
CHAPTER 2

EQUINUMEROSITY

After these preliminaries, we can formulate the fundamental definitions of
Cantor about the size or cardinality of sets.

2.1. Definition. Two setsA, B are equinumerous or equal in cardinality if there
exists a (one-to-one) correspondence between their elements, in symbols

A =c B ⇐⇒df (∃f)[f : A�→ B].

This definition of equinumerosity stems from our intuitions about finite
sets, e.g., we can be sure that a shoe store offers for sale the same number
of left and right shoes without knowing exactly what that number is: the
correspondence of each left shoe with the right shoe in the same pair estab-
lishes the equinumerosity of these two sets. The radical element in Cantor’s
definition is the proposal to accept the existence of such a correspondence as
the characteristic property of equinumerosity for all sets, despite the fact that
its application to infinite sets leads to conclusions which had been viewed as
counterintuitive. A finite set, for example, cannot be equinumerous with one
of its proper subsets, while the set of natural numbers N is equinumerous with
N \ {0} via the correspondence (x �→ x + 1),

{0, 1, 2, . . . } =c {1, 2, 3, . . . }.
In the real numbers, also,

(0, 1) =c (0, 2)
via the correspondence (x �→ 2x), where as usual, for any two reals α < �

(α, �) = {x ∈ R | α < x < �}.
We will use the analogous notation for the closed and half-closed intervals
[α, �], [α, �), etc.
2.2. Proposition. For all sets A,B,C ,

A =c A,

if A =c B, then B =c A,

if (A =c B &B =c C ), then A =c C.

Proof. To show the third implication as an example, suppose that the
bijections f : A �→ B and g : B �→ C witness the equinumerosities of the
hypothesis; their composition gf : A�→ C then witnesses that A =c C . �
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Figure 2.1. Deleting repetitions.

2.3. Definition. The setA is less than or equal to B in size if it is equinumerous
with some subset of B , in symbols:

A ≤c B ⇐⇒ (∃C )[C ⊆ B &A =c C ].

2.4. Proposition. A ≤c B ⇐⇒ (∃f)[f : A� B].

Proof. If A =c C ⊆ B and f : A �→ C witnesses this equinumerosity,
then f is an injection from A into B . Conversely, if there exists an injection
f : A� B , then the same f is a bijection of A with its image f[A], so that
A =c f[A] ⊆ B and so A ≤c B by the definition. �
2.5. Exercise. For all sets A,B,C ,

A ≤c A,
if (A ≤c B &B ≤c C ), then A ≤c C.

2.6. Definition. A set A is finite if there exists some natural number n such
that

A =c {i ∈ N | i < n} = {0, 1, . . . , n − 1},
otherwiseA is infinite. (Thus the empty set is finite, since ∅ = {i ∈ N | i < 0}.)

A set A is countable if it is finite or equinumerous with the set of natu-
ral numbers N, otherwise it is uncountable. Countable sets are also called
denumerable, and correspondingly, uncountable sets are non-denumerable.

2.7. Proposition. The following are equivalent for every set A:
(1) A is countable.
(2) A ≤c N.
(3) Either A = ∅, or A has an enumeration, a surjection � : N →→ A, so that

A = �[N] = {�(0), �(1), �(2), . . . }.

Proof. We give what is known as a “round robin proof”.
(1) =⇒ (2). If A is countable, then either A =c {i ∈ N | i < n} for some n

orA =c N, so that, in either case,A =c C for someC ⊆ N and henceA ≤c N.
(2) =⇒ (3). Suppose A �= ∅, choose some x0 ∈ A, and assume by (2) that
f : A� N. For each i ∈ N, let

�(i) =

{
x0, if i /∈ f[A],
f−1(i), otherwise, i.e., if i ∈ f[A].
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The definition works (because f is an injection, and so f−1(i) is uniquely
determined in the second case), and it defines a surjection � : N →→ A, because
x0 ∈ A and for every x ∈ A, x = �(f(x)).

(3) =⇒ (1). If A is finite then (1) is automatically true, so assume that
A is infinite but it has an enumeration � : N →→ A. We must find another
enumeration f : N →→ A which is without repetitions, so that it is in fact a
bijection of N with A, and hence A =c N. The proof is suggested by Figure
2.1: we simply delete the repetitions from the given enumeration � of A. To
get a precise definition of f by recursion, notice that because A is not finite,
for every finite sequence a0, . . . , an of members of A there exists somem such
that �(m) /∈ {a0, . . . , an}. Set

f(0) = �(0),

mn = the least m such that �(m) /∈ {f(0), . . . , f(n)},
f(n + 1) = �(mn).

It is obvious that f is an injection, so it is enough to verify that every x ∈ A
is a value of f, i.e., that for every n ∈ N, �(n) ∈ f[N]. This is immediate for
0, since �(0) = f(0). If x = �(n + 1) for some n and x ∈ {f(0), . . . , f(n)},
then x = f(i) for some i ≤ n; and if x /∈ {f(0), . . . , f(n)}, thenmn = n+ 1
and f(n + 1) = �(mn) = x by the definition. �
2.8. Exercise. If A is countable and there exists an injection f : B � A, then
B is also countable; in particular, every subset of a countable set is countable.

2.9. Exercise. If A is countable and there exists a surjection f : A →→ B , then
B is also countable.

The next, simple theorem is one of the most basic results of set theory.

2.10. Theorem (Cantor). For each sequence A0, A1, . . . of countable sets, the
union

A =
⋃∞
n=0An = A0 ∪A1 ∪ . . .

is also a countable set.
In particular, the union A ∪ B of two countable sets is countable.

Proof. The second claim follows by applying the first to the sequence

A,B,B, · · ·

For the first, it is enough (why?) to consider the special case where none
of the An is empty, in which case we can find for each An an enumeration
�n : N →→ An. If we let

ani = �n(i)

to simplify the notation, then for each n

An = {an0 , an1 , . . . },

and we can construct from these enumerations a table of elements which lists
all the members of the unionA. This is pictured in Figure 2.2, and the arrows
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Figure 2.2. Cantor’s first diagonal method.

in that picture show how to enumerate the union:

A = {a0
0 , a

1
0 , a

0
1 , a

2
0 , a

1
1 , . . . }. �

2.11. Corollary. The set of rational (positive and negative) integers

Z = {. . .− 2,−1, 0, 1, 2, . . . }

is countable.

Proof. Z = N∪{−1,−2, . . . , } and the set of negative integers is countable
via the correspondence (x �→ −(x + 1)). �
2.12. Corollary. The set Q of rational numbers is countable.

Proof. The set Q+ of non-negative rationals is countable because

Q+ =
⋃∞
n=1{
m

n
| m ∈ N}

and each {mn | m ∈ N} is countable via the enumeration (m �→ m
n ). The set

Q− of negative rationals is countable by the same method, and then the union
Q+ ∪ Q− is countable. �

This corollary was Cantor’s first significant result in the program of classifi-
cation of infinite sets by their size, and it was considered somewhat “paradoxi-
cal” because Q appears to be so much larger than N. Immediately afterwards,
Cantor showed the existence of uncountable sets.

2.13. Theorem (Cantor). The set of infinite, binary sequences

Δ = {(a0, a1, . . . , ) | (∀i)[ai = 0 ∨ ai = 1]}

is uncountable.

Proof. Suppose (towards a contradiction) that Δ is countable, so there
exists an enumeration

Δ = {α0, α1, . . . },
where for each n,

αn = (an0 , a
n
1 , . . . )
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Figure 2.3. Cantor’s second diagonal method.

is a sequence of 0’s and 1’s.3 We construct a table with these sequences as
before, and then we define the sequence � by interchanging 0 and 1 in the
“diagonal” sequence a0

0 , a
1
1 , . . . :

�(n) = 1 − ann .
It is obvious that for each αn , � �= αn, since

�(n) = 1 − αn(n) �= αn(n),

so that the sequence α0, α1, . . . does not enumerate the entire Δ, contrary to
our hypothesis. �
2.14. Corollary (Cantor). The set R of real numbers is uncountable.

Proof. We define first a sequence of sets C0, C1, . . . , of real numbers which
satisfy the following conditions:

1. C0 = [0, 1].
2. Each Cn is a union of 2n closed intervals and

C0 ⊇ C1 ⊇ · · · Cn ⊇ Cn+1 ⊇ · · · .
3. Cn+1 is constructed by removing the (open) middle third of each interval

in Cn, i.e., by replacing each [a, b] in Cn by the two closed intervals

L[a, b] = [a, a +
1
3

(b − a)],

R[a, b] = [a +
2
3

(b − a), b].

With each binary sequence � ∈ Δ we associate now a sequence of closed
intervals,

F �0 , F
�
1 , . . . ,

3To prove a proposition � by the method of reduction to a contradiction, we assume its negation
¬� and derive from that assumption something which violates known facts, a contradiction,
something absurd: we conclude that � cannot be false, so it must be true. Typically we will begin
such arguments with the code-phrase towards a contradiction, which alerts the reader that the
supposition which follows is the negation of what we intend to prove.
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Figure 2.4. The first four stages of the Cantor set construction.

by the following recursion:

F �0 = C0 = [0, 1],

F �n+1 =
{
LF �n , if �(n) = 0,
RF �n , if �(n) = 1.

By induction, for each n, F �n is one of the closed intervals of Cn of length 3−n

and obviously
F �0 ⊇ F �1 ⊇ · · · ,

so by the fundamental completeness property of the real numbers the intersec-
tion of this sequence is not empty; in fact, it contains exactly one real number,
call it

f(�) = the unique element in the intersection
⋂∞
n=0F

�
n .

The function f maps the uncountable set Δ into the set

C =
⋂∞
n=0Cn,

the so-called Cantor set, so to complete the proof it is enough to verify that
f is one-to-one. But if n is the least number for which �(n) �= ε(n) and (for
example) �(n) = 0, we have F �n = F εn from the choice of n,

f(�) ∈ F �n+1 = LF �n , f(ε) ∈ F εn+1 = RF �n , and LF �n ∩RF �n = ∅,

so that indeed f is an injection. �
The basic mathematical ingredient of this proof is the appeal to the com-

pleteness property of the real numbers, which we will study carefully in Ap-
pendix A. Some use of a special property of the reals is necessary: the rest
of Cantor’s construction relies solely on arithmetical properties of numbers
which are also true of the rationals, so if we could avoid using completeness
we would also prove that Q is uncountable, contradicting Corollary 2.12.

The fundamental importance of this theorem was instantly apparent, the
more so because Cantor used it immediately in a significant application to the
theory of algebraic numbers. Before we prove this corollary we need some
definitions and lemmas.

2.15. Definition. For any two sets A,B , the set of ordered pairs of members
of A and members of B is denoted by

A× B = {(x, y) | x ∈ A& y ∈ B}.



Chapter 2. Equinumerosity 13

In the same way, for each n ≥ 2,

A1 × · · · ×An = {(x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An},
An = {(x1, . . . , xn) | x1, . . . , xn ∈ A}.

We call A1 × · · · ×An the Cartesian product of A1, . . . , An.

2.16. Lemma. (1) If A1, . . . , An are all countable, so is their Cartesian product
A1 × · · · ×An.

(2) For every countable set A, each An (n ≥ 2) and the union⋃∞
n=2A

n = {(x1, . . . , xn) | n ≥ 2, x1, . . . , xn ∈ A}
are all countable.

Proof. (1) If someAi is empty, then the product is empty (by the definition)
and hence countable. Otherwise, in the case of two sets A,B , we have some
enumeration

B = {b0, b1, . . . }
of B , obviously

A× B =
⋃∞
n=0(A× {bn}),

and each A × {bn} is equinumerous with A (and hence countable) via the
correspondence (x �→ (x, bn)). This gives the result for n = 2. To prove the
proposition for all n ≥ 2, notice that

A1 × · · · ×An ×An+1 =c (A1 × · · · ×An) ×An+1

via the bijection

f(a1, . . . , an, an+1) = ((a1, . . . , an), an+1).

Thus, if every product of n ≥ 2 countable factors is countable, so is every
product of n + 1 countable factors, and so (1) follows by induction.

(2) Each An is countable by (1), and then
⋃∞
n=2A

n is also countable by
another appeal to Theorem 2.10. �

2.17. Definition. A real numberα is algebraic if it is a root of some polynomial

P(x) = a0 + a1x + · · · + anxn

with integer coefficients a0, . . . , an ∈ Z (n ≥ 1, an �= 0), i.e., if

P(α) = 0.

Typical examples of algebraic numbers are
√

2, (1 +
√

2)2 (why?) but also
the real root of the equation x5 +x+ 1 = 0 which exists (why?) but cannot be
expressed in terms of radicals, by a classical theorem of Abel. The basic fact
(from algebra) about algebraic numbers is that a polynomial of degree n ≥ 1
has at most n real roots; this is all we need for the next result.

2.18. Corollary. The setK of algebraic real numbers is countable (Cantor), and
hence there exist real numbers which are not algebraic (Liouville).
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Proof. The set Π of all polynomials with integer coefficients is countable,
because each such polynomial is determined by the sequence of its coefficients,
so that Π can be injected into the countable set

⋃∞
n=2Z

n. For each polynomial
P(x), the set of its roots

Λ(P(x)) = {α | P(α) = 0}
is finite and hence countable. It follows that the set of algebraic numbersK is
the union of a sequence of countable sets and hence it is countable. �

This first application of the (then) new theory of sets was instrumental
in ensuring its quick and favorable acceptance by the mathematicians of the
period, particularly since the earlier proof of Liouville (that there exist non-
algebraic numbers) was quite intricate. Cantor showed something stronger,
that “almost all” real numbers are not algebraic, and he did it with a much
simpler proof which used just the fact that a polynomial of degree n cannot
have more than n real roots, the completeness of R, and, of course, the new
method of counting the members of infinite sets.

So far we have shown the existence of only two “orders of infinity”, that of
N—the countable, infinite sets—and that of R. There are many others.

2.19. Definition. The powerset P(A) of a set A is the set of all its subsets,

P(A) = {X | X is a set and X ⊆ A}.

2.20. Exercise. For all sets A,B ,

A =c B =⇒P(A) =c P(B).

2.21. Theorem (Cantor). For every set A,

A <c P(A),

i.e., A ≤c P(A) but A �=c P(A); in fact there is no surjection � : A→→ P(A).
Proof. That A ≤c P(A) follows from the fact that the function

(x �→ {x})

which associates with each member x of A its singleton {x} is an injection.
(Careful here: the singleton {x} is a set with just the one member x and it is
not the same object as x, which is probably not a set to begin with!)

To complete the proof, we assume (towards a contradiction) that there
exists a surjection

� : A→→ P(A),
and we define the set

B = {x ∈ A | x /∈ �(x)},
so that for every x ∈ A,

x ∈ B ⇐⇒ x /∈ �(x). (2-1)

Now B is a subset of A and � is a surjection, so there must exist some b ∈ A
such that B = �(b); and setting x = b and �(b) = B in (2-1), we get

b ∈ B ⇐⇒ b /∈ B
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which is absurd. �
So there are many orders of infinity, and specifically (at least) those of the

sets

N <c P(N) <c P(P(N)) <c · · · .

If we name these sets by the recursion

T0 = N,
Tn+1 = P(Tn),

(2-2)

then their unionT∞ =
⋃∞
n=0Tn has a larger cardinality than eachTn, Problem

x2.8. The classification and study of these orders of infinity is one of the central
problems of set theory.

Somewhat more general than powersets are function spaces.

2.22. Definition. For any two sets A,B ,

(A→ B) =df {f | f : A→ B}
= the set of all functions from A to B.

2.23. Exercise. If A1 =c A2 and B1 =c B2, then (A1 → B1) =c (A2 → B2).

Function spaces are “generalizations” of powersets because each subset
X ⊆ A can be represented by its characteristic function cX : A→ {0, 1},

cX (t) =
{

1, if t ∈ A ∩X,
0, if t ∈ A \ X, (t ∈ A). (2-3)

We can recover X from cX ,

X = {t ∈ A | cX (t) = 1},

and so the mapping (X �→ cX ) is a correspondence ofP(A) with (A→ {0, 1}).
Thus

(A→ {0, 1}) =c P(A) >c A, (2-4)

and the function space operation also leads to large, uncountable sets. The
next obvious problem is to compare for size these uncountable sets, starting
with the two simplest ones, P(N) and the set R of real numbers.

2.24. Lemma. P(N) ≤c R.

Proof. It is enough to prove that P(N) ≤c Δ, since we have already shown
that Δ ≤c R. This follows immediately from (2-4), as Δ = (N → {0, 1}). �
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Figure 2.5. Proof of the Schröder-Bernstein Theorem.

2.25. Lemma. R ≤c P(N).

Proof. It is enough to show that R ≤c P(Q), since the set of rationals Q is
equinumerous with N and hence P(N) =c P(Q). This follows from the fact
that the function

x �→ �(x) = {q ∈ Q | q < x} ⊆ Q

is an injection, because if x < y are distinct real numbers, then there exists
some rational q between them, x < q < y and q ∈ �(y) \ �(x). �

With these two simple Lemmas, the equinumerosity R =c P(N) will follow
immediately from the following basic theorem.

2.26. Theorem (Schröder-Bernstein). For any two sets A,B ,

if A ≤c B and B ≤c A, then A =c B.

Proof.
4 We assume that there exist injections

f : A� B, g : B � A,

and we define the sets An, Bn by the following recursive definitions:

A0 = A,
An+1 = gf[An],

B0 = B,
Bn+1 = fg[Bn],

4A different proof of this theorem is outlined in Problems x4.26, x4.27.
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wherefg[X ] = {f(g(x)) | x ∈ X} and correspondingly for the function gf.
By induction on n (easily)

An ⊇ g[Bn] ⊇ An+1,
Bn ⊇ f[An] ⊇ Bn+1,

so that we have the “chains of inclusions”
A0 ⊇ g[B0] ⊇ A1 ⊇ g[B1] ⊇ A2 · · · ,
B0 ⊇ f[A0] ⊇ B1 ⊇ f[A1] ⊇ B2 · · · .

We also define the intersections

A∗ =
⋂∞
n=0An, B

∗ =
⋂∞
n=0Bn,

so that
B∗ =

⋂∞
n=0Bn ⊇

⋂∞
n=0f[An] ⊇

⋂∞
n=0Bn+1 = B∗

and since f is an injection, by Problem x1.7,

f[A∗] = f[
⋂∞
n=0An] =

⋂∞
n=0f[An] = B∗.

Thus f is a bijection of A∗ with B∗. On the other hand,

A = A∗ ∪ (A0 \ g[B0]) ∪ (g[B0] \ A1) ∪ (A1 \ g[B1]) ∪ (g[B1] \ A2) . . .

B = B∗ ∪ (B0 \ f[A0]) ∪ (f[A0] \ B1) ∪ (B1 \ f[A1]) ∪ (f[A1] \ B2) . . .

and these sequences are separated, i.e., no set in them has any common element
with any other. To finish the proof it is enough to check that for every n,

f[An \ g[Bn]] = f[An] \ Bn+1,

g[Bn \ f[An]] = g[Bn] \ An+1,

from which the first (for example) is true because f is an injection and so

f[An \ g[Bn]] = f[An] \ fg[Bn] = f[An] \ Bn+1.

Finally we have the bijection � : A�→ B ,

�(x) =
{
f(x), if x ∈ A∗ or (∃n)[x ∈ An \ g[Bn]],
g−1(x), if x /∈ A∗ and (∃n)[x ∈ g[Bn] \ An+1],

which verifies that A =c B and finishes the proof. �
Using the Schröder-Bernstein Theorem we can establish easily several equinu-

merosities which are quite difficult to prove directly.

Problems for Chapter 2

x2.1. For any α < � where α, � are reals, ∞ or −∞, construct bijections
which prove the equinumerosities

(α, �) =c (0, 1) =c R.
∗x2.2. For any two real numbers α < � , construct a bijection which proves the
equinumerosity

[α, �) =c [α, �] =c R.
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x2.3. P(N) =c R =c Rn, for every n ≥ 2.

x2.4. For any two sets A,B , (A → B) ≤c P(A × B). Hint. Represent each
f : A→ B by its graph, the set

Gf = {(x, y) ∈ A× B | y = f(x)}.

x2.5. (N → N) =c P(N).
∗x2.6. (N → R) =c R.
∗x2.7. For any three sets A,B,C ,

((A× B) → C ) =c (A→ (B → C )).

Hint. For any p : A × B → C , define �(p) = q : A → (B → C ) by the
formula

q(x)(y) = p(x, y).

x2.8. Using the definition (2-2), for every m,

Tm <c T∞ =
⋃∞
n=0Tn.

You need to know something about continuous functions to do the last two
problems.

∗x2.9. The set C [0, 1] of all continuous, real functions on the closed interval
[0, 1] is equinumerous with R.

∗x2.10. The set of all monotone real functions on the closed interval [0, 1] is
equinumerous with R.




