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Invariant measures for Markov semigroups

We are given a Hilbert space H (inner product 〈·, ·〉, norm | · |). We
shall use the following notations.

• B(x, r) is the open ball in H with centre x and radius r > 0.
• Cb(H) (resp. Bb(H)) is the Banach space of all uniformly continuous

and bounded mappings (resp. Borel bounded mappings) ϕ : H → R

endowed with the norm

‖ϕ‖0 = sup
x∈H

|ϕ(x)|.

• L(Cb(H)) (resp. L(Bb(H))) is the space of all linear bounded oper-
ators from Cb(H) (resp. Bb(H)) into itself.

• C+
b (H) (resp. B+

b (H)) represents the cone in Cb(H) (resp. Cb(H))
consisting of all non-negative functions, and 1 the function on H
identically equal to 1.

• Cb(H)∗ is the topological dual of Cb(H).
• P(H) is the space of all probability measures on (H, B(H)) where

B(H) is the σ-algebra of all Borel subsets of H.
There is a natural embedding of P(H) into Cb(H)∗. Namely, for
any µ ∈ P(H) we set

Fµ(ϕ) =
∫

H
ϕ(x)µ(dx), ϕ ∈ Cb(H).

In the following we shall often identify µ with Fµ.

5.1 Markov semigroups

Definition 5.1 A Markov semigroup Pt on Bb(H) is a mapping

[0, +∞) → L(Bb(H)), t 
→ Pt,
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such that

(i) P0 = 1, Pt+s = PtPs for all t, s ≥ 0.
(ii) For any t ≥ 0 and x ∈ H there exists a probability measure πt(x, ·) ∈

P(H) such that

Ptϕ(x) =
∫

H
ϕ(y)πt(x, dy) for all ϕ ∈ Bb(H). (5.1)

(iii) For any ϕ ∈ Cb(H) (resp. Bb(H)) and x ∈ H, the mapping t 
→
Ptϕ(x) is continuous (resp. Borel).

Obviously, by (5.1) it follows that for t = 0,

π0(x, ·) = δx, x ∈ H,

where δx is the Dirac measure at x.
We notice that in the literature one requires usually only (i) and (ii)

in the definition of Markov semigroup Pt. In this case condition (iii)
means that Pt is stochastically continuous, see e.g. [10].

Definition 5.2 Let Pt be a Markov semigroup.

(i) Pt is Feller if Ptϕ ∈ Cb(H) for any ϕ ∈ Cb(H) and any t ≥ 0.
(ii) Pt is strong Feller if Ptϕ ∈ Cb(H) for any ϕ ∈ Bb(H) and any

t > 0.
(iii) Pt is irreducible if Pt1B(x0,r)(x) > 0 for all x, x0 ∈ H, r > 0 and

any t ≥ 0.

Let us give some general properties of a Markov semigroup Pt. First,
notice that by (5.1) we have Pt1 = 1 for all t ≥ 0 and that Pt preserves
positivity, that is Ptϕ ∈ B+

b (H) for all ϕ ∈ B+
b (H).

Moreover, since, for any ϕ ∈ Cb(H),

−‖ϕ‖0 ≤ ϕ(x) ≤ ‖ϕ‖0, x ∈ H,

we have
|Ptϕ(x)| ≤ ‖ϕ‖0, x ∈ H.

Consequently ‖Pt‖L(Bb(H)) ≤ 1, for any t ≥ 0. That is Pt is a semigroup
of contractions on Bb(H).

Let us give now some properties of the family of measures πt(x, ·)
(called a probability kernel).

By (5.1) it follows that for any E ∈ B(H) we have

πt(x, E) = Pt1E(x), t ≥ 0, x ∈ H. (5.2)

Moreover, the following useful result holds.
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Proposition 5.3 For any t, s ≥ 0, x ∈ H and any E ∈ B(H) we have

πt+s(x, E) =
∫

H
πs(y, E)πt(x, dy). (5.3)

Proof. We have in fact, taking into account the semigroup property of
Pt, (5.2) and (5.1),

πt+s(x, E) = Pt+s1E(x) = Ptπs(·, E)(x) =
∫

H
πs(y, E)πt(x, dy).

�

Example 5.4 Let us consider the differential equation{
X ′(t) = b(X(t)),
X(0) = x, (5.4)

on H = Rn where b : H → H is Lipschitz continuous. As is well known,
there exists a unique solution X(t, x) of problem (5.4). Set

πt(x, ·) = δX(t,x), x ∈ Rn.

Then it is easy to see that the transition semigroup

Ptϕ(x) = ϕ(X(t, x)), ϕ ∈ Bb(Rn) (5.5)

is a Markov semigroup.

Exercise 5.5 (i) Prove that semigroup Pt, defined by (5.5), is Feller.
Is Pt strong Feller?

(ii) Prove that Pt is strongly continuous in Cb(H) if and only if b is
bounded.

Example 5.6 Let us consider the stochastic differential equation⎧⎪⎨⎪⎩
dX = b(X)dt +

√
C dB(t),

X(0) = x, (5.6)

on H = Rn where B is a standard Brownian motion in a probabil-
ity space (Ω,F , P) with values in H, b : H → H is locally Lipschitz
continuous, C ∈ L(H) and Hypothesis 4.23 is fulfilled.
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Then by Proposition 4.3 there exists a unique continuous stochastic
process X(·, x), the solution of problem (5.6). Set

πt(x, E) = (X(t, x)#P)(E), x ∈ Rn, E ∈ B(Rn).

Then the transition semigroup

Ptϕ(x) = E [ϕ(X(t, x))] =
∫

R

ϕ(y)πt(x, dy), ϕ ∈ Bb(H), (5.7)

is a Markov semigroup as easily checked.

Exercise 5.7 Prove that the semigroup Pt, defined by (5.7), is Feller.

5.2 Invariant measures

In this section Pt represents a Markov semigroup on H. A probability
measure µ ∈ P(H) is said to be invariant for Pt if∫

H
Ptϕdµ =

∫
H

ϕdµ for all ϕ ∈ Bb(H) and t ≥ 0. (5.8)

If Pt is Feller this condition is clearly equivalent (identifying µ with Fµ)
to

P ∗
t µ = µ for all t ≥ 0, (5.9)

where P ∗
t is the transpose operator of Pt, defined as

〈ϕ, P ∗
t F 〉 = 〈Ptϕ, F 〉,

for all ϕ ∈ Cb(H), F ∈ Cb(H)∗. (1)

If µ ∈ P(H) is invariant for Pt we have

µ(A) = P ∗
t µ(A) =

∫
H

Pt1A(x)µ(dx), A ∈ B(H),

from which, recalling (5.8),

µ(A) =
∫

H
πt(x, A)µ(dx), A ∈ B(H). (5.10)

A first basic result is the following.
(1) 〈·, ·〉 represent the duality between Cb(H) and Cb(H)∗.
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Theorem 5.8 Assume that µ is an invariant measure for Pt. Then for
all t ≥ 0, p ≥ 1, Pt is uniquely extendible to a linear bounded operator
on Lp(H, µ) that we still denote by Pt. Moreover

‖Pt‖L(Lp(H,µ)) ≤ 1, t ≥ 0. (5.11)

Finally, Pt is a strongly continuous semigroup in Lp(H, µ).

Proof. Let ϕ ∈ Cb(H). By the Hölder inequality we have

|Ptϕ(x)|p ≤
∫

H
|ϕ(y)|pπt(x, dy) = Pt(|ϕ|p)(x).

Integrating both sides of the above inequality with respect to µ over H
yields∫

H
|Ptϕ(x)|pµ(dx) ≤

∫
H

Pt(|ϕ|p)(x)µ(dx) =
∫

H
|ϕ(x)|pµ(dx)

in view of the invariance of µ. Since Cb(H) is dense in Lp(H, µ), Pt is
uniquely extendible to Lp(H, µ) and (5.11) follows.

Let us show finally that Pt is strongly continuous in Lp(H, µ). First
let ϕ ∈ Cb(H). Then, by property (iii) in Definition 5.1 of Pt we have
that the function t → Ptϕ(x) is continuous for any x ∈ H. Conse-
quently, by the dominated convergence theorem

lim
t→0

Ptϕ = ϕ in Lp(H, µ).

The same assertion follows easily when ϕ ∈ Lp(H, µ) by the density of
Cb(H) in Lp(H, µ). �

Let µ be an invariant measure for Pt. We are going to study the
asymptotic behaviour of Ptϕ, for ϕ ∈ L2(H, µ). This is obvious when
Ptϕ = ϕ for all t > 0. In this case we say that ϕ is stationary. In
general, given ϕ ∈ L2(H, µ), one can ask whether there exists the limit

lim
t→+∞

Ptϕ(x), (5.12)

or, if not, if there exists the limit of the means

lim
T→+∞

1
T

∫ T

0
Psϕ(x)ds. (5.13)

We shall prove indeed that this limit always exists in L2(H, µ) (Von
Neumann theorem).
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If in addition it happens that

lim
T→+∞

1
T

∫ T

0
Ptϕ(x)dt =

∫
H

ϕdµ in L2(H, µ), (5.14)

for all ϕ ∈ L2(H, µ), Pt is said to be ergodic. In this case the identity
(5.14) is interpreted in physics by saying that the “temporal” average
of Ptϕ coincides with the “spatial” average of ϕ.

It can also happen in particular that

lim
t→+∞

Ptϕ(x) =
∫

H
ϕdµ in L2(H, µ). (5.15)

In this case Pt is said to be strongly mixing.
Existence and uniqueness of invariant measures will be proved in

Chapter 7. We conclude this introduction by giving two examples of
invariant measures.

Exercise 5.9 Consider the ordinary differential equation,

Z ′(t) = Z(t) − Z3(t), Z(0) = x,

and the corresponding transition semigroup

Ptϕ(x) = ϕ(Z(t, x)), ϕ ∈ Cb(H).

Prove that Pt is a Markov semigroup and that πt(x, E) = δZ(t,x)(E), E ∈
B(R), t ≥ 0, x ∈ R.

Show moreover that measures δ0, δ1 and δ−1 are invariant, ergodic
and strongly mixing.

Exercise 5.10 Consider the stochastic differential equation in R,

dX(t) = −X(t)dt + dB(t), X(0) = x,

whose solution X(t, x) is given by the Ornstein–Uhlenbeck process (see
Proposition 4.10),

X(t, x) = e−tx +
∫ t

0
e−(t−s)dB(s), t ≥ 0, x ∈ R.

Prove that

πt(x, ·) = Ne−tx, 1
2

(1−e−2t), x ∈ R, t > 0.

Show moreover that the measure µ = N 1
2

is invariant, ergodic and
strongly mixing.

Hint. Check that (5.8) holds for ϕ(x) = eihx, where h ∈ R.
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In order to study the behaviour of limT→+∞
1
T

∫ T
0 Ptϕdt, we need

some general result about the averages of the powers of a linear oper-
ator, proved in the next section.

5.3 Ergodic averages

We are given a linear bounded operator T on a Hilbert space E (norm
‖ · ‖, inner product 〈·, ·〉). (2) We set

Mn =
1
n

n−1∑
k=0

T k, n ∈ N.

Theorem 5.11 Assume that supn∈N ‖Tn‖ < +∞. Then there exists
the limit

lim
n→∞

Mnx := M∞x for all x ∈ E. (5.16)

Moreover M∞ ∈ L(H), M2
∞ = M∞ and M∞(E) = Ker (1 − T ).

Proof. First notice that the limit of (Mnx) certainly exists when either
x ∈ Ker (1 − T ), or x ∈ (1 − T )(E). In fact in the first case we have
obviously

lim
n→∞

Mnx = x for all x ∈ Ker (1 − T ),

and in the latter we have

lim
n→∞

Mnx = 0 for all x ∈ (1 − T )(E),

because

(1 − T )Mn = Mn(1 − T ) =
1
n

(1 − Tn), n ∈ N. (5.17)

Consequently we also have

lim
n→∞

Mnx = 0 for all x ∈ (1 − T )(E), (5.18)

where (1 − T )(E) is the closure of (1 − T )(E).
Now let x ∈ E be fixed. Since ‖Mnx‖n∈N is bounded by assumption,

there exists a sub-sequence (nk) of N, and an element y ∈ H such that
Mnk

x → y weakly as k → ∞. By (5.17) it follows also that TMnk
x →

Ty = y, so that y ∈ Ker (1 − T ).
(2) Later we shall take E = L2(H, µ).
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Now we prove that Mnx → y. First note that, since y ∈ Ker (1−T ),
we have Mny = y, and so

Mnx = Mny + Mn(x − y) = y + Mn(x − y). (5.19)

We claim that x − y ∈ (1 − T )(E), which will prove (5.17) by (5.16).
We have in fact

x − y = lim
k→∞

(x − Mnk
x),

and x − Mnk
x ∈ (1 − T )(E) because

x − Mnk
x =

1
nk

nk−1∑
h=0

(1 − T h)x

=
1
nk

nk−1∑
h=0

(1 + T + ... + T h−1)(1 − T )x.

Therefore (5.16) holds.
Finally, since (1 − T )Mn → 0, we have M∞ = TM∞, so that

T kM∞ = M∞, k ∈ N, and M∞ = MnM∞, which yields as n → ∞,
M∞ = (M∞)2, as required. �

5.4 The Von Neumann theorem

In this section we assume that there is an invariant measure µ for the
Markov semigroup Pt. This will allow us to extend the semigroup Pt

to L2(H, µ), as proved in Theorem 5.8.
We denote by Σ the set

Σ = {f ∈ L2(H, µ) : Ptf = f, µ-a.e. for all t ≥ 0} (5.20)

of all stationary points of Pt. Clearly Σ is a closed subspace of L2(H, µ)
and 1 ∈ Σ.

Let us consider the average

M(T )ϕ =
1
T

∫ T

0
Ptϕdt, ϕ ∈ L2(H, µ), T > 0.

Theorem 5.12 There exists the limit

lim
T→∞

M(T )ϕ =: M∞ϕ in L2(H, µ). (5.21)
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Moreover M∞ is a projection operator on Σ, and∫
H

M∞ϕdµ =
∫

H
ϕdµ. (5.22)

Proof. For all T > 0 write

T = nT + rT , nT ∈ N ∪ {0}, rT ∈ [0, 1).

For ϕ ∈ L2(H, µ) we have

M(T )ϕ =
1
T

nT−1∑
k=0

∫ k+1

k
Psϕds +

1
T

∫ T

nT

Psϕds

=
1
T

nT−1∑
k=0

∫ 1

0
Ps+kϕds +

1
T

∫ rT

0
Ps+n(T )ϕds

=
nT

T

1
nT

nT−1∑
k=0

(P1)kM(1)ϕ +
rT

T
(P1)nT M(rT )ϕ. (5.23)

Since
lim

T→∞
nT

T
= 1, lim

T→∞
rT

T
= 0,

letting n → ∞ in (5.23) and invoking Theorem 5.11, we get (5.21).
We prove now that for all t ≥ 0

M∞Pt = PtM∞ = M∞. (5.24)

In fact, given t ≥ 0 we have

M∞Ptϕ = lim
T→∞

1
T

∫ T

0
Pt+sϕds = lim

T→∞
1
T

∫ t+T

t
Psϕds

= lim
T→∞

1
T

{∫ T

0
Psϕds −

∫ t

0
Psϕds +

∫ T+t

T
Psϕds

}

= M∞ϕ

and this yields (5.24).
By (5.24) it follows that M∞f ∈ Σ for all f ∈ L2(H, µ), and more-

over that
M∞M(T ) = M(T )P∞ = M∞,

which yields, letting T → ∞, M2
∞ = M∞. Finally, (5.22) follows, by

integrating (5.21) with respect to µ. �
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5.5 Ergodicity

Let µ be an invariant measure for Pt. We say that µ is ergodic if

lim
T→∞

1
T

∫ T

0
Ptϕdt = ϕ for all ϕ ∈ L2(H, µ), (5.25)

where
ϕ =

∫
H

ϕ(x)µ(dx).

Proposition 5.13 Let µ be an invariant measure for Pt. Then µ is er-
godic if and only if the dimension of the linear space Σ of all stationary
elements of L2(H, µ) defined by (5.20) is 1.

Proof. If µ is ergodic it follows from (5.25) that any element in Σ is
constant, so that dimension of Σ is 1. Conversely assume that dimension
of Σ is 1. Then there is a linear bounded functional F on L2(H, µ) such
that

M∞ϕ = F (ϕ)1.

By the Riesz representation theorem there exists an element ϕ0 ∈
L2(H, µ) such that F (ϕ) = 〈ϕ, ϕ0〉. Integrating this equality on H
with respect to µ and taking into account the invariance of M∞ (see
(5.22)), yields∫

H
M∞ϕdµ =

∫
H

ϕdµ = 〈ϕ,1〉 = 〈ϕ, ϕ0〉, ϕ ∈ L2(H, µ).

Therefore ϕ0 = 1. �
Let µ be an invariant measure for Pt. A Borel set Γ ∈ B(H) is said

to be invariant for Pt if its characteristic function 1Γ belongs to Σ. If
µ(Γ) is equal to either 0 or 1, we say that Γ is trivial, otherwise it is
nontrivial.

We now want to show that µ is ergodic if and only if all invariant
sets are trivial. For this it is important to notice that Σ is a lattice, as
proved in the next proposition.

Proposition 5.14 Assume that ϕ and ψ belong to Σ. Then the follow-
ing statements hold.

(i) |ϕ| ∈ Σ.
(ii) ϕ+, ϕ− ∈ Σ. (3)

(3) ϕ+ = max{ϕ, 0}, ϕ− = max{−ϕ, 0}.
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(iii) ϕ ∨ ψ, ϕ ∧ ψ ∈ Σ. (4)

(iv) For any a ∈ R we have 1{x∈H: ϕ(x)>a} ∈ Σ.

Proof. Let us prove (i). Let t > 0 and assume that ϕ ∈ Σ, so that
ϕ(x) = Ptϕ(x). Then we have

|ϕ(x)| = |Ptϕ(x)| ≤ Pt(|ϕ|)(x), x ∈ H. (5.26)

We claim that
|ϕ(x)| = Pt(|ϕ|)(x), µ-a.s.

Assume by contradiction that there is a Borel subset I ⊂ H such that
µ(I) > 0 and

|ϕ(x)| < Pt(|ϕ|)(x), x ∈ I.

Then we have ∫
H
|ϕ(x)|µ(dx) <

∫
H

Pt(|ϕ|)(x)µ(dx).

Since, by the invariance of µ,∫
H

Pt(|ϕ|)(x)µ(dx) =
∫

H
|ϕ|(x)µ(dx),

we find a contradiction.
Statements (ii) and (iii) follow from the obvious identities

ϕ+ =
1
2
(ϕ + |ϕ|), ϕ− =

1
2
(ϕ − |ϕ|),

ϕ ∨ ψ = (ϕ − ψ)+ + ψ, ϕ ∧ ψ = −(ϕ − ψ)+ + ϕ.

Finally let us prove (iv). It is enough to show that the set {ϕ > 0}
is invariant, or, equivalently, that 1{ϕ>0} belongs to Σ. We have in fact,
as it is easily checked,

1{ϕ>0} = lim
n→∞

ϕn(x), x ∈ H,

where ϕn = (nϕ+)∧ 1, n ∈ N, belongs to Σ by (ii) and (iii). Therefore
{ϕ > 0} is invariant. �

We are now ready to prove the following result.

Theorem 5.15 Let µ be an invariant measure for Pt. Then µ is ergodic
if and only if any invariant set is trivial.
(4) ϕ ∨ ψ = max{ϕ, ψ}, ϕ ∧ ψ = min{ϕ, ψ}.
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Proof. Let Γ be invariant for µ. Then if µ is ergodic 1Γ must be
constant (otherwise dim Σ ≥ 2) and so Γ is trivial. Assume conversely
that the only invariant sets for µ are trivial and, by contradiction,
that µ is not ergodic. Then there exists a non-constant function ϕ0 ∈
Σ. Therefore by Proposition 5.14 for some λ ∈ R the invariant set
{ϕ0 > λ} is not trivial. �

5.6 Structure of the set of all invariant measures

We still assume that Pt is a Markov semigroup on H. We denote by Λ
the set of all its invariant measures and we assume that Λ is non-empty.
Clearly Λ is a convex subset of Cb(H)∗.

Theorem 5.16 Assume that there is a unique invariant measure µ
for Pt. Then µ is ergodic.

Proof. Assume by contradiction that µ is not ergodic. Then there is a
nontrivial invariant set Γ. Let us prove that the measure µΓ defined as

µΓ(A) =
1

µ(Γ)
µ(A ∩ Γ), A ∈ B(H),

belongs to Λ. This will give rise to a contradiction.
Recalling (5.10), we have to show that

µΓ(A) =
∫

H
πt(x, A)µΓ(dx), A ∈ B(H),

or, equivalently, that

µ(A ∩ Γ) =
∫
Γ

πt(x, A)µ(dx), A ∈ B(H). (5.27)

In fact, since Γ is invariant, we have

Pt1Γ = 1Γ, Pt1Γc = 1Γc , t ≥ 0,

and so
πt(x,Γ) = 1Γ(x), πt(x,Γc) = 1Γc(x), t ≥ 0.

Consequently,

πt(x, A ∩ Γc) = 0, µ-a.e. in Γ and πt(x, A ∩ Γ) = 0, µ-a.e. in Γc,
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and so∫
Γ

πt(x, A)µ(dx) =
∫
Γ

πt(x, A ∩ Γ)µ(dx) +
∫
Γ

πt(x, A ∩ Γc)µ(dx)

=
∫
Γ

πt(x, A ∩ Γ)µ(dx) =
∫

H
πt(x, A ∩ Γ)µ(dx) = µ(A ∩ Γ),

and (5.10) holds. �
We want now to show that the set of all extremal points of Λ is

precisely the set of all ergodic measures of Pt. For this we need a lemma.

Lemma 5.17 Let µ, ν ∈ Λ with µ ergodic and ν absolutely continuous
with respect to µ. Then µ = ν.

Proof. Let Γ ∈ B(H). By the Von Neumann theorem there exists
Tn ↑ ∞ such that

lim
n→∞

1
Tn

∫ Tn

0
Pt1Γdt = µ(Γ), µ-a.e. (5.28)

Since ν � µ, identity (5.28) holds also ν-a.e. Now integrating (5.28)
with respect to ν yields

lim
n→∞

1
Tn

∫ Tn

0

(∫
H

Pt1Γdν

)
dt = ν(Γ), µ-a.e.

Consequently ν(Γ) = µ(Γ) as required. �
We can now prove the announced property of Λ.

Theorem 5.18 The set of all invariant ergodic measures of Pt coin-
cides with the set of all extremal points of Λ.

Proof. We first prove that if µ is ergodic then it is an extremal point
of Λ. Assume by contradiction that µ is ergodic and it is not an extremal
point of Λ. Then there exist µ1, µ2 ∈ Λ with µ1 = µ2, and α ∈ (0, 1)
such that

µ = αµ1 + (1 − α)µ2.

Then clearly µ1 � µ and µ2 � µ. By Lemma 5.17 we get a
contradiction.

We finally prove that if µ is an extremal point of Λ, then it is
ergodic. Assume by contradiction that µ is not ergodic. Then there
exists a nontrivial invariant set Γ. Consequently, arguing as in the proof
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of Theorem 5.16, we have µΓ, µΓc ∈ Λ. Since

µ = µ(Γ)µΓ + (1 − µ(Γ))µΓc ,

we find that µ is not extremal, a contradiction. �

Theorem 5.19 Assume that µ and ν are ergodic invariant measures
with µ = ν. Then µ and ν are singular.

Proof. Let Γ ∈ B(H) be such that µ(Γ) = ν(Γ). From the Von Neu-
mann theorem it follows that there exists Tn ↑ +∞ and two Borel sets
M and N such that µ(M) = 1, ν(N) = 1, and

lim
n→∞

1
Tn

∫ Tn

0
(Pt1Γ)(x)dt = µ(Γ), ∀ x ∈ M,

lim
n→∞

1
Tn

∫ Tn

0
(Pt1Γ)(x)dt = ν(Γ), ∀ x ∈ N.

Since µ(Γ) = ν(Γ) this implies that M ∩ N = ∅, and so µ and ν are
singular. �




