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Random Fluctuations

1.1 Introduction

The sensitivity and accuracy of any detection system is limited by random
fluctuations that always accompany the measurement. It also sets a limit
to the minimum detectable signal. These random fluctuations or disturbing
signals, called noise, can be divided into two categories depending on their na-
ture. A part is not inherently connected to the detection principle but to the
environment. Instrumental imperfections, atmospheric turbulence, vibrating
mechanical constructions, 50 or 60Hz and higher harmonics from the power
line, radio and television stations, building vibrations, and temperature fluc-
tuations all fall in this category. These environmental disturbances are in
most cases occasional, peculiar to the surrounding, and not statistical. They
can in principle be reduced to arbitrarily small values, but in practice, they
can be very annoying and difficult to eliminate entirely. Reductions are often
obtained by shielding or instrumental improvements.

The other category is fundamental from nature and inherently connected
to the physical process that underlies the detection. For instance, through any
conductor there is always a small fluctuating current due to the random ther-
mal motion of the free electrons of this conductor. Other typical fluctuations
arise from the fact that electrical currents are built up of irreducible elemen-
tary units, the charge of an electron. Similar effects occur for radiation as a
flow of photons with discrete values. For this reason also thermal background
radiation contains fluctuations and the temperature of a body is essentially
not constant. Even in systems that filter out electronically the contributions
of thermal background, a part of their fluctuations, are still present and mixed
with the signal. The amount of this noise depends on fundamental physical
quantities and sets the ultimate limit to the minimum detectable signal, which
cannot be surpassed. Modern measuring instruments work close to their ulti-
mate limits. Furthermore to exploit the sensitivity of a detection system, we
must also ascertain the fundamental nature of the applied physical processes
on which the detection is based.
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For this reason we discuss in this chapter the fundamental aspects of noise.
It will be done for thermal background radiation and for noise connected with
the elementary units of radiation and charge carriers of the detection circuit.
In detector circuits the electrons are not only driven by the incident radiation
but also by random thermal motion. Further, the circuit currents from the
signal of various detection systems have fluctuations due to the discreteness
of the charge carriers and their random time distribution. Photoconductors
produce additional noise by the random thermal process of generating carriers.
Although various types of noise are fundamentally present in any detector
system the interesting question is how can these contributions be minimized.
For this purpose the physical nature of various noise sources will be treated in
a qualitative and quantitative way. It will be done for background radiation,
thermal electron motion present in any conductor, current fluctuations due to
the discreteness of the electron charge and random photon emission in diodes,
and for the generation and recombination processes in photoconductors. The
derivation of the spectrum density and of the mean square fluctuations of
the noise current turns out to be most relevant to detection systems. The
total noise power still present in the final signal power of a detector system
is then proportional to the frequency bandwidth of the system. The ratio of
the output signal power to this noise power will be considered as the quality
factor for the detection.

1.2 Thermal Noise of Resistance

Due to random motion of the electrons there are always fluctuations of the
local charge density in any element of an electronic circuit. These charge den-
sities cause voltage gradients which drive on their turn fluctuating currents.
The average values of these fluctuations over large periods are, of course,
zero, but this is not the case for a limited period. Intuitively one may say the
smaller this time period or the larger the frequency bandwidth of the obser-
vation, the larger the fluctuations. The smallest period or upper frequency
limit of this increasing thermal noise is set by the electron collision frequency
which is roughly 1013 Hz. The thermal noise of conductors is the so-called
Johnson noise. A quantitative treatment of this thermal noise can be carried
out in different ways [1–3]. It is found that the thermal noise power of a re-
sistive element with real impedance does not depend on resistivity, material,
dimensions, or its surrounding but solely on its temperature and the frequency
domain of the observation. The derivation is as follows.

Consider a closed loop containing a transmission line of length l connecting
on both sides two identical resistors with resistivity R as illustrated in Fig. 1.1.
The random thermal fluctuations of the electrons in the resistors can support
traveling voltage waves in this closed loop. By choosing the characteristic
impedance R0 of the transmission line equal to R there are no reflections
of waves at the ends. The natural frequencies of the loop correspond to
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Fig. 1.1. Closed loop of transmission line

waves – called frequency modes – that are periodic in the round trip distance.
Thus the wavelength is given by

λn =
2l
n
, (1.1)

where n is an integer. The natural frequencies are then

νn =
nc

2l
. (1.2)

So the frequency spacing between these frequencies is c/2l. The number of
traveling waves within a frequency bandwidth ∆ν is then

N =
2l∆ν
c

. (1.3)

At thermal equilibrium the average energy of a single frequency mode is ac-
cording to Planck’s law

Ehν =
hν

ehν/kT − 1
. (1.4)

The total energy Et in the bandwidth ∆ν becomes NEhν or

Et =
2lhν∆ν

c(ehν/kT − 1)
. (1.5)

This energy moves with the velocity c so that the round trip time is 2l/c. The
power P flowing in each direction of the transmission line is then

P =
hν∆ν

ehν/kT − 1
(1.6)

Usually the frequency of interest is much smaller than kT/h so that the spec-
tral power density equal to dP/dν can be considered constant and the noise
is therefore often called “white noise” and is given by

P = kT∆ν . (1.7)

Since there are no reflections at the ends of the line the incoming power of
a resistor is dissipated. Then an equal amount of power must also be generated
by a resistor in order to have a balance of power. This power is apparently
the thermal noise power of a resistor.

Let us now describe the resistor with its noise power by its resistance R
in series with a noise generator having a mean square voltage amplitude v2n.
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The noise power P of the resistor that is delivered to a transmission line with
an arbitrary characteristic impedance R0 is then given by

P =
v2nR0

(R+R0)2
. (1.8)

It is seen that the maximum value of P is obtained for R = R0, so that using
(1.7) we find for the mean square voltage amplitude of a resistor

v2n = 4kTR∆ν . (1.9)

An equivalent circuit of a resistor can be given by a noise current generator
in parallel with the resistor. The mean square noise current is then

i2n =
4kT∆ν
R

. (1.10)

The two equivalent circuits are shown in Fig. 1.2. At room temperature the

effective noise voltage
√
v2n is about 0.13 nV [Ω−1/2Hz−1/2] and the effective

current
√
i2n is about 0.13 nA [Ω1/2Hz−1/2].

The fluctuating thermal noise voltage of a capacitor can be found by
considering a closed circuit of a capacitor C in series with a resistor R as
shown in Fig. 1.3. The mean square voltage amplitude over the capacity is
given by

v2n =
∫ ∞

0

4kTR dν
1 + (2πνCR)2

=
kT

C
. (1.11)

Since R is not relevant to the result we find that the noise mean square voltage
over a capacitor is given by (1.11). It should be noted that the same value
for v2n is found over a resistor connected to a capacitor. Alternatively, one can
consider the RC circuit as a low-pass filter having a band width ∆ν = 1/4RC
for power transmission. Substituting this value of ∆ν in (1.9) leads to the
same result.

R R

vn

in

Fig. 1.2. Equivalent circuits
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Fig. 1.3. Thermal noise of capacitor

1.3 Shot Noise

Emitted electrons from a thermal cathode or from a photo cathode traveling
through a vacuum tube toward the anode produce a current in the exter-
nal circuit only during their transit time. See AppendixA.1. We assume the
total generated current low enough to neglect space charge effects of the elec-
trons in the anode–cathode space so that there are no interactions between
the various electrons. Each emitted electron gives a microcurrent pulse. The
observed current in the external circuit is then simply the sum of all those ran-
domly generated micropulses. This process also occurs when photons generate
electron–hole pairs in a photoconductor or in a photodiode placed between
electrodes. The current in the external circuit is only present during the travel-
ing of free electrons to the positive electrode and the holes toward the negative
electrode.

The external current due to a random generation of these charge carri-
ers shows as a consequence of the individual pulses uncorrelated fluctuations
which are called shot noise. In this section we consider photoemission and
assume that each micropulse contains the charge of one electron and has con-
stant duration time. (This is not the case for generation–recombination noise
to be treated in Sect. 1.5.) Since the external current can be considered as a
flow of electrons that passes a point, one expects by doing a large number of
independent observations that the shorter the observation time for counting
the number of passing electrons the larger the fluctuations of this number
or the larger the shot noise and that by doing observations over large periods
the fluctuations and thus the shot noise will approach zero. The analysis is as
follows. Let we observe the mean square current fluctuations i2n of an average
current i0 in the circuit during the time τob. The average number of electrons is

n =
i0τob
e

. (1.12)

The current fluctuation can be expressed as

i2n = (i− i0)2 =
e2

τ2ob
(n− n)2 . (1.13)
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With the assumption that the probability of creating a photoelectron depends
on the incident radiation power it is derived in AppendixA.2.4 that for con-
stant radiation power the number n obeys the Poisson statistics with the
property

(n− n)2 = n . (1.14)

Substituting (1.14) into (1.13) gives

i2n =
i0e

τob
. (1.15)

1.3.1 Spectral Distribution

In practice it is more useful to express the shot noise in terms of frequency
instead of time. For this purpose the Fourier transform relations are used. The
(real) function f(t) and its Fourier transform are related by

F (ω) =
∫ ∞

−∞
f(t)e−jωt dt . (1.16)

The inverse transform is

f(t) =
1
2π

∫ ∞

−∞
F (ω)e jωt dω . (1.17)

Suppose that f(t) is the current in the circuit then the average power over
a period T dissipated through a resistor of 1Ω is given by

P =
1
T

∫ T/2

−T/2
f2(t) dt =

1
2πT

∫ T/2

−T/2

{
f(t)

∫ ∞

−∞
F (ω)e jωt dω

}
dt . (1.18)

If the current is only present or considered during the time T we find by using
(1.16) and (1.17)

P =
1

2πT

∫ ∞

−∞
|F (ω)|2 dω = 1

πT

∫ ∞

0

|F (ω)|2 dω . (1.19)

As mentioned earlier the duration of the micropulses of the current flow
in the external circuit are related to the time of flow of the generated charge
carriers in the detection device. A micropulse current by an electron starting
at tn can be expressed as

ie(t) = ef(t− tn) , (1.20)

with the condition ∫ ∞

−∞
f(t− tn) dt = 1 . (1.21)
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The total current is then

i(t) = e
∑
n

f(t− tn) , (1.22)

where tn is the random starting time of an electron.
Taking the Fourier transform of i(t) we get

I(ω) = e
∑
n

e−jωtn

∫ ∞

−∞
e−jωtf(t) dt = eF (ω)

∑
n

e−jωtn . (1.23)

The spectral power density Si(ω) = dP/dω of the current i(t) over a resistor
of 1Ω is according to (1.19)

Si(ω) =
1
πT
e2 |F (ω)|2

∑
n,m

e−jω(tn−tm) = i20(ω) . (1.24)

Since the times tn are random and we consider a very large number of elec-
trons, the sum of the terms with n �= m and ω �= 0 will for constant production
probability of the photoelectrons in average cancel. The summation term for
ω �= 0 becomes equal to the total number of electrons or equal to i0T

e where
i0 is the average current of the circuit. We now find for i20(ω) its average value
over T

i20(ω) =
1
π
ei0 |F (ω)|2 , (1.25)

where the Fourier transform F (ω) of the micropulse contains the integration
over its duration time τ .

The derivation of i20(ω) can be further extended with a description of the
micropulse itself or if this is not known by the limitation of the considered
bandwidth of the noise spectrum. Let us first consider any micropulse of du-
ration τ for which the considered spectrum is restricted by ωτ � 1. In that
case the Fourier transform approaches the unit impulse function i.e.,

F (ω) =
∫ τ

0

e−jωtf(t) dt � 1 . (1.26)

Thus in this case the spectral power density is practically flat, independent
on frequency. This shot noise is therefore often considered as white noise.
Substituting (1.26) into (1.25) we find the spectral power density of the current
fluctuations as

i20(ω) =
ei0
π
. (1.27)

By changing from radial frequency to Hertz frequency (ν) we have to multiply
the last expression by 2π and we obtain

i20(ν) = 2ei0 . (1.28)
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The current fluctuations or shot noise within a bandwidth B with the condi-
tion 2πBτ � 1 becomes

i2n = 2ei0B . (1.29)

Comparing (1.29) and (1.15) it is seen that the relation between the observa-
tion time and the bandwidth is given by 1

τob
= 2B. In the following we specify

the micropulse for two different situations.

The Charges Move with Constant Speed

Constant speed of created charge carriers by photoionization may occur for
instance in a photoconductor or in the high-field region of the junction of a
diode. The constant speed during τ gives f(t) = 1

τ , where τ is the transit time
through the conductor or junction. The Fourier transform of the corresponding
micropulse becomes

F (ω) =
∫ τ

0

e−jωt 1
τ
dt =

sin(ωτ/2)
ωτ/2

e−jωτ/2 . (1.30)

Substituting (1.30) into (1.25) we obtain for the spectral power density of the
shot noise

i20(ω) =
ei0
π

sin2(ωτ/2)
(ωτ/2)2

. (1.31)

This spectrum is shown in Fig. 1.4.
For practical purposes an effective bandwidth ∆ν = ∆ω/2π is calculated

for a rectangular spectrum of the same height at the center and of equal area
as indicated in Fig. 1.4. The integral

∫∞
−∞

sin2 x
x2 dx is equal to π. This gives

an effective half width ∆ωτ/2 = π/2. The effective maximum noise frequency
∆νm is then

∆νm =
1
2τ
. (1.32)
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Fig. 1.4. Spectral power density of shot noise. The dashed line represents the equiv-
alent rectangular spectrum with half width π
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Thus for any noise bandwidth B < ∆νm, the noise is given by (1.29). In
practice the value for τ of a hole–electron pair in a diode is in the range of
1–0.01 ns so that ∆νm is roughly in the range of 1–100GHz. The detection
bandwidth limited by the electronic circuit is mostly much smaller than ∆νm
so that (1.29) remains applicable.

The Charges Move with Constant Acceleration

Constant acceleration of electrons occurs in a vacuum photodiode where a
linear potential field is applied between the electrodes so that the velocity of
the electrons and thus the current increases linearly with the time of flight
of the electrons. The current of the micropulse is then 2et/τ2 where τ is the
travel time of the electron from cathode to anode. So we now have f(t) = 2t/τ2

and the Fourier transform becomes

F (ω) =
2

(ωτ)2
[(1 + jωτ) e−jωτ − 1] . (1.33)

Substituting (1.33) into (1.25) results in

i20(ω) =
4ei0
π(ωτ)4

[4 sin2(
ωτ

2
) + (ωτ)2 − 2ωτ sinωτ ] . (1.34)

It is found again that i20(0) = ei0/π.
Plotting the curve of i20(ω) in Fig. 1.5 it is seen to have a broad maximum.

The value of ωτ for which it reaches its half maximum is ≈π so that the
maximum noise frequency ∆νm is again ∆νm = 1/2τ . Changing again from
radial frequency to Hertz frequency we have to multiply (1.34) by 2π. For ν <
1/2τ the spectral power density is then again given by (1.28). Consequently
the shot noise for the bandwidth B is also given by (1.29).

In conclusion we mention that the spectral power density of the shot noise
is determined by the random distribution of the micropulses, whereas its max-
imum frequency is determined by the duration of the micropulse which is of
course also the maximum frequency response of the detector element.
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Fig. 1.5. Noise spectrum of rectangular micropulse
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1.3.2 Photons

In the earlier analysis we have seen that the current fluctuations are due to the
discreteness of the charges. A similar argument applies to a flux of photons.
The spontaneously emitted photons of an incoherent radiation source also
obey Poisson statistics. The photon fluctuations can then be calculated in a
similar way and are obtained simply by replacing the electron charge by the
photon energy and the current by the power. We then obtain for the power
fluctuations of incoherent radiation having a narrow bandwidth B

∆P 2 = 2hνPB , (1.35)

where hν is the photon energy (B � ν) and P the power of the beam.
For a coherent optical beam with its extremely narrow line width or very

long temporal coherence the power fluctuations are negligible. However, the
photon current generated by such a beam in any photon detector exhibits
nevertheless shot noise as given by (1.29). The derivation of this noise is given
in AppendixA.2.4.

1.4 Flicker Noise

Semiconductors and valves show relatively strong noise signals at low frequen-
cies. This noise is usually called flicker noise, 1/f -noise or excess noise. At low
frequencies this noise can be considerably stronger than the shot noise. The
observed strong noise signals at low frequencies cannot be fully explained by
a description based on the motion of the generated charge carriers. There is
more. The search for it has produced many theories based on lattice defects,
diffusion of charge carriers, surface contact effects, and impurities. Its origin
seems to be very complicated and a full understanding still remains unclear.

Semiempirical studies show a power spectrum more or less inversely pro-
portional to the frequency and quadratic to the current. This frequency de-
pendence remains up till very low frequencies and around 100Hz it may be
comparable with the shot noise. In practice most detection systems operate
at frequencies high enough to neglect this type of noise. Therefore, in general
it does not limit device performances.

1.5 Generation–Recombination Noise

The previously discussed shot noise is associated with the random generation
of identical single charge micropulses. In case of semiconductors the created
free carriers increase also the conductivity of the element during the life time
of the carriers. As a result the charge of a micropulse initiated by the absorbed
photon may be (much) more than that of a single electron. These generated
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multicharge micropulses are apart from their random distribution not identical
because of the life time fluctuations of the carriers. Therefore additional noise
is generated [4].

Photoconductors are divided in intrinsic and extrinsic types. In the case
of an intrinsic photoconductor the absorbed photon creates a free electron in
the conduction band and simultaneously a hole in the valence band. For the
extrinsic semiconductor the conduction is produced by the photon absorption
at the impurity levels. The photons create either free electrons in the conduc-
tion band, the so-called n-type, or holes in the valence band of the so-called
p-type. In general the drift velocity of one type of carrier is much larger than
the other one so that in fact the current is given by the dominating type of
carrier. Usually the conductivity is mainly by the electrons with their much
larger mobility, particularly for intrinsic and n-type extrinsic semiconductors.

Let us consider the drift of the carriers produced by the absorption of
photons in a semiconductor crystal connected in series with a battery. See
Fig. 1.6. For the optical beam of power P incident on the semiconductor the
production rate is ηP/hν electron–hole pairs where η is the quantum efficiency.
In steady state the production rate is equal to the recombination rate N/τl
where N is the number of pairs and τl the recombination or life time. Thus
we have

N =
ηPτl
hν

. (1.36)

Due to the applied field the free carriers drift with constant velocity v between
the contacts. Each drifting pair gives rise to an (external) current ie = ev/d
where d is the distance between the contacts with the external leads. The
total current using (1.36) becomes

i0 =
eηP

hν

(
τl
τd

)
, (1.37)

where τd = d/v is the drift time between the contacts. The process can be
seen as a carrier, for instance a free electron, that drifts toward the positive
contact and leaves the semiconductor. At the same time, because of charge
neutrality, a replacement electron enters the semiconductor at the negative
contact. This goes on during the life time of the excited charge carrier. The

V

Ps

Fig. 1.6. Circuit with semiconductor
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micropulse in the external circuit has the duration τl and an effective charge
(τl/τd)e per photoinduced charge carrier. The total external current is again
the sum of all micropulses that originate from the individually photoinduced
charge carriers.

A micropulse starting at tn can be expressed as

ie(t) =
τl
τd
ef(t− tn) , (1.38)

with the condition given by (1.21). By considering constant drift velocity
in the crystal we have a rectangular pulse with f(t) = 1

τl
for 0≤ t ≤ τl

otherwise f(t) = 0. The Fourier transform of rectangular pulse is given by
(1.30). Substituting this result into (1.25) and now using the effective charge
of the pulse equal to τl

τd
e we obtain

i20(ω) =
ei0
π

(
τl
τd

)
sin2(ωτl/2)
(ωτl/2)2

, (1.39)

where i0 is now given by (1.37).
So far the current fluctuations are identical to the shot noise derived in

Sect. 1.3 except for the effective charge. The life time of the charge carriers is,
however, the result of a spontaneous recombination process and thus it may
fluctuate and give rise to additional noise. To include this part of the noise
we make the usual assumption that the probability function F (τ) of the life
time is given by

F (τ) =
1
τl
e−τ/τl , (1.40)

so that the average life time is∫ ∞

0

τF (τ) dτ = τl . (1.41)

Since a life time of a charge carrier is the same as the duration of the corre-
sponding micropulse we can describe the micropulses by the same probability
distribution. Then the shot noise produced by the micropulses with duration
between τ and τ + dτ becomes by using (1.39) and (1.37)

di20(ω) =
e2ηP

πhν

(
τ

τd

)2 sin2(ωτ/2)
(ωτ/2)2

1
τl
e−τ/τl dτ . (1.42)

Integrating over τ we get the total spectral noise power density

i20(ω) =
2egi0
π

[
1

1 + (ωτl)2

]
, (1.43)

where i0 is given by (1.37) and g = τl/τd. Changing to Hertz frequency it
becomes

i20(ν) = 4egi0

[
1

1 + (2πντl)2

]
. (1.44)
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The term within the brackets indicates the bandwidth limitation due to the
carrier life time.

Comparing this g–r noise with the shot noise we see the similarity by
noticing that for the g–r noise the “unit of spread” is the charge, ge, of the
micropulse whereas for the shot noise it is e. The additional factor 2 in the
g–r noise apparently comes from the life time spread of the carriers.

It is seen that the mechanism of producing carriers is not relevant in the
derivation of the noise current.1 The g–r noise is, therefore, also present in
the so called “dark” current normally conducted by the thermally excited
free carriers and driven by an applied field between the contacts with the
external leads. This current consists again of a set of pulses with random
arrival times and fluctuating pulse widths because of the statistical behav-
ior of the recombination process. Since the probability of creating thermal
free carriers depends on the temperature the dark current consists also of mi-
cropulses that obey Poisson statistics provided the temperature is constant.
Its noise is therefore also given by (1.44) except that i0 is now replaced by
the dark current id induced by the applied field between the contacts and
the life time τl by the life time of the thermally excited carriers. Calculating
the noise the signal and dark currents are in practice often taken as total
current in (1.44) assuming a single process for the thermal excitation and the
same life time as for the signal carriers. If there are more thermal excitation
processes the dark current noise is the sum of the individual contributions.
A semiconductor with several g–r processes will make the treatment more
complicated.

The dark current noise can also be seen as due to the fluctuations of
the resistance, R, of the semiconductor because of the random generation
and recombination process of the thermal free carriers. The semiconductor
is as a resistor also subjected to the thermal motion of the free carriers col-
liding with the lattice. Usually the collision time is much shorter than the
life time of the carrier so that thermal equilibrium exists with the temper-
ature of the lattice. Thus the semiconductor behaves in addition to the g–r
noise also as a resistor with Johnson or thermal noise with an amount given
by (1.10).

1.6 Thermal Radiation and Its Fluctuations

According to Planck’s radiation law the thermal radiation power at equilib-
rium temperature T incident on the area A within the small solid angle dΩ
and frequency interval dν is given by

dPν,Ω = cos θBAdν dΩ , (1.45)

1 Although the production mechanism is irrelevant the derived Poisson distribution
of the micropulses is based on the assumption of constant radiation power. This
implies strictly speaking a coherent radiation source. See AppendixA.2.4
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where the average brightness B is

B =
2hν3

c2(ehν/kT − 1)
(1.46)

and θ the angle between the rays and the normal on A. Integrating (1.45)
over Ω with dΩ = 2π sin θ dθ we obtain for the incident thermal power within
the frequency interval dν confined within the solid angle Ω0 of a circular cone
with half-angle θ0

dPν =
2πhA sin2 θ0

c2
ν3 dν

ehν/kT − 1
. (1.47)

In the ideal case the incident radiation is fully absorbed at the surface
(black body). Since in equilibrium the wall temperature remain constant, the
surface must emit the same amount. Thus in the ideal case the radiation
power emitted in the frequency interval dν and area A at temperature T is
also given by (1.47). In general the surface is not ideal and it emits less power.
Then in order to maintain the constant temperature the incident power must
be partly reflected. With a power reflectivity coefficient ρ(ν) averaged over θ
we have for the emission coefficient ε(ν) the relation

ε(ν) = 1− ρ(ν) . (1.48)

Integrating (1.47) over the whole spectrum yields at thermal equilibrium
for θ0 = π/2 the total incident power on the surface A or emitted average
black body power, Pt, according to the Stefan–Boltzmann law

Pt = σAT 4 , (1.49)

where σ = 2π5k4/15c2h3 = 5.67× 10−8 [Wm−2K−4].
Let us now consider the average thermal power P incident normal to a

detector surface A within the small solid angle ∆Ω and bandwidth ∆ν. Taking
cosθ ≈ 1 and assuming ∆ν is small compared to kT/h so that the considered
thermal energy per unit frequency is constant we obtain from (1.45)

P =
∆ΩA
λ2

2hν
ehν/kT − 1

∆ν . (1.50)

The quantized average energy of a single frequency mode is equal to

Ehν =
hν

ehν/kT − 1
. (1.51)

The factor 2 in (1.50) refers to the two independent polarizations of the field.
We should keep in mind that ∆ν is the selected optical bandwidth which is
always much larger than the electronic bandwidth B of the detection system.

The incident thermal radiation can be derived by any set of orthogonal
field functions that completely fills the space bounded by the plane containing



1.6 Thermal Radiation and Its Fluctuations 15

the area A. If the radiation originates from a distance large enough to receive
all wavefronts of the radiation at A parallel, the field components on A are
coherent. Then, considering (1.50), the minimum space of photons, i.e., a
single spatial mode, is bounded by the condition

∆ΩA ≈ λ2 . (1.52)

In case the incident radiation falls within an area–angle product larger than
λ2 its field is build up of several spatial modes. The number is given by

Nm ≈ ∆ΩA
λ2

. (1.53)

Each spatial mode contains many frequency modes. The power within a single
spatial mode for one polarization is derived in AppendixA.4 and is given by

Pm = Ehν∆ν . (1.54)

By substituting (1.53) and (1.51) into (1.50) we get

P = 2NmEhν∆ν . (1.55)

The noise associated with this thermal radiation consists of two parts.
One part is due to the quantization of the radiation. The radiation may be
regarded as a stream of fluctuating photons. The thermally emitted photons
at constant temperature with their finite lifetimes obey Poisson statistics. The
noise power for a detection bandwidth B corresponds to shot noise, similar to
what has been described for the random flow of charge particles in Sect. 1.3.
Looking at (1.29) we have to replace for the similarity the current i0 by the
radiation power P and the charge e by the photon energy hν. Applying (1.35)
we find for this part of the power fluctuations

∆P 2
sh = 2hνPB . (1.56)

In practice the band width B of the detection system is always much smaller
than the optical bandwidth ∆ν of the selected thermal radiation.

The other part results from the fluctuations of amplitude and phase.
Within a single spatial mode the instantaneous radiation field results from
the concerted action of a very large number of independent emitters. There-
fore, from a statistical point of view the central limit theorem is appropriate
and the resulting radiation field amplitude and its phase within a spatial
mode are Gaussian processes. Their mutually independent fluctuations can
be evaluated by considering the field as composed of two components in an
arbitrary rectangular coordinate system and then apply the Gaussian process
to each component. The Gaussian distribution of the field component vx in
the x-direction with the probability F (vx) dvx for having its value between vx
and vx + dvx at any time is given by
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F (vx) dvx =
1√
2πσ

e−v
2
x/2σ

2
dvx (1.57)

Similarly for F (vy) we have

F (vy) dvy =
1√
2πσ

e−v
2
y/2σ

2
dvy . (1.58)

The probability F (vx + vy) dvx dvy of finding the x-component between vx
and vx + dvx and the y-component between vy and vy + dvy is then

F (vx + vy) dvx dvy =
1

2πσ2
e−(v2x+v

2
y)/2σ

2
dvx dvy . (1.59)

Changing to the circular components v and ϕ with v2 = v2x+v
2
y and dvx dvy =

vd vdϕ and integrating over ϕ we find the field probability of v

F (v) dv =
1
σ2

e−v
2/2σ2

v dv . (1.60)

The power Pm within a spatial mode is proportional to v2. The average
power Pm is then obtained by multiplying the last equation by v2 and substi-
tuting Pm = αv2. We obtain

Pm =
∫ ∞

0

Pm
2ασ2

e−Pm/2ασ
2
dPm = 2ασ2 . (1.61)

Thus the radiation power probability distribution F (Pm) of a single spatial
mode, which may contain a set of frequency modes, is given by

F (Pm) =
1
Pm

e−Pm/Pm (1.62)

which is called the Rayleigh distribution.
The power spread of a single spatial mode is given by

∆P 2
m =

(
Pm − Pm

)2
= P 2

m − Pm
2
. (1.63)

Using (1.62) we find P 2
m equal to 2Pm

2
so that

∆P 2
m = Pm

2
. (1.64)

Taking the sum of the energy spreads of all spatial modes we just multiply
the last equation by 2Nm because the spatial mode are independent from each
other. We obtain

∆P 2
ray = 2NmPm

2
. (1.65)

With the aid of (1.54) and (1.55) we get
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∆P 2
ray = PEhν∆ν . (1.66)

The last expression contains the noise power spread over its full optical
spectrum ∆ν. We are now interested to know its frequency distribution be-
cause the detector with its much smaller bandwidth B receives only a small
part of it. We assume ∆ν to be small compared to kT/h so that the considered
thermal power per unit frequency is constant. Following a classical description
we note that the power fluctuations within a spatial mode correspond to beat
frequencies between the field components of the frequency modes. Since the
bandwidth of the selected radiation is ∆ν the radiation power has components
with beat frequencies νb ranging from zero to ∆ν. The number of beat compo-
nents is highest for νb = 0 and the power of these beat components decreases
linearly with (1 − (νb/∆ν)) to reach zero for νb = ∆ν. This is indicated in
Fig. 1.7. It is seen from this figure that the noise content for a spectrum with
B � ∆ν is the fraction 2B/∆ν of the total noise. Using (1.66) the Rayleigh
noise within the bandwidth B becomes

∆P 2
ray = 2BPEhν . (1.67)

The total noise within the bandwidth B is the sum of parts given by,
respectively, (1.56) and (1.67) or

∆P 2 = 2hνP
(
1 +

1
ehν/kT − 1

)
B , (1.68)

where we used (1.51).
It is interesting that the result given by (1.68) can also be derived straight-

forward from statistical thermodynamics. This is done by starting from the
partition function, Zhν , of a radiation mode with photon energy hν given by

Zhν =
∞∑
n=0

e−nhν/kT =
1

1− e−hν/kT
. (1.69)

The average energy, Ehν = 1
Zhν

∑∞
n=0 nhν e

−nhν/kT , is given by

B

D 2(n)

Dn

nb

P
D 2(0)P

Fig. 1.7. Spectral distribution of thermal noise
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Ehν =
[
1− e−hν/kT

]
kT 2 d

dT
Zhν =

hν

ehν/kT − 1
. (1.70)

The average square of the energy, E2
hν =

1
Zhν

∑∞
n=0 (nhν)

2 e−nhν/kT , is cal-
culated similarly by

E2
hν =

[
1− e−hν/kT

]
kT 2 d

dT

[
Ehν

1− e−hν/kT

]
= (hν)2

ehν/kT + 1(
ehν/kT − 1

)2 . (1.71)

Further we have ∆E2
hν =

(
Ehν − Ehν

)2
= E2

hν−E
2

hν . Substituting (1.70) and
(1.71) we get

∆E2
hν = hνEhν

(
1 +

1
ehν/kT − 1

)
. (1.72)

The relation between the energy of a single frequency mode and the power of
a spatial mode is derived in AppendixA.4. The fluctuations of the total power
of the considered beam is the sum of the fluctuations of each spatial mode or
by using (1.55)

(∆P 2)total = (P − P )2 = 2Nm (∆ν)
2 (
Ehν − Ehν

)2
= 2 (∆ν)2Nm∆E2

hν ,

(1.73)

where the number of independent spatial modes Nm is multiplied by 2 because
of the two independent polarizations. Substituting (1.72) and (1.55) into (1.73)
we get

(∆P 2)total = hνP
(
1 +

1
ehν/kT − 1

)
∆ν , (1.74)

which contains the noise power spread over ∆ν. Since we are interested in the
contributions within the band B � ∆ν we follow the previous discussion to
derive (1.67) and replace ∆ν by 2B. We obtain in agreement with (1.68)

∆P 2 = 2hνP
(
1 +

1
ehν/kT − 1

)
B . (1.75)

In the optical region where hν/k is much larger than T the second term within
the brackets is negligible, but this is not the case for thermal radiation.

1.7 Temperature Fluctuations of Small Bodies

The energy of a body is always in interaction with its surroundings and its
transfer occurs by statistical processes of radiation, convection, and conduc-
tion. Even at equilibrium its value will fluctuate randomly about a mean
value. The question is how large are those fluctuations and how do they de-
pend on physical quantities. An elegant way to answer these questions is to
apply statistical thermodynamics and derive the formula for the probability
that a system has an energy E.

Let us have a large number of identical systems that can assume energy
values E1, E2, E3, . . . and which are all in thermal heat exchange with a large
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temperature bath kept at constant temperature T . According to Boltzmann
the probability that a system has an energy Ei is Ae−Ei/kT . The sum of all
probabilities must be one, so that

∑
iAe

−Ei/kT = 1. The average energy, E,
is obtained by

E =
∑
i

AEie−Ei/kT =
∑
iEie

−Ei/kT∑
i e−Ei/kT

. (1.76)

Taking the temperature derivative of E

dE
dT

=
1
kT 2

[∑
iE

2
i e

−Ei/kT∑
i e−Ei/kT

−
(∑

iEie
−Ei/kT∑

i e−Ei/kT

)2
]
=

1
kT 2

[
E2 − E2

]
,

(1.77)
which is the heat capacity of the system.

We now apply this result to a small body and describe thereby the heat
content by its temperature so that energy fluctuations will be interpreted as
temperature fluctuations according to E − E = Cth(T − T ) where Cth is the
heat capacity. Then

E2 − E2
=
(
E − E

)2
= C2

th

(
T − T

)2
= C2

th∆T 2 . (1.78)

Substituting (1.78) into (1.77) we get

∆T 2 =
kT 2

Cth
. (1.79)

Next we want to describe the spectral density of the temperature fluctua-
tions. For that purpose we realize that frequency fluctuations are damped by
the thermal slowness of the system which has a time constant τth = Cth/λ
where λ is the thermal conductance. It behaves analogously to a RC circuit
in electronics. This is obvious if we relate ∆T to voltage, Cth to electrical
capacity and λ to electrical conductivity. Since we describe mean-square fluc-
tuations we obtain from the analogy the following frequency (f) dependence

∆T 2(f) =
∆T 2(0)

1 + (2πfτth)2
(1.80)

Integrating the last equation over all frequencies we get again the total value
given by (1.79). From this we find ∆T 2(0) = 4kT 2/λ and write (1.80) as

∆T 2(f) =
4kT 2

λ

1
1 + (2πfτth)2

. (1.81)

Integrating (1.81) over a bandwidth B much smaller than the reciprocal ther-
mal time we get

∆T 2 =
4kT 2B

λ

1
1 + (2πfτth)2

. (1.82)

These temperature fluctuations limit the minimum detectable power of ther-
mal detectors.
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1.7.1 Absorption and Emission Fluctuations

Let us consider the situation that a black body is in equilibrium with the
thermal radiation of the surrounding and that all energy transfer is by ra-
diation only. The thermal fluctuations of the body are then related to both
emission and absorption fluctuations. A small change of radiation transfer
∆P , either by absorption or emission, results in a small temperature change
∆T of the body. The relation between ∆P and ∆T derived from (1.49) yields

λ =
dP
dT

= 4σAT 3 . (1.83)

The mean square power fluctuations near f = 0 within the bandwidth B are
obtained by substituting (1.83) into (1.82). We find

∆P 2 = 16ABσkT 5 . (1.84)

The fluctuations of the incident absorbing radiation in the case of no re-
flection are obtained by integrating (1.68) over the full spectrum. This is done
by substituting for P the expression dPν from (1.47) and integrating over ν.
We obtain

∆P 2
abs =

4πABh2 sin2 θ0
c2

∫ ∞

0

ν4ehν/kT(
ehν/kT − 1

)2 dν (1.85)

or

∆P 2
abs =

16π5ABk5T 5 sin2 θ0
15c2h3

= 8 sin2 θ0ABσkT 5 , (1.86)

where we have substituted σ = 2π5k4/15c2h3. It is seen that for the total
incident radiation with θ0 = π/2 we find just one-half of what is obtained for
the total fluctuations given by (1.84). This can be understood by the fact that
we have considered so far only the incident radiation. If the area is in thermal
equilibrium with the radiation field, there will be an equal amount of power
fluctuations emitted by the area A so that the total fluctuations are the same
as derived by (1.84).




