
Lecture 2

Basic Computational Problems and Their
Solution

Our basic geometric objects of study are sets of solutions of polynomial equa-
tions in affine or projective space and are called affine or projective algebraic
sets. In this lecture, we introduce the geometry-algebra dictionary which re-
lates algebraic sets to ideals of polynomial rings, translating geometric state-
ments into algebraic statements and vice versa. We pay particular attention
to computational problems arising from basic geometric questions. And, we
begin to explore how Gröbner bases can be used to solve the problems.

2.1 Computational Problems Arising from the
Geometry-Algebra Dictionary

Let K be a field, and let An(K) be the affine n-space over K,

An(K) :=
{
(a1, . . . , an)

∣∣ a1, . . . , an ∈ K
}
.

Each polynomial f ∈ K[x] = K[x1, . . . , xn] defines a function

f : An(K)→ K , (a1, . . . , an) 7→ f(a1, . . . , an);

the value f(a1, . . . , an) is obtained by substituting the ai for the xi in f and
evaluating the corresponding expression in K. This allows us to talk about
the vanishing locus of f in An(K), namely V(f) := {p ∈ An(K) | f(p) = 0}.
If f is nonconstant, we call V(f) a hypersurface in An(K).

Example 2.1. We visualize the hypersurface V
(
y4+ z2− y2(1−x2)

)
⊂ A3(R)

using SURF:

ut
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A subset A ⊂ An(K) is an (affine) algebraic set if it is the common van-
ishing locus of finitely many polynomials f1, . . . , fr ∈ K[x]:

A = V(f1, . . . , fr) :=
{
p ∈ An(K)

∣∣ f1(p) = · · · = fr(p) = 0
}
.

We then call f1 = 0 , . . . , fr = 0 a set of defining equations for A. Note
that everyK[x]-linear combination f =

∑r
i=1 gifi vanishes on A, too. We may,

thus, as well say that A is the vanishing locus V(I) of the ideal I = 〈f1, . . . , fr〉
formed by all these combinations:

A = V(I) :=
{
p ∈ An(K)

∣∣ f(p) = 0 for all f ∈ I
}
.

By Hilbert’s basis theorem, every ideal I of K[x] is of type I = 〈f1, . . . , fr〉
for some f1, . . . , fr ∈ K[x]. Its vanishing locus V(I) ⊂ An(K) is, thus, an al-
gebraic set (in fact, the vanishing locus of any given subset of K[x] is de-
fined as above and is an algebraic set). We have V(0) = An(K), V(1) = ∅,
V(I) ∪ V(J) = V(I ∩ J), and

⋂
λ V(Iλ) = V(

∑
λ Iλ). In particular, the alge-

braic subsets of An(K) satisfy the axioms for the closed sets of a topology on
An(K). This topology is called the Zariski topology. If X ⊂ An(K) is any
subset, then X will denote its closure in the Zariski topology.

Having associated an algebraic subset of An(K) to each ideal of K[x], we
now proceed in the other direction. Namely, if A ⊂ An(K) is an algebraic set,
we define the vanishing ideal of A to be

I(A) =
{
f ∈ K[x]

∣∣ f(p) = 0 for all p ∈ A
}
.

Vanishing ideals have a property not shared by all ideals: they are radical
ideals. Here, if I is an ideal of a ring R, its radical is the ideal

√
I :=

{
f ∈ R

∣∣ fm∈ I for some m ≥ 1
}
,

and we call I a radical ideal if I =
√
I .

Example 2.2. If f = c · fm1

1 · · · fmss is the factorization of a nonconstant poly-
nomial f ∈ K[x] into its irreducible coprime factors fi ∈ K[x], then

√
〈f〉 = 〈f1 · · · fs〉.

The product f1 · · · fs is uniquely determined by f up to nonzero scalars and is
called the square-free part of f . If allmi are 1, we say that f is square-free.
In this case, 〈f〉 is a radical ideal. ut
The correspondence between algebraic sets and ideals is made precise by
Hilbert’s Nullstellensatz which is fundamental to the geometry-algebra dic-
tionary:

Theorem 2.3 (Hilbert’s Nullstellensatz). Let A ⊂ An(K) be an alge-
braic set, and let I ⊂ K[x] be an ideal. If K is algebraically closed, then

A = V(I) =⇒ I(A) =
√
I.
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Corollary 2.4. If K is algebraically closed, then I and V define a one-to-one
correspondence

{
algebraic subsets of An(K)

} I

V

{
radical ideals of K[x]

}
.

Under this correspondence, the points of An(K) correspond to the maximal
ideals of K[x].

See, for instance, Decker and Schreyer (2006) for proofs.
Properties of an ideal I of a ring R can be expressed in terms of the

quotient ring R/I . For instance, I is a maximal ideal iff R/I is a field. More
generally, I is a prime ideal iff R/I is an integral domain. Finally, I is a radical
ideal iff R/I is reduced (that is, the only nilpotent element of R/I is zero).

If K is any field, and if A ⊂ An(K) is an algebraic set, the coordinate
ring of A is the reduced ring K[A] := K[x]/I(A). An element of K[A] is,
thus, the residue class f = f + I(A) of a polynomial f ∈ K[x]. We may also
think of it as a polynomial function on A, namely A→ K, p 7→ f(p). The
ring K[A] is an integral domain iff A is irreducible, that is, iff A cannot be
written as the union of two algebraic sets properly contained in A (otherwise,
A is reducible). If A is irreducible, it is also called an (affine) variety. The
empty set is not considered to be irreducible.

Example 2.5. (1) The algebraic subset of A3(R) with defining equations
x2z + y2z− z3 = x3+ xy2− xz2 = 0 is reducible since it decomposes into a
cone and a line:

V(x2z+ y2z− z3, x3+ xy2− xz2) = V(x2+ y2− z2) ∪ V(x, z) .

We draw a picture using SURF:

(2) The real algebraic set in Example 2.1 is irreducible (even if the picture
displayed seems to suggest that it is the union of a surface and a line). See
Exercise 2.34 and Lecture 7, Example 7.2. ut

If K is any field, and if I ⊂ K[x] is any ideal, we refer to K[x]/I as an affine
K-algebra, or simply as an affine ring. If I is a prime ideal, we refer to
K[x]/I as an affine domain. Note that every finitely generated K-algebra
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S arises as an affine ring. Indeed, choose finitely many generators s1, . . . , sm
for S, and represent S as the homomorphic image of the polynomial ring
K[y1, . . . , ym] by considering the map φ : K[y1, . . . , ym] � S, yi 7→ si. Then
S ∼= K[y1, . . . , ym]/ kerφ. If K is algebraically closed, and if S is reduced,
then S can be thought of as the coordinate ring of an affine algebraic set.
Indeed, if S is reduced, I := kerφ is a radical ideal. Hence, I(V(I)) = I by the
Nullstellensatz, and we may take the algebraic set V(I) ⊂ Am(K).

Just as affine algebraic sets are given by polynomials, the natural maps
between them are also given by polynomials: if A ⊂ An(K) and B ⊂ Am(K)
are algebraic sets, a map ϕ : A→ B is called a morphism, or a polynomial
map, if there exist polynomials f1, . . . , fm ∈ K[x1, . . . , xn] such that ϕ(p) =
(f1(p), . . . , fm(p)) for all p ∈ A. In this case, ϕ has an algebraic counterpart,
namely the K-algebra homomorphism

ϕ∗ : K[B] −→ K[A], yi + I(B) 7−→ fi + I(A) ,

where y1, . . . , ym are the coordinates on Am(K). If we think of the elements of
K[A] and K[B] as polynomial functions on A and on B, then ϕ∗ is obtained
by composing a polynomial function on B with ϕ to obtain a polynomial
function on A:

A
ϕ

B

K .

We are now ready to present a list of basic geometric questions and the alge-
braic problems arising from them. In formulating the problems, we suppose
that I and J are ideals of K[x], each given by a finite set of generators. Our
basic reference for the results behind our translation from geometry to algebra
and vice versa is Decker and Schreyer (2006).

We begin by recalling that V(I) ∩ V(J) = V(I + J). Thus, computing
the intersection V(I) ∩ V(J) just amounts to concatenating the given sets of
generators for I and J . It is not immediately clear, however, how to deal with
the union of algebraic sets.

• Compute the union V(I) ∪ V(J). Algebraically, find generators for the
intersection I ∩ J .

The Noetherian property of K[x] implies that every (nonempty) algebraic set
can be uniquely written as a finite union A = V1 ∪ · · · ∪Vs of varieties Vi such
that Vi 6⊂ Vj for i 6= j. The Vi are called the irreducible components of A.

• Compute the irreducible components of V(I). Algebraically, compute the
minimal associated primes of I .1 More generally, compute a primary de-
composition of I . More specially, compute the radical of I .

1 The algebraic problem and the geometric problem described here are only equiv-
alent if K is algebraically closed. See Silhol (1978) for a statement that holds over
arbitrary fields.
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Remark 2.6 (Primary Decomposition). A proper ideal Q of a ring R is
said to be primary if f, g ∈ R, fg ∈ Q and f 6∈ Q implies g ∈ √Q. In this
case, P =

√
Q is a prime ideal, and Q is also said to be a P -primary ideal.

Given any ideal I of R, a primary decomposition of I is an expression of
I as an intersection of finitely many primary ideals.

Suppose now that R is Noetherian. Then every proper ideal I of R has
a primary decomposition. We can always achieve that such a decomposition
I =

⋂r
i=1Qi is minimal. That is, the prime ideals Pi =

√
Qi are all distinct

and none of the Qi can be left out. In this case, the Pi are uniquely determined
by I and are referred to as the associated primes of I . If Pi is minimal among
P1, . . . , Pr with respect to inclusion, it is called a minimal associated prime
of I . The minimal associated primes of I are precisely the minimal prime ideals
containing I . Their intersection is equal to

√
I . Every primary ideal occuring

in a minimal primary decomposition of I is called a primary component of
I . The component is said to be isolated if its radical is a minimal associated
prime of I . Otherwise, it is said to be embedded. The isolated components
are uniquely determined by I , the others are far from being unique. See Atiyah
and MacDonald (1969) for details and proofs. ut

Example 2.7. If f = c · fm1

1 · · · fmss is the factorization of a nonconstant poly-
nomial f ∈ K[x] into its irreducible coprime factors fi ∈ K[x], then

〈f〉 = 〈fm1

1 〉 ∩ . . . ∩ 〈fmss 〉

is the (unique) minimal primary decomposition. ut

The names isolated and embedded come from geometry. If K is algebraically
closed, and if I is an ideal of R = K[x], the minimal associated primes of I
correspond to the irreducible components of V(I), while the other associated
primes correspond to irreducible algebraic sets contained (or “embedded”)
in the irreducible components. A more thorough geometric interpretation of
primary decomposition requires the language of schemes (see Eisenbud and
Harris (2000) for an introduction to schemes). For instance:

Example 2.8. Let I = 〈xy, y2〉 ⊂ K[x, y]. Then the minimal primary decom-
position I = 〈y〉 ∩ 〈x, y2〉 exhibits the affine scheme X = Spec(K[x, y]/I) as
the union of the x-axis and an embedded multiple point at the origin. Observe
that there are many different ways of writing X as such a union. For instance,
I = 〈y〉 ∩ 〈x, y〉2 is a minimal primary decomposition as well. ut
In these notes, we will, essentially, avoid to talk about schemes.

Remark 2.9 (The Role of the Coefficient Field). Because of Hilbert’s
Nullstellensatz, algebraic sets are usually studied over an algebraically closed
field such as the field of complex numbers. To visualize geometric objects,
however, the field of real numbers is chosen. And, to compute examples with
exact computer algebra methods, one typically works over a finite field, the
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field of rational numbers, or a number field (that is, a finite extension of Q
such as Q(

√
2) ∼= Q[t]/〈t2−2〉). See also Remark 4.12 in Lecture 4.

In this context, note that if K ⊂ L is a field extension, and if I is an
ideal of L[x] generated by polynomials f1, . . . , fr with coefficients in K, then
Buchberger’s algorithm applied to f1, . . . , fr yields Gröbner basis elements for
I which are also defined over K. For almost all geometric questions discussed
in this lecture, this allows us to study the vanishing locus of I in An(L) by
computations over K.

Note, however, that a prime ideal of K[x] needs not generate a prime
ideal of L[x]. From a computational point of view, this is reflected by the
fact that for computing a primary decomposition, algorithms for polynomial
factorization are needed in addition to Gröbner basis techniques (see Lec-
ture 7). In contrast to Buchberger’s algorithm, the algorithms for polynomial
factorization and their results are highly sensitive to the ground field.

With respect to dimension (see Remark 2.10 below), we point out that
if Q is a primary ideal of K[x] with radical P , then the associated primes
of QL[x] are precisely the prime ideals of L[x] intersecting K[x] in P and
having the same dimension as P (see Zariski and Samuel (1975–1976), Vol II,
Chapter VII, §11). See also Section 6.1.1 in Lecture 6.

With respect to radicals, note that if K is a perfect field, and if I ⊂ K[x]
is a radical ideal, then also IL[x] is a radical ideal (see again Zariski and
Samuel (1975–1976), Vol II, Chapter VII, §11). Recall that finite fields, fields
of characteristic zero, and algebraically closed fields are perfect. ut
In continuing our problem list, we now present problems for which the geo-
metric interpretation of the algebraic operations under consideration relies on
Hilbert’s Nullstellensatz. To emphasize this point, we mark such a problem
by the square � instead of the bullet •.
Convention. For each problem marked by a square, let K be an algebraically
closed extension field of K. If I ⊂ K[x] is an ideal, redefine V(I) to be the
vanishing locus of I in An := An(K). If A = V(I) ⊂ An, then I(A) is the
vanishing ideal of A in K[x] and K[A] = K[x]/I(A) is its coordinate ring. ut
In what follows, if not otherwise mentioned, I and J are again ideals of K[x],
each given by a finite set of generators.

The difference V(I) \V(J) need not be an algebraic set. That is, it may
not be Zariski closed. As an example, consider the punctured plane obtained
by removing the z-axis from the union of the xy-plane and the z-axis.
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� Compute the Zariski closure of V(I) \ V(J). That is, compute the union
of those irreducible components of V(I) which are not contained in V(J).
Algebraically, if I is radical, find generators for the ideal quotient of I
by J which is defined to be the ideal

I : J =
{
f ∈ K[x]

∣∣ fJ ⊂ I
}
.

If I is not necessarily radical, find generators for the saturation of I with
respect to J , that is, for the ideal

I : J∞ =
{
f ∈ R

∣∣ fJm⊂ I for some m ≥ 1
}

=
∞⋃
m=1

(I : Jm) .

� Solvability and ideal membership. Decide whether V(I) is empty.
Algebraically, decide whether 1 ∈ I . More generally, given any polynomial
f ∈ K[x], decide whether f ∈ I .

� Radical membership. Decide whether a given polynomial f ∈ K[x] van-
ishes on V(I). Algebraically, decide whether f is contained in

√
I .

� Compute the dimension of V(I). Algebraically, compute the Krull di-
mension of the affine ring K[x]/I . 2

The definition of the Krull dimension of a ring is somewhat reminiscent of
the fact that the dimension of a vector space over a field is the length of the
longest chain of proper subspaces:

Remark 2.10 (Dimension and Codimension). The Krull dimension
(or simply the dimension) of a ring R, denoted dimR, is the supremum of
the lengths d of chains

P0 ( P1 ( . . . ( Pd

of prime ideals of R. If I ( R is a proper ideal, its dimension, written dim I ,
is defined to be dimR/I . The codimension of I , written codim I , is defined
as follows. If I is a prime ideal, codim I is the supremum of lengths of chains
of prime ideals with largest ideal Pd = I . If I is not necessarily prime, codim I
is the minimum of the codimensions of the prime ideals containing I .

It follows from the definitions that dim I + codim I ≤ dimR. In general,
the inequality may well be strict (see Lecture 9, Example 9.31). Equality holds
if R is an affine domain over a field K. In fact, in this case, dimR equals the
transcendence degree of the quotient field of R over K, and this number is the
common length of all maximal chains of prime ideals of R (a chain of prime
ideals of R is maximal if it cannot be extended to a chain of greater length
by inserting a further prime ideal). In particular, dim An = dimK[x] = n.

2 The dimension of A = V(I) ⊂ An, written dim A, is defined to be the Krull
dimension of the coordinate ring K[A]. It follows from what we said in Remark
2.9 that K[A] and K[x]/I have the same Krull dimension.



44 2 Basic Computational Problems and Their Solution

An important result in dimension theory, proved using Nakayama’s lemma,
is Krull’s principal ideal theorem which asserts that if I = 〈f〉 ( R is a
principal ideal of a Noetherian ring R and P is a minimal associated prime of
I , then codimP ≤ 1. If f is a nonzerodivisor of R, each minimal associated
prime of 〈f〉 has precisely codimension 1. In particular, dimK[x]/〈f〉 = n− 1
for each nonconstant f ∈ K[x]. In geometric terms, the dimension (of each
irreducible component) of a hypersurface V(f) ⊂ An is n− 1.

If I ( K[x] is any proper ideal, then according to the definition of dimen-
sion, dimK[x]/I is the maximum dimension of a minimal associated prime of
I . Geometrically, the dimension of V(I) in An is the maximum dimension of
an irreducible component of V(I).

See Eisenbud (1995) for details and proofs. ut

� Compute the Zariski closure of the image of V(I) under the projection
An → An−k which sends (a1, . . . , an) to (ak+1, . . . , an). Algebraically, elim-
inate the first k variables from I , that is, compute the kth elimination
ideal Ik = I ∩K[xk+1, . . . , xn] .

� More generally, compute the Zariski closure of the image of V(I) under an
arbitrary morphism ϕ : V(I)→ Am. Algebraically, if ϕ is given by poly-
nomials f1, . . . , fm ∈ K[x1, . . . , xn], and if y1, . . . , ym are the coordinates
on Am, consider the ideal

J = IK[x,y] +
〈
f1 − y1, . . . , fm − ym

〉
⊂ K[x,y] .

Then J defines the graph of ϕ in An × Am = An+m, and

ϕ(V(I)) = V(J ∩K[y]) .

Remark 2.11. If K is not algebraically closed, and if VK refers to taking van-
ishing loci in An(K) and Am(K), the Zariski closure of ϕ(VK(I)) in Am(K)
may be strictly contained in VK(J ∩K[y]). Equality holds, however, if VK(I)
is Zariski dense in the vanishing locus of I in the affine n-space over the al-
gebraic closure of K. Note that if K is infinite, then this condition is ful-
filled for An(K) = VK(0). Thus, the above applies, in particular, to polyno-
mial parametrizations over infinite fields. Here, a polynomial parametriza-
tion of an algebraic set B ⊂ Am(K) is a morphism ϕ : An(K)→ B such that
ϕ(An(K)) = B. See Decker and Schreyer (2006) for rational parametrizations
(and for proofs). ut

If a parametrization ϕ : An(K)→ B exists, it allows one to study B in terms
of a simpler variety (namely An(K)). A more general concept in this direc-
tion is normalization. In these notes, we briefly discuss normalization from a
computational point of view, addressing the more experienced reader.

� Find the normalization Ṽ(I)→ V(I). Algebraically, if I is a radical ideal,
find for each (minimal) associated prime P of I the normalization of the
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affine domain K[x]/P . That is, find the integral closure of K[x]/P in the
quotient field of K[x]/P . More precisely, represent the integral closure as
an affine domain. As we will see in Lecture 7, this is possible due to a
finiteness result of Emmy Noether.

� Check whether V(I) is smooth. If not, study the behavior of V(I) at its
singular points.

Remark 2.12 (Smooth and Singular Points). Let A ⊂ An = An
(
K
)

be
an algebraic set, and let p = (a1, . . . , an) ∈ A be a point. We say that A is
smooth (or nonsingular) at p if the tangent space TpA to A at p has the
expected dimension, that is, if

dim TpA = dimpA .

Here, dimpA denotes the dimension of A at p, which is defined to be the
maximum dimension of the irreducible components of A through p. Further,
the tangent space to A at p is the linear variety

TpA = V(dpf | f ∈ I(A)) ⊂ An ,

where for each f ∈ K[x], we set

dpf =
n∑

i=1

∂f

∂xi
(p)(xi − ai) ∈ K[x] .

This definition extends the concept of tangent spaces from calculus (the par-
tial derivatives are defined in a purely formal way, mimicking the usual rules of
differentiation). Note that TpA is the union of all lines L = {p+ tv | t ∈ K},
v ∈ An, such that all polynomials f(p+ tv) ∈ K[t], f ∈ I(A), vanish with mul-
tiplicity ≥ 2 at 0.

1
p

A

TpA

If we regard TpAn = An as an abstract vector space with origin at p and
coordinates Xj = xj − aj , then TpA is a linear subspace of TpAn. In fact, if
I(A) = 〈f1, . . . , fr〉 ⊂ K[x], then TpA is the kernel of the linear map An → Ar

defined by the Jacobian matrix at p,




∂f1
∂x1

(p) . . . ∂f1∂xn
(p)

...
...

∂fr
∂x1

(p) . . . ∂fr∂xn
(p)


 .
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Note that the definition given above treats TpA externally, that is, in terms
of the ambient space An. For an intrinsic definition, consider the local ring
of A at p,

OA,p =

{
f

g

∣∣∣∣ f, g ∈ K[A], g(p) 6= 0

}

(formally, this is the localization ofK[A] at the maximal ideal of all polynomial
functions on A vanishing at p). Then K[A] 3 f = f + I(A) 7→ dpf |TpA induces

a natural isomorphism of K-vector spaces

mA,p/m
2
A,p

∼=−→ (TpA)∗ = HomK

(
TpA,K

)
,

where mA,p denotes the unique maximal ideal of OA,p,

mA,p =

{
f

g

∣∣∣∣ f, g ∈ K[A], g(p) 6= 0, f(p) = 0

}
.

On the other hand, making use of the fact that every maximal chain of prime
ideals of an affine domain R has length dimR, one can show that

dimpA = dimOA,p ,

and the condition on A to be smooth at p may be expressed intrinsically as

dimK mA,p/m
2
A,p = dimOA,p .

If this holds, we refer to OA,p as a regular local ring (it follows from Krull’s
principal ideal theorem that we always have dimK mA,p/m

2
A,p ≥ dimOA,p).

If A is smooth at p, we also say that p is a smooth (or nonsingular)
point of A. Otherwise, we say that A is singular at p, or that p is a singular
point of A, or that p is a singularity of A. We refer to the set Asing of all
singular points of A as the singular locus of A. If A = V1 ∪ · · · ∪ Vs is the
decomposition of A into its irreducible components, then

Asing =
⋃

i6=j

(Vi ∩ Vj) ∪
⋃

i

(Vi)sing.

Starting from this formula, one can show that Asing is an algebraic subset of
A such that A and Asing have no irreducible component in common. If Asing

is empty, then A is smooth. Otherwise, A is singular.
See, for instance, Decker and Schreyer (2006) for details and proofs. ut

How to compute the singular locus will be discussed in Section 2.2 later in
this lecture.

Remark 2.13 (Local Properties). Smoothness of A at p is a local prop-
erty in the sense that it remains unchanged if we replace A by any neighbor-
hood of p in A. Algebraically, this is reflected by the fact that smoothness at
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p is expressed in terms of the local ring OA,p. If p is the origin, we may write
OA,p as the quotient K[x]〈x〉/I(A) ·K[x]〈x〉. Here, if K is any field, we set

K[x]〈x〉 =

{
f

g

∣∣∣∣ f, g ∈ K[x], g 6∈ 〈x〉
}
.

From a computational point of view, we may formulate problems analogous
to those discussed so far in this lecture for ideals of K[x]〈x〉 instead of K[x].
In Lecture 9, we will give examples of how to interpret these problems geo-
metrically. ut
We now turn from the affine to the projective case.

In the affine plane, two lines either meet in a point, or are parallel. In
contrast, the projective plane is constructed such that two lines always
meet in a point. This is one example of how geometric statements
become simpler if we pass from affine to projective geometry.

Historically, the idea of the projective plane goes back to renais-
sance painters who introduced vanishing points on the horizon to allow
for perspective drawing:

P
H

We think of a vanishing point (or “point at infinity”) as the meet-
ing point of a class of parallel lines in the affine plane A2(R). The
projective plane P2(R) is obtained from A2(R) by adding one point
at infinity for each such class. A projective line in P2(R) is a line
L ⊂ A2(R) together with the point at infinity in which the lines par-
allel to L meet. Further, the horizon, that is, the set of all points at
infinity, is a projective line in P2(R), the line at infinity.

To formalize the idea of the projective plane, we observe that each
class of parallel lines in A2(R) is represented by a unique line through
the origin of A2(R). This fits nicely with stereographic projection
which allows one to identify the set of lines through the projection
center with the real line together with a point at infinity:

(0, 0)

L

L∞

L′

A1(R)
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If we define the abstract projective line to be the set

P1(R) =
{
lines through the origin in A2(R)

}

and think of it as the line at infinity, we may write

P2(R) = A2(R) ∪ P1(R) .

Formally, the definition of P2(R) is completely analogous to the
definition of P1(R). To see this, we identify A2(R) with the plane
V(z+1) ⊂ A3(R) and P1(R) with the set of lines in the xy-plane V(z)
through the origin. Then we may regard P2(R) as the set of all lines
in A3(R) through the origin:

V(z)

V(z+1) = A2(R)

L

Definition 2.14. If K is any field, the projective n-space over K is de-
fined to be the set

Pn(K) =
{
lines through the origin in An+1(K)

}
. ut

Each line L through the origin 0 ∈ An+1(K) may be represented by a point
(a0, . . . , an) ∈ L \ {0}. We write (a0 : . . . : an) for the corresponding point of
Pn(K) and call a0, . . . , an a set of homogeneous coordinates for this point.
Here, the colons indicate that (a0, . . . , an) is determined up to a nonzero scalar
multiple only. This representation allows us to think of Pn(K) as the quotient
of An+1(K) \ {0} modulo the equivalence relation defined by (a0, . . . , an) ∼
(b0, . . . , bn) iff (a0, . . . , an) = λ(b0, . . . , bn) for some nonzero scalar λ.

Given a polynomial f ∈ K[x0, . . . , xn], the value f(a0, . . . , an) depends on
the choice of representative of the point p = (a0 : . . . : an) ∈ Pn(K) and can
therefore not be called the value of f at p. Note, however, that if f is homo-
geneous, then f(λx0, . . . , λxn) = λdeg(f)f(x0, . . . , xn) for all nonzero scalars
λ and, thus,

f(a0, . . . , an) = 0 ⇐⇒ ∀ λ ∈ K \ {0} : f(λa0, . . . , λan) = 0 .
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As a consequence, f has a well-defined vanishing locus V(f) in Pn(K). If f is
nonconstant, we refer to V(f) as a hypersurface in Pn(K).

A subset A ⊂ Pn(K) is a (projective) algebraic set if it is the com-
mon vanishing locus of finitely many homogeneous polynomials f1, . . . , fr ∈
K[x0, . . . , xn]:

A = V(f1, . . . , fr) :=
{
p ∈ An(K)

∣∣ f1(p) = · · · = fr(p) = 0
}
.

We then call f1 = 0 , . . ., fr = 0 a set of defining equations for A.
If f is a homogeneous linear polynomial, we may identify the algebraic set

V(f) ⊂ Pn(K) with Pn−1(K) and its complement Pn(K) \V(f) with An(K):

Pn(K) = An(K) ∪ Pn−1(K) .

We refer to Pn(K) \V(f) as an affine chart of Pn and to Pn−1(K) as the
corresponding hyperplane at infinity. For instance, if f = xi, we identify

(a0 : · · · : an)←→





(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . .

an
ai

)
∈ An(K) , if ai 6= 0 ,

(a0 : . . . : ai−1 : ai+1 : . . . : an) ∈ Pn−1(K) , if ai = 0 .

Remark 2.15 (The Projective Geometry-Algebra Dictionary). The
geometry-algebra dictionary relates projective algebraic subsets of projective
n-space Pn(K) to homogeneous ideals ofK[x0, . . . , xn] via maps I and V essen-
tially defined as in the affine case. If K is algebraically closed, the projective
version of the Nullstellensatz implies that there is a one-to-one correspondence

{
projective algebraic
subsets of Pn(K)

}
I

V





homogeneous radical ideals
of K[x0, . . . , xn]

not equal to 〈x0, . . . , xn〉



 .

Since 〈x0, . . . , xn〉 does not appear in this correspondence, it is called the
irrelevant ideal.

The homogeneous coordinate ring of a projective algebraic subset
A ⊂ Pn(K) is the reduced graded K-algebra

K[A] := K[x0, . . . , xn]/I(A).

In terms of affine algebraic sets, this is the coordinate ring of the affine cone
over A. Here, if A ⊂ Pn(K) is the vanishing locus of a homogeneous ideal
I ⊂ K[x0, . . . , xn], the affine cone over A is the vanishing locus of I in
An+1(K):
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0

V(I |x0=1)

In the projective case, we may ask questions analogous to those formulated in
the affine case. For most of these questions, we consider as in the affine case
an algebraically closed extension field K of K and redefine V(I) to be the
vanishing locus of I in Pn := Pn(K). Further, if A = V(I) ⊂ Pn, then I(A)
is the vanishing ideal of A in K[x0, . . . , xn] and K[x0, . . . , xn]/I(A) its homo-
geneous coordinate ring. The computational answers given to our questions
in what follows are valid in the projective case as well. Indeed, Buchberger’s
algorithm applied to homogeneous polynomials yields Gröbner basis elements
which are homogeneous, too.

The ideals we are concerned with in explicit computations are often not
radical. For instance, if A = V(I) ⊂ Pn(K) is a (nonempty) projective alge-
braic set, given by a homogeneous ideal I ⊂ K[x0, . . . , xn], then I might have
an embedded 〈x0, . . . , xn〉-primary component (which depends on the choice
of a primary decomposition of I). Such a component defines a multiple struc-
ture on the vertex of the affine cone over A; it does not contribute to defining
A itself. Computing the saturation I : 〈x0, . . . , xn〉∞, we get a simpler ideal
defining A. This may not yet be a radical ideal, but at least it does not have
an 〈x0, . . . , xn〉-primary component.

Though we will not need this in what follows, let us mention that there is a
one-to-one correspondence between homogeneous ideals I ofK[x0, . . . , xn] sat-
isfying I = I : 〈x0, . . . , xn〉∞ and closed subschemes of Pn(K) (see Hartshorne
(1977), Chapter II, Exercise 5.10). ut
One further problem arises from adding points at infinity to affine alge-
braic sets. To describe this problem, we identify An(K) with the affine chart
Pn(K) \ V(x0) of Pn(K), referring to its complement V(x0) in Pn(K) as the
hyperplane at infinity. Given an affine algebraic set A ⊂ An(K), we are
interested in the projective closure of A, which is defined to be the smallest
projective algebraic subset of Pn(K) containing A.
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� Given generators for an ideal I of K[x1, . . . , xn], compute the projective
closure of the affine algebraic set defined by I . Algebraically, compute the
homogenization Ihom of I with respect to the slack variable x0.

Here, Ihom ⊂ K[x0, . . . , xn] is the ideal generated by the elements

fhom := xdeg f
0 · f

(
x1

x0
, . . . ,

xn
x0

)
,

f ∈ I (we refer to fhom as the homogenization of f with respect to x0).

2.2 Basic Applications of Gröbner Bases

All problems posed in the preceeding section can be settled using Gröbner ba-
sis techniques (for radicals and primary decomposition, additional techniques
are needed). How to compute in the local ring K[x]〈x〉, for instance, will be
explained in Lecture 9. For radicals and primary decomposition, we refer to
Lecture 7. In the same lecture, we will discuss normalization. Solutions to the
other problems will be provided in this section (see Lecture 3, Section 3.6 for
a detailed discussion of the corresponding SINGULAR commands).

To begin with, observe that Remark 1.40 settles the ideal membership
problem. More generally, it settles the submodule membership problem:

Problem 2.16 (Submodule Membership). Given a free K[x]-module F
with a fixed basis and nonzero elements f, f1, . . . , fr ∈ F , decide whether

f ∈ I := 〈f1, . . . , fr〉 ⊂ F .

[If so, express f as a K[x]-linear combination f = g1f1 + . . .+ grfr.]

Solution. Compute a Gröbner basis f1, . . . , fr, fr+1, . . . , fr′ for I using Buch-
berger’s algorithm and a standard expression for f in terms of f1, . . . , fr′

with remainder h. If h = 0, then f ∈ I . [In this case, for k = r′, . . . , r + 1,
successively do the following: in the standard expression, replace fk by the
expression for fk in terms of f1, . . . , fk−1 given by the syzygy leading to fk
in Buchberger’s test (this requires the relevant syzygies to be stored during
Buchberger’s test).] ut

Example 2.17. Consider the lexicographic Gröbner basis

f1 = xy − y , f2 = −x+ y2, f3 = y3− y

for the ideal I = 〈f1, f2〉 of K[x, y] computed in Lecture 1, Example 1.46. Let

f = x2y − xy + y3 − y .

Then f = x · f1 + 1 · f3 is a standard expression for f in terms of f1, f2, f3 with
remainder 0, so f ∈ I . Reconsidering the computation in Example 1.46, we
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see that we have to substitute y · f2 + 1 · f1 for f3 in the standard expression.
This gives

f = (x + 1) · f1 + y · f2. ut

As already explained, solvability can be decided via ideal membership.
Similarly for radical membership: if an ideal I ⊂ K[x] and a polynomial
f ∈ K[x] are given, then

f ∈
√
I ⇐⇒ 1 ∈ 〈I, tf − 1〉 ⊂ K[x, t] ,

where t is a slack variable.
One way of computing intersections of ideals and ideal quotients

also asks for involving rings with extra variables (see Cox, Little, and O’Shea
(1997)). Alternatively, proceed as follows. Given ideals I = 〈f1, . . . , fr〉 and
J = 〈g1, . . . , gs〉 of K[x], compute the syzygies on the columns of the matrix

(
1 f1 . . . fr 0 . . . 0
1 0 . . . 0 g1 . . . gs

)
.

The entries of the first row of the resulting syzygy matrix generate I ∩ J . In
the same way, we obtain a generating set for the ideal quotient

I : J =
{
f ∈ K[x]

∣∣ fJ ⊂ I
}

from the matrix 


g1 f1 . . . fr 0 . . . . . . 0
g2 0 . . . 0 f1 . . . fr 0 . . . 0
...

. . .

gs 0 . . . . . . 0 f1 . . . fr


 .

Note that the intersection of two submodules I, J of a free K[x]-module
F and their submodule quotient I : J =

{
f ∈ K[x]

∣∣ fJ ⊂ I
}
⊂ K[x] are

obtained by similar recipes.
Since I : Jm = (I : Jm−1) : J , the saturation

I : J∞ =

∞⋃

m=1

(I : Jm)

can be computed by iteration. Indeed, the ascending chain

I : J ⊂ I : J2 ⊂ · · · ⊂ I : Jm ⊂ . . .
is eventually stationary since K[x] is Noetherian.

If K[x]/I is a graded affine ring, we already know that its Hilbert series
HK[x]/I(t) and its Hilbert polynomial PK[x]/I can be computed via Gröbner
bases (see Macaulay’s Theorem 1.35 and Remark 1.36 in Lecture 1). This gives
us one way of computing the dimension of homogeneous ideals. Indeed,

dimK[x]/I = degPK[x]/I + 1 (2.1)

(see Bruns and Herzog (1993) or Eisenbud (1995)).
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Remark-Definition 2.18. In algebraic geometry, we make use of the Hilbert
polynomial to define or rediscover numerical invariants of a projective al-
gebraic set and its embedding. For this purpose, if A ⊂ Pn is a projective al-
gebraic set with homogeneous coordinate ring K[A] = K[x0, . . . , xn]/I(A), we
define the Hilbert polynomial of A to be the polynomial PA(t) = PK[A](t).

If d is the degree of PA(t), the Krull dimension of K[A] equals d+ 1 (see equa-
tion (2.1) above). In geometric terms, the dimension of the affine cone over A
is d+ 1. The dimension of A itself is defined to be dimA = d. The degree
of A is defined to be d! times the leading coefficient of PA(t). Geometrically,
the degree of A is the number of points in which A meets a sufficiently general
linear subspace of Pn of complementary dimension n − d (see, for instance,
Decker and Schreyer (2006)). Further, the arithmetic genus of A is defined
to be pa(A) = (−1)d

(
PA(0)− 1

)
. ut

Example 2.19. The Hilbert polynomial of the twisted cubic curve C ⊂ P3 is
PC(t) = 3t+ 1 (see Lecture 1, Example 1.25). In particular, C has dimension 1
and degree 3. This justifies the name cubic curve. Moreover, C has arithmetic
genus 0. ut
In Lecture 6, Section 6.1.1, we will discuss an alternative way of computing
dimension which applies to nonhomogeneous ideals, too. As for the Hilbert
polynomial, Gröbner bases are used to reduce the general problem to a prob-
lem concerning monomial ideals. The SINGULAR command dim is based on this
approach.

We now turn to the computation of the singular locus of an algebraic set.
For this, we need the following notation. If I ( K[x] is a proper ideal, we
say that I has pure codimension c if all its minimal associated primes have
codimension c. Also, I is called unmixed if it has no embedded components.
In many cases of interest, the following criterion allows one to compute the
singular locus (and to check that the given ideal is radical):

Theorem 2.20 (Jacobian Criterion). Let K be a field with algebraically
closed extension field K, let I = 〈f1, . . . , fr〉 ( K[x] be an ideal of pure codi-
mension c, and let A = V(I) be the vanishing locus of I in An = An(K). If
J ⊂ K[x] is the ideal generated by the c× c minors of the Jacobian matrix




∂f1
∂x1

. . . ∂f1∂xn
...

...
∂fr
∂x1

. . . ∂fr∂xn


 ,

then:

(1) The vanishing locus of J + I in An contains the singular locus Asing.
(2) If 1 ∈ J + I, then A is smooth and I K[x] = I(A).
(3) If 1 6∈ J + I, suppose in addition that I is unmixed (altogether, we ask

that all associated primes of I are minimal and of codimension c). If
codim(J + I) > codim I, then V(J + I) = Asing and I K[x] = I(A).
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See Decker and Schreyer (2006), Chapter 4 for a proof and Eisenbud (1995),
Section 16.6 and Exercise 11.10 for an algebraic version of the criterion.

The following examples show that the assumptions made in the Jacobian
criterion are really needed (in each example, J denotes the respective ideal
defined in the criterion).

Example 2.21. (1) Let I ⊂ K[x, y, z] be the ideal generated by f1 = z2− z
and f2 = xyz. Then I = 〈z〉 ∩ 〈z − 1, x〉 ∩ 〈z − 1, y〉 has codimension 1, but is
not of pure codimension. We have 1 = (2z − 1) ∂f1∂z − 4f1 ∈ J + I . However,
A = V(I) ⊂ A3 is not smooth. In fact, A is the union of a plane and a pair of
lines intersecting in a point which is necessarily a singular point of A:

(2) Applying the Jacobian criterion to the mixed ideal I = 〈xy, y2〉, we get
J + I = 〈x, y〉. In contrast, the x-axis V(I) ⊂ A2 is smooth.

(3) The ideal I = 〈xy2〉 ⊂ K[x, y] is unmixed and of pure codimension 1. Its
vanishing locus A = V(I) ⊂ A2 is the union of the coordinate axes. Thus, A
is singular precisely at the origin. In contrast, the algebraic set defined by the
ideal J + I = 〈xy, y2〉 in A2 is the whole x-axis (note that codim(J + I) =
codim I = 1). Scheme-theoretically, I defines the y-axis together with the
x-axis doubled. ut

Remark 2.22. If I ( K[x] is any proper ideal, the singular points of V(I) ⊂
An arise as the singular points of each irreducible component of V(I) together
with the points of intersection of any two of the components (see Remark 2.12).
Thus, if the Jacobian criterion does not apply directly to I , we can combine
it with some of the more expensive decomposition techniques discussed in
Lecture 7. Indeed, since the Jacobian criterion applies (in particular) to prime
ideals, and since we already know how to compute the sum and intersection
of ideals, the computation of the singular locus of V(I) can be reduced to the
computation of the minimal associated primes of I . Alternatively, compute
an equidimensional decomposition of the radical of I first. ut

Remark 2.23 (Jacobian Criterion in the Projective Case). Let I be a
proper homogeneous ideal of K[x0, . . . , xn], and let A = V(I) be the vanishing
locus of I in Pn = Pn(K). Suppose that I is of pure codimension c and let
J be the corresponding ideal of minors as in Theorem 2.20. Further, suppose
that 1 6∈ J + I (otherwise, A is a linear subspace of Pn). Applying Theorem
2.20 to the affine cone over A, we get:

(1) If codim(J + I) = n+ 1, then A is smooth.

(2) If all associated primes of I are minimal and of codimension c, and if
codim(J + I) > codim I , then J + I defines the singular locus of A.

Remark 2.22 applies accordingly. ut



2.2 Basic Applications of Gröbner Bases 55

Determinantal ideals of “expected” codimension provide interesting ex-
amples of ideals which are unmixed and pure codimensional (for instance,
consider the ideal defining the twisted cubic curve). To state a precise result,
let M be a p × q matrix with entries in K[x], and let Ik(M) ⊂ K[x] be the
ideal generated by the k×k minors of M , for some p, q, k. Suppose that Ik(M)
is a proper ideal of K[x].

Proposition 2.24. The codimension of every minimal associated prime of
Ik(M) and, thus, of Ik(M) itself is at most (p− k + 1)(q − k + 1).

Theorem 2.25. If the codimension of Ik(M) is exactly (p−k+1)(q−k+1),
then K[x]/Ik(M) is a Cohen-Macaulay ring.

We will study Cohen-Macaulay rings in Lecture 5. In this section, we need
the corollary below which follows from Theorem 2.25 by applying Theorem
5.41 to the zero ideal of K[x]/Ik(M).

Corollary 2.26 (Unmixedness Theorem). If the codimension of Ik(M)
is exactly (p − k + 1)(q − k + 1), then all associated primes of Ik(M) are
minimal and have this codimension.

We refer to Eisenbud (1995), Section 18.5 and the references cited there for
details and proofs. See also Arbarello et al (1985), Chapter II.

Example 2.27. For the following computation in SINGULAR, we choose K = Q
as our coefficient field. In our geometric interpretation, however, we deal with
curves in P3 = P3(C).

To begin with, we define a ring R implementing Q[x0, . . . , x3] and a 4× 1
matrix A with entries in R:

> ring R = 0, x(0..3), dp;

> matrix A[4][1] = x(0),x(1),0,0;

Next, we randomly create a 4× 2 matrix of linear forms in R. For this, we
load the SINGULAR library random.lib and use its command randommat (see
Lecture 3 for libraries):

> LIB "random.lib"; // loads other libraries incl. matrix.lib

> // and elim.lib, too

> matrix B = randommat(4,2,maxideal(1),100);

(note that maxideal(k) returns the monomial generators for the k-th power
of the homogeneous maximal ideal of the ring R). Concatenating the matrices
B and A, we get a 4× 3 matrix M of linear forms:

> matrix M = concat(B,A); // from matrix.lib

> print(M);

10*x(0)+62*x(1)-33*x(2)+26*x(3), 42*x(0)-12*x(1)-26*x(2)-65*x(3), x(0),

98*x(0)+71*x(1)+36*x(2)+79*x(3), 22*x(0)+84*x(1)-8*x(2)-55*x(3), x(1),

-82*x(0)-8*x(1)+33*x(2)+56*x(3), -29*x(0)+43*x(1)+46*x(2)+57*x(3),0,

-60*x(0)+60*x(1)-90*x(2)-78*x(3),37*x(0)+93*x(1)+100*x(2)-50*x(3),0
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We create the ideal I which is generated by the maximal minors of M and
compute its codimension (applied to a ring R, the SINGULAR command nvars

returns the number of variables in R):

> ideal I = minor(M,3);

> ideal GI = groebner(I);

> int codimI = nvars(R) - dim(GI); codimI;

2

So I has the expected codimension 2 = (4 − 3 + 1)(3 − 3 + 1). It is, thus,
unmixed and of pure codimension 2 by Corollary 2.26. We check that the
assumption on the codimension in the Jacobian criterion is satisfied:

> ideal singI = groebner(minor(jacob(GI),codimI) + I);

> nvars(R) - dim(singI);

3

Applying the Jacobian criterion and summing up, we see that the vanishing
locus C of I in P3 is a curve, that I generates the vanishing ideal of C in
C[x0, . . . , x3], and that singI defines the singular locus of C. We visualize
the number of generators of singI and their degrees by displaying the Betti
diagram of singI (see Remarks 1.20 and 3.34 for the betti command):

> print(betti(singI,0),"betti");

0 1

------------------

0: 1 -

1: - -

2: - 4

3: - 20

------------------

total: 1 24

As it turns out, singI comes with an 〈x0, . . . , x3〉-primary component. We
get rid of this component by saturating singI with respect to 〈x0, . . . , x3〉:

> ideal singI_sat = sat(singI,maxideal(1))[1]; // from elim.lib

> print(betti(singI_sat,0),"betti");

0 1

------------------

0: 1 2

1: - 1

------------------

total: 1 3

> singI_sat;

singI_sat[1]=x(1)

singI_sat[2]=x(0)

singI_sat[3]=3297*x(2)^2-2680*x(2)*x(3)-5023*x(3)^2
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We read from the output that C has two singular points which lie on the
line L = V(x0, x1). In fact, L is a component of C. We check this via ideal
membership (see Problem 2.16 and Lecture 3, Section 3.6.1):

> ideal IL = x(0),x(1);

> reduce(I,groebner(IL),1);

_[1]=0

_[2]=0

_[3]=0

_[4]=0

By saturating with respect to IL, we get an ideal defining the components
of C other than L (in fact, since I is radical, this amounts to just one ideal
quotient computation):

> ideal I’ = sat(I,IL)[1]; // result is a Groebner basis

> degree(GI);

// dimension (proj.) = 1

// degree (proj.) = 6

> degree(I’);

// dimension (proj.) = 1

// degree (proj.) = 5

Since I is a radical ideal of pure codimension 2, the same holds for I’ (in
fact, I’ is the intersection of the (minimal) associated primes of I other than
〈x0, x1〉). We may, thus, use the Jacobian criterion to check that C ′ is smooth:

> int codimI’ = nvars(R)-dim(I’);

> ideal singI’ = minor(jacob(I’),codimI’) + I’;

> nvars(R) - dim(groebner(singI’));

4

Since C ′ and L are smooth, the two singular points of C = C ′ ∪L must arise
as intersection points of C ′ and L. Thus, L is a secant line to C ′. ut
Buchberger’s algorithm requires the choice of a global monomial order. Its
performance and the resulting Gröbner basis depend on the chosen order.
For the type of computations done so far in these lectures, in principle any
Gröbner basis and, thus, any global monomial order will do. With respect to
efficiency, however, the degree reverse lexicographic order is usually preferable
(see Bayer and Stillman (1987) for some remarks in this direction).

The applications discussed next rely on Gröbner bases whose computation
requires the choice of special monomial orders.

Elimination. Let s ⊂ x = {x1, . . . , xn} be a subset of variables, and let I
be an ideal of K[x]. We explain how to eliminate the variables in s from I ,
that is, how to compute the elimination ideal I ∩K[x\s].
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Definition 2.28. A monomial order > on K[x] is called an elimination
order with respect to s (the variables in s) if the following implication holds
for all f ∈ K[x]:

L(f) ∈ K[x\s] =⇒ f ∈ K[x\s] .

In this case, we also say that > has the elimination property with respect
to s (the variables in s). ut

Example 2.29. Let s ⊂ x, and let t := x\s. Moreover, let >s on K[s] and >t

on K[t] be monomial orders. The product order (or block order) > =
(>s, >t) on K[x] is defined by

sαtγ > sβtδ :⇐⇒ sα >s sβ or (sα = sβ and tγ >t tδ).

It is a monomial order which has the elimination property with respect to s

iff >s is global, and which is global iff >s and >t are global. A particular
example of a product order is the lexicographic order on K[x] which is an
elimination order with respect to each initial set of variables s = {x1, . . . , xk},
k = 1, . . . , n. ut

Proposition 2.30. Let > be a global elimination order on K[x] with respect to
s ⊂ x, and let G be a Gröbner basis for I with respect to >. Then G ∩K[x\s]
is a Gröbner basis for I ∩K[x\s] with respect to the restriction of > to
K[x\s].

Given a K-algebra homomorphism

φ : K[y] = K[y1, . . . , ym] −→ K[x]/I , yi 7−→ f i := fi + I,

its kernel can be computed via elimination:

Proposition 2.31 (Kernel of a Ring Map). Let J be the ideal

J = IK[x,y] +
〈
f1− y1, . . . , fm − ym

〉
⊂ K[x,y].

Then
kerφ = J ∩K[y].

Computing kerφ means to compute the K-algebra relations on f 1, . . . , fm
and, thus, to represent the subalgebra K

[
f1, . . . , fm

]
of K[x]/I as an affine

ring: K
[
f1, . . . , fm

] ∼= K[y]/ kerφ. Geometrically, as already pointed out,
computing kernels of ring maps means to compute the Zariski closure of
the image of an algebraic set under a morphism. Note that in contrast
to the case of affine algebraic sets, the image of a projective algebraic set
under a morphism is always Zariski closed.

Example 2.32. We use SINGULAR to compute defining equations for the twisted
cubic curve C ⊂ P3(R) via its parametrization. Algebraically, this amounts to
computing the kernel of the ring map
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Q[w, x, y, z]→ Q[s, t], w 7→ s3, x 7→ s2t, y 7→ st2, z 7→ t3 ,

and, thus, to eliminate the variables s, t from the ideal

〈w − s3, x− s2t, y − st2, z − t3〉 ⊂ Q[s, t, w, x, y, z] .

For this, we set up a ring with a block order having the desired elimination
property (see Lecture 3 for more on implementing monomial orders):

> ring P1P3 = 0, (s,t,w,x,y,z), (dp(2),dp(4));

> ideal J = w-s3, x-s2t, y-st2, z-t3;

> J = groebner(J);

> J;

J[1]=y2-xz

J[2]=xy-wz

J[3]=x2-wy

J[4]=sz-ty

[...]

J[10]=s3-w

The first three Gröbner basis elements do not depend on s and t, they define
C. To compute these elements, we may alternatively use the built-in command
preimage which, hiding the elimination step, computes the desired kernel for
us (see Lecture 3, Section 3.6.3):

> ring P1 = 0, (s,t), dp;

> ideal ZERO;

> ideal PARA = s3, s2t, st2, t3;

> ring P3 = 0, (w,x,y,z), dp;

> ideal IC = preimage(P1,PARA,ZERO);

> print(IC);

y2-xz,

xy-wz,

x2-wy

The point p = (1 : 0 : 1 : 0) ∈ P3(R) does not lie on C:

> ideal P = w-y, x, z;

> size(reduce(IC,groebner(P),1)); // ideal membership test

2

By projecting C from p, we obtain, thus, a morphism π : C → P2(R). This
morphism is defined by the linear forms w−y, x, z defining p. We compute
the image π(C), that is, the kernel of the ring map

Q[a, b, c]→ Q[w, x, y, z]/〈y2−xz, xy−wz, x2−wy〉,
a 7→ w − y, b 7→ x, c 7→ z ,

where a, b, c are the homogenous coordinates on P2(R):
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> ring P2 = 0, (a,b,c), dp;

> ideal PIC = preimage(P3,P,IC);

> PIC;

PIC[1]=b3-a2c-2b2c+bc2

The projected curve is a nodal cubic curve which we visualize in the affine
chart A2(R) ∼= P2(R) \V(c). For this, we use SURF:

-

6b

a

Proceeding similarly for the point q = (0 : 1 : 0 : 0), we get a cuspidal cubic
curve (see Lecture 3 for the setring command used below):

> setring P3;

> ideal Q = w, y, z;

> size(reduce(IC,groebner(Q),1)); // check: Q not on C

1

> setring P2;

> ideal QIC = preimage(P3,Q,IC);

> QIC;

QIC[1]=b3-ac2

-

6b

c

ut

Example 2.33. Consider the map

S2 −→ A3(R) , (x1, x2, x3) 7−→ (x1x2, x1x3, x2x3),

from the real 2-sphere

S2 = V(x2
1 + x2

2 + x2
3 − 1) ⊂ A3(R)

to the real 3-space. We refer to (the closure of) its image as the Steiner Ro-
man surface. Using the preimage command, we compute a defining equation
for this surface:
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> ring S2 = 0, x(1..3), dp;

> ideal SPHERE = x(1)^2+x(2)^2+x(3)^2-1;

> ideal MAP = x(1)*x(2), x(1)*x(3), x(2)*x(3);

> ring R3 = 0, y(1..3), dp;

> ideal ST = preimage(S2, MAP, SPHERE);

> print(ST);

y(1)^2*y(2)^2+y(1)^2*y(3)^2+y(2)^2*y(3)^2-y(1)*y(2)*y(3)

To visualize the Steiner Roman surface, we again use SURF:

Note that the Steiner Roman surface is irreducible since S2 is irreducible.
What points in the picture are not in the image of S2? ut
Exercise 2.34. Show that the real algebraic set in Example 2.1 is the closure
of the image of the map S2 → A3(R), (x1, x2, x3) 7→ (x1, x2, x2x3). Conclude
that this algebraic set is irreducible. ut
Finally, we explain how to compute the homogenization of an ideal with re-
spect to an extra variable (in general, as we will see in Exercise 2.2, it is not
enough to just homogenize the given generators).

Proposition 2.35. Let I be an ideal of K[x] = K[x1, . . . , xn]. Pick a global
monomial order > on K[x] which is degree compatible, that is, which
satisfies (deg xα > deg xβ =⇒ xα > xβ). If x0 is an extra variable, set

xαxd0 >hom xβxe0 :⇐⇒ xα > xβ or (xα = xβ and d > e).

Then >hom is a global monomial order on K[x0, x1, . . . , xn] (in fact, it is a
product order combining two global monomial orders). Further, the following
holds if we homogenize with respect to x0: if f1, . . . , fr form a Gröbner basis
for I with respect to >, the homogenized polynomials f hom

1 , . . . , fhom
r form a

Gröbner basis for the homogenized ideal Ihom with respect to >hom.

Remark 2.36 (Further Reading). For more details and proofs of the re-
sults presented in this lecture, see Cox, Little, and O’Shea (1997), Decker and
Schreyer (2006), Eisenbud (1995), Greuel and Pfister (2002), and Matsumura
(1986).




