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2.1 Time- and frequency-selectivity 

We work with baseband-equivalent channel models, both continuous time and dis- 
crete time. In this Chapter we use the following notations: in continuous time, 
s ( t ) ,  y( t ) ,  and w( t )  denote the transmitted signal, the received signal, and the ad- 
ditive noise, respectively. In discrete time we use the notations s (n) ,  y (n) ,  and 
w(n) ,  with n the discrete time. We consider only linear channels here. The most 
general model is 

where h( t ;  T )  is the channel response at time t to a unit impulse S( - ) transmitted 
at time t - r. Similarly, h(n;  k )  is the channel impulse response at time n to 
a unit impulse 6(n )  transmitted at time n - k. This channel is said to be time 
selective and frequency selective, where time selectivity refers to the presence 
of a time-invariant impulse response and frequency selectivity to an input-output 
relationship described by a convolution between input and impulse response. By 
assuming that the sum in (2.1) includes L + 1 terms, we can represent the discrete 
channel by using the convenient block diagram of Figure 2.1, where 2-l denotes 
unit delay. 

Figure 2.1 : Block diagram of a discrete time-selective, fi-equency-selective chan- 
nel. 

If the channel is time invariant, then h( t ;  7 )  is a constant function oft .  We write 
h ( r )  A h(0; r )  for the (time-invariant) response of the channel to a unit impulse 
transmitted at time 0, and we have the following model of a non-time-selective, 
frequency-selective channel: 

y( t )  = ] h( r ) s ( t  - r )  dr  + w ( t )  y  (n)  = h(k ) s (n  - k )  + w ( n )  (2.2) 
k 
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The block diagram of Figure 2.1 is still valid for this channel, provided that we 
write h(k) in lieu of h(n; k). 

The model of a time-selective, non-frequency-selective channel is obtained by 
assuming that h(t; 7 )  = h ( t ) b ( ~ )  (or, for discrete channels, h(n; k) = h(n)b(lc)). 

and 

We observe that in (2.3) and (2.4) the channel impulse response affects the trans- 
mitted signal multiplicatively, rather than through a convolution. 

Finally, a non-time-selective, non-frequency-selective channel model is obtained 
by assuming that, in (2.3), h(t; 7 )  does not depend on t; if it has the form h(t; 7 )  = 
hS(r) (or, for discrete channels, h(n; k) = hS(n)), we obtain 

The simplest situation here occurs when h is a deterministic constant (later on we 
shall examine the case of h being a random variable). If in addition w(t) is white 
Gaussian noise, the resulting channel model is called an additive white Gaussian 
noise (AWGN) channel. Typically, it is assumed that h = 1 so that the only pa- 
rameter needed to characterize this channel is the power spectral density of w(t). 

2.2 Multipath propagation and Doppler effect 

The received power in a radio channel is affected by attenuations that are conve- 
niently characterized as a combination of three effects, as follows: 

(a) The path loss is the signal attenuation due to the fact that the power received 
by an antenna at distance D from the transmitter decreases as D increases. 
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Empirically, the power attenuation is proportional to Da, with a an exponent 
whose typical values range from 2 to 4. In a mobile environment, D varies 
with time, and consequently so does the path loss. This variation is the 
slowest among the three attenuation effects we are examining here. 

(b) The shadowing loss is due to the absorption of the radiated signal by scatter- 
ing structures. It is typically modeled by a random variable with log-normal 
distribution. 

(c) The fading loss occurs as a combination of two phenomena, whose combina- 
tion generates random fluctuations of the received power. These phenomena 
are rnultipath propagation and Doppler frequency shift. In the following 
we shall focus our attention on these two phenomena, and on mathematical 
models of the fading they generate. 

Multipath propagation occurs when the electromagnetic field carrying the infor- 
mation signal propagates along more than one "path" connecting the transmitter 
to the receiver. This simple picture of assuming that the propagation medium in- 
cludes several paths along which the electromagnetic energy propagates, although 
not very accurate from a theoretical point of view, is nonetheless useful to un- 
derstand and to analyze propagation situations that include reflection, refraction, 
and scattering of radio waves. Such situations occur, for example, in indoor prop- 
agation, where the electromagnetic waves are perturbed by structures inside the 
building, and in terrestrial mobile radio, where multipath is caused by large fixed 
or moving objects (buildings, hills, cars, etc.). 

Example 2.1 (Two-path propagation) 

Assume that the transmitter and the receiver are fixed and that two propagation paths 
exist. This is a useful model for the propagation in terrestrial microwave radio links. 
The received signal can be written in the form 

where b and T denote the relative amplitude and the differential delay of the reflected 
signal, respectively (in other words, it is assumed that the direct path has attenuation 
1 and delay 0). Equation (2.6) models a static multipath situation in which the prop- 
agation paths remain fixed in their characteristics and can be identified individually. 
The channel is linear and time invariant. Its transfer function 
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Incoming 

Figure 2.2: Effect of movement: Doppler effect. 

in which the term b exp(- j2n f T )  describes the multipath component, has magni- 
tude 

/ H ( ~ ) I  = J(1+ b cos~rr f r )2  + b2sin2 2 n f i  

= J1+b2+2bcos2nfr  

For certain delays and frequencies, the two paths are essentially in phase alignment, 
so cos 2n f T x 1, which produces a large value of I H (  f ) 1. For some other values, 
the paths nearly cancel each other, so cos 2n f T x -1, which produces a minimum 
of I H(  f )  1 usually referred to as a notch. 0 

When the receiver and the transmitter are in relative motion with constant radial 
speed, the received signal is subject to a constant frequency shift (the Doppler 
shift) proportional to this speed and to the carrier frequency. Consider the situation 
depicted in Figure 2.2. Here the receiver is in relative motion with respect to the 
transmitter. The latter transmits an unmodulated carrier with frequency fo. Let 
v denote the speed of the vehicle (assumed constant), and y the angle between 
the direction of propagation of the electromagnetic plane wave and the direction of 
motion. The Doppler effect causes the received signal to be a tone whose frequency 
is displaced (decreased) by an amount 

(the Doppler frequency shift), where c is the speed of propagation of the electro- 
magnetic field in the medium. Notice that the Doppler frequency shift is either 
greater or lower than 0, depending on whether the transmitter is moving toward the 
receiver or away from it (this is reflected by the sign of cosy). 

By disregarding for the moment the attenuation and the phase shift affecting the 
received signal, we can write it in the form 
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Notice that we have assumed a constant vehicle speed, and hence a constant fD. 
Variations of v would cause a time-varying fD in (2.8). 

More generally, consider now the transmission of a bandpass signal x(t), and 
take attenuation a(t) and delay ~ ( t )  into account. The complex envelope of the 
received signal is 

jj ( t )  = a ( t )  e-je@) 2 [t - T (t)] 

This channel can be modeled as a time-varying linear system with low-pass equiv- 
alent impulse response 

2.3 Fading 

In general, the term fading describes the variations with time of the received signal 
strength. Fading, due to the combined effects of multipath propagation and of rel- 
ative motion between transmitter and receiver, generates time-varying attenuations 
and delays that may significantly degrade the performance of a communication 
system. 

With multipath and motion, the signal components arriving from the various 
paths with different delays combine to produce a distorted version of the transmit- 
ted signal. A simple example will illustrate this fact. 

Example 2.2 (A simple example of fading) 

Consider now the more complex situation represented in Figure 2.3. A vehicle 
moves at constant speed v along a direction that we take as the reference for angles. 
The transmitted signal is again an unmodulated carrier at frequency fo. It propagates 
along two paths, which for simplicity we assume to have the same delay (zero) and 
the same attenuation. Let the angles under which the two paths are received be 0 
and y. Due to the Doppler effect, the received signal is 

y (t)  = A exp [j2n fo (1 - :) t] + A exp j2n fo 1 - 2 cos y) t] (2.9) [ ( c  

We observe from the above equation that the transmitted sinusoid is received as 
a pair of tones: this effect can be viewed as a spreading of the transmitted signal 
frequency, and hence as a special case of frequency dispersion caused by the channel 
and due to the combined effects of Doppler shift and multipath propagation. 
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Figure 2.3: Effect of a two-path propagation and movement. 

Equation (2.9) can be rewritten in the form 

The magnitude of the term in square brackets provides the instantaneous envelope 
of the received signal: 

The last equation shows an important effect: the envelope of the received signal 
exhibits a sinusoidal variation with time, occurring with frequency 

The resulting channel has a time-varying response. We have time-selective fading, 
and, as observed before, also frequency dispersion. 0 

A more complex situation, occurring when the transmission environment in- 
cludes several reflecting obstacles, is described in the example that follows. 

Example 2.3 (Multipath propagation and the effect of movement) 

Assume that the transmitted signal (an unmodulated carrier as before) is received 
through N paths. The situation is depicted in Figure 2.4. Let the receiver be in 
motion with velocity v, and let Ai, Oi, and yi denote the amplitude, the phase, and 
the angle of incidence of the ray from the ith path, respectively. The received signal 
contains contributions with a variety of Doppler shifts: in the ith path the carrier 
frequency fo is shifted by 
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Figure 2.4: Effect of N-path propagation and movement. 

Thus, the (analytic) received signal can be written in the form 

The complex envelope of the received signal turns out to be 

2.3.1 Statistical models for fading channels 

As we can observe from the previous examples, our ability to model the chan- 
nel is connected to the possibility of deriving the relevant propagation parameters. 
Clearly, this is increasingly difficult and becomes quickly impractical as the num- 
ber of parameters increases. A way out of this impasse, and one that leads to mod- 
els that are at the same time accurate and easily applicable, is found in the use of 
the central limit theorem whenever the propagation parameters can be modeled as 
random variables (RV) and their number is large enough. To be specific, let us refer 
to the situation of Example 2.3. For a large number N of paths, we may assume 
that the attenuations Ai and the phases 27r fit - Oi in (2.1 1) are random variables 
that can be reasonably assumed to be independent of each other. Then, invoking 
the central limit theorem, we obtain that at any instant, as the number of contribut- 
ing paths become large, the sum in (2.1 1) approaches a Gaussian RV. The complex 
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envelope of the received signal becomes a lowpass Gaussian process whose real 
and imaginary parts are independent and have mean zero and the same variance 
a2. In these conditions, R( t )  and O(t)  turn out to be independent processes, with 
O(t)  being uniformly distributed in (0, 27r) and R( t )  having a Rayleigh probability 
density function (pdf), viz., 

Here the average power of the envelope is given by 

A channel whose envelope pdf is (2.12) is called a Rayleigh fading channel. The 
Rayleigh pdf is often used in its "normalized form, obtained by choosing IE[R2] = 
1 : 

2 
pR(r) = 2re+ (2.14) 

An alternative channel model can be obtained by assuming that, as often occurs 
in practice, the propagation medium has, in addition to the N weaker "scatter" 
paths, one major strong fixed path (often called a specular path) whose magnitude 
is known. Thus, we may write the received-signal complex envelope in the form 

where, as before, u( t )  is Rayleigh distributed, a ( t )  is uniform in (0, 27r), and v( t )  
and P( t )  are deterministic signals. With this model, R( t )  has the Rice pdf 

for r > 0. (Io( . ) denotes the zeroth-order modified Bessel function of the first 
kind.) Its mean square is E [ R ~ ]  = v2 + 2a2. This pdf is plotted in Figure 2.5 for 
some values of v and a2 = 1. 

Here R( t )  and O(t)  are not independent, unless we further assume a certain 
amount of randomness in the fixed-path signal. Specifically, assume that the phase 
,6 of the fixed path changes randomly and that we can model it as a RV uniformly 
distributed in (0, 27r). As a result of this assumption, R( t )  and O(t)  become in- 
dependent processes, with O uniformly distributed in (0, 27r) and R( t )  still a Rice 
random variable. 
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Figure 2.5: Rice pdf with a2 = 1. 

Notice that, in (2.15), v denotes the envelope of the fixed-path component of 
the received signal, while 2u2 is the power of the Rayleigh component (see (2.13) 
above). Thus, the "Rice factor" 

denotes the ratio between the power of the fixed-path component and the power 
of the Rayleigh component. Sometimes the Rice pdf is written in a normalized 
form, obtained by assuming I E [ R ~ ]  = v2 + 2a2 = 1 and exhibiting the Rice factor 
explicitly: 

for r 2 0. 
As K -+ 0-i.e., as the fixed path reduces its power-since Io(0) = 1, the Rice 

pdf becomes a Rayleigh pdf. On the other hand, if K t oo, i.e., the fixed-path 
power is considerably higher than the power in the random paths, then the Gaussian 
pdf is a good approximation for the Rice density. 
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Yet another statistical model for the envelope R  of the fading is the Nakagami-m 
distribution. The probability density function of R is 

which has I E [ R ~ ]  = 0. The parameter m, called fading Jigure, is a ratio of mo- 
ments: 

For integer values of m, (2.17) is the pdf of the RV 

where XI, . . . , Xm are independent, Rayleigh-distributed RVs. As special cases, 
the choice m = 1 yields the Rayleigh distribution, while m = 112 yields a single- 
sided Gaussian distribution. 

We observe that the Nakagami-m distribution is characterized by two parame- 
ters, and consequently it provides some extra flexibility if the mathematical model 
of the fading must be matched to experimental data. 

2.4 Delay spread and Doppler-frequency spread 

A simple yet useful classification of fading channels can be set up on the basis of 
the definition of two quantities called coherence time and coherence bandwidth of 
the physical channel. 

Multipath fading occurs because different paths are received, each with a dif- 
ferent Doppler shift: when the receiver and the transmitter are in relative motion 
with constant radial speed, the Doppler effect, in conjunction with multipath prop- 
agation, causes time- and frequency-selective fading. Consider these propagation 
paths, each characterized by a delay and attenuation, and examine how they change 
with time to generate a time-varying channel response. First, observe that signifi- 
cant changes in the attenuations of different paths occur at a rate much lower than 
significant changes in their phases. If ri(t) denotes the delay in the ith path, the 
corresponding phase is 27r fo (t - T~ (t)), which changes by 27r when ri (t) changes 
by l/ fo, or, equivalently, when the path length changes by c/ fo. Now, if the path 
length changes at velocity vi, this change occurs in a time c/(fovi), the inverse of 
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the Doppler shift in the ith path. Consequently, significant changes in the chan- 
nel occur in a time T, whose order of magnitude is the inverse of the maximum 
Doppler shift BD among the various paths, called the Doppler spread of the chan- 
nel. The time Tc is called the coherence time of the channel, and we have 

The significance of T, is as follows. Let Tx denote the duration of a transmitted 
signal.' If it is so short that during transmission the channel does not change ap- 
preciably in its features, then the signal will be received undistorted. Its distortion 
becomes noticeable when Tx is above T,, which can be interpreted as the delay be- 
tween two time components of the signal beyond which their attenuations become 
independent. We say the channel is time selective if Tx 2 T,. 

The coherence time shows how rapidly a fading channel changes with time. 
Similarly, the quantity dual to it, called coherence bandwidth, shows how rapidly 
the channel changes in frequency. Consider paths i and j and the phase difference 
between them, i.e., 27r f (ri(t) - rj(t)).  This changes significantly when f changes 
by an amount proportional to the inverse of the difference ri(t) - 7 j  ( t ) .  If Td, called 
the delay spread of the channel, denotes the maximum among these differences, a 
significant change occurs when the frequency change exceeds the inverse of Td. 
We define the coherence bandwidth of the channel as 

This measures the signal bandwidth beyond which the frequency distortion of the 
transmitted signal becomes relevant. In other words, the coherence bandwidth is 
the frequency separation at which two frequency components of the signal undergo 
independent attenuations. A signal with Bx $ B, is subject to frequency-selective 
fading. More precisely, the envelope and phase of two unmodulated carriers at 
different frequencies will be markedly different if their frequency spacing exceeds 
Bc so that the cross-conelation of the fading fluctuations of the two tones decreases 
toward zero. The term frequency-selective fading expresses this lack of correlation 
among different frequency components of the transmitted signal. 

In addition to coherence time and bandwidth, it is sometimes useful to define the 
coherence distance of a channel in which multiple antennas are used (see especially 
Chapter 10). This is the maximum spatial separation of two antennas over which 

'since we shall be considering coded signal for most of this work, from now on we may think of 
T, as the duration of a code word. 
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Figure 2.6: Radio-channel classijication. 

flat in t 
selective in f 

flat in t 
flat in f 

the channel response can be assumed constant: specifically, we say that the channel 
is space selective if the separation between antennas is larger than the coherence 
distance. 

selective in t 
selective in f 

selective in t 
flat in f 

2.4.1 Fading-channel classification 

From the previous discussion we have two quantities Bc and Tc describing how the 
channel behaves for the transmitted signal. Specifically, 

(a) If Bx << B,, there is no frequency-selective fading and hence no time dis- 
persion. The channel transfer function looks constant, and the channel is 
called $at (or nonselective) in frequency. The fading affects the transmitted 
signal multiplicatively, by a factor which varies with time. 

(b) If Tz << Tc, there is no time-selective fading, and the channel is called $at 
(or nonselective) in time. 

Qualitatively, the situation appears as shown in Figure 2.6. The channel flat in 
t and f is not subject to fading either in time or in frequency. The channel flat in 
time and selective in frequency is called an intersymbol-integerence channel. The 
channel flat in frequency is a good model for several terrestrial mobile radio chan- 
nels. The channel selective both in time and in frequency is not a good model for 
terrestrial mobile radio channels, but it can be useful for avionic communications, 
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in which high speeds (and hence short coherence times) combine with long delays 
due to earth reflections (and hence narrow coherence bandwidths). 

The product TdBD = l/TcBc is called the spread factor of the channel. If 
TdBD < 1, the channel is said to be underspread, otherwise, it is overspread. 
Generally, if the spread factor TdBD << 1, the channel impulse response can be 
easily measured, and that measurement can be used by the receiver in the demod- 
ulation of the received signal and by the transmitter to optimize the transmitted 
signal. Measurement of the channel impulse response of an overspread channel 
is extremely difficult and unreliable, if not impossible. Since, in general, signal 
bandwidth and signal duration are such that BxT, >> 1 (as otherwise there would 
be no hope for reliable communication, even in a nonfaded time-invariant channel, 
as, for example, the AWGN channel), it follows that a slowly fading, frequency 
nonselective channel is underspread. 

Finally, we say that the channel is ergodic if the signal (i.e., the code word) is 
long enough to experience essentially all the states of the channel. This situation 
occurs when Tx >> Tc. Thus, we discriminate between slow and fast fading and 
ergodic and nonergodic channels according to the variability of the fading process 
in terms of the whole code word transmission duration. 

The preceding discussion is summarized in Table 2.1. (See [2.2] for further 
details.) 

Bx << Bc frequency-flat fading 
BX 2 BC frequency-selective channel 

Tx << Tc time-flat (slow) fading 

TX 2 TC time-selective (fast) channel 

TCBC > 1 underspread channel 
TcBc << 1 overspread channel 

Tx << Tc nonergodic channel 
Tx >> Tc ergodic channel 

Table 2.1 : Classification of fading channels. 

2.5 Estimating the channel 

As we shall see in subsequent chapters, the performance of a transmission system 
over a fading channel may be greatly improved if the value taken on by the fading 
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random variable affecting the propagation is known, at the receiver only or at both 
transmitter and receiver. Here we examine a technique for measuring a channel 
described as in Figure 2.1. We use "probing signals," to be transmitted in addition 
to information-bearing signals each time the channel changes significantly (and 
hence at least once every Tc). 

A good set of probing signals is generated by a pseudonoise (PN) sequence 
u(l),  . . . , u(N); it has the property that its autocorrelation c(m) is approximately 
an ideal impulse. For simplicity we assume here that the channel is real, that the 
sequence is binary (u(j) = f A for 1 5 j 5 N), and that we have exactly 

where we take u(j)  = 0 whenever j <' 1 or j > N. Without noise, the channel . . 

response to the PN sequence is the convolution 

This response can be nonzero only from time n = 1 to time n = N + L: in this 
period we assume that the channel, albeit random, remains constant, so that we can 
rewrite (2.23) as 

with h(k), k = 0, . . . , L, a sequence of complex random variables. Now, correlate 
the noiseless channel output rl(n) with the PN sequence. Using (2.22) we obtain 
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which is proportional to the mth sample of the channel impulse response. 
Consider now the effect of an additive white Gaussian noise w(n) with variance 

a2. The noisy-channel response to the PN sequence is 

Correlating the channel output y(n) with the PN sequence, we obtain 

where the additional term is again a Gaussian RV with mean zero and variance 

In conclusion, we observe a correlation p(-m) which is the sum of two terms: 
one is proportional to N times the impulse-response sample that we wish to es- 
timate, while the other is a noise term whose variance is proportional to the PN 
sequence length N. The resulting signal-to-noise ratio is proportional to N: thus, 
by increasing the sequence length (and hence the measurement length) we can 
make the channel measure arbitrarily good. Notice, however, that making N very 
long leads to an accurate estimate but decreases the data-transmission rate. Two 
techniques, used, for example, in the GSM standard of digital cellular telephony, 
allow one to increase the ratio between the information symbols and the probe 
symbols: the first one consists of placing the probe symbols in the middle of a data 
frame, the second one of interpolating between the previous and the next channel 
measurement. 

2.6 Bibliographical notes 

Ref. [2.2] contains an extensive review of the information-thoretical and commu- 
nications aspects of fading channels. Engineering aspects of wireless channels and 
modeling problems are treated, for example, in [2.3-2.51. 
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