generality, that x = 0. Fix
a point v ∈ O. There exists t > 0 such that −tv ∈ int dom f . Now, let
h(y) := t+1

t y + v. Then h(0) = v and I = h−1(O) is a neighborhood of x = 0.
Let y ∈ I. Then y = t

t+1h(y) + 1
t+1 (−tv) and

f(y) ≤ t

t + 1
a +

1
t + 1

f(−tv) ≤ a + f(−tv).

We found an upper bound for f in I, and this concludes the proof.
�	
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Corollary 2.1.3 Let f ∈ F(Rn). Then f is continuous at each point of
int dom f . In particular, if f is real valued, then it is everywhere continuous.

Proof. If x ∈ int dom f , to show that f is upper bounded in a neighborhood of
x, it is enough to observe that x can be put in the interior of a simplex, where
f is bounded above by the maximum value assumed by f on the vertices of
the simplex (see Exercise 1.2.26). �	
Remark 2.1.4 The continuity of f at the boundary points of dom f is a
more delicate issue. For instance, the function

f(x) =

⎧⎪⎨
⎪⎩

0 if |x| < 1,

1 if |x| = 1,

∞ if |x| > 1,

is convex and at the boundary points does not fulfill any continuity condition.

The next exercise characterizes the continuity of a sublinear function.

Exercise 2.1.5 Show the following:

Proposition 2.1.6 Let h : X → (−∞,∞] be a sublinear function. Then the
following are equivalent:
(i) h is finite at a point x0 �= 0 and continuous at −x0;
(ii) h is upper bounded on a neighborhood of zero;
(iii) h is continuous at zero;
(iv) h is everywhere continuous.

Hint. To show that (i) implies (ii), observe that h(x0) < ∞ and h(x) ≤
h(x − x0) + h(x0). Moreover, observe that (iii) implies that h is everywhere
real valued.

Exercise 2.1.7 Referring to Exercise 1.2.15, show that the Minkowski func-
tional is continuous if and only if C is an absorbing set.



24 2 Continuity and Γ (X)

We saw that upper boundedness around a point guarantees continuity; the
next lemma shows that a convex function is Lipschitz around a point if it is
upper and lower bounded near that point.

Lemma 2.1.8 Let f ∈ F(X), and let x0 ∈ X, R > 0, m, M ∈ R. Suppose
m ≤ f(x) ≤M, ∀x ∈ B(x0; R). Then f is Lipschitz on B(x0; r), for all r < R,
with Lipschitz constant M−m

R−r .

Proof. Let x, y ∈ B(x0; r) and let z = y + R−r
‖y−x‖ (y − x). Then z ∈ B(x0; R),

hence f(z) ≤M . Moreover y is a convex combination of x and z:

y =
‖y − x‖

R− r + ‖y − x‖z +
R− r

R− r + ‖y − x‖x.

Hence

f(y)− f(x) ≤ ‖y − x‖
R− r + ‖y − x‖M −

‖y − x‖
R− r + ‖y − x‖m ≤

M −m

R− r
‖y − x‖.

By interchanging the roles of x and y we get the result. �	

2.2 Lower semicontinuity and Γ (X)

Let X be a topological space. Let f : X → (−∞,∞], x ∈ X, and denote by
N the family of all neighborhoods of x. Remember that

lim inf
y→x

f(y) = sup
W∈N

inf
y∈W\{x}

f(y).

Definition 2.2.1 Let f : X → (−∞,∞]. f is said to be lower semicontinuous
if epi f is a closed subset of X × R. Given x ∈ X, f is said to be lower
semicontinuous at x if

lim inf
y→x

f(y) ≥ f(x).

Exercise 2.2.2 A subset E of X ×R is an epigraph if and only if (x, a) ∈ E
implies (x, b) ∈ E for all b ≥ a. If E is an epigraph, then clE = epi f with
f(x) = inf{a : (x, a) ∈ E}, and f is lower semicontinuous.

Definition 2.2.3 Let f : X → (−∞,∞]. The lower semicontinuous regular-
ization of f is the function f̄ such that

epi f̄ := cl epi f.

The definition above is consistent because cl epi(f) is an epigraph, as is
easy to prove (see Exercise 2.2.2). Moreover, it is obvious that f̄ is the greatest
lower semicontinuous function minorizing f : if g ≤ f and g is lower semicon-
tinuous, then g ≤ f̄ . Namely, epi g is a closed set containing epi f , and thus
it contains its closure too.
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Exercise 2.2.4 Show that f is lower semicontinuous if and only if it is lower
semicontinuous at x,∀x ∈ X. Show that f is lower semicontinuous at x if and
only if f(x) = f̄(x).

Hint. Let l = lim infy→x f(y). Show that (x, l) ∈ cl epi f . If f is everywhere
lower semicontinuous, show that if (x, r) ∈ cl epi f , ∀ε > 0, ∀W neighbor-
hood of x, there is y ∈ W such that f(y) < r + ε. Next, suppose f lower
semicontinuous at x, observe that (x, f̄(x)) ∈ cl epi f and see that this implies
f(x) ≤ f̄(x). Finally, to see that f(x) = f̄(x) implies f lower semicontinuous
at x, observe that f(y) ≥ f̄(y) ∀y ∈ X and use the definition.

Proposition 2.2.5 Let f : X → (−∞,∞]. Then f is lower semicontinuous
if and only if fa is a closed set ∀a ∈ R.

Proof. Let x0 /∈ fa. Then (x0, a) /∈ epi f . Thus there is an open set W contain-
ing x0 such that f(x) > a ∀x ∈W . This shows that (fa)c is open. Suppose, by
way of contradiction, fa closed for all a, and let (x, b) /∈ epi f . Then there is
ε > 0 such that f(x) > b+ε, so that x /∈ f b+ε. Then there exists an open set W
containing x such that ∀y ∈W f(y) ≥ b+ε. Thus W×(−∞, b+ε)s∩epi f = ∅,
which means that (epi f)c is open and this ends the proof. �	

When X is first countable, for instance a metric space, then lower semicon-
tinuity of f at x can be given in terms of sequences: f is lower semicontinuous
at x if and only if ∀xn → x,

lim inf
n→∞ f(xn) ≥ f(x).

Example 2.2.6 IC is lower semicontinuous if and only if C is a closed set.

Remark 2.2.7 Let f : R → (−∞,∞] be convex. Then dom f is an inter-
val, possibly containing its endpoints. If f is lower semicontinuous, then f
restricted to cl dom f is continuous.

We saw in Corollary 2.1.3 that a real valued convex function defined on a
finite-dimensional space is everywhere continuous. The result fails in infinite
dimensions. To see this, it is enough to consider a linear functional which is
not continuous. However continuity can be recovered by assuming that f is
lower semicontinuous. The following result holds:

Theorem 2.2.8 Let X be a Banach space and let f : X → (−∞,∞] be a
convex and lower semicontinuous function. Then f is continuous at the points
of int dom f .

Proof. Suppose 0 ∈ int dom f , let a > f(0) and let V be the closure of an open
neighborhood of the origin which is contained in dom f . Let us see that the
closed convex set fa ∩ V is absorbing (in V ). Let x ∈ V . Then g(t) := f(tx)
defines a convex function on the real line. We have that [−b, b] ∈ dom g for
some b > 0. Then g is continuous at t = 0, and thus it follows that there is
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t̄ > 0 such that t̄x ∈ fa. By convexity and since 0 ∈ fa, we then have that
x ∈ nfa, for some large n. Thus

V =
∞⋃

n=1

n(fa ∩ V ).

As a consequence of Baire’s theorem (see Proposition B.1.1), fa ∩ V is a
neighborhood of the origin, (in V , and so in X), where f is upper bounded.
Then f is continuous at the points of int dom f , see Theorem 2.1.2. �	

The family of convex, lower semicontinuous functions plays a key role in
optimization, so that now we shall focus our attention on this class. For a
Banach space X, we denote by Γ (X) the set

Γ (X) := {f ∈ F(X) : f is lower semicontinuous}.

In other words, Γ (X) is the subset of F(X) of the functions with a
nonempty closed convex epigraph not containing vertical lines.

Example 2.2.9 IC ∈ Γ (X) if and only if C is a nonempty closed convex set.

Exercise 2.2.10 Verify that

f(x, y) :=

⎧⎪⎨
⎪⎩

y2

x if x > 0, y > 0,

0 if x ≥ 0, y = 0,

∞ otherwise

belongs to Γ (R2). Verify also that f does not assume a maximum on the
(compact, convex) set C = {(x, y) ∈ R

2 : 0 ≤ x, y ≤ 1, y ≤ √x− x2}.
Hint. Consider the sequence {(1/n, (1/

√
n− 1/n2))}.

The example above shows that f(dom f ∩ C)) need not be closed, even
if C is compact. The next exercise highlights the structure of the image of a
convex set by a function in Γ (X).

Exercise 2.2.11 Prove that for f ∈ Γ (X), f(dom f ∩ C)) is an interval for
every (closed) convex set C.

Hint. Let a, b ∈ f(dom f ∩ C). Then there exist x ∈ C, y ∈ C such that
f(x) = a, f(y) = b. Now consider g(t) = f(tx + (1− t)y), t ∈ [0, 1].

We see now that Γ (X) is an (essentially) stable family with respect to
some operations.

Proposition 2.2.12 Let fi ∈ Γ (X), ∀i = 1, . . . , n and let t1, . . . , tn > 0. If
for some x0 ∈ X fi(x0) <∞ ∀i, then (

∑n
i=1 tifi) ∈ Γ (X).



2.2 Lower semicontinuity and Γ (X) 27

Proof. From Proposition 1.2.18 and because for a, b > 0, f, g ∈ Γ (X), x ∈ X,
W a neighborhood of x,

inf
y∈W\{x}

f(y) + g(y) ≥ inf
y∈W\{x}

f(y) + inf
y∈W\{x}

g(y).

Thus

sup
W

inf
y∈W\{x}

af(y) + bg(y) ≥ sup
W

(
a inf

y∈W\{x}
f(y) + b inf

y∈W\{x}
g(y)

)
= a sup

W
inf

y∈W\{x}
f(y) + b sup

W
inf

y∈W\{x}
g(y).

�	
Proposition 2.2.13 Let fi ∈ Γ (X), ∀i ∈ J , where J is an arbitrary index
set. If for some x0 ∈ X supi∈J fi(x0) <∞, then (supi∈J fi) ∈ Γ (X).

Proof. epi(supi∈J fi) =
⋂

i∈J epi fi. �	
The following Example shows that Γ (X) is not closed with respect to the

inf-convolution operation.

Example 2.2.14 Let C1, C2 be closed convex sets. Then IC1∇IC2 = IC1+C2

(see Exercise 1.2.24). On the other hand, the function IC is lower semicontin-
uous if and only if C is a closed convex set. Taking

C1 := {(x, y) ∈ R
2 : x ≤ 0 and y ≥ 0}

and
C2 := {(x, y) ∈ R

2 : x ≥ 0 and y ≥ 1
x
},

since C1 + C2 is not a closed set, then IC1∇IC2 /∈ Γ (X).

Remark 2.2.15 An example as above cannot be constructed for functions
defined on the real line. Actually, in this case the inf-convolution of two con-
vex lower semicontinuous functions is lower semicontinuous. It is enough to
observe that the effective domain of (f∇g) is an interval. Let us consider, for
instance, its right endpoint b, assuming that (f∇g)(b) ∈ R (the other case is
left for the reader). Then if b1 is the right endpoint of dom f and b2 is the
right endpoint of dom g, it follows that

(f∇g)(b) = f(b1) + g(b2),

and if xk → b−, taking x1
k, x2

k with x1
k + x2

k = xk and f(x1
k) + g(x2

k) ≤
(f∇g)(xk) + 1

k , then x1
k → b−1 , x2

k → b−2 and

(f∇g)(b) = f(b1) + g(b2) ≤ lim inf(f(x1
k) + g(x2

k))

≤ lim inf((f∇g)(xk) +
1
k

) = lim inf(f∇g)(xk).
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We intend now to prove a fundamental result for functions in Γ (X). We
start with some preliminary facts. Let X be a Banach space and denote by
X∗ its topological dual space, the space of all real valued linear continuous
functionals defined on X. Then X∗ is a Banach space, when endowed with
the canonical norm ‖x∗‖∗ = sup{〈x∗, x〉 : ‖x‖ = 1}.
Lemma 2.2.16 Let f ∈ Γ (X), x0 ∈ dom f and k < f(x0). Then there are
y∗ ∈ X∗ and q ∈ R such that the affine function l(x) = 〈y∗, x〉+ q fulfills

f(x) ≥ l(x), ∀x ∈ X, l(x0) > k.

Proof. In X × R, let us consider the closed convex set epi f and the point
(x0, k). They can be separated by a closed hyperplane (Theorem A.1.6): there
are x∗ ∈ X∗, r, c ∈ R such that

〈x∗, x〉+ rb > c > 〈x∗, x0〉+ rk, ∀x ∈ dom f, ∀b ≥ f(x).

With the choice of x = x0, b = f(x0) in the left part of the above formula,
we get r(f(x0) − k) > 0, and so r > 0. Let us consider the affine function
l(x) = 〈y∗, x〉 + q, with y∗ = −x∗

r , q = c
r . It is then easy to see that l(x) ≤

f(x) ∀x ∈ X and that l(x0) > k. �	
Corollary 2.2.17 Let f ∈ Γ (X). Then there exists an affine function mi-
norizing f .

Corollary 2.2.18 Let f ∈ Γ (X). Then f is lower bounded on bounded sets.

Corollary 2.2.19 Let f ∈ Γ (X) be upper bounded on a neighborhood of x ∈
X. Then f is locally Lipschitz around x.

Proof. From the previous Corollary and Lemma 2.1.8. �	
Remark 2.2.20 The conclusion of Corollary 2.2.19 can be strengthened if
X is finite-dimensional and f is real valued. In this case f is Lipschitz on all
bounded sets. This is no longer true in infinite dimensions, because then it
can happen that f is not upper bounded on all bounded sets, as the following
example shows. Consider a separable Hilbert space X, and let {en} be an
orthonormal basis. Consider the function

f(x) =
∞∑

n=1

n(x, en)2n.

Then f is not upper bounded on the unit ball.

Theorem 2.2.21 Let f : X → (−∞,∞] be not identically ∞. Then f ∈
Γ (X) if and only if, ∀x ∈ X

f(x) = sup{〈x∗, x〉+ a : x∗ ∈ X∗, a ∈ R, f(x) ≥ 〈x∗, x〉+ a}.
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Proof. Denote by h(x) the function h(x) = sup{〈x∗, x〉 + a : x∗ ∈ X∗, a ∈
R, f(x) ≥ 〈x∗, x〉+ a}. Then h(x) ≤ f(x) and, being the pointwise supremum
of affine functions, h ∈ Γ (X) (see Proposition 2.2.13); this provides one of
the implications. As far as the other one is concerned, let us consider x0 ∈ X,
k < f(x0) and prove that h(x0) > k. Lemma 2.2.16 shows that h(x0) > k if
x0 ∈ dom f . We then consider the case f(x0) =∞.

Recalling the proof of Lemma 2.2.16, we can claim existence of x∗ ∈ X∗,
r, c ∈ R such that

〈x∗, x〉+ rb > c > 〈x∗, x0〉+ rk, ∀x ∈ dom f, ∀b ≥ f(x).

If r �= 0, we conclude as in Lemma 2.2.16. If r = 0, which geometrically means
that the hyperplane separating epi f and (x0, k) is vertical, then

〈x∗, x〉 > c > 〈x∗, x0〉, ∀x ∈ dom f.

Calling l(x) = 〈−x∗, x〉 + c, we have l(x0) > 0 and l(x) < 0, ∀x ∈ dom f .
From Corollary 2.2.17, there exists an affine function m(x) := 〈y∗, x〉+ q with
the property that f(x) ≥ m(x), ∀x ∈ X. Hence, ∀h > 0, m(x) + hl(x) ≤
f(x), ∀x ∈ dom f , whence m(x) + hl(x) ≤ f(x), ∀x ∈ X. On the other hand,
as l(x0) > 0, for a sufficiently large h, (m + hl)(x0) > k, and this concludes
the proof. �	
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Figure 2.2.

The previous theorem can be refined if f is also a positively homogeneous
function.

Corollary 2.2.22 Let h ∈ Γ (X) be sublinear. Then

h(x) = sup{〈x∗, x〉 : x∗ ∈ X∗, h(x) ≥ 〈x∗, x〉}.
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Proof. It is enough to show that if the affine function 〈x∗, · 〉 + c minorizes
h, then the linear function 〈x∗, · 〉 minorizes h. Now, since h is positively
homogeneous, ∀x ∈ X, ∀t > 0,

〈x∗,
x

t
〉+ c

t
≤ h

(x

t

)
,

i.e.,
〈x∗, y〉+ c

t
≤ h(y),

∀y ∈ X. We conclude now by letting t go to ∞. �	
Exercise 2.2.23 Let C be a nonempty closed convex set. Let d( · , C) be the
distance function from C: d(x, C) = infc∈C ‖x− c‖. Then d is 1-Lipschitz.




