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In Chapter 1 we saw the foundations of cryptography. Shannon formalized secrecy
with the notion of entropy coming from information theory, and proved that secrecy was
not possible unless we used (at least) the Vernam cipher. Except for the red telephone
application, this is not practical. We can however do some cryptography by changing
the model and relying on a computational ability. Before carefully formalizing com-
putability in Chapter 8 we use an intuitive notion of complexity. Indeed, the need of
an industry for practical cryptographic solutions pushed toward adopting an empirical
notion of secrecy: a cryptographic system provides secrecy until someone finds an
attack against it.

We recall that symmetric encryption relies on three algorithms:

� a key generator which generates a secret key in a cryptographically random or
pseudorandom way;� an encryption algorithm which transforms a plaintext into a ciphertext using a
secret key;� a decryption algorithm which transforms a ciphertext back into the plaintext
using the secret key.

Symmetric encryption is assumed to enable confidential communications over an inse-
cure channel assuming that the secret key is transmitted over an extra secure channel.
Fig. 2.1 represents one possible use of this scheme. Here the secret key is transmitted
from the receiver to the sender in a confidential way, and the adversary tries to get
information from the ciphertext only.
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Figure 2.1. Symmetric encryption.

2.1 The Data Encryption Standard (DES)

DES is the Data Encryption Standard which was originally published by the NBS—
National Bureau of Standards—a branch of the Department of Commerce in the USA.1

After a call for proposals, DES was originally proposed as a standard by IBM, based on a
previous cipher called LUCIFER developed by Horst Feistel. The US Government (and
particularly the NSA) contributed to the development. DES was adopted as a standard
and published in 1977 as a FIPS—Federal Information Processing Standard.2 It was de-
veloped based on the need for security in electronic bank transactions. NIST did not re-
new the standard in 2004 and so the standard is now over. It is however still widely used.

In the seventies, the information technology business was mostly driven by hard-
ware industry (and not by software and service companies). DES was intended for
hardware implementations.

DES is a block cipher: it enables the encryption of 64-bit block plaintexts into
64-bit block ciphertexts by using a secret key. It is thus a family of permutations over
the set of 64-bit block strings. Encryption of messages of arbitrary length is done
through a mode of operation which is separately standardized (see Section 2.2).

The secret key is also a 64-bit string, but eight of these bits are not used at all.
Therefore, we usually say that DES uses secret keys of length 56 bits.3

DES consists of a 16-round Feistel scheme. A Feistel scheme (named from the
author of the previous cipher LUCIFER which was based on a similar structure) is a
ladder structure which creates a permutation from a function. Actually, the input string
is split into two parts of equal length, and the image of one part through a round function

1 The NBS is now replaced by the NIST—National Institute of Standards and Technology.
2 The standard has been updated several times. The 1999 version is available as Ref. [5].
3 More precisely, the 64-bit key is represented as 8 bytes, and the most significant bit of every byte may be

used for parity check.
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Figure 2.2. Function �(F K1 , F K2 , F K3 ).

is XORed to the other part. We obtain two parts which are then exchanged (except in
the final round). The round function uses subkeys derived from a secret key.

This elementary process is iterated, and the number of round function applications
is called the number of rounds. We usually denote �(F1, . . . , Fr ) the permutation ob-
tained from an r -round Feistel scheme in which the round functions are F1, . . . , Fr . All
Fi may come from a single function F with a parameter Ki defined by a subkey. We de-
note Fi = F Ki . Fig. 2.2 illustrates a 3-round Feistel scheme. DES consists of 16 rounds.

More precisely, DES starts by a bit permutation IP, performs the Feistel cipher
using subkeys generated by a key schedule, and finally performs the inverse of the IP
permutation. This is illustrated in Fig. 2.3.
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Figure 2.4. DES round function.

The round function of DES has a main 32-bit input, a 48-bit subkey parameter
input, and a 32-bit output. For every round, the 48-bit subkey is generated from the
secret key by a key schedule. Basically, every 48-bit subkey consists of a permutation
and a selection of 48 out of the 56 bits of the secret key. As illustrated in Fig. 2.4, the
round function consists of

� an expansion of the main input (one out of two input bits is duplicated) in order
to get 48 bits,� a XOR with the subkey,� eight substitution boxes which transform a 6-bit input into a 4-bit output,� a permutation of the final 32 bits (which can be seen as a kind of transposition).

The substitution boxes (called S-boxes) have a 6-bit input and a 4-bit output. We
have eight S-boxes called S1, S2, . . . , S8. They are defined by tables in the standard.
The tables however need to be read in a special way. For instance, S3 is defined by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
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The 6-bit input b1b2b3b4b5b6 is split into two parts b1b6 and b2b3b4b5. The first
part b1b6 indicates which line to read: 00 is the first line, 01 the second, 10 the third,
and 11 the fourth. The second part b2b3b4b5 indicates which column to read in binary.
For instance, 0101 is column 5. The entry is the 4-bit output in decimal, to be converted
in binary. Hence the image of 001011 by S3 is 0100 (4).

The DES key schedule is done by the following algorithm. We use two registers C
and D of 28 bits. The 56 key bits from K are first split into C and D following a fixed
bit selection table PC1. Each round then rotates the bits in C and D by ri positions
depending on the round number i . (The ri ’s are also defined by a table.) Then another
bit selection table PC2 takes 24 bits from each of the two registers and concatenates
them in order to make a round key.

1: K
PC1−→ (C, D)

2: for i = 1 to 16 do
3: C ← ROLri (C)
4: D ← ROLri (D)
5: Ki ← PC2(C, D)
6: end for

Here ROLr is a circular rotation of r bits to the left. The ri ’s are defined by

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ri 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Note that the sum of all ri ’s is 28 so that we can generate the round keys in the decryption
ordering by starting with the same C and D and by running the loop backwards.

2.2 DES Modes of Operation

DES enables the encryption of 64-bit blocks. In order to encrypt plaintexts of arbi-
trary length, we have to use DES in a mode of operation. Several modes have been
standardized for DES (ECB, CBC, OFB, CFB, CTR) in Ref. [6].

2.2.1 Electronic Code Book (ECB)

The plaintext x is split into 64-bit blocks x1, . . . , xn , and the ciphertext y is the con-
catenation of encrypted blocks.

x = x1||x2|| · · · ||xn

y = C(x1)||C(x2)|| · · · ||C(xn)

(See Fig. 2.5.) There are a few security problems.
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Figure 2.5. ECB mode.

Information Leakage by Block Collisions

If two plaintext blocks are equal (say xi = x j ), then the two corresponding ciphertext
blocks are equal. The equality relation is an information which leaks.

This would not be a problem if the plaintext blocks were totally random as the
probability of equalities would be reasonably low. However, real plaintexts have lots of
redundancy in practice, so equalities are frequent.

Integrity Issues

Although encryption is assumed to protect confidentiality, and not integrity, a third
party can intercept the ciphertext and permute two blocks. The legitimate recipient of
the modified ciphertext will decrypt the message correctly and obtain two permuted
plaintext blocks.

Similarly, a block can be deleted, replaced by another one, etc. The plaintext is
thus easily malleable by an adversary.

2.2.2 Cipher Block Chaining (CBC)

The plaintext x is split into 64-bit blocks x1, . . . , xn , and the ciphertext y is the concate-
nation of blocks which are obtained iteratively. We have an initial vector IV which is a
fake initial block. As illustrated in Fig. 2.6, encryption is performed by the following
rules.

x = x1||x2|| · · · ||xn

y0 = IV

yi = C(yi−1 ⊕ xi )

y = y1||y2|| · · · ||yn

CBC decryption is easily performed by the following rules.

y = y1||y2|| · · · ||yn

y0 = IV

xi = yi−1 ⊕ C−1(yi )

x = x1||x2|| · · · ||xn
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Figure 2.6. CBC mode.

The initial vector does not have to be secret. There are actually four different ways to
use the IV.

1. Generate a pseudorandom IV which is given in clear with the ciphertext.
2. Generate a pseudorandom IV which is transmitted in a confidential way.
3. Use a fixed IV which is a known constant.
4. Use a fixed IV which is another part of the secret key.

The US standards recommend one of the two first solutions.

There are a few security problems.

Information Leakage by First Block Collisions

If for two different plaintexts the first blocks x1 are the same and the IV is fixed, then
there is still a leakage of the equality of these blocks. This is why we prefer having a
random IV.

Integrity Issues

A third party can replace ciphertext blocks so that all but a few plaintext blocks will
decrypt well. This may be an integrity problem.

2.2.3 Output Feedback (OFB)

The plaintext x is split into 	-bit blocks x1, . . . , xn , and the ciphertext y is the concate-
nation of blocks which are obtained iteratively. We still have an initial vector IV. As
depicted in Fig. 2.7, the encryption obeys the following rules.

x = x1||x2|| · · · ||xn

s1 = IV

ri = truncL	(C(si ))

si+1 = truncR64(si ||ri )
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yi = xi ⊕ ri

y = y1||y2|| · · · ||yn

Here truncL	 truncates the 	 leftmost bits, and truncR64 truncates the 64 rightmost bits.
When 	 is set to the full block length (here 64 bits), the description of the OFB mode is
quite simple as illustrated in Fig. 2.8. Note that it is not recommended to use 	 smaller
than the block length due to potential short cycles (see Ref. [57]).

Actually, the OFB mode can be seen as a pseudorandom generator mode which is
followed by the one-time pad. Here IV must be used only once (otherwise the cipher
is equivalent to a one-time pad with a key used several times). The IV does not have to
be secret.
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Figure 2.8. OFB mode with 	 set to the block length.



Conventional Cryptography 29

xi � ⊕

�
yi

�

�ri
�

C
�

�
� �

si−1

si

�

Figure 2.9. CFB mode.

2.2.4 Cipher Feedback (CFB)

The plaintext x is split into 	-bit blocks x1, . . . , xn , and the ciphertext y is the concate-
nation of blocks which are obtained iteratively. We still have an initial vector IV. As
depicted in Fig. 2.9, the encryption is according to the following rules.

x = x1||x2|| · · · ||xn

s1 = IV

ri = truncL	(C(si ))

yi = xi ⊕ ri

si+1 = truncR64(si ||yi )

y = y1||y2|| · · · ||yn

The simple version of the CFB mode with 	 set to the block length (here 64 bits) is
depicted in Fig. 2.10. As for the OFB mode and since the first block is encrypted by a
one-time pad, IV need not be secret, but must be fresh (i.e. used only once).
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Figure 2.10. CFB mode with 	 Set to the block length.



30 Chapter 2

2.2.5 Counter Mode (CTR)

The plaintext x is split into 	-bit blocks x1, . . . , xn , and the ciphertext y is the concate-
nation of blocks which are obtained iteratively. We use a sequence t1, . . . , tn of counters
and the encryption is performed by

yi = xi ⊕ truncL	(C(ti )).

For a given key, all counters must be pairwise different. For this we can, for instance,
let ti be equal to the binary representation of t1 + (i − 1) so that each ti “counts” the
block sequence. The initial counter t1 can either be equal to the latest used counter
value stepped by one unit or include a nonce which is specific to the plaintext. In the
latter case nonces must be pairwise different.

In Fig. 2.11 the CTR mode with 	 set to the block length of C is depicted.

2.3 Multiple Encryption

DES relies on a secret key of 56 effective bits, which is rather short. To
strengthen its security, people suggested to use multiple DES encryption with several
keys.

2.3.1 Double Mode

A first proposal was to use a double mode following the regular product cipher:

Enc = Ck1 ◦ Ck2

One security problem is that we may face meet-in-the-middle attacks (see Section 2.9.5).
For this reason double modes are not recommended.
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Figure 2.11. CTR mode with 	 set to the block length.
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2.3.2 Triple Mode

Since the double mode does not improve security so much, we use a standard triple
mode. The regular triple-DES is defined by three 56-bit keys k1, k2, and k3 by

Enc = Ck3 ◦ C−1
k2

◦ Ck1 .

(See Ref. [5].) In addition, three keying options are defined:

1. k1, k2, k3 are three independent keys (the key length is thus 168 bits);
2. k1 = k3 and k2 are two independent keys (the key length is thus 112 bits);
3. k1 = k2 = k3 which is equivalent to DES in simple mode. (This is a kind of

retrocompatibility with DES.)

Note that some advanced brute force attacks against triple modes exist as well.

2.4 An Application of DES: UNIX Passwords

A famous application of DES is the old UNIX CRYPT algorithm.4 It is used for access
control of users based on passwords.

Basically, the “encrypted” version of passwords is stored in a database /etc/
passwd whose confidentiality was not originally meant to be ensured. Whenever
a user types his login name and password, the system “encrypts” the password and
compares it to the “encrypted” password stored in the corresponding record of the
database. The encryption is based on modified DES due to the following observations
(see Fig. 2.12).

Clock

�

�

Salt (12)

� � �

0 � ≈DES � ≈DES � · · · � ≈DES � /etc/passwd
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W (56)

Figure 2.12. UNIX passwords.

4 A summary of the specification can be found in Ref. [128], pp. 393–394.
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� We do not want the security to rely on the secrecy of a critical secret key. Thus we
want to make the decryption impossible even with full knowledge. Thus we use
DES in a kind of a one-way mode: instead of computing C(W ) for a password
W used as a plaintext, we compute CW (0) on the null plaintext with W used as
a key. (W is truncated onto its first eight characters. It must consist of ASCII
characters, thus 7-bit long, which makes 56 bits.)� In order to make the exhaustive search more lengthy, we use a more complicated
encryption. This can be tolerated for human user authentication as long as it does
not require more than a fraction of a second. Thus we use 25 iterations of DES
with the password used as a secret key.� In order to prevent brute force attacks based on mass manufactured DES chips,
we modify DES in order to make these chips unusable.� In order to thwart attacks based on precomputed tables, the modification of
DES involves a random 12-bit salt which is stored in clear with the encrypted
password. Actually, some of the 48 bits of the expanded block are swapped
depending on the salt. The 12-bit salt is generated from the system clock when
the password is set up.

2.5 Classical Cipher Skeletons

Many block ciphers are described in the literature. We survey classical design skeletons.

2.5.1 Feistel Schemes

The Feistel scheme is the most popular block cipher skeleton. It is fairly easy to use
a random round function in order to construct a permutation. In addition, encryption
and decryption hardly need separate implementations.

An example is DES, described in Section 2.1.

Here are some possible generalizations of the Feistel scheme.

� We can add invertible substitution boxes in the two branches of the Feistel scheme
(as done in the BLOWFISH cipher).� We can replace the XOR by any other addition law. We do not necessarily
need commutativity nor associativity: only regularity (like a ∗ x = a ∗ y implies
x = y).� We do not need to have balanced branches. We may also have unbalanced ones
(like in the BEAR and LION cipher).� We can generalize the scheme so that it has more than two branches:
(a) round functions with one input and several outputs (like in MARS),
(b) round functions with several inputs and one output (like in MD4),
(c) round functions with several inputs and outputs.

The first three variants are illustrated in Fig. 2.13.
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Figure 2.13. Variants of the Feistel scheme with two branches.

2.5.2 Lai–Massey Scheme

A famous block cipher which is not based on the Feistel scheme is the IDEA cipher.
IDEA stands for International Data Encryption Algorithm. It follows two previous
versions called PES (Proposed Encryption Standard) and IPES (Improved Proposed
Encryption Standard). It was developed during the PhD studies of Xuejia Lai under
the supervision of James Massey at the ETH Zürich. IDEA was published in Lai’s
thesis (Ref. [110]) in 1992. It is patented by Ascom and made freely available for
noncommercial use.5

Like DES, IDEA is a block cipher for 64-bit blocks. IDEA uses much longer keys
than DES as it allows for 128-bit keys. In the same way that DES was dedicated to
hardware, IDEA was dedicated to software implementation on 16-bit microprocessors
(which used to be a luxurious architecture in the early nineties). It makes an extensive
use of the XOR, the addition modulo 216, and the product of nonzero residues modulo
216 + 1.

IDEA uses a structure similar to the Feistel scheme which can be called the
Lai–Massey scheme. It also enables making a permutation from a function. It however
requires a two-branch balanced structure and a commutative and associative law like the
XOR operation. As depicted in Fig. 2.14, it simply consists of adding to both branches
the output of a round function whose input is the difference of the two branches: a

5 The commercial development of IDEA is currently managed by the company MediaCrypt.
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Figure 2.14. The Lai–Massey scheme.

(xL , xR) pair is mapped onto the (yL , yR) pair defined by

yL = xL + t

yR = xR + t

where t = F(xL − xR). Note that this scheme is invertible by replacing the + by − and
changing the order of the subkeys. Unfortunately, the Lai–Massey scheme cannot be
used as is since the pair difference is an invariance: we have

xL − xR = yL − yR .

This is obviously an unsuitable property for security. For this reason we must insert
(at least) a permutation σ as depicted in Fig. 2.15 and have

yL = σ (xL + t)

yR = xR + t

as it will be detailed in Section 2.6.1 for the FOX algorithms. When the permutation σ

is such that z �→ σ (z) − z is also a permutation, we say that σ is an orthomorphism for
the + law. We can demonstrate that when σ is an orthomorphism, then the Lai–Massey
scheme provides security properties which are similar to those for the Feistel scheme.
So the invariance of the basic Lai–Massey scheme is no longer a problem. In IDEA,
key-dependent permutations (namely, products and additions) are used instead of a
fixed σ .

IDEA consists of eight rounds. One round is as represented in Fig. 2.16. The · repre-
sents the multiplication modulo 216 + 1 to a subkey, the+ is the regular addition modulo
216 to a subkey,⊕ is the bitwise XOR, and MA is the Multiplication–Addition structure,
which is depicted in Fig. 2.17. The MA structure also requires multiplication to subkeys.
The addition law which is used in the Lai–Massey scheme of IDEA is the XOR.
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2.5.3 Substitution–Permutation Network

Shannon originally defined the encryption as a cascade of substitutions (like the Caesar
cipher, or like the S-boxes in DES) and permutations (or transpositions, like the Spartan
scytales, or the bit permutation after the S-boxes in DES). Therefore, many block
ciphers fit to the category of substitution–permutation networks. However, this term
was improperly used in order to refer to cascade on invertible layers made from invertible
substitutions of coordinate permutations. Feistel schemes and Lai–Massey schemes are
not considered to belong to this category in general.

SAFER K-64 is an example of a substitution–permutation network. It was made by
James Massey for Cylink and was published in 1993 (see Refs. [121, 122]). It encrypts
64-bit blocks with 64-bit keys and is dedicated to 8-bit microprocessors (which are
widely used in embedded system, for instance in smart cards). It uses XORs and
additions modulo 28. It also uses exponentiation in basis 45 in the set of residues
modulo 257 and its inverse which are implemented with lookup tables.

SAFER K-64 is a cascade of six rounds which consists of

� a layer of XOR or addition to subkeys,� a layer of substitutions (exponentiation or logarithms as above),� a layer of XOR or addition to subkeys,� three layers of parallel linear diffusion boxes which make an overall transforma-
tion similar to the fast Fourier transform.

(See Fig. 2.18.) Diffusion boxes consist of mappings denoted by 2-PHT which are linear
with respect to the Z256 structure. They are represented with their inverse in Fig. 2.19.
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Figure 2.18. One round of SAFER.
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Figure 2.19. Diffusion in SAFER.

2.6 Other Block Cipher Examples

2.6.1 �FOX: A Lai–Massey Scheme

FOX is a family of block ciphers which was released in 2003 (see Refs. [96, 97]). It
was designed by Pascal Junod and Serge Vaudenay for the MediaCrypt company. The
family includes block ciphers with 64-bit and 128-bit blocks. Round numbers and key
sizes are flexible. We use an integral number r of rounds between 12 and 255 and a key
of k bits with an integral number of bytes, up to 256 bits. The name FOX64/k/r refers
to the block cipher of the family characterized by 64-bit blocks, r rounds, and keys of k
bits. Similarly, FOX128/k/r refers to the block cipher with 128-bit blocks. The nominal
choices denoted by FOX64 and FOX128 refer to FOX64/128/16 and FOX128/256/16
respectively. Namely, we use r = 16 as a nominal number of rounds and a key length
which corresponds to two blocks.

A key schedule processes the key K and a direction (either “encrypt” or “decrypt”)
and produces a sequence RK1, . . . , RKr of r round keys in this ordering if the direction
is “encrypt” or the opposite if the direction is “decrypt.” Encryption is performed
through r rounds as depicted in Fig. 2.20. Every round processes a data block and a
round key RK (whose size consists of two blocks) and produces another data block.
The r − 1 first rounds have identical structure but the last round is a little different.
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Figure 2.20. The FOX skeleton.
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Figure 2.21. One round of FOX64 with an orthomorphism.

The FOX64 round is a Lai–Massey scheme as defined in Section 2.5.2 with the
XOR as the addition law and an orthomorphism as depicted in Fig. 2.21. Note that
branches in the Lai–Massey scheme are split into two in the figure, leading us to four
branches in total. The orthomorphism appears in the bottom left branches (circled in
the figure). It maps (a, b) onto (b, a ⊕ b) for the encryption and onto (a ⊕ b, a) for
the decryption. The last round of FOX64 is the same Lai–Massey scheme without
the orthomorphism. The FOX128 round is an extended Lai–Massey scheme with two
orthomorphisms as depicted in Fig. 2.22. The last round omits the orthomorphisms.
With this design we easily demonstrate that flipping the key schedule direction effects
two permutations which are the inverse of each other.

Round functions are denoted f 32 and f 64 for FOX64 and FOX128 respectively.
Those functions process a data of 32 and 64 bits respectively and a round key RKi

which is split into two halves RKi0 and RKi1. As depicted in Figs. 2.23 and 2.24, RKi0

is first XORed to the input data. Then a byte-wise substitution is performed using a
substitution box denoted S-box followed by a linear transform denoted mu4 and mu8
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Figure 2.22. One round of FOX128 with orthomorphisms.
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Figure 2.23. Round function f32 of FOX64.

respectively. Then RKi1 is XORed with the output of mu4 (or mu8) and another byte-
wise substitution takes place. Finally, a last XOR to RKi0 is performed. Functions mu4
and mu8 are linear in the sense that they process vectors of bytes that are considered
as elements of the finite field GF(28) by multiplying them with a constant matrix.

The key schedule of FOX highly depends on the parameters. The main idea, as
depicted in Fig. 2.25, consists of first padding the key with some constant in order to
get a 256-bit key, then mixing those bytes in order to avoid trailing constant bytes, and
obtain a 256-bit main key. This key is XORed to constants which are generated by a
linear feedback shift register (LFSR) which can be clocked in one direction or the
other. The XOR is then processed through a nonlinear (NL) function which produces
a round key. There are some subtleties depending on the parameters.
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Figure 2.24. Round function f4 of FOX128.
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Figure 2.25. Key schedule of FOX.

� For FOX64 with key of length up to 128 bits, there is no real need for having
a 256-bit main key and this actually induces a penalty for the implementation
performances. Indeed we use a 128-bit main key and LFSR and NL functions
updated accordingly.� When the key has a “full size,” i.e. k = 256, or k = 128 with FOX64, there is no
need for padding and byte mixing. Indeed, we omit them. In order to avoid key
schedule interference between several kinds of keys, we slightly modify NL.

It should be noted that NL is defined by using functions which are similar to en-
cryption rounds. It was designed in order to be “one way” and to generate unpredictable
round keys.6

2.6.2 �CS-CIPHER: A Substitution–Permutation Network

Another example is the CS-CIPHER (CSC) which was developed by Jacques Stern and
Serge Vaudenay at the Ecole Normale Supérieure for the company Communication &
Systems. It was published in 1998 (see Refs. [176, 181]). It encrypts 64-bit blocks with
keys of variable length from 0 to 128 bits and is dedicated to 8-bit microprocessors,
and consists of eight rounds of fast Fourier transform (FFT)-like layers (see Fig. 2.26).
The difference with SAFER is that this transform is not linear.

One round of CSC is an FFT-like layer with a mixing box M as an elementary
operation. M has two input bytes and two output bytes. It includes a one-position bitwise
rotation to the left (denoted ROTL), XORs (denoted with the ⊕ notation), a nonlinear
permutation P defined by a table, and a special linear transform ϕ defined by

ϕ(x) = (ROTL(x) AND 55) ⊕ x

6 See Ref. [96] for a complete description.



Conventional Cryptography 41

� ki

�c

�c′ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
M M M M

� ��	 
� �


⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
M M M M

� ��	 
� �


⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
M M M M

� ��	 
� �


� � � � � � � �

Figure 2.26. One round of CS-CIPHER.

where AND is the bitwise logical AND and 55 is an hexadecimal constant which is
01010101 in binary. We notice that ϕ is linear, and actually an involution since

ϕ(ϕ(x)) = (ROTL(ϕ(x)) AND 55) ⊕ ϕ(x)

= x .

Thus ϕ is a linear permutation. The permutation P is defined in order to be a nonlinear
involution:

P(P(x)) = x .

We can then finally define M . Fig. 2.27 represents M with the XOR with subkey bytes
at the input. It is easy to see that Fig. 2.28 represents the inverse transform where ϕ′ is
defined by

ϕ′(x) = (ROTL(x) AND aa) ⊕ x .
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Figure 2.27. The mixing box of CSC.
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For completeness we also provide a complete view of CSC in Fig. 2.29. We see
that the key schedule is actually defined by a Feistel scheme.

2.7 The Advanced Encryption Standard (AES)

With the improvement of computer technology due to the Moore law, the security of
DES is no longer appropriate for electronic commerce. The US Government decided
to restart a standardization process called the Advanced Encryption Standard (AES)
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in 1997. This process was open: anyone was invited to submit a candidate and to send
public comments. Fifteen candidates were accepted (a few other submissions did not
meet the requirements and were rejected) in 1998. Based on public comments (and
apparently on popularity), this pool was downsized to five finalists in 1999. In October
2000, one of these five algorithms was selected as the forthcoming standard: Rijndael
(see Refs. [1, 54]).

Rijndael was designed by Joan Daemen (from the Belgium company Proton World
International) and Vincent Rijmen. They both originated from the Catholic University of
Leuven. Rijndael was designed for the AES process. Following the AES requirements, it
encrypts 128-bit blocks with keys of size 128, 192, or 256. It is dedicated to 8-bit micro-
processors. It consists of several rounds of a simple substitution–permutation network.

AES is based on the structure of SQUARE.7 This design simply consists of writ-
ing the 128-bit message block as a 4 × 4 square matrix of bytes. (Formally, Rijndael
tolerates other block sizes, but 128-bit was the target block size for AES.) Encryption
is performed through 10, 12, or 14 rounds depending on whether the key size is 128,
196, or 256 bits. The number of rounds is denoted by Nr. Each round (but the final one)
consists of four simple transformations:

1. SubBytes, a byte-wise substitution defined by a single table of 256 bytes,
2. ShiftRows, a circular shift of all rows (row number i of the matrix is rotated by

i positions to the left for i = 0, 1, 2, 3),
3. MixColumns, a linear transformation performed on each column and defined

by a 4 × 4 matrix of GF(28) elements,
4. AddRoundKey, a simple bitwise XOR with a round key defined by another

matrix.

The final round is similar, except for MixColumns which is omitted. The round keys
are generated by a separate key schedule.

More formally, one block s is encrypted by the following process, in which w is
the output subkey sequence from the key schedule algorithm.

AES encryption(s, W )
1: AddRoundKey(s, W0)
2: for r = 1 to Nr − 1 do
3: SubBytes(s)
4: ShiftRows(s)
5: MixColumns(s)
6: AddRoundKey(s, Wr )
7: end for
8: SubBytes(s)
9: ShiftRows(s)

10: AddRoundKey(s, WNr)

7 SQUARE was designed by the same authors and Lars Knudsen in 1997 (see Ref. [55]).
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The block s is also called state and represented as a matrix of terms si, j for i, j ∈
{0, 1, 2, 3}. Terms are bytes, i.e. elements of a set Z of cardinality 256. SubBytes is
defined as follows.

SubBytes(s)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si, j ← S-box(si, j )
4: end for
5: end for

Here S-box is the substitution table. Mathematically, it is a permutation of
{0, 1, . . . , 255}. ShiftRows is defined as follows.

ShiftRows(s)
1: replace [s1,0, s1,1, s1,2, s1,3] by [s1,1, s1,2, s1,3, s1,0]

{rotate row 1 by one position to the left}
2: replace [s2,0, s2,1, s2,2, s2,3] by [s2,2, s2,3, s2,0, s2,1]

{rotate row 2 by two positions to the left}
3: replace [s3,0, s3,1, s3,2, s3,3] by [s3,3, s3,0, s3,1, s3,2]

{rotate row 3 by three positions to the left}

We define the set Z as the set of all the 256 possible combinations

a0 + a1.x + a2.x
2 + · · · + a7.x

7

where a0, a1, a2, . . . , a7 are either 0 or 1 and x is a formal term. Elements of Z are thus
defined as polynomials of degree at most 7. AddRoundKey is defined as follows.

AddRoundKey(s, k)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si, j ← si, j ⊕ ki, j

4: end for
5: end for

Here the ⊕ operation over Z is defined as an addition modulo 2, i.e.

(
7∑

i=0

ai .x
i

)
⊕

(
7∑

i=0

bi .x
i

)
=

7∑
i=0

(ai + bi mod 2).xi .

A multiplication × in Z is further defined as follows.
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1. We first perform the regular polynomial multiplication.
2. We make the Euclidean division of the product by the x8 + x4 + x3 + x + 1

polynomial and we take the remainder.
3. We reduce all its terms modulo 2.

Later in Chapter 6 we will see that this provides Z with the structure of the unique
finite field of 256 elements. This finite field is denoted by GF(28). This means that we
can add, multiply, or divide by any nonzero element of Z with the same properties that
we have with regular numbers. We can further define matrix operations with terms in
Z . We can then define MixColumns as follows.

MixColumns(s)
1: for i = 0 to 3 do
2: let v be the 4-dimensional vector with coordinates s0,i , s1,i s2,i s3,i

3: replace s0,i , s1,i s2,i s3,i by the coordinates of M × v

4: end for

Here M is a 4 × 4-matrix over Z defined by

M =

⎛
⎜⎜⎝

x x + 1 1 1
1 x x + 1 1
1 1 x x + 1

x + 1 1 1 x

⎞
⎟⎟⎠ .

The substitution table S-box is defined by the inversion operation x−1 (except for
x = 0 which is mapped to zero) in the finite field GF(28). This operation has good
nonlinear properties. In order to “break” the algebraic structure of this table, an affine
transformation is added on this function.

The linear transformation in MixColumns is defined by a matrix following prin-
ciples similar to the mixing box of CSC (see Section 2.6.2): whenever i input bytes of
this linear transformation are modified, we make sure that this induces a modification
of at least 5 − i output bytes.8

We complete the description of AES by outlining the key expansion. It is easier to
consider W as a row sequence (i.e. four bytes) of length 4Nr starting by w0 and up to
w4Nr−1. Hence

Wi = [w4i , w4i+1, w4i+2, w4i+3].

The key expansion proceeds with a key described as a sequence of Nk rows (i.e. Nk is
either 4, 6, or 8) starting from key0. The expansion works as follows.

8 Equivalently, the set of all (x, M(x)) 8-byte vectors is an MDS code if M denotes the linear transformation,
or in other words, M is a multipermutation.
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KeyExpansion(key, Nk)
1: for i = 0 to Nk − 1 do
2: wi ← keyi

3: end for
4: for i = Nk to 4 × ( Nr + 1) − 1 do
5: t ← wi−1

6: if i mod Nk = 0 then
7: replace [t0, t1, t2, t3] by [t1, t2, t3, t0] in t
8: apply S-box to the four bytes of t
9: XOR xi/Nk−1 (raise the polynomial x to the power i/Nk − 1

in GF(28)) to the first byte of t
10: else if Nk = 8 and i mod Nk = 4 then
11: apply S-box to the four bytes of t
12: end if
13: wi ← wi−Nk⊕t
14: end for

2.8 Stream Ciphers

2.8.1 Stream Ciphers versus Block Ciphers

All conventional encryption schemes that we have seen so far are block ciphers in the
sense that they encrypt blocks of plaintexts. They are often opposed to stream ciphers
which encrypt streams of plaintext on the fly. A stream cipher often encrypts streams of
plaintext bits, or streams of plaintext bytes. This distinction is often misleading since
block ciphers are used as well in a mode of operation so that they can encrypt streams
of blocks. Nevertheless, we will call block cipher an encryption scheme in which the
underlying primitive is defined on a large finite set (of “blocks”) which cannot be
enumerated exhaustively in practice. With this definition we cannot assimilate a bit or
a byte to a block. Conversely, we call stream cipher an encryption scheme which can
encrypt streams of information in a smaller finite set.

First of all we notice that we can transform a pseudorandom generator into a stream
cipher. Stream ciphers are indeed often defined by a key-stream generator which is used
as a one-time pad: instead of having a large random key for the Vernam cipher, we use
a pseudorandom key which is generated as a key-stream.

We also notice that we can transform a block cipher into a stream cipher by using
the CFB, or CTR mode, with a small parameter 	9 (see Sections 2.2.3, 2.2.4, and 2.2.5).

2.8.2 RC4

RC4 is an encryption algorithm which was designed in 1987 by Ronald Rivest at MIT.
It was kept as a commercial secret until it was disclosed in 1994. In particular there is no

9 It is not recommended to do the same for OFB.
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patent on RC4, but RC4 is a registered trademark of RSA Data Security. RC4 is widely
used, for instance in SSL/TLS (see Section 12.3). In particular, some Internet browsers
and servers may use RC4 as a default encryption algorithm for protected transactions.

RC4 works as a finite automaton with an internal state. It reads a plaintext as a byte
stream and produces a ciphertext as a byte stream. Its heart is actually a key-stream
generator which is used for the one-time pad algorithm. In an initialization stage, a
secret key is processed without producing keys. The automaton ends up in an internal
state which is thus uniquely derived from the secret key only. Then, every time unit,
the automaton updates its internal state and produces a key byte which is XORed to a
plaintext byte in order to lead to a ciphertext byte.

We consider the set {0, 1, . . . , 255} of all bytes. The internal state consists of
two bytes i and j and a permutation S of this set which is encoded as an array
S[0], S[1], . . . , S[255]. All operations are done on bytes (i.e. additions are taken
modulo 256).

In the initialization, we process a key which is represented as a sequence
K [0], K [1], . . . , K [	− 1] of 	 bytes. The internal state is first initialized as fol-
lows. Byte j is set to 0, and the permutation S is set to the identity, i.e. S[i] = i
for i = 0, 1, . . . , 255. Key bytes are then iteratively processed, and the bytes i and j
are reset to 0.

1: j ← 0
2: for i = 0 to 255 do
3: S[i] ← i
4: end for
5: for i = 0 to 255 do
6: j ← j + S[i] + K [i mod 	]
7: swap S[i] and S[ j]
8: end for
9: i ← 0

10: j ← 0

The key size 	 is typically between 5 and 16 bytes (i.e. between 40 and 256 bits).

It is important that we never use the same state twice. Thus, plaintexts are iteratively
encrypted, which means that the initial state for a new plaintext is equal to the final
state for the previous plaintext.

The key-stream generator works as follows. Every time unit, we perform the
following sequence of instructions.

1: i ← i + 1
2: j ← j + S[i]
3: swap S[i] and S[ j]
4: output S[S[i] + S[ j]]



48 Chapter 2

Thus we update i , j , and S, and we output a byte which is given by S at index S[i] + S[ j].

2.8.3 A5/1: GSM Encryption

A5/1 is another stream cipher which is part of the A5 family. It is used in the GSM
mobile telephone networks. It is used in order to secure phone calls in the radio link
from the mobile telephone to the base station. It was designed by the SAGE group of
ETSI. The description of A5/1 is another trade secret, but the algorithm was reverse-
engineered and published in the Internet. It is commonly admitted that this description
is similar to the ETSI one.

A5/1 is also based on a finite automaton with an internal state. As depicted in
Fig. 2.30, A5/1 is based on three LFSRs with a mutual clock control. The three registers
R1, R2, R3 contain 19, 22, and 23 bits respectively. The internal state thus has 19 +
22 + 23 = 64 bits. Every time unit, some registers are clocked and some may not be
clocked at all. When a register is clocked, it means that its content is shifted by one
bit position and that a new bit is pushed. This new bit is the XOR of a few bits of the
involved LFSRs.

More precisely, R1 has 19 bits R1[0], . . . , R1[18]. When R1 is clocked, the content
R1[0], . . . , R1[18] is replaced by b, R1[0], . . . , R1[17], i.e. R1 is shifted by inserting a
new bit b which is computed by

b = R1[13] ⊕ R1[16] ⊕ R1[17] ⊕ R1[18].

R2 has 22 bits R2[0], . . . , R2[21]. When R2 is clocked, it is similarly shifted by inserting
a new bit
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Figure 2.30. A5/1 automaton.
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b = R2[20] ⊕ R2[21].

R3 has 23 bits R3[0], . . . , R3[22]. When R3 is clocked, it is similarly shifted by inserting
a new bit

b = R3[7] ⊕ R3[20] ⊕ R3[21] ⊕ R3[22].

In order to determine which registers to clock, we use three special bits called
“clocking taps” from every register, namely R1[8], R2[10], and R3[10]. We compute
the majority bit among those three bits, and registers whose clocking tap agree with
the majority are clocked. Consequently, we are ensured that at least two registers are
clocked. All registers are clocked if the three clocking taps agree on the same bit.

Every time unit, a bit is output from this scheme. This output bit is the XOR of
the leading bits, namely

R1[18] ⊕ R2[21] ⊕ R3[22].

We use the generated key stream as in the one-time pad.

A5/1 also includes an initialization which generates the initial internal state from
an encryption key and some GSM parameters. It is required that a new key is set up
for any new frame of 114 bits. More precisely, the key is set up from a 64-bit secret
key KC and a 22-bit frame number Count. This is indeed a kind of CTR mode. The
usage of a secret key KC is thus limited. Because of the structure of the frame number
in the GSM standard we can have at most 2.7 million frames for a single key, which
corresponds to 4 hours of GSM communication.

The A5/1 initialization works as follows. The three registers are first set to zero.
Then every bit of KC is processed in 64 clock cycles by XORing them to the first
register cells and stepping all registers (i.e. the clock control is disabled). Every bit
of the frame number Count is then processed in a similar way and the A5/1 automa-
ton is run for 100 clock cycles with its clock control enabled (but output bits are
discarded).

1: set all registers to zero
2: for i = 0 to 63 do
3: R1[0] ← R1[0] ⊕ KC[i]
4: R2[0] ← R2[0] ⊕ KC[i]
5: R3[0] ← R3[0] ⊕ KC[i]
6: clock all registers
7: end for
8: for i = 0 to 21 do
9: R1[0] ← R1[0] ⊕ Count[i]

10: R2[0] ← R2[0] ⊕ Count[i]



50 Chapter 2

11: R3[0] ← R3[0] ⊕ Count[i]
12: clock all registers
13: end for
14: for i = 0 to 99 do
15: clock the A5/1 automaton
16: end for

2.8.4 E0: Bluetooth Encryption

E0 is another stream cipher which is used in the Bluetooth standard (see Ref. [18]).
As in A5/1, E0 is an automaton which generates keystreams which are simply XORed
to the plaintext as in the Vernam cipher. E0 generates one bit every clock cycle and
frames of 2745 bits. After a frame is generated, the E0 automaton is reset to another
state.

The state of the E0 automaton is described by the content of four linear feedback
shift registers LFSR1, LFSR2, LFSR3, LFSR4 of length 25, 31, 33, 39 respectively, and
the content of two 2-bit registers ct−1 and ct . Every clock cycle, the four registers are
clocked, ct , is moved to ct−1, and ct is updated by using ct−1, ct , and the registers.

More precisely, one bit xi
t is output from LFSRi at every clock cycle. A summator

computes yt = x1
t + x2

t + x3
t + x4

t and represents it in binary using three bits y2
t y1

t y0
t .

The automaton outputs a new keystream bit zt = y0
t ⊕ c0

t where ct = c1
t c0

t . The new
value ct+1 = c1

t+1c0
t+1 of ct is computed by

c1
t+1 = s1

t+1 ⊕ c1
t ⊕ c0

t−1

c0
t+1 = s0

t+1 ⊕ c0
t ⊕ c1

t−1 ⊕ c0
t−1

where

st+1 =
⌊

yt + ct

2

⌋
.

E0 is actually a little more complicated. E0 is based on two levels of the above
automaton as depicted in Fig. 2.31. Formally, the encryption algorithm E0 takes the
logical address BD ADDR of the master (Bluetooth is based on master-slave protocols)
which is represented on 48 bits, the clock value of the master CLK which is represented
on 26 bits, and an encryption key Kc of 128 bits. The first level is used in order to
initialize the automaton for every frame. The second level generates frames with the
initialized automaton. Concretely, the encryption key Kc is first linearly shrunk and
then expanded into a 128-bit key so that the effective key length can be lowered for
regulation purposes. Then, the reexpanded encryption key, the master address, and the
master clock enter into the LFSR of the automaton which is clocked. After running
the automaton, 128 bits are output, which serve as the initial value of the second-level
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Plaintext frame

CLK

BD ADDR

Kc �

�

�

�

E0 level 1 �128 bits
E0 level 2 �2745 bits ⊕ � Ciphertext frame

�

Figure 2.31. The E0 keystream generator.

automaton for producing the keystream frame. Frames are finally used as a keystream
in the Vernam cipher.

E0 is very efficient in hardware. Its circuit is depicted in Fig. 2.32. The division
by two at the output from the second summator simply consists of dropping one bit.
Internal memory bit pairs for ct and ct−1 are represented by the z−1 symbol as a clock
time delay.

2.9 Brute Force Attacks

We now wonder what kind of security we can expect from symmetric encryption from
a generic point of view. Namely, we wonder about performances of generic attacks
using brute force which can apply to any encryption algorithm considered as a black
box. Security will be measured in terms of the encryption parameters such as the key
length and the message space size.
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Figure 2.32. One level of the E0 keystream generator.
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Attack � Key

k
�	

Yes/No

Oracle

Figure 2.33. Key recovery with a stop test oracle.

2.9.1 Exhaustive Search

Exhaustive search consists of trying all possible keys exhaustively until it is the correct
key. We can simplify the attack model by assuming that we have an oracle, which for
each key K answers if it is correct or not. The attack is thus a machine which plays with
the oracle in order to get some information out of it by sending queries (see Fig. 2.33).
Without any more formal notion of a “machine,” we can still define the complexity in
terms of number of oracle calls.10 In a cipher with a key space of N possible keys which
are uniformly generated, we can prove that the best attack has a worst case complexity
of N oracle calls and an average complexity of (about) N

2 oracle calls. Clearly, the best
attack can be assumed to be deterministic (otherwise, we just take the machine which
simulates the best deterministic behavior of the probabilistic machine), and does not
query the oracle with twice the same question. Therefore, the best attack can be defined
as an ordering of the candidates for the right key. The optimal ordering is defined by
the a priori distribution of the target key.11

In practice we do not know the a priori distribution of the target. Thus, if we take a
fixed ordering in order to try key candidates, we may fall into the worst case complexity.
For this we randomize the ordering of the key candidates. Fig. 2.34 shows a program
draft for this attack. In the worst case, the right key is the last one which is sent to
the oracle. If the right key is the i-th candidate, the complexity is equal to i . Since the
permutation σ is randomly chosen, the probability that the right key is the i-th queried
one is 1

N . Thus the average complexity is

N∑
i=1

i
1

N
= N + 1

2
.

The ultimate security goal of a cipher with keys of n bits is to have a best attack
of complexity �(2n) with a “not-too-small” work factor.12

10 In Chapter 8 we define a formal notion of machine and the notion of complexity of the computation.
11 See Exercise 2.9 on p. 62.
12 This � notation means that there exists a constant c > 0 called work factor such that for any n, the

complexity is at least c2n elementary operations. The notion of complexity is formally defined in Chapter 8.
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There is a trick in order to strengthen the security against exhaustive search: make
a key schedule complicated. In general, the key schedule is legitimately used only
once for many encryptions. Exhaustive search uses the key schedule many times. For
instance, BLOWFISH has a complicated key schedule.

Input: an oracle O, a set of possible keys K = {k1, . . . , kN }
Oracle interface: input is an element of K, output is Boolean

1: pick a random permutation σ of {1, . . . , N }
2: for all i = 1 to N do
3: if O (kσ (i)) then
4: yield kσ (i) and stop
5: end if
6: end for
7: search failed

Figure 2.34. Exhaustive search algorithm.

We can wonder now what the hypothesis about the availability of the oracle really
means in practice. We may only have some hints about the key. Namely, we can have
some equations that the key must satisfy. Typically, we can assume that we have a
plaintext–ciphertext pair so that the key must solve the equation which says that the
plaintext encrypts into the ciphertext. Another typical situation is when we intercept
a ciphertext and we know that the plaintext has some redundant information, e.g. the
plaintext is an English text. If the equations are characteristic enough for the key, the
unique solution is the right key candidate so that we can simulate the oracle by equation
solution checking.

2.9.2 Dictionary Attack

Another brute force attack is the dictionary attack. A dictionary is a huge table which
has been precomputed in order to speed up a key search. In practice, when one looks
for the definition of a word, it is too expensive to do it by exhaustive search! For this a
dictionary sorts all definitions by using an ordering on a key.

Here is a way to formalize a dictionary attack. We first precompute a list of many
(CK (x), K ) pairs for a fixed plaintext x . The first entry CK (x) is used as an index in
order to sort the list as in a dictionary, and the second entry K is the “definition.”
Then, if we obtain a CK (x) value (by chosen plaintext attack), we directly have a list
of suggested K values. Let M be the number of entries in the dictionary. If K is in a
set of N possible keys, and uniformly distributed, the probability of success, i.e. the
probability that it is in the dictionary, is M/N . When K is not uniformly distributed,
we can focus on a dictionary of the most likely K values. This is done in practice when
we try to crack passwords.

We now assume that we have T targets CK (x) instead of one: there are T secret
keys that we try to attack simultaneously and we are interested in getting at least
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Input: an encryption scheme C , a fixed message x
Preprocessing

1: for M different candidates K do
2: compute CK (x)
3: insert (CK (x), K ) in a dictionary
4: end for
5: output the dictionary

Attack
Attack input: T many values yi = CKi (x), a dictionary

6: for i = 1 to T do
7: look at yi in the dictionary
8: for all (CK (x), K ) with CK (x) = yi do
9: yield i, K

10: end for
11: end for

Figure 2.35. Multitarget dictionary attack.

one. (Fig. 2.35 illustrates the program structure.) Let p be the probability of success.
Assuming that the target K values are independent and uniformly distributed, we have
1 − p = (1 − M/N )T . Hence

p ≈ 1 − e−MT/N .

This becomes quite interesting when M ≈ T ≈ √
N . Of course the probability of

success increases substantially when the targets are not uniformly distributed and we
focus on most likely candidates.

2.9.3 Codebook Attack

Yet another brute force attack is the codebook attack. . It consists of, first, collect-
ing all (CK (x), x) pairs, then, upon reception of a y to decrypt, look for the entry
in the collection for which y = CK (x). The whole collection of pairs is called the
codebook.

2.9.4 �Time–Memory Tradeoffs

An optimized way to perform exhaustive search is to use a large precomputed table
and to make a compromise between time complexity and memory requirements. Here
we must consider four parameters: the time to perform the precomputation, the size of
the precomputed table, the probability of success when looking for a key, and the time
complexity for looking for a key. For the latter parameter, we can also distinguish worst
case complexity and average case complexity.
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The original method for time-memory tradeoffs was proposed by Martin Hellman
in 1980 in order to break DES (see Ref. [88]). We assume that we are looking for a
key K for which we know a plaintext–ciphertext pair (x, y) with a fixed x . This fixed
x is necessary to prepare the precomputed table. In practice this attack assumption
makes sense when the adversary performs a chosen plaintext attack (in order to get y
from x) or when the encryption protocol requires that the sender starts by encrypting
this fixed message x . We further assume that for all k the bitstrings Ck(x) have the same
size which is larger than the key length so that it is likely that values of k for which
y = Ck(x) reduce to the unique solution k = K .

One first selects an arbitrary “reduction function” R which reduces a bitstring of
the size of y to a key candidate R(y). This leads to the definition of a function f

f (k) = R(Ck(x))

which maps a key candidate to another key candidate so that we can iterate it. The
precomputation consists of making a table of m pairs (ki,0, ki,t ) where all ki,0 are
randomly selected and ki,t is the t-th term of a sequence ki, j defined by

ki, j = f (ki, j−1).

(See Fig. 2.36.) In order to look for K once we are given y, we can apply R to y and
repeatedly apply f until we find a value which matches one ki,t in the table. If we find
one value ki,t , we can get ki,0 from the table and apply f repeatedly until we find R(y)
again. Note that if the total number of f applications reaches t − 1 without success we
can give up and the attack fails. Otherwise we find a key k such that f (k) = R(y). This
may be due to Ck(x) = y, which leads to K = k. Otherwise the attack fails. Figs. 2.37
and 2.38 with 	 set to 1 illustrate this method.
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Figure 2.36. Table for Time–Memory tradeoff.
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Input: an encryption scheme C , a fixed message x
Parameter: 	, m, t
Preprocessing

1: for s = 1 to 	 do
2: pick a reduction function Rs at random and define fs : k �→

Rs(Ck(x))
3: for i = 1 to m do
4: pick k ′ at random
5: k ← k ′

6: for j = 1 to t do
7: compute k ← fs(k)
8: end for
9: insert (k, k ′) in table Ts

10: end for
11: end for

Figure 2.37. Time–Memory tradeoff (Preprocessing).

Attack
Attack input: y = CK (x)

1: for s = 1 to 	 do
2: set i to 0
3: set k to Rs(y)
4: while Ts contains no (k, .) entry and i < t do
5: increment i
6: k ← fs(k)
7: end while
8: if Ts contains a (k, .) entry then
9: get the (k, k ′) entry from table Ts

10: while Ck ′ (x) �= y and i < t do
11: increment i
12: k ′ ← fs(k ′)
13: end while
14: if Ck ′ (x) = y then
15: yield k ′

16: end if
17: end if
18: end for
19: abort: the attack failed

Figure 2.38. Time-Memory tradeoff (Attack).
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We can estimate the number of pairwise different ki, j in one table as follows.

E
(
#{ki, j ; 1 ≤ i ≤ m, 0 ≤ j < t}) = m∑

i=1

t−1∑
j=0

Pr
[
ki, j �∈ {ki ′, j ′ ; i ′ < i or j ′ < j}] .

(We do not count the end value of each chain.) Let Freshi, j be the event[
ki, j �∈ {ki ′, j ′ ; i ′ < i or j ′ < j}]. Since ki, j = f (ki, j−1), we have Freshi, j ⊆ Freshi, j−1.

Furthermore, we have

Pr
[
Freshi, j |Freshi, j−1

] ≥ 1 − i t

2n
.

Hence we have

Pr
[
Freshi, j

] ≥ (
1 − i t

2n

) j+1

.

We deduce that the expected number of keys per table is greater than

m∑
i=1

t−1∑
j=0

(
1 − i t

2n

) j+1

.

The probability of success for looking for K is the probability that K is one of the keys
in the table. Thus we have

p ≥ 2−n
m∑

i=1

t−1∑
j=0

(
1 − i t

2n

) j+1

.

As the table gets larger, some chain will eventually collide and merge, which pre-
vents the number of keys per table from increasing. So it may be preferable to keep
many small tables. Figs. 2.37, and 2.38 illustrate the multitable version. Obviously the
precomputation complexity is P = 	mt encryptions and reductions. The time complex-
ity of the attack is T = 	t encryptions and reductions in the worst case, and Te = 	

2 t
in the average case (for success only). The memory size is about M = 	m blocks. The
probability p of success is such that

p ≥ 1 −
(

1 − 2−n
m∑

i=1

t−1∑
j=0

(
1 − i t

2n

) j+1
)	

.

We let x = 2
n
3 and 1 − e−L be the right-hand term of the p inequality. For 	 = λx ,

m = µx , and t = τ x , when µτ � x , we have

L = −λx log

(
1 − x−3

µx∑
i=1

τ x−1∑
j=0

(
1 − iτ

x2

) j+1
)
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≈ λ

x2

µx∑
i=1

τ x−1∑
j=0

(
1 − iτ

x2

) j+1

= λ

τ

µx∑
i=1

1

i

(
1 −

(
1 − iτ

x2

)τ x)(
1 − iτ

x2

)

≈ λ

τ

µx∑
i=1

1

i

(
1 − e−

iτ2

x

)

≈ λ

τ

∫ µτ 2

0

1 − e−t

t
dt.

(Note that this is equivalent to λ
τ

log(µτ 2) when µτ 2 increases, so that p ≥ 1 − (µτ 2)−
λ
τ

when µ and τ are large enough.) With 	 ≈ m ≈ t ≈ 2
n
3 we obtain P ≈ 2n , T ≈ M ≈

22n/3, and p ≥ 0.549.

There exist several improvements of this technique, e.g. using the notion of “dis-
tinguished points.” The most efficient so far uses the notion of “rainbow tables” and is
due to Philippe Oechslin (see Ref. [142]). Here, instead of using many tables with one
reduction function in each, we use a larger table with many reduction functions (see
Fig. 2.39). We define

ki, j = f j (ki, j−1).

The algorithm is depicted in Figs. 2.40, 2.41.

Here we make sure that no chains collide in the precomputation. This induces an
overhead in the precomputation. At the i-th iteration the probability for a new chain to
collide is approximately 1 − e−t i−1

2n , so the precomputation complexity is

P ≈
m∑

i=1

tet i−1
2n = t

e
mt
2n − 1

e
t

2n − 1
≈ 2n

(
e

mt
2n − 1

)
.

The probability of a key being in a column is m.2−n so

p = 1 − (1 − m.2−n)t
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f1�→ km,1
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f4�→ · · · ft−1�→ k3,t−1
ft�→ km,t (km,t ,km,0)

Figure 2.39. Rainbow table.
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Input: an encryption scheme C , a fixed message x
Parameter: m, t
Preprocessing

1: for j = 1 to t do
2: pick a reduction function R j at random and define f j : k �→

R j (Ck(x))
3: end for
4: for i = 1 to m do
5: repeat
6: pick k ′ at random
7: k ← k ′

8: for j = 1 to t do
9: compute k ← f j (k)

10: end for
11: until T contains no (k, .) entry
12: insert (k, k ′) in table T
13: end for

Figure 2.40. Time–Memory tradeoff with a rainbow table (Preprocessing).

≈ 1 − e−
mt
2n .

The time complexity of the attack is T = t2

2 encryptions and reductions in the worst

case, and Te = t2

8 in the average case (for success only). The memory size is about

M = m blocks. With m = 2
2n
3 and t = (log 2)2

n
3 ≈ 0.693 × 2

n
3 we obtain P ≈ 2n ,

M ≈ 2
2n
3 , T ≈ 0.240 × 2

2n
3 , and p ≈ 1

2 . This is a substantial improvement.

To summarize brute force generic attacks, we list in the following table the essential
complexity of each part of the attack for a probability of success close to one.

Strategy Preprocessing Memory Time

Exhaustive search 1 1 N
Dictionary attack N N 1

Tradeoffs N N
2
3 N

2
3

2.9.5 Meet-in-the-Middle Attack

In order to strengthen DES, people first tried to make a simple product with itself,
resulting in a double-DES (see Section 2.3.1). More generally, we have

CK1 K2 (X ) = C ′′
K2

(
C ′

K1
(X )

)
.
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Attack
Attack input: y = CK (x)

1: for i = t down to 1 do
2: set k to Ri (y)
3: for j = i to t do
4: k ← f j (k)
5: end for
6: if T contains one (k, .) entry then
7: get the (k, k ′) entry from table T
8: for s = 1 to i − 1 do
9: k ′ ← fs(k ′)

10: end for
11: if Ck ′ (x) = y then
12: yield k ′

13: abort: the attack succeeded
14: end if
15: end if
16: end for
17: abort: the attack failed

Figure 2.41. Time–Memory tradeoff with a rainbow table (Attack).

If C ′ and C ′′ have key spaces of N ′ and N ′′ keys respectively, the ultimate security
goal is to have a security related to a minimal complexity of N = N ′ × N ′′. This goal
is not achieved as shown by the following attack. The attack is called “meet-in-the-
middle attack” and was devised by Ralph Merkle and Martin Hellman in 1981 (see
Ref. [133]).

As illustrated in Fig. 2.42, let us consider a known plaintext attack: we know a
(x, y) pair such that y = CK1 K2 (x). The meet-in-the-middle attack consists of making a
table of all possible CK1 (x) (which is of size N ′), and for all possible K2, in computing
C−1

K2
(y) and looking for the value in the table. This will suggest a list of possible K1 K2

keys which can be tried with other known plaintexts (see Fig. 2.43). The complexity
is N ′ + N ′′ instead of N . Therefore doubling the structure is not a good paradigm for
strengthening the security.

2.10 Exercises

Exercise 2.1. Prove that

DESK (x) = DESK (x).

x � C

�

K1

�z
C

�

K2

� y

Figure 2.42. Meet-in-the-Middle.
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Input: two encryption schemes C ′ and C ′′ with two corresponding sets
of possible keys K′ and K′′, an (x, y) pair with y = C ′′

K2
(C ′

K1
(x))

1: for all k1 ∈ K′ do
2: compute z = C ′

k1
(x)

3: insert (z, k1) in a hash table (indexed with the first entry)
4: end for
5: for all k2 ∈ K′′ do
6: compute z = C ′′−1

k2
(y)

7: for all (z, k1) in the hash table do
8: yield (k1, k2)
9: end for

10: end for

Figure 2.43. Meet-in-the-middle attack.

Deduce a brute force attack against DES with average complexity 254 DES encryp-
tions.13

Exercise 2.2. We say that a DES key K is weak if DESK is an involution. Exhibit four
weak keys for DES.

Exercise 2.3. We say that a DES key K is semi-weak if it is not weak and if there exists
K ′ such that

DES−1
K = DESK ′ .

Exhibit four semi-weak keys for DES.14

Exercise 2.4. In CBC Mode, show that an opponent can replace one ciphertext block
so that the decryption will let all plaintext blocks but xi and xi+1 unchanged.

Exercise 2.5. Describe how the OFB decryption is performed.

Describe how the CFB decryption is performed.

Exercise 2.6. Prove that the multiplication over nonzero residues modulo 216 + 1 de-
fines a group operation over a set of 216 elements.

We represent nonzero residues modulo 216 + 1 with their modulo 216 reduction.
(This means that “1” represents 1, “2” represents 2, etc., and “0” represents 216.)

Explain how to efficiently implement this operation in software from regular CPU
operations. (This operation is used in IDEA.)

Exercise 2.7. Show that x �→ (45x mod 257) mod 256 is a permutation over
{0, . . . , 255}. (This permutation is used as a substitution box in SAFER K-64.)

13 This exercise was inspired by Ref. [89].
14 This exercise was inspired by Ref. [89].
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Exercise 2.8. We want to break a keyed cryptographic system. We assume we have
access to an oracle which on each queried key answer whether or not the key is correct.
We iteratively query the oracle with randomly selected keys (in an independent way).
Compute the expected complexity (in term of oracle queries) in general, and when the
distribution of the key is uniform. How can we improve the attack?

Exercise 2.9. We assume that we have an oracle which for any of the N possible keys
K answers if it is correct or not.

If the a priori distribution of the keys is not uniform but known by the adversary,
what is the best algorithm for finding the key with the oracle? Prove that its complexity
relates to the guesswork which is defined by

W (K ) =
N∑

i=1

i. Pr[K = ki ]

where all possible keys k1, . . . , kN are sorted such that the Pr[K = ki ] sequence is
decreasing.15

As an example, let us consider a pseudorandom generator which generates an
element x of {0, 1, . . . , p − 1} uniformly for a given prime number p. In order to get
a random n-bit string, we consider K = x mod 2n.

1. Compute W (K ) for p > 2n. Example: n = 64 and p = 264 + 13.
2. Compute W (K ) for p < 2n. Example: n = 64 and p = 264 − 59.
3. Let � = |p − 2n|. Express W (K ) in terms of � and compare both cases.

Exercise 2.10. Explain how to make a dictionary attack against UNIX passwords.
What is the complexity?

Exercise 2.11. We assume that we have an oracle which for any of the N possible keys
K answers if it is correct or not.

If the a priori distribution of the keys is not uniform but known by the adversary,
what is the best memoryless algorithm for finding the key with the oracle? Prove that
its complexity relates to the Renyi entropy of coefficient 1

2 which is defined by

H 1
2
(K ) =

(
N∑

i=1

√
Pr[K = ki ]

)2

where k1, . . . , kN is the list of all possible keys.16

15 This exercise was inspired by Ref. [123].
16 This exercise was inspired by Ref. [39].




