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Two-Dimensional Wave Equations and

Wave Characteristics

A practicing coastal engineer must have a basic and relatively easy to use

theory that deWnes the important characteristics of two-dimensional waves. This

theory is required in order to analyze changes in the characteristics of a wave as it

propagates from the deep sea to the shore. Also, this theory will be used as a

building block to describe more complex sea wave spectra. Such a theory—the

small amplitude wave theory—is presented in this chapter along with related

material needed to adequately describe the characteristics and behavior of two-

dimensional waves.

2.1 Surface Gravity Waves

When the surface of a body of water is disturbed in the vertical direction, the

force of gravity will act to return the surface to its equilibrium position. The

returning surface water has inertia that causes it to pass its equilibrium position

and establish a surface oscillation. This oscillation disturbs the adjacent water

surface, causing the forward propagation of a wave.

A wave on the water surface is thus generated by some disturbing force which

may typically be caused by the wind, a moving vessel, a seismic disturbance of

the shallow sea Xoor, or the gravitational attraction of the sun and moon. These

forces impart energy to the wave which, in turn, transmits the energy across the

water surface until it reaches some obstacle such as a structure or the shoreline

which causes the energy to be reXected and dissipated. The wave also transmits a

signal in the form of the oscillating surface time history at a point.

As a wave propagates, the oscillatory water motion in the wave continues

because of the interaction of gravity and inertia. Since water particles in the wave

are continuously accelerating and decelerating as the wave propagates, dynamic

pressure gradients develop in the water column. These dynamic pressure gradi-

ents are superimposed on the vertical hydrostatic pressure gradient. As the wave



propagates energy is dissipated, primarily at the air–water boundary and, in

shallower water, at the boundary between the water and the sea Xoor.

The diVerent wave generating forces produce waves with diVerent periods.

Wind-generated waves have a range of periods from about 1 to 30 s with the dom-

inant periods for ocean storm waves being between 5 and 15 s. Vessel-generated

waves have shorter periods, typically between 1 and 3 s. Seismically generated

waves (tsunamis) have longer periods from about 5 min to an hour and the

dominant periods of the tide are around 12 and 24 hours.

Wind waves in the ocean have a height (vertical distance crest to trough) that is

typically less than 10 ft, but it can exceed 20 ft during signiWcant storms. Vessel

waves rarely exceed 3 ft in height. At sea, tsunami waves are believed to have a

height of 2 ft or less, but as the tsunami approaches the coast heights often increase

to greater than 10 ft, depending on the nature of the nearshore topography.

Similarly, tide wave heights (tide ranges) in the deep ocean are relatively low, but

along the coast tide ranges in excess of 20 ft occur at a number of locations.

Wind-generated waves are complex, consisting of a superimposed multitude of

components having diVerent heights and periods. In this chapter we consider the

simplest theory for the characteristics and behavior of a two-dimensional mono-

chromatic wave propagating in water of constant depth. This will be useful in

later chapters as a component of the spectrum of waves found at sea. It is also

useful for Wrst-order design calculations where the height and period of this

monochromatic wave are selected to be representative of a more complex wave

spectrum. Also, much laboratory research has used, and will continue to use,

monochromatic waves for basic studies of wave characteristics and behavior

such as the wave-induced force on a structure or the nature of breaking waves.

The simplest and often most useful theory (considering the eVort required in

its use) is the two-dimensional small-amplitude or linear wave theory Wrst pre-

sented by Airy (1845). This theory provides equations that deWne most of the

kinematic and dynamic properties of surface gravity waves and predicts these

properties within useful limits for most practical circumstances. The assumptions

required to derive the small-amplitude theory, an outline of its derivation, the

pertinent equations that result, and the important characteristics of waves de-

scribed by these equations are presented in this chapter. More detail on the

small-amplitude wave theory can be found in Wiegel (1964), Ippen (1966), Dean

and Dalrymple (1984), U.S. Army Coastal Engineering Research Center (1984),

and Sorensen (1993).

2.2 Small-Amplitude Wave Theory

The small-amplitude theory for two-dimensional, freely propagating, periodic

gravity waves is developed by linearizing the equations that deWne the free

surface boundary conditions. With these and the bottom boundary condition,
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a periodic velocity potential is sought that satisWes the requirements for irrota-

tional Xow. This velocity potential, which is essentially valid throughout the

water column except at the thin boundary layers at the air–water interface and at

the bottom, is then used to derive the equations that deWne the various wave

characteristics (e.g., surface proWle, wave celerity, pressure Weld, and particle

kinematics). SpeciWcally, the required assumptions are:

1. Thewater is homogeneous and incompressible, and surface tension forces are

negligible. Thus, there are no internal pressure or gravity waves aVecting the

Xow, and the surface waves are longer than the length where surface tension

eVects are important (i.e., wave lengths are greater than about 3 cm).

2. Flow is irrotational. Thus there is no shear stress at the air–sea interface or

at the bottom. Waves under the eVects of wind (being generated or dimin-

ished) are not considered and the Xuid slips freely at the bottom and other

solid Wxed surfaces. Thus the velocity potential f must satisfy the Laplace

equation for two-dimensional Xow:

@2f

@x2
þ @2f

@z2
¼ 0 (2:1)

where x and z are the horizontal and vertical coordinates, respectively.

3. The bottom is stationary, impermeable, and horizontal. Thus, the bottom is

not adding or removing energy from the Xow or reXecting wave energy.

Waves propagating over a sloping bottom, as for example when waves

propagate toward the shore in the nearshore region, can generally be

accommodated by the assumption of a horizontal bottom if the slope is

not too steep.

4. The pressure along the air–sea interface is constant. Thus, no pressure is

exerted by the wind and the aerostatic pressure diVerence between the wave

crest and trough is negligible.

5. The wave height is small compared to the wave length and water depth.

Since particle velocities are proportional to the wave height, and wave

celerity (phase velocity) is related to the water depth and the wave length,

this requires that particle velocities be small compared to the wave celerity.

This assumption allows one to linearize the higher order free surface

boundary conditions and to apply these boundary conditions at the still

water line rather than at the water surface, to obtain an easier solution.

This assumption means that the small-amplitude wave theory is most

limited for high waves in deep water and in shallow water and near wave

breaking where the waves peak and wave crest particle velocities approach

the wave phase celerity. Given this, the small-amplitude theory is still

remarkably useful and extensively used for wave analysis.
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Figure 2.1 depicts a monochromatic wave traveling at a phase celerity C on water

of depth d in an x, z coordinate system. The x axis is the still water position and

the bottom is at z ¼ �d. The wave surface proWle is deWned by z ¼ h, where h is

a function of x and time t. The wave length L and height H are as shown in the

Wgure. Since the wave travels a distance L in one period T,

C ¼ L=T (2:2)

The arrows at the wave crest, trough, and still water positions indicate the

directions of water particle motion at the surface. As the wave propagates

from left to right these motions cause a water particle to move in a clockwise

orbit. The water particle velocities and orbit dimensions decrease in size with

increasing depth below the still water line. Particle orbits are circular only under

certain conditions as deWned in Section 2.4.

The horizontal and vertical components of the water particle velocity at any

instant are u and w, respectively. The horizontal and vertical coordinates of a

water particle at any instant are given by � and e, respectively. The coordinates
are referenced to the center of the orbital path that the particle follows. At any

instant, the water particle is located a distance d � (� z) ¼ d þ z above the

bottom.

The following dimensionless parameters are often used:

k ¼ 2p=L(wave number)

s ¼ 2p=T(wave angular frequency)

We also use the terms ‘‘wave steepness’’ deWned as the wave height divided by the

wave length (i.e., H/L) and ‘‘relative depth’’ deWned as the water depth divided

by the wave length (i.e., d/L) in discussions of wave conditions.

Particle
orbitd + z

d

w

u

z
L

H

C

x

Still water
level

ζ
ε

η

Figure 2.1. DeWnition of progressive surface wave parameters.
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The small-amplitude wave theory is developed by solving Eq. (2.1) for the

domain depicted in Figure 2.1, with the appropriate boundary conditions for

the free surface (2) and the bottom (1).

At the bottom there is no Xow perpendicular to the bottom which yields the

bottom boundary condition (BBC):

w ¼ @f

@z
¼ 0 at z ¼ �d (2:3)

At the free surface there is a kinematic boundary condition (KSBC) that relates

the vertical component of the water particle velocity at the surface to the surface

position:

w ¼ @h

@t
þ u

@h

@x
at z ¼ h (2:4)

The Bernoulli equation for unsteady irrotational Xow may be written

1

2
(u2 þ w2)þ p

r
þ gzþ @f

@t
¼ 0 (2:5)

where g is the acceleration of gravity, p is the pressure, and r is the Xuid density.

At the surface where the pressure is zero the dynamic boundary condition

(DSBC) becomes

1

2
(u2 þ w2)þ gzþ @f

@t
¼ 0 at z ¼ h (2:6)

The KSBC and the DSBC have to be linearized and applied at the still water line

rather than at the a priori unknown water surface. This yields for the KSBC

w ¼ @h

@t
at z ¼ 0 (2:7)

and for the DSBC

ghþ @f

@t
¼ 0 at z ¼ 0 (2:8)

Employing the Laplace equation, the BBC, and the linearized DSBC, we can

derive the velocity potential for the small-amplitude wave theory (see Ippen,

1966; Sorensen, 1978; or Dean and Dalrymple, 1984). The most useful form of

this velocity potential is

f ¼ gH

2s

cosh k(d þ z)

cosh kd
sin (kx� s t) (2:9)
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The velocity potential demonstrates an important point. Since the wave length or

wave number (k ¼ 2p=L) depends on the wave period and water depth [see Eq.

(2.14)], when the wave height and period plus the water depth are known the

wave is fully deWned and all of its characteristics can be calculated.

We can insert the velocity potential into the linearized DSBC with z ¼ 0 to

directly determine the equation for the wave surface proWle:

h ¼ H

2
cos (kx� s t) (2:10)

which can also be written

h ¼ H

2
cos 2p

x

L
� t

T

� �
(2:11)

by inserting the wave number and wave angular frequency. Thus, the small-

amplitude wave theory yields a cosine surface proWle. This is reasonable for low-

amplitude waves, but with increasing wave amplitude the surface proWle becomes

vertically asymmetric with a more peaked wave crest and a Xatter wave trough

(as will be shown in Chapter 3).

Combining the KSBC and the DSBC by eliminating the water surface eleva-

tion yields

@2f

@t2
þ g

@f

@z
¼ 0 at z ¼ 0

Then, inserting the velocity potential, diVerentiating, and rearranging we have

s2 ¼ gk tanh kd

or

C ¼ s

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

k
tanh kd

r

and

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gL

2p
tanh

2pd

L

r
(2:12)

Equation (2.12) indicates that for small-amplitude waves, the wave celerity is

independent of the wave height. As the wave height increases there is a small but

growing dependence of the wave celerity on the wave height (see Chapter 3).

Equation (2.12) can also be written [by inserting Eq. (2.2)]
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C ¼ gT

2p
tanh

2pd

L
(2:13)

L ¼ gT2

2p
tanh

2pd

L
(2:14)

FromEq. (2.14), if thewater depth and thewaveperiod are known, thewave length

can be calculated by trial and error. Then the celerity can be determined from

C ¼ L=T . Tables are available (U.S. ArmyCoastal Engineering Research Center,

1984) for the direct determination of L given the water depth and wave period.

Equations (2.12) to (2.14) collectively are commonly known as the dispersion

equation. For a spectrum of waves having diVerent periods (or lengths), the

longer waves will propagate at a higher celerity and move ahead while the shorter

waves will lag behind.

It can be demonstrated (see Ippen, 1966) that as a wave propagates from deep

water in to the shore, the wave period will remain constant because the number

of waves passing sequential points in a given interval of time must be constant.

Other wave characteristics including the celerity, length, height, surface proWle,

particle velocity and acceleration, pressure Weld, and energy will all vary during

passage from deep water to the nearshore area.

2.3 Wave ClassiWcation

An important classiWcation of surface waves is based on the relative depth (d/L).

When a wave propagates from deep water oVshore in to shallower water near-

shore the wave length decreases [see Eq. (2.14)], but at a slower rate than that at

which the depth decreases. Thus, the relative depth decreases as a wave ap-

proaches the shore. When d/L is greater than approximately 0.5, tanh (2pd=L)

is essentially unity and Eqs. (2.12) to (2.14) reduce to

Co ¼
ffiffiffiffiffiffiffiffi
gLo

2p

r
(2:15)

Co ¼ gT

2p
(2:16)

and

Lo ¼ gT2

2p
(2:17)

respectively. Waves in this region are called deep water waves and this condition

is commonly denoted by the subscript zero (except for the wave period which is
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not depth dependent and thus does not change as the relative depth decreases).

Wave particle velocities and orbit dimensions decrease with increasing distance

below the free surface. In deep water at a depth of �z=L > 0:5 the particle

velocities and orbit dimensions are close to zero. Since for d=L > 0:5 the waves

do not interact with the bottom, wave characteristics are thus independent of the

water depth [e.g., see Egs. (2.15) to (2.17)].

Example 2.3-1

A wave in water 100 m deep has a period of 10 s and a height of 2 m. Determine

the wave celerity, length, and steepness. What is the water particle speed at the

wave crest?

Solution:

Assume that this is a deep water wave. Then, from Eq. (2.17)

Lo ¼ 9:81(10)2

2p
¼ 156m

Since the depth is greater than half of the calculated wave length, the wave is in

deep water and the wave length is 156 m. [Otherwise, Eq. (2.14) would have to be

used to calculate the wave length.] The wave celerity is from Eq. (2.2)

Co ¼ 156

10
¼ 15:6m=s

and the steepness is

Ho

Lo

¼ 2

156
¼ 0:013

For deep water the particle orbits are circular having a diameter at the surface

equal to the wave height. Since a particle completes one orbit in one wave period,

the particle speed at the crest would be the orbit circumference divided by the

period or

uc ¼ pHo

T
¼ 3:14(2)

10
¼ 0:63m=s

Note that this is much less than Co.

When the relative depth is less than 0.5 the waves interact with the bottom.

Wave characteristics depend on both the water depth and the wave period, and
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continually change as the depth decreases. The full dispersion equations must be

used to calculate wave celerity or length for any given water depth and wave

period. Dividing Eq. (2.13) by Eq. (2.16) or Eq. (2.14) by Eq. (2.17) yields

C

Co

¼ L

Lo

¼ tanh
2pd

L
(2:18)

which is a useful relationship that will be employed in a later chapter. Waves

propagating in the range of relative depths from 0.5 to 0.05 are called intermedi-

ate or transitional water waves.

When the relative depth is less than approximately 0.05, tanh (2pd=L) ap-

proximately equals 2pd=L and the dispersion equation yields

C ¼
ffiffiffiffiffiffi
gd

p
(2:19)

or

L ¼
ffiffiffiffiffiffi
gd

p
T (2:20)

Waves in this region of relative depths are called shallow water waves. In shallow

water the small-amplitude wave theory gives a wave celerity that is independent of

wave period and dependent only on the water depth (i.e., the waves are not period

dispersive). The Wnite-amplitude wave theories presented in the next chapter show

that the shallow water wave celerity is a function of the water depth and the wave

height so that in shallowwaterwaves are amplitude dispersive.Remember that it is

the relative depth, not the actual depth alone, that deWnes deep, intermediate, and

shallowwater conditions. For example, the tide is a very longwave that behaves as

a shallow water wave in the deepest parts of the ocean.

Example 2.3-2

Consider the wave from Example 2.3-1 when it has propagated in to a nearshore

depth of 2.3 m. Calculate the wave celerity and length.

Solution:

Assuming this is a shallow water wave, Eq. (2.19) yields

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81(2:3)

p
¼ 4:75m=s

and Eq. (2.2) yields

L ¼ 4:75(10) ¼ 47:5m

So d=L ¼ 2:3=47:5 ¼ 0:048 < 0:05 and the assumption of shallow water was

correct. Compare these values to the results from Example 2.3-1
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2.4 Wave Kinematics and Pressure

Calculation of the wave conditions that will cause the initiation of bottom

sediment motion, for example, requires a method for calculating water particle

velocities in a wave. The water particle velocity and acceleration as well as the

pressure Weld in a wave are all needed to determine wave-induced forces on

various types of coastal structures.

Wave Kinematics

The horizontal and vertical components of water particle velocity (u and w,

respectively) can be determined from the velocity potential where

u ¼ @f

@x
, w ¼ @f

@z

This yields, after inserting the dispersion relationship and some algebraic ma-

nipulation

u ¼ pH

T

cosh k(d þ z)

sinh kd

� �
cos (kx� st) (2:21)

and

w ¼ pH

T

sinh k(d þ z)

sinh kd

� �
sin (kx� st) (2:22)

Equations (2.21) and (2.22) give the velocity components at the point (x, � z) as

a function of time as diVerent water particles pass through this point.

Note that each velocity component consists of three parts: (1) the surface deep

water particle speed pH=T , (2) the term in brackets which accounts for particle

velocity variation over the vertical water column at a given location and for

particle velocity variation caused by the wave moving from deep to shallow

water, and (3) a phasing term dependent on position in the wave and time.

Note that d þ z is the distance measured up from the bottom as demonstrated

in Figure 2.1. Also, as would be expected, the horizontal and vertical velocity

components are 908 out of phase.
The horizontal component of particle acceleration ax may be written

ax ¼ u
@u

@x
þ w

@u

@z
þ @u

@t

where the Wrst two terms on the righthand side are the convective acceleration

and the third term is the local acceleration. The magnitude of the convective
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acceleration for a small-amplitude wave is of the order of the wave steepness

(H/L) squared while the magnitude of the local acceleration is of the order of

the wave steepness. Since the wave steepness is much smaller that unity, we can

usually neglect the higher order convective acceleration term in determining the

particle acceleration. This yields

ax ¼ 2p2H

T2

cosh k(d þ z)

sinh kd

� �
sin (kx� st) (2:23)

for the horizontal component and

az ¼ � 2p2H

T2

sinh k(d þ z)

sinh kd

� �
cos (kx� st) (2:24)

for the vertical component of acceleration. The terms in brackets are the same

for both the particle velocity and acceleration components. The cosine/sine terms

indicate that the particle velocity components are 908 out of phase with the

acceleration components. This is easily seen by considering a particle following

a circular orbit. The velocity is tangent to the circle and the acceleration is

toward the center of the circle or normal to the velocity.

As water particles orbit around a mean position (see Figure 2.1) the horizontal

and vertical coordinates of the particle position relative to the mean position are

given by z and e, respectively. These components can be found by integrating the

particle velocity components with time. This yields

z ¼ �H

2

cosh k(d þ z)

sinh kd

� �
sin (kx� st) (2:25)

and

e ¼ H

2

sinh k(d þ z)

sinh kd

� �
cos (kx� st) (2:26)

where H/2 is the orbit radius for a particle at the surface of a deep water wave.

The position coordinates are evaluated for the orbit of the particle that is passing

through the point x, � z at that instant, but the small-amplitude assumptions

allow us to assume that these coordinates [given by Eqs. (2.25) and (2.26)] apply

to the orbit mean position.

As a wave propagates from deep water into shallow water, the particle orbit

geometries undergo the transformation depicted in Figure 2.2. In deep water the

orbits are circular throughout the water column but decrease in diameter with

increasing distance below the water surface, to approximately die out at a distance
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of L/2. In transitional to shallow water, the orbits reach the bottom and become

elliptical—with the ellipses becoming Xatter near the bottom. At the bottom the

particles follow a reversing horizontal path. (This is for the assumed irrotational

motion—for real conditions a bottom boundary layer develops and the horizontal

dimension of the particle orbit reduces to zero at the bottom.) Since the terms in

brackets are the same for the respective velocity, acceleration, and displacement

equations, the particle velocity and acceleration component magnitudes demon-

strate the same spatial change as do the displacement coordinates.

According to the small-amplitude theory surface waves have a sinusoidal

surface proWle. This is reasonable for low steepness waves in deep water. But,

for steeper deep water waves or as waves propagate into transitional and shallow

water the surface proWle becomes trochoidal, having long Xat troughs and

shorter peaked crests (see Figure 2.2). The amplitude of the crest increases

while the amplitude of the trough decreases. In transitional and shallow water,

particles still move in essentially closed orbits. Since they must travel the same

distance forward under the crest in less time (owing to the trochoidal proWle) as

they travel back under the trough in more time, peak velocities under the wave

crest will exceed those under the trough. As with the proWle asymmetry, this

velocity asymmetry is not predicted by the small amplitude wave theory.

It is useful to consider the deep and shallow water limits for the term in

brackets in the particle velocity, acceleration, and orbit displacement equations.

At these limits we have:

Deep water:
cosh k(d þ z)

sinh kd
¼ sinh k(d þ z)

sinh kd
¼ ekz (2:27)

Shallow water:
cosh k(d þ z)

sinh (kd)
¼ 1

kd
(2:28)

sinh k(d þ z)

sinh kd
¼ 1þ z

d
(2:29)

Deep

Shallow

SWL

L/2

Figure 2.2. Deep and shallow water surface proWles and particle orbits.
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Substitution of Eq. (2.27) into Eqs. (2.21) to (2.26) indicates that, in deep water,

the particle velocity, acceleration, and orbit displacement decay exponentially

with increasing distance below the still water line. At z ¼ �L=2 they are reduced

to 4.3% of their value at the surface.

Substitution of Eqs. (2.28) and (2.29) into Eqs. (2.21) and (2.22) respectively

yields (after some algebraic manipulation) the following equations for water

particle velocity in shallow water:

u ¼ H

2

ffiffiffi
g

d

r
cos (kx� st) (2:30)

w ¼ pH

T
1þ z

d

� �
sin (kx� st) (2:31)

Equation (2.30) indicates that, in shallow water, the horizontal component of

water particle velocity is constant from the water surface to the bottom. The

vertical component of particle velocity can be seen from Eq. (2.31) to decrease

linearly from a maximum at the water surface to zero at the bottom. Similar

statements can be made for the particle acceleration and orbit dimensions.

Pressure Field

Substitution of the velocity potential into the linearized form of the equation of

motion [Eq. (2.5) without the velocity squared terms] yields the following equa-

tion for the pressure Weld in a wave:

p ¼ �rgzþ rgH

2

cosh k(d þ z)

cosh kd

� �
cos (kx� st) (2:32)

The Wrst term on the right gives the normal hydrostatic pressure variation and

the second term is the dynamic pressure variation owing to the wave-induced

particle acceleration. These components are plotted in Figure 2.3 for vertical

sections through the wave crest and trough. Since particles under the crest are

accelerating downward, a downward dynamic pressure gradient is required. The

reverse is true under a wave trough. Halfway between the crest and trough the

acceleration is horizontal so the vertical pressure distribution is hydrostatic.

Equation (2.32) is not valid above the still water line owing to the linearization

of the DSBC and its application at the still water line. Above the still water line

the pressure must regularly decrease to zero at the water surface.

In deep water, the dynamic pressure reduces to near zero at z ¼ �L=2. A

pressure gage at this depth would essentially measure the static pressure for the

given depth below the still water line. A pressure gage (located above �L=2) can

be used as a wave gage. The period of the pressure Xuctuation is the wave period

which can be used to calculate the wave length from the dispersion equation. The
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wave height can then be calculated from Eq. (2.32), assuming the position of the

gage, the wave period and length, and the water depth are known.

Note that the term in brackets diVers from the terms in brackets for the

particle velocity, acceleration, and orbit displacement equations. At the deep

and shallow water limits we have,

cosh k(d þ z)

cosh kd
¼ ekz(deep water)

¼ 1(shallow water)

(2:33)

Thus, from the small-amplitude wave theory, in deep water there is also an

exponential decay in the dynamic pressure with distance below the still water

line. In shallow water the total pressure distribution is given by

p ¼ rg(h� z) (2:34)

2.5 Energy, Power, and Group Celerity

An important characteristic of gravity waves is that they have mechanical energy

and that this energy is transmitted forward as they propagate. It is important to

be able to quantify this energy level and the rate of energy transmission (energy

Xux or power) for a given wave height and period and water depth.

Wave Energy

The total mechanical energy in a surface gravity wave is the sum of the kinetic

and potential energies. Equations for each may be derived by considering Figure

2.4. The kinetic energy for a unit width of wave crest and for one wave length Ek

Static

Dynamic
Dynamic

Total Total

SWL

Static

− z ~ L/2 ~

Figure 2.3. Deep water wave vertical pressure distributions.
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is equal to the integral over one wave length and the water depth of one-half

times the mass of a diVerential element times the velocity of that element

squared. Thus

Ek ¼
Z L

o

Z o

�d

1

2
rdxdz(u2 þ w2)

where the upper limit of the vertical integral is taken as zero in accord with the

assumptions of the small-amplitude wave theory. Inserting the velocity terms

[Eqs. (2.21) and (2.22)], integrating, and performing the required algebraic

manipulation yields the kinetic energy

Ek ¼ rgH2L

16

If we subtract the potential energy of a mass of still water (with respect to the

bottom) from the potential energy of the wave form shown in Figure 2.4 we will

have the potential energy due solely to the wave form. This gives the potential

energy per unit wave crest width and for one wave length Ep as

Ep ¼
Z L

o

rg(d þ h)
d þ h

2

� �
dx� rgLd

d

2

� �

The surface elevation as a function of x is given by Eq. (2.10) with t ¼ 0.

Performing the integration and simplifying yields

Ep ¼ rgH2L

16

Thus, the kinetic and potential energies are equal and the total energy in a wave

per unit crest width E is

E ¼ Ek þ Ep ¼ rgH2L

8
(2:35)

d + η 

dx

u

dz

w

SWL

Figure 2.4. DeWnition sketch for wave energy derivation.
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A wave propagating through a porous structure, for example, where the water

depth is the same on both sides of the structure, will have the same period and

wave length on both sides. Thus, a reduction of wave energy because of reXection

from the structure and viscous dissipation within the structure will result in a

decrease in the wave height. A 50% reduction in wave energy would result in only

a 29% decrease in the wave height because the wave energy is proportional to the

wave height squared.

Both the kinetic and potential energies are variable from point to point along a

wave length. However, a useful concept is the average energy per unit surface

area given by

�EE ¼ E

L(1)
¼ rgH2

8
(2:36)

This is usually known as the energy density or speciWc energy of a wave.

Equations (2.35) and (2.36) apply for deep to shallow water within the limits

of the small-amplitude wave theory.

Wave Power

Wave power P is the wave energy per unit time transmitted in the direction of

wave propagation. Wave power can be written as the product of the force acting

on a vertical plane normal to the direction of wave propagation times the particle

Xow velocity across this plane. The wave-induced force is provided by the

dynamic pressure (total pressure minus hydrostatic pressure) and the Xow vel-

ocity is the horizontal component of the particle velocity. Thus

p ¼ 1

T

Z T

o

Z o

�d

(pþ rgz)udzdt

where the term in parentheses is the dynamic pressure. Inserting the dynamic

pressure from Eq. (2.32) and the horizontal component of velocity from Eq.

(2.21) and integrating leads to

P ¼ rgH2L

16T
1þ 2kd

sinh 2kd

� �

or

P ¼ E

2T
1þ 2kd

sinh 2kd

� �
(2:37)

Letting

n ¼ 1

2
1þ 2kd

sinh 2kd

� �
(2:38)
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Equation (2.37) becomes

P ¼ nE

T
(2:39)

The value of n increases as a wave propagates toward the shore from 0.5 in deep

water to 1.0 in shallow water. Equation (2.39) indicates that n can be interpreted

as the fraction of the mechanical energy in a wave that is transmitted forward

each wave period.

As a train of waves propagates forward the power at one point must equal the

power at a subsequent point minus the energy added, and plus the energy

dissipated and reXected per unit time between the two points. For Wrst-order

engineering analysis of waves propagating over reasonably short distances it is

common to neglect the energy added, dissipated, or reXected, giving

P ¼ nE

T

� �
1

¼ nE

T

� �
2

¼ constant (2:40)

Equation (2.40) indicates that, for the assumptions made, as a two-dimensional

wave travels from deep water to the nearshore the energy in the wave train

decreases at a rate inversely proportional to the increase in n since the wave

period is constant.

As waves approach the shore at an angle and propagate over irregular hy-

drography they vary three-dimensionally owing to refraction. (See Chapter 4 for

further discussion and analysis of wave refraction.) If we construct lines that are

normal or orthogonal to the wave crests as a wave advances and assume that no

energy propagates along the wave crest (i.e., across orthogonal lines) the energy

Xux between orthogonals can be assumed to be constant. If the orthogonal

spacing is denoted by B, Eq. (2.40) can be written

BnE

T

� �
1

¼ BnE

T

� �
2

¼ constant

Inserting the wave energy from Eq. (2.35) yields

H1

H2

¼
ffiffiffiffiffiffiffiffiffiffi
n2L2

n1L1

r ffiffiffiffiffiffi
B2

B1

r
(2:41)

The Wrst term on the right represents the eVects of shoaling and the second term

represents the eVects of orthogonal line convergence or divergence owing to

refraction. These are commonly called the coeYcient of shoaling Ks and the

coeYcient of refraction Kr respectively.

Equation (2.41) allows us to calculate the change in wave height as a wave

propagates from one water depth to another depth. Commonly, waves are
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predicted for some deep water location and then must be transformed to some

intermediate or shallow water depth nearshore using Eq. (2.41). For this, Eq.

(2.41) becomes

H

Ho

¼
ffiffiffiffiffiffiffiffiffi
Lo

2nL

r ffiffiffiffiffiffi
Bo

B

r
(2:42)

or

H

Ho

¼ H

H
0
o

ffiffiffiffiffiffi
Bo

B

r

where the prime denotes the change in wave height from deep water to the point

of interest considering only two-dimensional shoaling eVects.

Figure 2.5 is a plot ofH=H
0
o versus d/L and d=Lo from deep to shallow water.

Initially, as a wave enters intermediate water depths the wave height decreases

because n increases at a faster rate than L decreases [see Eq. (2.42)]. H=H
0
o

reaches a minimum value of 0.913 at d=L ¼ 0:189(d=Lo ¼ 0:157). Shoreward of

this point the wave height grows at an ever-increasing rate until the wave

becomes unstable and breaks.

0
0.8

1.0

1.2

1.4

1.6

0.1
(0.056) (0.170) (0.287) (0.395)

d / L (d / Lo)

(0.498) (0.599) (0.700)
0.2 0.3 0.4 0.5 0.6 0.7

H
H90

Figure 2.5. Dimensionless wave height versus relative depth for two-dimensional wave

transformation.
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Example 2.5-1

Consider the wave from Example 2.3–1 when it has propagated into a water

depth of 10 m without refracting and assuming energy gains and losses can be

ignored. Determine the wave height and the water particle velocity and pressure

at a point 1 m below the still water level under the wave crest. (Assume fresh

water.)

Solution:

From Example 2.3–1 we have Lo ¼ 156m and Eq. (2.14) gives

L ¼ 9:81(10)2

2p
tanh

2p(10)

L

which can be solved by trial to yieldL ¼ 93:3m. Then, k ¼ 2p=93:3 ¼ 0:0673m�1

and from Eq. (2.38)

n ¼ 1

2
1þ 2(0:0673)(10)

sinh (2(0:0673)(10)

� �
¼ 0:874

With Kr ¼ 1, Eq. (2.42) yields

H ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
156

2(0:874)(93:3)

s
¼ 1:97m

At the crest of the wave cos (kx� st) ¼ 1, and z ¼ �1, so Eq. (2.21) gives

u ¼ p(1:97)

10

cosh (0:0673)(9)

sinh (0:0673)(10)

� �
¼ 1:01m=s

which is the total particle velocity since w ¼ 0 under the wave crest. Equation

(2.32) gives

P ¼ �1000(9:81)(� 1)þ 1000(9:81)(1:97)

2

cosh (0:0673)9

cosh (0:0673)10

� �
¼ 19; 113N=m2

Remember, Eqs. (2.40) to (2.42) neglect energy transfer to and from waves by

surface and bottom eVects. The nature of these eVects is discussed brieXy below.

Bottom eVects, of course, require that the water depth be suYciently shallow for

a strong interaction between the wave train and the bottom.
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Wave ReXection

If the bottom is other than horizontal, a portion of the incident wave energy will

be reXected seaward. This reXection is generally negligible for wind wave periods

on typical nearshore slopes. However, for longer period waves and steeper

bottom slopes wave reXection would not be negligible. Any sharp bottom

irregularity such as a submerged structure of suYcient size will also reXect a

signiWcant portion of the incident wave energy.

Wind EVects

Nominally, if the wind has a velocity component in the direction of wave

propagation that exceeds the wave celerity the wind will add energy to the

waves. If the velocity component is less than the wave celerity or the wind

blows opposite to the direction of wave propagation the wind will remove energy

from the waves. For typical nonstormy wind conditions and the distances from

deep water to the nearshore zone found in most coastal locations, the wind eVect

can be neglected in the analysis of wave conditions nearshore.

Bottom Friction

As the water particle motion in a wave interacts with a still bottom, an unsteady

oscillatory boundary layer develops near the bottom. For long period waves in

relatively shallow water this boundary layer can extend up through much of the

water column. But, for typical wind waves the boundary layer is quite thin

relative to the water depth, and if propagation distances are not too long and

the bottom is not too rough, bottom friction energy losses can be neglected.

Bottom Percolation

If the bottom is permeable to a suYcient depth, the wave-induced Xuctuating

pressure distribution on the bottom will cause water to percolate in and out of

the bottom and thus dissipate wave energy.

Bottom Movement

When a wave train propagates over a bottom consisting of soft viscous material

(such as the mud deposited at the Mississippi River Delta) the Xuctuating

pressure on the bottom can set the bottom in motion. Viscous stresses in the

soft bottom dissipate energy provided by the waves.

Wave Group Celerity

Consider a long constant-depth wave tank in which a small group of deep water

waves is generated. As the waves travel along the tank, waves in the front of the

group will gradually decrease in height and, if the tank is long enough, disappear
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in sequence starting with the Wrst wave in the group. As the waves in the front

diminish in height, new waves will appear at the rear of the group and commence

to grow. One new wave will appear each wave period so the total number of

waves in the group will continually increase. This phenomenon causes the wave

group to have a celerity that is less than the celerity of the individual waves in the

group. Since the total energy in the group is constant (neglecting dissipation) the

average height of the waves in the group will continually decrease.

An explanation for this phenomenon can be found in the fact that only a

fraction [n; see Eq. (2.39)] of the wave energy goes forward with the wave as it

advances each wave length. Thus, the Wrst wave in the group is diminished in

height by the square root of n during the advance of one wave length.Waves in the

group lose energy to the wave immediately behind and gain energy from the wave

in front. The last wave in the group leaves energy behind so, relative to the group, a

new wave appears each T seconds and gains additional energy as time passes.

Apractical consequenceof thedeepwatergroupceleritybeing less than thephase

celerity of individualwaves is thatwhenwaves are generated by a storm, prediction

of their arrival time at a point of interest must be based on the group celerity.

To develop an equation for calculating the group celerity Cg consider two

trains of monochromatic waves having slightly diVerent periods and propagating

in the same direction. Figure 2.6 shows the wave trains separately (above) and

superimposed (below) when propagating in the same area. The superimposition

of the two wave trains results in a beating eVect in which the waves are alter-

nately in and out of phase. This produces the highest waves when the two

components are in phase, with heights diminishing in the forward and backward

directions to zero height where the waves are exactly out of phase. The result is a

group of waves advancing at a celerity Cg. If you follow an individual wave in the

wave group its amplitude increases to a peak and then diminishes as it passes

through the group and disappears at the front of the group.

Cg

SWL

SWL

C, LC + dC, L + dL

Figure 2.6. Two wave trains shown separately and superimposed.
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Referring to Figure 2.6, the time required for the lag between the two com-

ponents dL to be made up is dt, where dt equals the diVerence in component

lengths divided by dC, the diVerence in component celerities, i.e., dt ¼ dL=dC.

The group advances a distance dx in the time dt, where dx is the distance traveled

by the group in the time interval dtminus the one wave length that the peak wave

dropped back (as the in-phase wave drops back one wave length each period).

This can be written

dx ¼ (C þ dC)þ C

2

� �
dt� (Lþ dL)þ L

2
� Cdt� L:

if dL and dC are very small compared to L and C. Then,

Cg ¼ dx

dt
¼ Cdt� L

dt
¼ C � L

dt

since dt ¼ dL=dC this leads to

Cg ¼ C � L
dC

dL

� �
(2:43)

In shallow water, small-amplitude waves are not dispersive (dC=dL ¼ 0) so

Cg ¼ C. In deep water dC=dL ¼ C=2L [from Eq. (2.15)] so the group celerity

is half of the phase celerity. For a general relationship for the group celerity,

employing the dispersion relationship with Eq. (2.43) yields

Cg ¼ C

2
1þ 2kd

sinh 2kd

� �
(2:44)

Thus, with n as deWned in Eq. (2.38)

Cg ¼ nC (2:45)

So n is also the ratio of the wave group celerity to the phase celerity. Another way

to look at this is that the wave energy is propagated forward at the group

celerity.

2.6 Radiation Stress and Wave Setup

In Xuid Xow problems, some analyses are best carried out by energy consider-

ations (e.g., head loss along a length of pipe) and some by momentum consider-

ations (e.g., force exerted by a water jet hitting a wall). Similarly, for waves it is
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better to consider the Xux of momentum for some problem analyses. For wave

analyses, the Xux of momentum is commonly referred to as the wave ‘‘radiation

stress’’ whichmay be deWned as ‘‘the excess Xow ofmomentumdue to the presence

of waves’’ (Longuet-Higgins and Stewart, 1964). Problems commonly addressed

by the application of radiation stress include the lowering (setdown) and raising

(setup) of the mean water level that is induced by waves as they propagate into the

nearshore zone, the interaction of waves and currents, and the alongshore current

in the surf zone induced by waves obliquely approaching the shore.

Radiation Stress

The horizontal Xux of momentum at a given location consists of the pressure

force acting on a vertical plane normal to the Xow plus the transfer of momen-

tum through that vertical plane. The latter is the product of the momentum in

the Xow and the Xow rate across the plane. From classical Xuid mechanics, the

momentum Xux from one location to another will remain constant unless there is

a force acting on the Xuid in the Xow direction to change the Xux of momentum.

If we divide the momentum Xux by the area of the vertical plane through

which Xow passes, we have for the x direction

pþ ru2

For a wave, we want the excess momentum Xux owing to the wave, so the

radiation stress Sxx for a wave propagating in the x direction becomes

Sxx ¼
ðh
�d

(pþ ru2)dz�
ðo
�d

rgdz (2:46)

where the subscript xx denotes the x-directed momentum Xux across a plane

deWned by x ¼ constant. In Eq. (2.46) p is the total pressure given by Eq. (2.32)

so the static pressure must be subtracted to obtain the radiation stress for only

the wave. The overbar denotes that the Wrst term on the right must be averaged

over the wave period. Inserting the pressure and the particle velocity from Eq.

(2.21) leads to (Longuet-Higgins and Stewart, 1964)

Sxx ¼ rgH2

8

1

2
þ 2kd

sinh 2kd

� �
¼ �EE 2n� 1

2

� �
(2:47)

For a wave traveling in the x-direction there also is a y-directed momentum Xux

across a plane deWned by y ¼ constant. This is

Syy ¼ rgH2

8

kd

sinh kd

� �
¼ �EE(n� 1=2) (2:48)
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The radiation stress components Sxy and Syx are both zero. Note that in deep

water Eqs. (2.47) and (2.48) become

Sxx ¼
�EE

2
, Syy ¼ 0 (2:49)

And in shallow water they become

Sxx ¼ 3 �EE

2
, Syy ¼

�EE

2
(2:50)

so, like wave energy, the radiation stress changes as a wave propagates through

water of changing depth (as well as when a force is applied).

If a wave is propagating in a direction that is situated at an angle to the

speciWed x direction, the radiation stress components become

Sxx ¼ �EE n( cos2 uþ 1)� 1=2
� 	

Syy ¼ �EE n( sin2 uþ 1)� 1=2
� 	

Sxy ¼
�EE

2
n sin2 u ¼ �EEn sin u cos u

(2:51)

where u is the angle between the direction of wave propagation and the speciWed

x direction.

Wave Setup

When a train of waves propagates toward the shore, at some point, depending on

the wave characteristics and nearshore bottom slope, the waves will break.

Landward of the point of wave breaking a surf zone will form where the waves

dissipate their energy as they decay across the surf zone.

As the waves approach the breaking point there will be a small progressive set

down of the mean water level below the still water level. This setdown is caused

by an increase in the radiation stress owing to the decreasing water depth as the

waves propagate toward the shore. The setdown is maximum just seaward of the

breaking point. In the surf zone, there is a decrease in radiation stress as wave

energy is dissipated. This eVect is stronger than the radiation stress increase

owing to continued decrease in the water depth. The result is a progressive

increase or setup of the mean water level above the still water level in the

direction of the shore. This surf zone setup typically is signiWcantly larger than

the setdown that occurs seaward of the breaking point.

The equations that predict the wave-induced nearshore setdown and setup can

be developed by considering the horizontal momentum balance for two-dimen-

sional waves approaching the shore (Longuet-Higgins and Stewart, 1964). The
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net force caused by the cyclic bottom shear stress is reasonably neglected.

Consider Figure 2.7 which shows a shore-normal segment of length dx with a

setup d 0. The forces and related change in the radiation stress at the boundaries

are as shown. Writing the force-momentum Xux balance for a segment of unit

width parallel to the shore yields

rg

2
(d þ d 0)2 � rg

2
d þ d 0 þ @d 0

@x
dx

� �2

¼ @Sxx

@x
dx

where the two terms on the left are the fore and aft hydrostatic forces and the

term on the right is the resulting change in radiation stress. Assuming d � d 0 and
neglecting higher order terms this leads to

dSxx

dx
þ rgd

dd 0

dx
¼ 0 (2:52)

Equation (2.52) basically relates the change in radiation stress (caused either by a

depth change and/or wave energy dissipation) to the resulting slope of the mean

water level. This equation applies to the regions before and after the breaking

point.

For the region just seaward of the breaking point assume that the wave power

is constant and employ Eq. (2.47) to integrate Eq. (2.52). This leads to the

setdown of the mean water level given by

d 0 ¼ � 1

8

H2k

sinh 2kd
(2:53)

For deep water, Eq. (2.53) shows that the setdown is zero irrespective of the wave

height because the sinh term is very large. In shallow water, which may be used

as an estimate of the conditions just prior to breaking, d 0 ¼ �H2=16d.

Hydrostatic
force

Hydrostatic force

Hydrostatic
force

Sxx

d

dx MWL

d9 + ∂d9/∂x dx

Sxx + (∂sxx/∂x) dx

d9
SWL

Figure 2.7. Force balance for wave-induced setup analysis.
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In the surf zone, the rate of energy dissipation by wave breaking will depend

on the type of breaker that occurs. This rate of energy dissipation is complex and

typically nonuniform. However, to reasonably develop an equation for wave

setup, we will assume that the wave height across the surf zone is proportional to

the depth below the local mean water level, i.e., H ¼ g(d þ d 0). A reasonable

value for g is 0.9 (see Section 2.8). Also, we will assume that shallow water wave

conditions exist so Sxx ¼ 3E=2. These assumptions lead to a solution to Eq.

(2.52) given by

dd 0

dx
¼ 1þ 8

3g2

� ��1
dd

dx
(2:54)

which gives the slope of the mean water level as a function of the bottom slope in

the surf zone.

Example 2.6-1

Consider a wave that has a height of 2 m in water 2.2 m deep (below the mean

water level) as it is about to break. The nearshore bottom slope through the surf

zone is 0.02. Find the setdown at the breaker point and the setup (above the still

water line) at the still water line contour of the shore. Assume shallow water

wave conditions throughout.

Solution:

The setdown at the breaker line is

d 0 ¼ � (2)2

16(2:2)
¼ �0:11m

The slope of the rising mean water level through the surf zone is

dd 0

dx
¼ 1þ 8

3(:9)2

� ��1

(0:02) ¼ 0:0047

For a bottom slope of 0.02 the still water line at the beach will be

(2:2þ 0:11)=(0:02) ¼ 115:5mshorewardof thebreaker line.At this point themean

water level will be�0:11þ (115:5)(0:0047) ¼ 0:43m above the still water level.

Equations (2.53) and (2.54) indicate that the setdown is a function of the incident

wave height but the slope of the mean water level through the surf zone is not.

However, higher incident waves will break further seaward so the same mean

water level slope will yield a higher mean water level throughout the surf zone.
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It should be kept in mind that the development of Eqs. (2.53) and (2.54)

employed the small-amplitude wave theory, which is less accurate in the near-

shore zone. However, experiments conducted by Saville (1961) in a large two-

dimensional wave tank yielded results that favorably agree with predictions from

these equations. Also, the equations apply to waves approaching normal to the

shore. If the waves approach obliquely to the shore, only the shore normal

component of radiation stress will induce setdown and setup.

2.7 Standing Waves, Wave ReXection

A solid structure such as a vertical wall will reXect an incident wave, the

amplitude of the reXected wave depending on the wave and wall characteristics.

When the reXected wave passes through the incident wave a standing wave will

develop. It is worthwhile to investigate the nature of wave reXection and standing

waves, particularly the resulting surface proWle and particle kinematics of the

resulting wave motion as well as the dependence of the reXected wave charac-

teristics on the reXecting structure makeup.

Standing Waves

Consider two waves having the same height and period but propagating in

opposite (þ=�) directions along the x axis. When these two waves are superim-

posed the resulting motion is a standing wave as depicted in Figure 2.8a. The

water surface oscillates from one position to the other and back to the original

position in one wave period. The arrows indicate the paths of water particle

oscillation. Under a nodal point particles oscillate in a horizontal plane while

under an antinodal point they oscillate in a vertical plane. When the surface is at

one of the two envelope positions shown, water particles instantaneously come

to rest and all of the wave energy is potential. Halfway between the envelope

positions the water surface is horizontal and all wave energy in kinetic. The net

energy Xux (if the two component waves are identical) is zero.

The velocity potential for a standing wave can be obtained by adding the

velocity potentials for the two component waves that move in opposite direc-

tions. This yields

f ¼ gH

s

cosh k(d þ z)

cosh kd

� �
cos kx sin�t (2:55)

With the velocity potential given by Eq. (2.55), we can derive the various

standing wave characteristics in the same way as for a progressive wave. This

yields a surface proWle given by
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h ¼ H cos kx sinst; (2:56)

horizontal and vertical velocity components given by

u ¼ pH

T

cosh k(d þ z)

sinh kd

� �
sin kx sinst (2:57)

and

w ¼ pH

T

sinh k(d þ z)

sinh kd

� �
cos kx sinst; (2:58)

a pressure Weld given by

p ¼ �rgzþ �gH
cosh k(d þ z)

cosh kd

� �
cos kx cosst; (2:59)

and horizontal and vertical particle displacements given by

= O, T

= T/2

N
od

e

A
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od

e

Envelope of
surface motion

Envelope of
surface motion

(a)

(b)

SWL

SWL

Figure 2.8. Standing wave particle motion and surface proWle envelope. (a) Cr ¼ 1:0,

(b) Cr < 1:0.
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z ¼ �H
cosh k(d þ z)

sinh kd

� �
sin kx cosst (2:60)

and

e ¼ H
sinh k(d þ z)

sinh kd

� �
cos kx cosst (2:61)

Equations (2.56) through (2.61) demonstrate some interesting features of a

standing wave. If the component progressive wave heights are H, the standing

wave height is 2H. The terms in brackets that deWne wave decay/shoaling eVects

are the same as for the equivalent progressive wave characteristic. However, at a

given point (x, � z) the horizontal and vertical velocity and displacement com-

ponents are in phase, rather than being 908 out of phase as is the case for

progressive waves. The pressure is hydrostatic under a node where particle

acceleration is horizontal; but under an antinode there is a Xuctuating vertical

component of dynamic pressure.

The energy in a standing wave per unit crest width and for one wave length is

E ¼ rgH2L

4
(2:62)

where, again, H is the height of a component progressive wave. This consists of

potential and kinetic energy components given by

Ep ¼ rgH2L

4
cos2 st (2:63)

and

Ek ¼ rgH2L

4
sin2 st (2:64)

Equations (2.63) and (2.64) demonstrate, as discussed above, that at

t ¼ 0, T=2, . . .E ¼ Ep and at T ¼ T=4, 3T=4, . . .E ¼ Ek.

Wave ReXection

In a standing wave, the particle velocity under an antinode is always vertical. If a

frictionless, rigid, vertical, impermeable wall were placed at the antinode the

water particle motion would be unaVected. Thus, we would have a standing wave

caused by the reXection of a progressive wave from the wall. The particle velocity

and the pressure distribution along the wall would be given by Eqs. (2.58) and

(2.59), respectively with cos kx ¼ 1.
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As the wall slope decreases, the wall becomes elastic and/or the wall surface

becomes rough and permeable, the reXected wave height becomes less than the

incident height. The surface proWle and the particle motion in this standing wave

are depicted in Figure 2.8b. We can deWne a reXection coeYcient Cr as

Cr ¼ Hr

Hi

(2:65)

where Hr is the reXected wave height and Hi is the incident wave height (i.e., the

reXection coeYcient will be equal to or less than unity). Considering Figure 2.8,

as the reXection coeYcient decreases from unity to zero the particle trajectories

transition from those for a pure standing wave to those of the orbital pattern for

a pure progressive wave.

The envelope height at the antinode for a standing wave is Hi þHr and the

nodal envelope height is Hi �Hr (Ippen, 1966). It can also be shown the reXec-

tion coeYcient equals the diVerence between the two envelope heights divided by

the sum of the two envelope heights. When wave tank tests are being run with

monochromatic waves and a reXecting structure, the wet mark on the side of the

tank displays the upper envelope shown in Figure 2.8b and is an indicator of the

amount of wave reXection from the structure. A wave gage mounted on a

carriage and slowly moved at least one wave length along the wave tank will

measure the node and antinode envelope heights which can be used to calculate

the reXection coeYcient for a monochromatic wave.

2.8 Wave ProWle Asymmetry and Breaking

As a wave propagates into intermediate and shallow water an initial proWle

asymmetry develops around the horizontal axis as the wave crest steepens and

thewave trough Xattens. Further on an asymmetry also develops around a vertical

axis through the wave crest (neither asymmetry is deWned by the small amplitude

wave theory). These asymmetries ultimately lead to wave instability and breaking.

ProWle Asymmetry

Figure 2.9 shows a typical asymmetric wave proWle as a wave propagates

through relatively shallow water prior to breaking. Besides the vertical

asymmetry resulting in a crest amplitude that exceeds half the wave height, the

front face of the wave becomes steeper than the back face and the distance (in

the direction of wave propagation) from crest to trough is less than the distance

from trough to crest. These asymmetries increase as the wave moves into shal-

lower and shallower water. They also contribute to increased particle velocities

at the wave crest and ultimately to crest instability and wave breaking.
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Wave tank experiments were conducted by Adeyemo (1968) for intermediate

depth waves shoaling on slopes from 1:18 to 1:4. These slopes are somewhat

steeper than found in most nearshore areas. He presented his data in terms of

four values deWned as follows (see Figure 2.9):

Vertical asymmetry ¼ ac=H

Slope asymmetry ¼ 0:5(slope aþ slope b)

Horizontal asymmetry (1) ¼ distance 1/distance 2

Horizontal asymmetry (2) ¼ distance 3/distance 4

The slopes were stated in radians with slope b being a positive value and slope a

being a negative value.

The experiments showed the vertical asymmetry continuously increased as the

wave shoaled, reaching a maximum of between 0.62 and 0.74 at breaking. In

shallower depths (d=L < 0:10) wave vertical asymmetry was greater for Xatter

slopes. Flatter slopes mean that the wave has more travel time for the asymmetry

to develop. Thus, for natural beach slopes that are Xatter than the experimental

slopes one might expect vertical asymmetries greater than the 0.62 to 0.74 values

reported. The slope and horizontal asymmetries also continuously increased as

the wave shoaled; but, as opposed to vertical asymmetries steeper bottom slopes

caused greater slope and horizontal asymmetries.

Wave Breaking

If a wave has suYcient height in any water depth it will break. In deep water, for

a given wave period, the crest particle velocity is proportional to the wave height.

From the small-amplitude wave theory, the wave celerity is independent of the

wave height. So, as the wave height increases the crest particle velocity will

eventually equal the wave celerity and the wave will break. In shallow water,

as the water depth decreases the crest particle velocity increases and the wave

celerity decreases, leading to instability and breaking.

SWL
b a H

3

12

4

ac

Figure 2.9. DeWnition of proWle asymmetry terms.

Two-Dimensional Wave Equations and Wave Characteristics / 39



Miche (1944) developed a simple equation for wave breaking in any water

depth given by

H

L

� �
max

¼ 1

7
tanh

2pd

L
(2:66)

This equation ignores the bottom slope which, as discussed above, aVects devel-

opment of wave asymmetry and breaking as a wave shoals. As a consequence,

Eq. (2.66) gives a good indication of deep water breaking limits on wave height

but only an approximate rule of thumb for shallow water breaking conditions.

For deep water Eq. (2.66) reduces to

Ho

Lo

� �
max

¼ 1

7
(2:67)

indicating that the maximum wave height in deep water is limited to one-seventh

of the wave length. In shallow water we have

H

L

� �
max

¼ 1

7

2pd

L

� �

or

H

d

� �
max

¼ 0:9 (2:68)

Thus, in shallow water wave heights are limited by the water depth. This is often

an important consideration in the design of structures built seaward of the

water’s edge. No matter how high the deep water wind generated waves are,

the highest wave that can reach the structure is dependent primarily on the water

depth in front of the structure. Thus, as structures are extended further seaward

they tend to be exposed to higher, more damaging waves.

Waves breaking on a beach are commonly classiWed into three categories (U.S.

Army Coastal Engineering Research Center, 1984) depicted in Figure 2.10.

These three breaker classes are:

Spilling. As breaking commences, turbulence and foam appear at the wave

crest and then spread down the front face of the wave as it propagates

toward the shore. The turbulence is steadily dissipating energy, resulting in a

relatively uniform decrease in wave height as the wave propagates forward

across the surf zone.

Plunging. The wave crest develops a tongue that curls forward over the front

face and plunges at the base of the wave face. The breaking action and
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energy dissipation are more conWned to the point of breaking than is the

case for a spilling wave. The plunging tongue of water may regenerate lower

more irregular waves that propagate forward and break close to the shore.

Surging. The crest and front face of the wave approximately keep their

asymmetric shape as they surge across the beach slope. This form of

breaking is a progression toward a standing or reXecting wave form.

While the above three classes are relatively distinct, for gradually changing

incident wave steepnesses and bottom slopes there is a gradual transition from

one form to the next. (Some investigators add a transitional class—collapsing

breakers—between plunging and surging.) Only spilling and plunging breakers

occur in deep water and they are the most common types of breakers in shallow

water. Spilling breakers, accompanied by ‘‘whitecapping’’ if there is a strong

wind, are most common in deep water. The type of breaker is important, for

example, to the stability of a stone mound structure exposed to breaking waves.

Surging

Collapsing

Plunging

Spilling

Figure 2.10. Wave breaker classiWcation.
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It will also aVect the amount of energy reXected from a slope and the elevation of

wave runup on a slope.

As discussed above, Eq. (2.68) only gives an approximate rule of thumb for

wave breaking in shallow water. A number of experimenters have investigated

nearshore breaking conditions in the laboratory and presented procedures for

predicting the breaking heightHb and water depth at breaking db as a function of

incident wave characteristics and bottom slope m. Figures 2.11 and 2.12, mod-

iWed slightly from the U.S. Army Coastal Engineering Research Center (1984)

and based on studies by Goda (1970) and Weggel (1972), are commonly used for

estimating breaking conditions.

Given the beach slope, the unrefracted deep water wave height, and the wave

period one can calculate the deep water wave steepness and then determine the

breaker height from Figure 2.11. The regions for the three classes of wave

breaker types are also denoted on this Wgure. With the breaker height one can

then determine the water depth at breaking from Figure 2.12. Note the range of

db=Hb values in Figure 2.12 versus the guidance given by Eq. (2.68). If a wave

refracts as it propagates toward the shore, the equivalent unrefracted wave

height given by

0.0004
0.5

1.0

1.5

2.0

2.5

3.0

0.0006 0.001 0.002

H

H

0.004 0.006 0.01 0.02 0.03

/gT2

Hb

Surging

Plunging

Spilling

m = 0.100
0.050
0.033
0.020

9
0

9
0

Figure 2.11. Dimensionless breaker height and class versus bottom slope and deep water

steepness. (ModiWed from U.S. Army Coastal Engineering Research Center, 1984.)
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H
0
o ¼ KrHo (2:69)

should be used in Figure 2.11.

Figures 2.11 and 2.12 do not consider the eVects of wind on wave breaking.

Douglass (1990) conducted limited laboratory tests on the eVect of inline fol-

lowing and opposing winds on nearshore wave breaking. He found that oVshore

directed winds retarded the growth of wave height toward the shore and conse-

quently caused the waves to break in shallower water than for the no wind

condition. Onshore winds had the opposite eVect but to a lesser extent. However,

Hb=db was greater for oVshore winds than for onshore winds, given the same

incident wave conditions and beach slope. For the same incident waves, oVshore

winds caused plunging breakers when onshore winds caused waves to spill.

The design of some coastal structures is dependent on the higher wave that

breaks somewhat seaward of the structure and plunges forward to hit the

structure. Thus, when designing a structure for breaking wave conditions, the

critical breaking depth is some point seaward of the structure that is related to

the breaker plunge distance Xp as depicted in Figure 2.13. Smith and Kraus

(1991), based on experiments with plane slopes and slopes having a submerged

0
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.002 0.004 0.006

0.15 (1:6.7)0.10 (1:10)0.07 (1:14)0.05 (1:20)
0.03 (1:33)

0.02 (1:50)
0.01 (1:100)

m = 0 (1:∞)

0.008
Hb /gT2
0.010 0.012 0.014 0.016 0.018 0.020

db

Hb

0.20 (1:5) and steeper

Figure 2.12. Dimensionless breaker depth versus bottom slope and breaker steepness.

(ModiWed from U.S. Army Coastal Engineering Research Center, 1984.)
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bar that trips wave breaking, found the following relationships for the plunge

distance. For plane slopes,

Xp

Hb

¼ 3:95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ho=Lo

p
m

 !0:25

(2:70)

and, for slopes with a submerged bar

Xp

Hb

¼ 0:63

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ho=Lo

p
m

 !
þ 1:81 (2:71)

For structure design one might typically use the wave that breaks at 0:5Xp

seaward of the structure.

2.9 Wave Runup

After a wave breaks, a portion of the remaining energy will energize a bore that

will run up the face of a beach or sloped shore structure. Figure 2.14 depicts this

Xp Breaker initiation

Hb
MWL

db

m

Figure 2.13. DeWnition sketch for breaker plunge distance.

SWL

Limit of wave
runup

R

ds

Figure 2.14. DeWnition sketch for wave runup.
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process where the runup R is the maximum vertical elevation above the still

water level to which the water rises on the beach or structure. Prediction of the

wave runup is important, for example, for the determination of the required crest

elevation for a sloping coastal structure or to establish a beach setback line for

limiting coastal construction.

The runup depends on the incident deep water wave height and period, the

surface slope and proWle form if not planar, the depth ds fronting the slope (see

Figure 2.14), and the roughness and permeability of the slope face. Dimensional

analysis leads to

R

H
0
o

¼ fcn a,
H

0
o

gT2
,
ds

H
0
o

� �
(2:72)

for a given surface shape and condition (where cot a ¼ 1=m).

Figure 2.15 is a typical plot of experimental data from a laboratory wave

runup study with monochromatic waves. These data are for a smooth, planar,

impermeable slope with ds=H
0
o between 1 and 3. (See U.S. Army Coastal Engin-

eering Research Center, 1984 for similar plots for other slope conditions.) Figure

2.15 indicates that, for a given structure slope, steeper waves (higher H
0
o=gT

2)

have a lower relative runup (R=H
0
o). Also, for most beach and revetment slopes

(which are Xatter than 1 on 2), the wave runup increases as the slope becomes

steeper.

Table 2.1, developed from a number of laboratory experiments, gives an

indication of the eVect of slope surface condition on wave runup. The factor r

is the ratio of the runup on the given surface to that on a smooth impermeable

surface and may be multiplied by the runup determined from Wgures such as

Figure 2.15 to predict the wave runup.

Example 2.9-1

Consider the deep water wave in Example 2.3–1 propagating toward the shore

without refracting. The wave breaks and runs up on a 1:10 grass covered slope

having a toe depth of 4 m. Determine the breaking wave height and the wave

runup elevation on the grass-covered slope.

Solution:

For a deep water unrefracted wave height of 2 m and a period of 10 s we have

H
0
o

gT2
¼ 2

(9:81)(10)2
¼ 0:002

From Figure 2.11 for m ¼ 0:1
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Table 2.1. Runup Factors for Various Slope Conditions

Slope facing r

Concrete slabs 0.9

Placed basalt blocks 0.85–0.9

Grass 0.85–0.9

One layer of riprap on an impermeable base 0.8

Placed stones 0.75–0.8

Round stones 0.6–0.65

Dumped stones 0.5–0.6

Two or more layers of riprap 0.5

Tetrapods, etc. 0.5

From Battjes, 1970.
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Figure 2.15. Dimensionless runup on smooth impermeable slopes versus bottom slope

and incident deep water wave steepness; 1 < ds=H
0
o < 3. (ModiWed from U.S. Army

Coastal Engineering Research Center, 1984.)
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Hb

H
0
o

¼ 1:6

or

Hb ¼ 1:6(2) ¼ 3:2m

The wave would form a plunging breaker. From Figure 2.15, since

ds=H
0
o ¼ 4=2 ¼ 2, at cot a ¼ 10

R

H
0
o

¼ 0:85

or the uncorrected smooth slope runup is

R ¼ 0:85(2) ¼ 1:7m

Using r ¼ 0:875 from Table 2.1 gives a runup of

R ¼ 0:875(1:7) ¼ 1:5m

on the grass-covered slope.

2.10 Summary

Experiments conducted in wave tanks (Wiegel, 1950; Eagleson, 1956; LeMe-

haute et al., 1968) give some indication of the accuracy of small-amplitude wave

theory in predicting the transformation of monochromatic two-dimensional

waves as they travel into intermediate and shallow water depths, and of the

accuracy in predicting particle kinematics given the wave height and period and

the water depth. A summary follows:

1. For most typical bottom slopes the dispersion equation is satisfactory for

predicting the wave celerity and length up to the breaker zone.

2. For increasing beach slopes and wave steepnesses, the wave height predic-

tions given by Eq. (2.42) will be lower than the real wave heights. This

discrepancy increases as the relative depth decreases. As an example, on a

1:10 slope, for a relative depth of 0.1 and a deepwater wave steepness of 0.02,

the experimental wave height exceeded the calculated wave height by 15%.

3. For waves on a relatively Xat slope and having a relative depth greater than

about 0.1, the small-amplitude theory is satisfactory forpredictinghorizontal
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water particle velocities. At lesser relative depths the small-amplitude

theory still predicts reasonably good values for horizontal velocity near

the bottom, but results are poorer (up to 50% errors on the low side) near

the surface.

Limitations of the small-amplitude theory in shallow water and for high waves

in deep water suggest a need to consider nonlinear or Wnite-amplitude wave

theories for some engineering applications. The next chapter presents an over-

view of selected aspects of the more useful Wnite-amplitude wave theories, as well

as their application and the improved understanding of wave characteristics that

they provide.
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2.12 Problems

1. A two-dimensionalwave tankhas a stillwater depthof 1.9 manda1:20plane

slope installed with its toe at the tank midpoint. The tank is 1 m wide. A wave

generator produces monochromatic waves that, when measured at a wave gage

installed before the toe of the slope, have a height of 0.5 m and a period of 2.8 s.

(a) Determine the wave length, celerity, group celerity, energy, and energy

density at the wave gage.

(b) At the instant that a wave crest passes the wave gage, determine the water

particle velocity and acceleration below the gage at mid depth.

(c) Is the wave passing the gage a deep water wave? If not, what would the

equivalent deep water length, celerity, group celerity, energy, and energy

density be? Compare these values to those in part a.

(d) Calculate the wave height as a function of distance along the slope from

the toe to the point at which the wave breaks.

2. An ocean bottom-mounted pressure sensor measures a reversing pressure

as a train of swells propagates past the sensor toward the shore. The pressure

Xuctuations have a 5.5 s period and vary from a maximum of 54:3 kN=m2
to a

minimum of 41:2 kN=m2
.

(a) How deep is the pressure sensor (and bottom) below the still water level?

(b) Determine the wave height, celerity, group celerity, energy, and power as it

passes the sensor.

(c) As a wave crest is passing the sensor determine the water particle velocity

and acceleration at a point 1.5 m above the bottom.
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(d) Calculate the deep water wave celerity, length, group celerity, energy, and

power if the wave propagates along a line perpendicular to the shore

without refracting.

(e) The nearshore bottom slope is 1:30. Calculate and plot the wave height as a

functionofposition fromdeepwater into thepoint atwhich thewavebreaks.

3. OVshore, in deep water, a wave gage measures the height and period of a

train of waves to be 2 m and 7.5 s, respectively. The wave train propagates

toward the shore in a normal direction without refracting and the nearshore

bottom slope is 1:40. It passes the outer end of a pier located in water 4.5 m deep.

(a) Determine the wave length, celerity, group celerity, energy density, and

power in deep water.

(b) Determine the wave length, height, celerity, group celerity, energy density,

and power at the end of the pier. Is this a deep, transitional or shallow

water wave at the end of the pier?

(c) At the instant that a wave crest passes the end of the pier, what is the

pressure at a point 2 m below the still water level?

(d) Calculate the horizontal components of the water particle velocity and

acceleration at this point 2 m below the still water level 1 s before the wave

crest passes the end of the pier.

(e) At what water depth will the wave break? What will the wave height be as

the wave breaks? What type of breaker will it be?

4. A wave gage mounted on the seaward end of a pier where the water depth is

6 m, measures a wave having H ¼ 2:3m and T ¼ 7:1 s. This wave is one of a

train of waves that is traveling normal to the shore without refracting. The

bottom slope is 1:30.

(a) Determine the deep water wave height and energy.

(b) Determine the wave height and water depth where the wave breaks.

(c) What are the water particle pressure, velocity and acceleration 1.7 m

above the bottom 1.3 seconds after the wave crest passes the gage?

5. A wave has a height of 1.5 m in water 5 m deep and a wave period of 6 s.

Plot the horizontal component of velocity, the vertical component of acceler-

ation, and the dynamic pressure at a point 2 m below the still water level versus

time for a 6-s interval. Plot the three values on the same diagram and comment

on the results.

6. Estimate the maximum height wave that can be generated in a wave tank

having water 1.8 m deep if the wave period is 1 s and if the period is 3 s.

7. A wave has a measured height of 1.4 m in water 5.6 m deep. If it shoals on

a 1:50 slope how wide will the surf zone be? Assume the wave propagates normal

to the shore without refracting.

8. A pressure gage located 1 m oV the bottom in water 10 m deep measures an

average maximum pressure of 100 kN=m2
having an average Xuctuation period

of 12 s. Determine the height and period of the wave causing the measured

pressure Xuctuation.
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9. Derive an equation for the horizontal component of particle convective

acceleration in a wave. Compare the horizontal components of convective and

local acceleration versus time for a time interval of one wave period, at a distance

of 2 m below the still water level and for a 1 m high 6 s wave in water 5 m deep.

10. Demonstrate, using Eq. (2.43), that Cg ¼ C=2 in deep water and Cg ¼ C

in shallow water.

11. Calculate and plot n and L nondimensionalized by dividing by the deep

water values for n and L, as a function of d/L for d/L from 0.5 to 0.05.

12. Derive the equations for the horizontal and vertical components of particle

acceleration in a standing wave, starting from the velocity potential [Eq. (2.55)].

13. As the tide enters a river and propagates upstream, the water depth at a

given location is 3.7 m. At this location the tide range is 1 m. If the dominant

tidal component has a period of 12.4 hours, estimate the peak Xood tidal Xow

velocity at this location in the river.

14. Consider the conditions given in Problem 13. At a location in the river

where the water depth is 5.1 m estimate the tide range and peak Xood tidal Xow

velocity.

15. The Wrst wave of a group of waves advancing into still water is 0.30 m

high. The water depth is 4.5 m and the wave period is 2 s. How high is this wave

8 s later?

16. Consider a 1 m high, 4 s wave in water 5 m deep. Plot suYcient velocity

potential lines to deWne their pattern and then sketch in orthogonal streamlines.

17. Consider a deep water wave having a height of 2.1 m and a period of 9 s

shoaling on a 1:50 slope without refraction. Calculate, for comparison, the crest

particle velocity in deep water, at d ¼ 20m, and just prior to breaking. Calculate

the wave celerity just prior to breaking and compare it to the crest particle

velocity. Comment on the reason for any discrepancies.

18. A 12 s, 2 m high wave in deep water shoals without refracting. Calculate

the maximum horizontal velocity component and the maximum horizontal

displacement from the mean position for a particle 5 m below the still water

level in deep water and where the water depth is 6 m.

19. As the wave given in Problem 4 propagates toward the shore determine

the mean water level setdown at the breaker line and the setup 40 m landward of

the breaker line.

20. Equation (2.56) deWnes the surface proWle as a function of time for a

standing wave. From this, derive the potential energy per wave length and the

potential energy density, both as a function of time. Realizing that at the instant

a standing wave has zero particle velocity throughout, all energy is potential

energy, determine the total and kinetic energies per wave length and the total and

kinetic energy densities.

21. For the conditions in Example 2.6-1, calculate and plot (to a 10:1 vertical

scale distortion) the bottom, still water line, and the mean water line from a point

20 m seaward of the breaker point to the shoreline.
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22. A wave having a height of 2.4 m and a period of 8 s in deep water is

propagating toward the shore without refracting. A water particle velocity of

0.25 m/s on the bottom is required to initiate movement of the sand on the sea

Xoor. At what water depth will sand movement commence as the wave shoals?

23. Using shallow water wave equations for celerity and water particle vel-

ocity and the criteria that at incipient breaking the crest particle velocity equals

the wave celerity, derive a criterion for wave breaking. Comment on the result of

this derivation.

24. To an observer moving in the direction of a monochromatic wave train at

the wave celerity, the wave motion appears to be steady. The surface particle

velocity at the wave crest Uc ¼ Co � pH=T and at the trough Ut ¼ Co þ pH=T

for a deep water wave. Apply the Bernoulli equation between these two points to

derive Eq. (2.16).

25. For a given wave height and period and water depth which of the follow-

ing wave parameters depend on the water density: celerity, length, energy dens-

ity, particle pressure, and particle velocity at a given depth? Explain each answer.

26. How does increased water viscosity aVect a wave train as it propagates

toward the shore?

27. Waves with a period of 10 s and a deep water height of 1 m arrive normal

to the shore without refracting. A 100-m long device that converts wave motion

to electric power is installed parallel to the shore in water 6 m deep. If the device

is 45% eYcient what power is generated?

28. Demonstrate that the velocity potential deWned by Eq. (2.9) does represent

irrotational Xow.

29. A wave with a period of 7 s propagates toward the shore from deep water.

Using the limit presented in this chapter, at what water depth does it become a

shallow water wave? If the deep water wave height is 1 m would this wave break

before reaching the shallow water depth? Assume that no refraction occurs and

that the nearshore slope is 1:30.
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