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2.1 Introduction

The spatial superposition of two or more coherent light waves yields a spatially

modulateddistributionof theenergydensity, andthe interactionwith thematerial

leads to the creation of light-induced dynamic gratings. Many interesting effects

andapplications arebasedon suchgratings. In someapplications, e.g.whenusing

dynamic gratings for holographic storage applications [1, 2] or the nanofabrica-

tion of three-dimensional photonic crystals by holographic lithography [3], the

superposition of the beams defines the spatial structure of the grating. In other

applications like using Stimulated Brillouin Scattering (SBS) for the creation of

phase-conjugating mirrors for high-power laser systems [4, 5], the superposition

of the laser beam with initially randomly scattered beam components eventually

leads to the build-up of a dynamic grating acting as a phase-conjugating mirror.

The photorefractive effect, which is the topic of this volume, is as well based

on dynamic light-induced gratings and has many applications and very

interesting properties. For example, phase-conjugating mirrors based on

Four-Wave Mixing in photorefractive materials do not have a distinct thresh-

old in terms of laser intensity due to the entirely different physical process of the

grating creation [6, 7] in contrast to the previously mentioned case of mirrors

based on SBS. However, it is interesting that beam fanning as a driving effect

for the build-up of such a photorefractive mirror [8] is again based on the

transient evolution of scattered beam components, like in the SBS case.

Following a similar approach to the topic as used in [9] in this chapter, we

will first recapitulate some basic properties of coherent light fields, which are

usually derived from lasers [10], and discuss two-beam interference leading to

interference gratings. In Section 2.3, we will discuss how the material response

leads to changes in the absorption and the refraction of the material, which are

described as amplitude and phase gratings. The diffraction of light at the

gratings and wave mixing effects are described in Section 2.4.
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2.2 Two-Beam Interference and Interference Gratings

Many properties of laser beams related to dynamic grating physics and applica-

tions can be described by a plane-wave approximation of the light field. The

propagation of light in different types of media, the interference of light fields,

and the diffraction of light at periodic structures are also often described using

plane waves as a representation of the light field [11–13]. We will mainly follow

the same approach, but we will also discuss some deviations of real laser beams

from ideal plane waves, e.g., with respect to their limited size, duration, and

coherence.

2.2.1 Plane Waves and Gaussian Laser Beams

In many experimental configurations, a Gaussian beam corresponding to the

fundamental TEM00 mode of a laser resonator is used, which comes close to

the ideal plane wave,

E(r, t) ¼ A exp [i(k � r� vtþ f)]: (2:1)

Here E is the complex electric field vector dependent on the spatial coordin-

ate r and time t, A the real-valued wave amplitude, k its wave vector, v ¼ 2pf

its angular frequency, and f a constant phase offset. The electric field Er is

given by

Er(r, t) ¼ 1

2
(E(r, t)þ E�(r, t)) ¼ A cos (k � r� vtþ f), (2:2)

and can only take real values in order to retain its physical meaning [14]. For

many computations, however, it is convenient to use the complex-valued field E

(i.e., without adding the c.c.), but by doing so, the formulas for the relevant

quantities can be slightly different from the familiar form.

The time-averaged Poynting vector S of a plane wave using complex-valued

fields is given by [12]

S ¼ 1

2
Re(E �H�): (2:3)

For the intensity I of this plane wave at point r, time t, given by the time

average of the absolute value of the Poynting vector, we obtain

I(r, t) ¼ jSj ¼ «0cn

2
jE(r, t)j2 ¼ 1

2Z
jE(r, t)j2, (2:4)

where c is the velocity of light, «0 the vacuum permittivity, n the refractive

index, and Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrm0=«r«0

p
the corresponding wave resistance of the material.

For most materials relevant in optics, the relative magnetic permeability mr is
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given by mr � 1, and the material properties are determined by the electric

permittivity « ¼ «0«r. To account for absorption and dispersion effects in

isotropic materials with one quantity, the complex permittivity

«r ¼ «0 þ i«00: (2:5)

is introduced. Assuming weak absorption («00 � «0), the complex-valued re-

fractive index n̂n is given by

n̂n ¼
ffiffiffi
«
p

r �
ffiffiffiffi
«0
p
þ i

«00

2
ffiffiffiffi
«0
p : (2:6)

The absorption coefficient a is introduced as

a ¼ 2v

c
Im(n̂n) � v«00

nc
; (2:7)

where n ¼ Re(n̂n) is the familiar real refractive index used in Eq. 2.4.

Theelectromagneticenergydensityassociatedwiththeelectric fieldE isgivenby

w(r, t) ¼ 1

2
«0«0E(r, t) � E�(r, t): (2:8)

Often, the interaction of the field with the material (i.e., the creation of a

material excitation grating, see Section 2.3) is related to the rate of the dissi-

pated energy density of the field that is given by [15]

Wf (r, t) ¼ «0«00v

2
E(r, t) � E�(r, t): (2:9)

For a plane wave and in isotropic materials, the rate of the dissipated energy

density Wf and also the energy density w are directly proportional to the

intensity as defined in Eq. 2.4

Wf (r, t) ¼ «0cna

2
jE(r, t)j2 ¼ aI(r, t): (2:10)

Please note that while the left part of this equation is a general expression for

weakly absorbing isotropic media, the right part obtained using Eq. 2.4 is valid

for plane waves, but does not hold always in the general case.

In anisotropic materials, the permittivity of the material is described by

introduction of the permittivity tensor «r. The resulting anisotropy of the

refractive index is referred to as birefringence and in the case of uniaxial optical

materials the propagation canbe describedusing polarization-dependent refract-

ive indices ne and no for a given direction of the wave vector of the light. In some

materials the anisotropy of the energy dissipation (referred to as dichroism) is

also relevant.
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The most relevant quantities describing the field in vacuum and within

weakly absorbing materials are summarized in the Table 2.1. The expressions

for the intensity are obtained for a single plane wave, while the other expres-

sions are valid for general fields as well. In anisotropic materials, «r, «0 and «00

are tensor quantities. For the description of some effects, more sophisticated

quantities may be needed to cover material properties like e.g., the polarization

dependent quantum efficiency of the excitation processes involved [16].

In contrast to a plane wave, the amplitude of a field describing a laser beam is

not constant within the plane of a wave front. A TEM00 mode has a Gaussian

rotationally symmetric amplitude distribution

A(r) ¼ A0 exp [� r2=r2
0]; (2:11)

where r is the cylindrical coordinate perpendicular to the direction of propa-

gation z and r0 is called the spot radius. The intensity distribution of a

Gaussian beam is given by

I(r) ¼ I0 exp [� 2r2=r2
0]: (2:12)

At r ¼ r0, the electric field drops to 1=e ffi 37% of its maximum value A0

while the intensity is reduced to 1=e2 ffi 14% of I0. The total power or light flux

Pt of a TEM00 beam is

Pt ¼ 2p

Z 1
0

I(r)rdr ¼ p

2
r2

0I0: (2:13)

About 86.5% of this flux is contained within a radius equal to the spot radius

r0. The laser beam diameter changes during propagation. Thus, except when

going through a focus, the wavefronts are not perfectly plane and the spot

radius is not constant but a function of z. Since the divergence is inversely

proportional to the beam diameter, a sufficiently large spot radius r0 � l is a

necessary requirement for plane-wave-like behavior.

Short laser pulses are frequently used for grating excitation and detection. If

their duration tp is sufficiently small, the total pulse energy per unit area F, i.e., the

exposure or fluence

F ¼
Z 1
�1

I(t)dt (2:14)

Table 2.1 Physical quantities used for the description of optical fields

Vacuum Isotropic material Anisotropic material

intensity I (plane wave) 1
2

«0cjEj2 1
2

«0cnjEj2 1
m0v

E � (k� E)

energy density w 1
2

«0jEj2 1
2

«0«0jEj2 1
2

«0(E � «0E�)
energy dissipation rate Wf 0 1

2
«0«00vjEj2 1

2
«0v(E � «00E�)
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and the total laser pulse energy

W ¼ 2p

Z 1
0

F (r)rdr ¼
Z 1
�1

Pt(t)dt (2:15)

are more relevant parameters than the instantaneous quantities intensity and flux.

2.2.2 Superposition of Two Plane Waves

Two-beam interference produces a spatially modulated light field, which is

called an interference grating. In many cases, the quantity used for the descrip-

tion of effects related to interference and the interaction with the material is the

intensity I. However, in other cases, for a feasible description of the interaction

of the interference pattern with the material, the energy density w, or the energy

dissipation of the field Wf as introduced in Eq. (2.9) should be used instead

[17]. Still in many relevant cases the approximation of the tensor «00 by a scalar

and the assumption of weak absorption are justified, and the three mentioned

quantities are proportional to jEj2 (see Table 2.1).

The principal experimental arrangement for the production of laser-induced

gratings is shown in Fig. 2.1. Light from a more-or-less powerful pump laser is

split into two beams, A and B, with wave vectors kA, kB and electric field

amplitudes AA, AB. The field amplitudes can be written using the polarization

vectors pA, pB as AA ¼ AApA and AB ¼ ABpB. The two beams intersect at an

angle 2u at the sample and create an interference pattern with an electric field

given by

E(r, t) ¼ exp (� ivt)(AA exp [i(kA � rþ fA)]þ AB exp [i(kB � rþ fB)]): (2:16)

Thus,

jE(r, t)j2 ¼ A2
A þ A2

B þ 2AA � AB cos (K � rþ Df) (2:17)

where the grating vector K and the phase difference Df have been introduced,

which are given by

Figure 2.1. Interference grating pro-

duced by interference of two incident

light waves with intensities IA, IB and

wave vectors kA, kB. For simplicity, we

have chosen K k x̂x.
IB

IA

2q

λ K||x

kA

kB

L
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K ¼ 	(kA � kB)

Df ¼ 	(fA � fB)
(2:18)

The energy density of the field in the material is therefore given by

w ¼ (wA þ wB) 1þ Dw

wA þ wB

cos (K � rþ Df)

��
(2:19)

where

Dw ¼ «0«0(AA � AB) (2:20)

is the spatial modulation amplitude of the field energy density and wA

and wB denote the energy densities associated with the incident beams

A and B, respectively. To simplify the analysis, we will in the following

choose the coordinate system with respect to the grating so that K k x̂x and

fA ¼ fB.

The spatial period of the intensity grating is referred to as L and given by

L ¼ 2p=K (2:21)

where K ¼ jK j: L can be expressed in terms of the pump wavelength l and the

angle u.

L ¼ l

2 sin u
: (2:22)

For small angles u� 1, the grating period is approximately

L � l=2u: (2:23)

Note that, up to now, the wave vectors kA, kB, the wavelength l and intersec-

tion angle 2u are measured in the material with refractive index n. For nearly

normal incidence, Eq. 2.23 is also approximately valid if the wavelength l0 ¼ nl

and the intersection angle u0 � nu are measured outside the sample, so that

L ¼ l0=2u0 is obtained as long as u0 � 1 is satisfied. This means that by varying

the intersectionangleu0, thegratingperiodLcanbechanged.Themaximumvalue

of L is limited by the diameter of the laser beam inducing the grating. Experimen-

tally, values up to approximately 100mm have been used. The smallest grating-

period values are achieved when the two excitation beams are antiparallel with

2u ¼ 1808, giving a minimum value of L ¼ l=2 ¼ l0=(2n). Using a visible laser

and highly refractive material, the grating period may be smaller than 100 nm.

2.2.3 Superposition of Beams with Different Polarizations

In many textbooks, interference of two plane light waves with parallel polar-

ization is considered [13]. However, excitation of dynamic gratings is also
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possible by interfering beams with different, e.g, perpendicular polarization.

Therefore, the general case of superposition of beams with different polariza-

tion is treated here. This leads to an interference grating with an amplitude

described by a tensor.

In most cases, the modulation amplitude of the energy density Dw or the

energy dissipation rate DWf are the significant parameters for optical grating

creation if both sample and interaction mechanism are isotropic. In anisotropic

media, however, or with anisotropic interaction, gratings may also be induced if

pA ? pB or DWf ¼ 0. To account for such a situation, we introduce the

interference tensor Dm, that is defined as

Dmi j ¼
2AAAB

A2
A þ A2

B

pA, i pB, j, (2:24)

where pA, i and pB, j with i, j ¼ x, y, z are the components of the polarization

vectors of the incident fields. We can obtain Dw and DWf by evaluating the

absolute value of the trace of Dm, e.g.,

Dw ¼ w0jtr{Dm}j, (2:25)

where w0 ¼ wA þ wB is the spatially unmodulated contribution to the field

density, so that the spatially dependent field density is then given by

w ¼ w0(1þ jtr{Dm}j cos (Kx) ): (2:26)

We discuss four important special cases here, which are illustrated in Fig. 2.2:

(a) s polarization: pA k pB k ŷy. This is probably the most frequently used experi-

mental situation and also the simplest one. Dm degenerates into the one-

element tensor

Dm ¼ 2AAAB

A2
A þ A2

B

0 0 0

0 1 0

0 0 0

0
@

1
A, (2:27)

so that in this case, Dw ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
wAwB

p
. If, in addition, AA ¼ AB then

Dw ¼ w0 ¼ 2wA and

w ¼ w0(1þ cos Kx): (2:28)

Thus, the energy density is fully modulated, varying between zero and four

times the value for a single beam.
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(b) p polarization: pA ? ŷy and pB ? ŷy. In this case, AA and AB are in the

xz-plane and the interference tensor is given by

Dm ¼ 2AAAB

A2
A þ A2

B

pAxpBx 0 pAxpBz

0 0 0

pAzpBx 0 pAzpBz

0
@

1
A, (2:29)

which can be written as

Dm ¼ 2AAAB

A2
A þ A2

B

cos2 u 0 1
2

sin (2u)

0 0 0

� 1
2

sin (2u) 0 � sin2
u

0
@

1
A, (2:30)

where 2u is the angle between the writing beams (see Fig. 2.1), and corresponds

to an energy density modulation

Dw ¼ w0jtr{Dm}j ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
wAwB

p
( cos2 u� sin2

u): (2:31)

(a)

(c) (d)

(b)

EB

EA

EA

EA

EB

EB

EA

EB

2q

X

Z

V

Figure 2.2. The four arrangement of pump beam polarizations as discussed in the text.

As usual, 
 and � indicate positive and negative directions normal to the paper surface,

respectively. The grayscale images illustrate the spatial dependence of the energy density,

and the symbols inside indicate the corresponding polarization directions. In (c), the

composite symbols indicate vectors that are given by the sum of the two vectors

indicated by the individual symbols.
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The physical interpretation of Dm is as follows: Depending on the relative

phase Kx of the two pump beams along x, the superposition of AA and AB

results in a polarization varying between linear (for Kx ¼ 0 and Kx ¼ p) and

elliptic. At 2u ¼ 908, the intensity modulation disappears completely since

pA ? pB in this case. The interference field polarization is particularly interest-

ing if, in addition, AA ¼ AB. It points into the x-direction for Kx ¼ 0, becomes

circular at Kx ¼ p=2, and finally, at Kx ¼ p, it is linear in the z-direction, i.e., a

longitudinal field with respect to the interference pattern (see Fig. 2.2(b)).

Interestingly, the polarization interference pattern can be made visible by

placing a dichroic medium such as a polaroid foil into the zone of interaction.

Thus, for the investigation of optically anisotropic media, perpendicular

polarization can be of interest.

(c) Mixed linear polarization: pA k ŷy, pB ? ŷy. In this case, the electric fields of

the excitation beams are perpendicular (AA ? AB) for any value of u. The

interference tensor is

Dm ¼ 2AAAB

A2
A þ A2

B

0 0 0

pApBx 0 pApBz

0 0 0

0
@

1
A: (2:32)

No energy density modulation exists. The field amplitude undergoes periodic

changes between linear and elliptic polarizations dependent on the relative

phase Kx similar to the case of two p-polarized beams with 2u ¼ 908 discussed

before.

(d) Opposite circular polarization with equal amplitudes: In this case, we have

AA ¼ AB and the polarization vectors of the two beams are given by

pA,B ¼
1ffiffiffi
2
p (	 cos ux̂xþ iŷyþ sin uẑz): (2:33)

The interference tensor is

Dm ¼
� cos2 u i cos u 1

2
sin (2u)

�i cos u �1 i sin u

� 1
2

sin (2u) i sin u sin2
u

0
@

1
A; (2:34)

The modulation of the energy density is then

Dw ¼ 2w0 sin2
u (2:35)

which becomes vanishingly small for u! 0, while the polarization tends to

become linearly polarized and rotating with the grating period L across the

grating structure, as indicated in Fig. 2.2(d). This choice of polarization is

favorable for studying optically active interactions or media because circular

polarization is preserved when a laser beam propagates there.
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2.2.4 Superposition of Short Pulses

Present-day mode-locked lasers provide pulses of very short duration, ranging

down to the fs regime [18], equivalent to a physical lengths smaller than 0.1 mm.

In order to make the beams overlap, sophisticated experimental arrangements

have been devoleped [19, 20] The interference of two beams derived from such a

source depends on the delay between the pulse fractions traveling along paths A

and B. The time dependence of such pulses is close to Gaussian with half width tp

IA,B(t) ¼ ÎIA,B exp � t	 t=2

tp

� �2
( )

, (2:36)

where t is the delay of pulse B with regard to A, and ÎIA,B ¼ 1
2
nc«0ÂA

2

A,B are

the peak intensities of the two pulses. The magnitude of the interference

tensor in this case also depends on the overlap of the two pulses given by the

ratio t=tp, i.e.,

Dmi j ¼
2AAAB

A2
A þ A2

B

pA, ipB, j exp � t

2tp

� �2
( )

exp � t

tp

� �2
( )

: (2:37)

Thus, the temporal behavior of Dm(t) is the same as that of the original

pulse(s), but its amplitude decreases in proportion to exp {� [t=2tp]
2}.

2.2.5 Influence of Coherence Properties

Interference of light beams will only be observed as long as the light beams are

mutually coherent. Coherence corresponds to the correlation properties

between quantities describing the optical field. The temporal coherence func-

tion G(t) of a light wave (or light pulse) is defined as the autocorrelation

function of the complex field amplitude E

G(t) ¼
Z 1
�1

E�(t)E(tþ t)dt: (2:38)

The normalized coherence function given by

g(t) ¼ G(t)

G(0)
(2:39)

is used to determine the coherence jg(t)j of a laser beam. For an ideal plane

wave of monochromatic light, a value of 1 is obtained for all values of t. For

real light sources, the coherence will decrease with increasing jtj, and the optical

coherence length is defined by the width of the coherence function jg(t)j. The

power spectrum of the light G (f) and the absolute value of the coherence
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function are related by a Fourier transform relationship, the Wiener–Khintch-

ine theorem [13]

G( f ) ¼
Z 1
�1

g(t) exp (i2pf t)dt: (2:40)

For a single longitudinal mode laser with Gaussian line shape, the coherence

function is given by a Gaussian distribution with its width being inversely

proportional to the laser linewidth. For laser light sources with discrete emis-

sion frequencies like, e.g., diode lasers in longitudinal multimode operation, the

coherence function is more complicated. It is given by a Gaussian envelope with

a width determined by the linewidth of a single longitudinal mode, containing

oscillations with a spacing inversely dependent on the frequency spacing

between the longitudinal laser modes.

It is possible to determine the absolute value jg(t)j by measurement of the

interference fringe modulation, e.g., using photorefractive index gratings in-

duced by pump and signal beam from the same source and variable optical path

delay t [21]. For the excitation of laser-induced gratings, the optical path length

difference of the involved beams must be adapted to the coherence function of

the used laser source.
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Figure 2.3. Relationship between power spectrum (left curve) and coherence function

(right curves) of a diode laser. The upper right curve shows the envelope of the coherence

function, its width given by the line width of a single longitudinal laser mode

df ¼ 140 MHz.The lower right curve shows the modulation contained in the envelope.

Spatial periodicity of 2.18 mm corresponds to longitudinal mode spacing of

Dl ¼ 0:77 nm, equivalent to Df ¼ 136 GHz. [21]
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Note also that the spatial coherence of a laser beam can be determined by

diffraction at laser-induced gratings [22]. The spatial coherence function of a

Gaussian laser beam with waist r0 is given by

G(s)

G(0)
¼ exp

�s2

2r2
0

exp
�f2

0(s)

2
; (2:41)

where f2
0(s) is the mean square change of the phase difference Df between two

points P1 and P2 in a plane normal to the direction of propagation. For a linear

dependence f2
0(s), the spatial coherence is also given by a Gaussian function

that was indeed observed in the diffraction experiment.

2.2.6 Finite Size Effects

The finite cross-section of the pump-laser beams limits the lateral extent of the

interference zone. Hence, the electric-field amplitudes and intensities in Eqs.

2.17–2.20 are slowly varying functions of all spatial coordinates x, y, and z in

addition to the modulation with respect to the x-direction. Calculation of the

spatial variation is straightforward assuming TEM00 beams, but involves a

lengthy notation. The interference between two TEM00 beams will obviously

come close to an ideal plane grating if the following three conditions can be met:

1. The minimum width w of the interaction zone must be large compared to the

grating period, i.e.,

Kw� 1: (2:42)

2. The overlap length z0 of the two beams in z-direction must be large com-

pared to the sample thickness d,

z0=d � 1: (2:43)

3. The attenuation of the exciting beams must be negligible within the sample, i.e.,

ad � 1, (2:44)

where a is the absorption constant of the material at wavelength l.

The first condition puts a limit on focusing of the pump beams to increase

intensity; the second puts a limit on the angle 2u between the beams; and the

third puts a limit on pump beam utilization by absorption.

The description of a laser-induced grating is particularly straightforward

if the above three conditions are satisfied experimentally. In the following

discussion, we shall assume this to be the case unless mentioned otherwise.
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Note that the results stay qualitatively correct even if one or several of the

conditions are satisfied marginally only.

Extremely large values of L would require inconveniently small angular

beam separations 2u. Under such circumstances, it is possible to use one

pump beam only, and to produce the grating by insertion of a comb-like

aperture. Values of L up to 4 mm were obtained in this way [23]. There is no

obvious upper limit to the period of gratings produced in this manner—except

that the laser beam’s cross-section has to be increased proportionally, thus

lowering the intensity available for the pumping process.

2.2.7 Frequency Offset Effects

The grating is stationary in position when the two beams have the same

frequency. When the two excitation beams have slightly different frequencies

vA 6¼ vB and wave vectors kA and kB, they can be described by the fields

Ei ¼ Ai exp [i(ki � r� vit], i ¼ A, B, (2:45)

where AA and AB are the amplitude vectors of the beams, which for simplicity

assumed to be parallel. In a region where the beams intersect, an energy density

w ¼ 1

2
«0«0(A2

A þ A2
B þ AAAB exp {i[(kA � kB) � r� (vA � vB)t]}) (2:46)

will be created. When deriving this equation, averaging has been performed

over times that are long compared to the optical periods of the light fields

2p=vA and 2p=vB, but short compared to the period 2p=(vA � vB) corre-

sponding to the difference frequency.

The field energy density w exhibits a wavelike modulation with a grating

vector K and a frequency V given by

K ¼ kA � kB (2:47)

V ¼ vA � vBj j: (2:48)

The direction wave vector K is given without the ambiguity that exists in the

case of stationary interference patterns. If the material response is fast enough,

the frequency offset V between the two writing beams will cause traveling

grating structures in the material.

2.3 Material Response: Amplitude and Phase Gratings

The mechanisms of light-induced changes of optical materials properties are

often described as having two steps. First, the light produces some material

excitation, which then leads to a change of the optical properties. In the

simplest case, the absorption and the refraction of the material are changed,

resulting in amplitude and phase gratings.
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Light-induced refractive index changes can in general be referred to as

photorefraction. However, the term ‘‘photorefractive effect’’ is often used in a

more restricted way, describing refractive index changes due to electrooptic

effects generated by electric space charge distributions, which are caused by

inhomogenous light irradiation, as will be discussed in Section 2.3.6.

2.3.1 Material Excitation Gratings

When a material is placed into the interference region of the pump waves, some

light–matter interaction such as absorption creates a corresponding spatial

modulation (grating) of some material property [9], e.g., the population of an

excited electronic state, the conduction electron density (in a semiconductor

[24]), the space charges and their accompanying fields (in photorefractive ma-

terials [25]), or the temperature [26] , the molecular orientation (of liquid crystals

[27]), or the concentration (in polymer mixtures) [28].

Many of these changes can be described by the population of one, several, or

a whole continuum of excited (e.g., electronic or phonon) states of the sample

material. Hence, the corresponding gratings can also be considered population

gratings in a generalized sense.

The description in terms of excited-state populations is necessary if the local

population density is out of thermal equilibrium. This is usually the case if

the excited-state energy is far above the thermal energy kBT , which at

room temperature is about 25 meV. Strong deviations from thermal distribu-

tion can also occur during radiationless decay from the primarily excited

electronic state. In solids, the energy freed during such a process may create

hot phonons which, in turn, decay into cooler ones until thermal energies are

reached. This process is very fast because hot-phonon lifetimes are on the

subpicosecond scale. Since today’s mode-locked lasers provide pulses down to

femtosecond duration such transient effects can play a role in experiments with

extremely high-time resolution. In other materials, it is also possible that long-

lived intermediate states of different nature get populated during the decay,

particularly at low temperatures. This can considerably slow down the ther-

malization process, giving rise to secondary grating structures with their own

characteristic properties and decay times.

Once the absorbed energy is thermalized locally, the description of the

resulting grating in terms of the usual thermodynamic variables, temperature

concentration, etc., is appropriate and convenient (compare Fig. 2.4). The

sample as a whole is not in equilibrium as long as these quantities still vary

spatially. Their equilibration requires transport of heat, matter, etc., which

usually occurs by diffusion. Thus, their decay time depends on the magnitude

of the excitation gradients, and hence, the K vector of the grating.

Note that a diffusion process, in general, does not change the center position

of the excited region but tends to smear out its spatial profile. Hence, a grating

stays stationary during diffusive decay, i.e., its phase stays constant while its

amplitude decreases monotonically.
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The dependence of the material excitation on the light intensity or energy

density depends on its dynamics and cannot generally be expressed by a simple

function. The time dependence of the material excitation is often described by a

differential equation with the pump light intensity as a source term.

Under stationary conditions, the material excitation amplitude DX is pro-

portional to the modulated energy density amplitude Dw in the simplest case

DX ¼ gP(l)Dw(l), (2:49)

wheregP is acouplingcoefficient,whichdependson the typeofmaterial excitation

and the pump wavelength l. The right-hand side may be considered as the first

term of a power series describing the general relations between DX and Dw.

Depending on the nature of excitation, DX can be a scalar (temperature, etc.),

vector (electric field, flow velocity), or tensor (stress, strain, orientational distri-

bution of excited molecules). Thus, it is convenient for further discussions to

rewrite Eq. 2.49 in tensorial form and use the interference modulation tensor Dm

DXi j ¼
X
k, l

g
p

ijklDmkl : (2:50)

Here i, j, k, l stand for the spatial coordinates x, y, and z. In general, g
p

ijkl is a

fourth-rank tensor. Note that the tensorial product in Eq. 2.50 allows for a

nonvanishing DXi j even if pA?pB, i.e., vanishing intensity modulation. Such

odd contributions to DXi j are needed to account for polarization dependent

interactions such as the dichroic bleaching of a dye.

2.3.2 Refractive Index and Absorption Gratings

The material excitation, in general, couples to the refractive index and absorp-

tion coefficient, which then also exhibit a grating-like modulation with ampli-

Figure 2.4. Possible sequences of material excita-

tions produced by a short laser pulse. Nprim, Nsec: pri-

mary and secondary population density of excited

electronic levels, Esc: space charge field, DT : tempera-

ture change, DC: concentration change, Dr: density

change, D«: permittivity change, Dn: refractive index

change, and Da: absorption change.

Light (electric field),
coherent excitation

∆Nprim

∆Nsec

Esc ∆T

∆r

∆e, ∆n, ∆a

∆C

2. Light-Induced Dynamic Gratings and Photorefraction 21

Gunter / Photorefractive Materials and their Applications 1 chap02 Final Proof page 21 15.11.2005 5:13pm



tudes Dn(l) and Da(l). Both Dn and Da are, of course, functions of the probe

wavelength l: The refractive-index modulation caused by a temperature grat-

ing, for example, is Dn ¼ (@n=@T) � DT , where DT is the temperature amplitude

and (@n=@T) the thermo-optic coefficient. Generally speaking, any modulation

of a material property with amplitude DX inside a medium will be accompanied

by an optical grating with amplitudes

Da ¼ (@a=@X )DX , (2:51)

Dn ¼ (@n=@X )DX , (2:52)

where the tensor character of DX has been ignored for the moment. Quite

frequently, one of the coupling constants (@n=@X ) and (@a=@X ) is very small;

the grating is then either of the phase or the amplitude type.

Using the complex refractive index n̂n, the more general expression

Dn̂n ¼ (@n̂n=@X )DX (2:53)

is obtained. The complex refractive index n̂n is related to the complex optical

frequency dielectric constant «r and the susceptibility x by

n̂n ¼
ffiffiffi
«
p

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
(2:54)

Dn̂n ¼ D«r

2
ffiffiffi
«
p

r

¼ Dx

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x
p : (2:55)

Thus, an optical grating corresponds to a spatial modulation of any of the

quantities n̂n, «r; or x. Following Eqs. 2.6 and 2.7, the relation to the refractive

index and absorption properties is given by

D«r ¼ Dx ¼ D(n̂n2) ¼ 2nDnþ c2

2v2
aDaþ i

c

v
(aDnþ nDa): (2:56)

In many cases, the absorption of the material is weak (a� 2v=c) and the

two addends directly proportional to a may be neglected.

2.3.3 Tensor Gratings

It is important that «r and x are tensors, in general, while n̂n is not. Therefore, if

anisotropic interaction is important, susceptibilities should be used for general

description. Specifically, the susceptibility component xi j connects the electric-

field component Ej, with the polarization density component Pi (where again i,

j ¼ x, y, z) by means of

Pi ¼ «0xi jEj (2:57)

DPi ¼ «0Dxi jEj: (2:58)
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The tensorial character of Dxi j includes induced birefringence and dichroism,

i.e., a polarization-dependent refractive index and absorption coefficient. Be-

cause both DX and Dx are generally tensors of rank 2, the coupling constant

between them is of rank 4, namely,

Dxi j ¼
X
k, l

(@xi j=@Xkl)DXkl : (2:59)

xi j , Dxi j, and (@xi j=@Xkl) are generally complex numbers to account for both

index of refraction and absorption. Eq. 2.59 shows that the anisotropy of Dxi j

may be either due to the sample medium itself (crystals, external forces, flow),

or be induced by the grating formation process. Even in an isotropic solid,

anisotropy may be introduced by, e.g., thermal expansion, and namely strain

along the direction of K but stress in the planes perpendicular to K. Eq. 2.59 can

be combined with Eq. 2.50 to connect the optical grating amplitude directly

with the pump field under stationary conditions

Dxi j ¼
X
k, l

fi jklDmkl ; where (2:60)

fi jkl �
X
k0, l0

(@xi j=@Xk0l0) � gp

k0l0kl : (2:61)

2.3.4 Population Density Gratings in Solids and Liquids

If an atomic system is excited from the ground to an upper state, the absorption

coefficient and refractive index change, which can be observed in a grating

experiment. In the following, we shall outline some basic equations connecting

the intensity of the exciting light field to the change of the optical properties

that determine the diffraction properties of the corresponding grating.

Light-induced changes of level population. We will consider simplified atomic

systems where the incident light couples only two electronic-energy levels with

population densities Na of the lower level and Nb of the upper level, respectively.

The quantity DN ¼ Na �Nb can be determined by solving the rate equation

@Na

@t
¼ Nb

t
� swc

� v0

(Na �Nb); (2:62)

where t denotes the lifetime of the upper level, s the absorption cross section,

and �v0 the energy difference between the involved levels. Note that the

product wc corresponds to the intensity I in many cases.

Most of the relevant materials, however, are better described as 3-level-

systems in which only two levels are strongly populated. Excitation from the

ground state with population density N0 will create a small population in an

intermediate state, that rapidly decays into state with slightly lower energy,

having a population density N1 and a lifetime t. The rate equation is then
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@N0

@t
¼ N1

t
� swc

�v0

N0: (2:63)

In the steady state,

DN ¼ N
w=ws

1þ w=ws

with ws ¼
� v0

st c
: (2:64)

Note that the quantity DN will vary spatially with a spatially dependent

energy density w, leading to the creation of optical gratings.

Change of optical properties of the material. The 2-level system with transition

frequency v0 and a half width 1=tpd of the absorption curve will lead to a

polarization density of the material corresponding to a susceptibility [11]

x ¼ m2

� «0

(Na �Nb)

(v0 � v)þ (i=tpd )
; (2:65)

where tpd is referred to as polarization decay time or phase relaxation time, and

m denotes the dipole matrix element of the transition. Depending on the ratio

q ¼ (1=tpd )=jv� v0j, the grating can be approximated by a pure phase grating

(q� 1) or a pure amplitude grating (q� 1).

Population density gratings have been investigated experimentally in doped

crystals (e.g., Cr ions in ruby, Nd ions in YAG) and also in dye solutions [9].

Spatial holes burnt into the upper-level population of laser materials and

carrier distribution gratings in semiconductors can also be considered popula-

tion density gratings. In semiconductors, however, the effects need to be

described using spatially dependent equations as transport mechanisms for

the carriers need to be taken into account.

2.3.5 Gratings in Semiconductors

In solid state crystals like semiconductors, the electronic-energy levels are

not discrete with respect to their energy like in single atoms. Instead these levels

are contained in several energy bands, and their density within these bands,

referred to as density of states r, is dependent on their associated energy E.

Most relevant to the description of the optical properties of semiconductors are

the valence band and the conduction band, which are separated by a band gap

energy Eg ¼ Ec � Ev, where Ec is the lowest and Ev the highest possible energy

in the respective bands. Close to this band gap, the density of states for

electrons in the conduction band can be approximated by

rc(E) ¼ (2mc)
3=2

2p2� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � EC

p
, (2:66)
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where mc denotes the effective mass of an electron in the conduction band when

moving within the lattice. Please note that here and throughout this section,

similar expressions are obtained for the quantities related to the valence band,

but will be omitted as the relationships for the conduction band are sufficient to

understand the concepts of the model. If needed, quantities related to the

valence band will be denoted using the subscript v rather than c for the

conduction band without further notice.

In thermal equilibrium, the probability that an electronic state is actually

taken by an electron is given by the Fermi function fc of the conduction band

fc(E) ¼ 1

exp [(E � Fc)=kBT ]þ 1
, (2:67)

where kB denotes the Boltzmann number and Fc denotes the Fermi energy of

the conduction band. This Fermi energy determines the electron density in the

conduction band Nc by the integral

Nc ¼
ð1

Ec

rc(E ) fc ( E )dE, (2:68)

and vice versa.

Each electronic state given by a certain wave function is also associated with

a certain momentum � k. While in general the relation between the associated

energy and wave number k of a state can be quite complicated; we will limit

our discussion to electronic states close to the band gap where the relationship

� k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc(E � Ec)

p
(2:69)

holds. The density of states is approximately given by r(k) ¼ k2=p2 in both the

valence and conduction bands. The conservation of momentum �k needs to be

considered in processes like optical transitions.

Optical transitions in semiconductors. Absorption of light leads to transitions

of the electrons so that excited states are populated. The polarizability of the

excited electrons is different from the ground-state polarizability, similar to the

situation described in Section 2.3.4. In semiconductors, the transitions may

take place from the valence to the conduction band (interband transitions) or

within a band (intraband transitions).

The density of systems Nb in the excited state can be obtained from solving a

suitable rate equation describing the generation and recombination processes

@Nb

@t
¼ swc

� v
(Na �Nb)�

Nb

t
: (2:70)

Here t is the recombination time, s the absorption cross-section of the transi-

tion, and Na the density of systems in the ground state. Note that there may be

several decay mechanisms involved that can make it necessary to replace the
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recombination rate Nb=t by a more complicated relationship, like a Taylor

expansionANb þ BN2
b þ CN3

b þ . . . ,where the coefficients A, B, C are attributed

to different decay mechanisms, e.g., intraband relaxations. For small light inten-

sities, the density of excited electrons is obtained as

Nb

Na þNb

¼ stwc

� v
: (2:71)

In semiconductors, there are also grating decay mechanisms, that may not be

described solely by time-dependent equations. Diffusion of the carriers in-

volved will cause a spatially dependent current density Jdiff , that may signifi-

cantly contribute to the carrier grating that is eventually obtained and,

especially in experiments with pulsed laser sources, its lifetime.

Carrier diffusion. Because of the spatial gradient of the electron density,

diffusion processes will occur and create a current density of the electrons

Jdiff ¼ qDrNc, (2:72)

where D is the diffusion constant of the material, which in general is a tensor

quantity, and q ¼ 	e the charge of the carrier. The holes will create a corre-

sponding diffusion current. The spatially dependent rate equation is then

@Nb(x, t)

@t
¼ scw (x, t)

� v
(Na �Nb)�

Nb(x, t)

t
þ 1

q
r � Jdiff (x, t): (2:73)

Note that in this case, it becomes possible that the maximum of the light field

modulation will be spatially separated from the maximum number of excited

carriers. We will discuss such effects in Section 2.3.6.

The modulated carrier densities lead to corresponding changes of the optical

properties, thereby forming a grating. We will limit our discussion of the

grating creation to two effects: the bleaching of the interband absorption and

the absorption caused by free carriers in the bands.

Bleaching of the interband absorption. In direct semiconductors, interband

transitions lead to a depletion of the absorbing electrons in the valence band. In

addition, the density of the unpopulated energy states in the conduction band is

reduced. The wave number of the electronic states is determined by the con-

servation of momentum and by the band structure as

� k(v0) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr(� v0 � Eg)

p
, (2:74)

where v0 is the frequency of the light wave, and mr ¼ (1=mc þ 1=mv)
�1 is the

reduced effective mass of the electron-hole pair (see Fig. 2.5). Electrons within

an interval of width Dk around this wave number may be involved in the

transition, because the energy of the involved states is also known within a

certain interval only (due to the uncertainty principle). This energy interval is

determined by intraband relaxation processes as DE ¼ �=trelax.
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The density of the states for each of the levels involved may be expressed as

N ¼ r(k) f (k) Dk (2:75)

so that the difference (Na �Nb) of the populations of the two states with their

respective energies Ea, Eb can be expressed as

Na �Nb ¼
(2mr)

3=2

p� 2
trelax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� v� Eg

p
( fc(Eb)� fv(Ea)) (2:76)

and the change of the absorption constant Da(v) ¼ s(Na �Nb) can be calcu-

lated.

The change of the absorption coefficient is accompanied by a change of the

refractive index Dn. It is possible to estimate Dn using the Kramers–Kronig

relation [29].

Dn ¼ c

p

Z 1
0

Da(v0)

v02 � v2
dv0: (2:77)

The change of the absorption coefficient and the refractive index can be

combined to express a change of the complex susceptibility. From Eq. 2.56 with

a� 2v=c, we obtain

D«r(v) ¼ 2nDnþ i
nc

v
Da: (2:78)

(a)

(a)

(b)

(b)

phonon

EgE=  w 0

k (w 0)

Figure 2.5. Optical transitions in direct (left image) and indirect (right image) semi-

conductors. The curves shown indicate the electron energy of the valence band (lower

curve) and conduction band, respectively, as a function of the wavenumber k. Interband

transitions (denoted with letter (a)) can take place if Dk ¼ 0 in the direct semiconductor,

or involving a phonon in the indirect semiconductor material. Intraband absorption of

free carriers is denoted with letter (b).
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Free-carrier absorption. In indirect band-gap semiconductors like silicon, the

absorption of radiation at a frequency corresponding to the band-gap energy

does not lead to absorption bleaching. On the contrary, the absorption in-

creases due to transitions within the conduction and valence bands. The fre-

quency dependence of the corresponding change of the permittivity «r may be

approximately described by the classical Drude model that treats the electrons

and holes as quasifree carriers oscillating in the light field [30]

D«r(v) ¼ Ne2

«omrv(vþ i=trelax)
2
: (2:79)

Here N is the population density of the optically excited electron–hole pairs and

trelax is the relaxation time.

2.3.6 Photorefractive Gratings in Electro-Optic Crystals

The photorefractive effect is caused by free carriers, which are released due to

ionization of donors or acceptors in electro-optic materials. The light driving

the effect has an optical frequency v smaller than Eg=� , because the energy of

these so-called photorefractive centers is situated within the band-gap. Important

examples forphotorefractiveelectro-optic crystalsareLiNbO3, BaTiO3,KNSBN,

or Sn2P2S6. We will limit our discussion to a single center model, with a single trap

level, actingasadonor,andelectronsascarriers.Fordeeperunderstandingofmany

photorefractive materials, more sophisticated models are needed [31].

Like in semiconductors, a spatially dependent carrier distribution is created

by the light field. The corresponding space charge r creates an electric field Esc.

Apart from its influence to carrier transport processes, this field is responsible

for the change of the «r tensor by means of the electro-optic effect.

2.3.6.1 Generation and Recombination Processes

The generation and recombination processes are described by the densities ND

and NþD of the donor atoms and the ionized donor atoms, respectively, and

by the density of the electrons in the conduction band Nc by the rate equation

@NþD
@t
¼ scw(x, t)

� v
þ b

� �
(ND �NþD )� gRNcN

þ
D , (2:80)

where b is a rate constant describing the thermal excitation, and gR denotes the

recombination constant. Note that the ionized donors cannot change positions,

while the electrons will create a current density J, so that the rate equation for

the electron density is

@Nc

@t
¼ @NþD

@t
þ 1

e
r � J : (2:81)
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2.3.6.2 Transport Phenomena

The current density J consists of three important contributions. The creation of

a diffusion current density Jdiff has already been discussed in Section 2.3.5.

Here, we have two other important contributions: drift currents induced by an

electric field obtained as the sum of an initrinsic space charge field, and an

external electric field applied to the material and photovoltaic currents.

Drift. The spatially dependent carrier concentration causes a space charge

field Esc. This intrinsic electric field and a possibly externally applied field Eext

will add up, and create a current density

Jdrift ¼ qNcmc(Esc þ Eext), (2:82)

where mc denotes the mobility of the electrons. For the holes, an equivalent

correlation applies. The diffusion constant and the mobility are related by

D ¼ mckBT=q.

Photovoltaic effect. In piezoelectric materials, photoelectrons are excited into

the charge transfer band with a preferential direction of the velocity along the

direction of the polar axis. Additional current contributions due to anisotropic

electron trapping and ion displacement are also possible. The current density is

given by

Jph ¼ �bijkEjE
�
k: (2:83)

The overall current density is given by J ¼ Jdiff þ Jdrift þ Jph.

2.3.6.3 Space Charge Field and Electro-Optic Effect

The space charge field induced by the carrier distribution will satisfy Maxwell’s

equation

r � («E) ¼ r (2:84)

and can be determined from the space charge distribution using the Coulomb

law for anisotropic media [32]. For r ¼ r0 cos (K � r) as the first harmonic

component of the space charge distribution induced by the energy density

modulation in the material created by the incident light waves, the integration

leads to [6]

Esc ¼ r0

K

K � «K
sin (K � r) ¼ E1 cos (K � r� p=2), (2:85)

where E1 k K has been introduced as the amplitude of the space charge field.

The phase shift of p=2 means that the space charge field is spatially shifted by

L=4 with respect to the energy density modulation, as indicated in Fig. 2.6.

When no external field is applied to the material (diffusion-driven effect), the
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amplitude E1 of the electric field can be obtained [6], using the interference

tensor Dm as

E1 ¼
2p

L

kBT

q
1þ l2D

L
2

� ��1

jtr{Dm}j, (2:86)

where lD denotes the Debye screening length of the material.

The modulation of the dielectric tensor caused by the electro-optic effect

caused by an electric field E can be written as

(D«r)i j ¼ �n2
i n2

j (rijkEk þ sijkmEkEm) (2:87)

where rijk and sijkm denote the components of the tensor quantities describing

the material properties for the first-order and second-order electro-optic effect,

and Ek and Em denote components of E. The magnitude of the components of

these tensors for a single material may vary significantly, which implies that the

strength of the photorefractive effect can vary considerably with the orientation

of the grating vector K, e.g., in BaTi03 (and other crystals with the same point

group symmetry, 4 mm) the modulation of the permittivity change due to the

electric field E1 is given by

D«r(E1) � «1 ¼ �
n4

or13E1z 0 n2
on2

er42E1x

0 n4
or13E1z n2

on2
er42E1y

n2
on2

er42E1x n2
on2

er42E1y n4
er33E1z

0
B@

1
CA (2:88)

where no and ne are the ordinary and extraordinary indices of refraction,

and the ri j correspond to the material coefficients rijk used in Eq. 2.87 in a

shortened notation. For the equation above, we have chosen that the crystal

(a)

(b)

(c)

I

diffusion

L/4

Esc

Nc

ND
+

L

Figure 2.6. Photorefractive grating

build-up: (a) the stationary intensity

pattern with grating constant L, (b) dis-

tribution of ionized donors NþD and

electrons Nc. The latter distribute by

diffusion. (c) The resulting space charge

distribution r induces a space charge

field Esc, spatially shifted by L=4.
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axis (also referred to as the c axis) is parallel to the z direction. As the coefficient

r42 is by far the largest in BaTi03, the effect is strongly anisotropic and because

the grating vector K and therefore also the vector E1 are in the x–z-plane, the

field component E1x is the most significant one.

2.4 Grating Detection by Diffraction and Wave-Mixing

Diffraction at dynamic or permanent gratings is a special problem in the more

general context of light-matter interaction. It can be treated by different the-

oretical descriptions with varying levels of sophistication, in which certain

assumptions simplifying the problem are made. For example, it is possible to

predict the diffraction angles correctly using simple geometrical considerations

about the constructive or destructive interference of partial waves created by

the gratings (see Section 2.4.1). In order to obtain information about the

amplitudes of the diffracted waves, solutions of the wave equation are obtained

for special cases by the Fraunhofer Diffraction theory or the Coupled Mode

Theory (see Section 2.4.2). Effects causing energy transfer between the involved

partial waves are referred to as wave mixing, where the probably most

important examples are Two-Wave Mixing (discussed in Section 2.4.3), and

Four-Wave mixing that can lead to the creation of optical gratings acting as a

phase-conjugate mirror.

2.4.1 Diffraction Angles

Gratings are usually divided into several subclasses. Probably, the most im-

portant distinction is between thin and thick gratings. The latter are often also

referred to as volume gratings.

Thin gratings. A light-wave incident at a thin periodical structure (a thin

grating) will produce a number of partial waves that may at a certain distance

from the grating interfere in a constructive or destructive manner, dependent

on the difference between their respective optical path lengths.

From geometrical considerations (see Fig. 2.7(a)), the familiar condition

for the directions of constructive interference, given by the diffraction angles wm

L[ sin (uþ wm)� sin (u)] ¼ ml, m ¼ 0, 	 1, 	 2, . . . (2:89)

is obtained, where u denotes the angle of incidence, l the wavelength of the

light, and L the spatial period of the grating. For sufficiently small angles u, wm,

the angle of mth order of diffraction is given by

wm ¼ m
l

L
(2:90)
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and, there, the angular separation between two adjacent diffraction orders is

approximately constant at a value l=L. For K k x̂x, the x-component of the

wave vectors km of the diffraction orders are given by

km, x � kx ¼ mK m ¼ 0, 	 1, 	 2, . . . , (2:91)

where kx denotes the x-component of the wave vector of the incident wave.

When the diffracting structure is thicker than a certain value, partial waves

created within different depths have to be in phase as well in order to observe

constructive interference. To estimate up to which thickness existing phase

differences may be neglected, the structure may be described as a succession

of a number of thin-grating structures (see Fig. 2.7(b))

The optical path difference Ds between partial waves originating from thin-

grating elements separated by a thickness d is given by

Ds ¼ d(1� cos w)= cos u: (2:92)

For small angles u and w that satisfy Eq. 2.90, the corresponding phase

difference Df is given by

Df ¼ 2p
ld

L
2n(1� u2)

: (2:93)

(a)

(c)

(b)

(d)

q

q

q

q

L L

L

L

d

y

b

K

j
j

jj

Figure 2.7. Diffraction at a single thin grating (a), at a series of thin gratings (b), at a

thick (volume) transmission grating (c), and at a reflection volume grating (d). Incidence

angle is denoted as u, diffraction angle as w and grating period as L.

32 Hans Joachim Eichler and Andreas Hermerschmidt

Gunter / Photorefractive Materials and their Applications 1 chap02 Final Proof page 32 15.11.2005 5:13pm



This means that at normal incidence, the phase difference will be sufficiently

small (Df� 1), if the grating thickness satisfies

d � L
2n

2pl
: (2:94)

Thick gratings. If the condition for a thin grating given by Eq. 2.94 is not

satisfied, the partial waves that are diffracted at angles according to Eq. 2.89 at

different depths must be exactly in phase in order to interfere constructively.

This leads to a condition for the incidence angles at which diffracted beams can

be observed. Deriving Eq. 2.94, we have neglected that every partial beam is

diffracted at a subgrating that appears to be spatially shifted by a distance

Dx ¼ d tan u. The Fourier transform diffraction theory for thin gratings (see

Section 2.4.2) shows that the diffracted beam will have a phase shift

Df ¼ 2pDx=L with respect to a beam diffracted at the untranslated grating.

Following Eq. 2.92, the resulting phase difference is then given by

Df ¼ 2p
d tan u

L
� d(1� cos w)

cos u

2p

ml
: (2:95)

The condition Df ¼ 0 and Eq. 2.89 describing the diffraction at the thin

subgratings can only be simultaneously fulfilled if w ¼ �2u and, therefore

2 sin u ¼ 2 sin (� wm

2
) ¼ ml

L
, m ¼ 0, 	 1, 	 2, . . . (2:96)

This equation is referred to as the Bragg condition, and indeed in the experi-

ment it can be verified that only one diffraction order is created from a volume

grating, and only if the incidence angle is chosen according to Eq. 2.96. Note

that the condition w ¼ �2u is also obtained if the diffracted waves are inter-

preted as reflections at planes formed by the structures of the thin subgratings,

as is illustrated in Fig. 2.7(c).

Using the wave vectors of the incident and the diffracted light waves, the

Bragg condition may be expressed as

km � k ¼ mK , m ¼ 0, 	 1, 	 2, . . . : (2:97)

Diffraction at a thick grating requires that all components of the wave

vectors involved satisfy conditions, in contrast to a thin grating, where only

one component of the wave vector is determined by the diffraction (compare

Eq. 2.91). The configuration shown in Fig. 2.7(c) is referred to as a transmission

volume grating. When the incidence angle u exceeds p=4 as shown in Fig. 2.7(d),

the grating is called a reflection volume grating. Here the grating vector K has a

slant angle b with respect to the z-axis. Note that the Bragg condition is valid

for the angle u ¼ (p=2� (c� b) ) for this configuration.
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2.4.2 Diffraction Amplitudes and Efficiencies

In order to gain information about the amplitudes of the diffracted waves,

solutions to the Helmholtz equation

r2E(x, z)þ k2«r(x, z)E(x, z) ¼ 0, (2:98)

where we have restricted our analysis to the x–z-plane, can be found using

different approaches. For thin gratings, the well-known classical boundary-

value approach of Huyghens and Kirchhoff may be used. For thick gratings,

the wave propagation inside the material has to be considered. For weakly

modulated gratings, a suitable approach is the coupled-wave theory in the two-

wave approximation as described by Kogelnik [33].

Fourier transform diffraction theory for thin gratings. Based on the assump-

tion that the light is linearly polarized, Eq. 2.98 is reduced to a scalar equation

for the one-dimensional field amplitude E. The thin grating will change the

incident wave

E(i) ¼ A(i) exp [i(vt� kz)] (2:99)

into the following wave by means of its transmittance t(x)

E(z ¼ 0) ¼ A(i)t(x) exp [i(vt)], (2:100)

where, for simplicity, normal incidence has been assumed. The transmittance

can be calculated from the spatially modulated permittivity «r. The wave

behind the grating is described by a superposition of plane waves with ampli-

tudes Am as

E ¼
X

m

Am exp [i(vt� kmx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

m

q
z)]: (2:101)

Substituting Eq. 2.91 into this equation we obtain

Am ¼
A(i)

L

ðL

0

t(x) exp (i2p
mx

L
)dx (2:102)

which means that the wave amplitudes Am are given by the Fourier coefficients

of the transmittance t(x). The diffraction efficiency for the mth diffraction

order is given by hd ¼ (Am=A
(i))2.

For the case of a sinusoidal refractive index grating, the transmission func-

tion can be written as

t(x) ¼ exp [if cos (2px=L)] , (2:103)
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where f ¼ 2pDn̂nd=l is determined by the modulation amplitude Dn̂n of the

refractive index grating. For a pure amplitude transmittance grating (i.e.,

Re(n̂n) ¼ 0), only the three central diffraction orders (corresponding to

m ¼ 0, 	 1) are observed [34], and a maximum diffraction efficiency of

hd ¼ 6:25% is obtained for the first order m ¼ 	1. In contrast, a pure phase

grating will diffract into higher orders as well. The maximum diffraction

efficiency for the first order is hd ¼ 33:8% for a value of the grating amplitude

f � 1:8.

Coupled-wave theory for volume gratings. For a volume grating with slant

angle b between grating wave vector K and the surface normal of the material

(compare Fig. 2.7(d)), the spatial modulation of material properties may be

written as

«r(x, z) ¼ «c þ «1 cos (K(x sin bþ z cos b)) (2:104)

A slant angle b ¼ 0 corresponds to an unslanted reflection grating, b ¼ p=2
to an unslanted transmission grating. We can substitute

E ¼
X

m

Am exp [i(ki �mK) � r] (2:105)

into the wave equation, and applying the approximation of weak absorption

(«r � n2 � ina=k) and neglecting the second-order derivative d2Am=dz2 (which

is known as the slowly varying envelope (SVE) approximation), we obtain the

rigorous coupled-wave equations [9]

i cos c�ml cos b

nL

� �
dAm

dz
þm

p

L
2

2L cos (c� b)�m
l

n

� �
Am

þ i
a

2n
Am þ

pn«1

2l
(Amþ1 þ Am�1) ¼ 0

(2:106)

which is an infinite set of coupled differential equations. The real-valued

coefficient of the first addend proportional to Am will vanish only for the

transmitted wave m ¼ 0 and the one mth partial wave that satisfies the Bragg

condition given in Eq. 2.96. For all other waves, the nonvanishing coefficient

leads to oscillatory behavior with respect to the propagation direction z, a

continuous build-up of the amplitude Am is not possible. This corresponds to

the statement that (if any) only one diffracted-wave may be generated effi-

ciently by a volume grating. We will therefore reduce the coupled-wave equa-

tions in Eq. 2.106 to only two equations, for the two waves given by amplitudes

A0 and A1. In this two-wave approximation, using the definitions

� ¼ p«1

2nl cos c
(2:107)

d ¼ a

2 cos c
(2:108)
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we obtain the equations

dA0

dz
¼ �dA0 þ i�A1

	 dA1

dz
¼ �dA1 þ i�A0:

(2:109)

These equations cover two cases: the plus sign in the second equation

corresponds to the unslanted transmission grating case (b ¼ p=2). For an

unslanted reflection grating (b ¼ 0), the minus sign applies. The quantity �
used in the equations is referred to as the coupling constant. It will take a

slightly different form when the coupling between waves of different polariza-

tion is to be described.

Let the polarization of two waves be given by the two polarization vectors

p1, p2, and the amplitude of the spatial modulation of the permittivity be given

by the tensor quantity «1 to account for anisotropy, the coupling constant takes

the form [6]

�i j ¼
p

2nil cos ci«0

pi � «1pj, (2:110)

where i, j ¼ 1, 2. Note that two waves that are both polarized within the plane

of incidence have different polarization vectors and Eq. 2.110 needs to be used

rather than Eq. 2.107 obtained from the scalar wave equation [33].

Transmission volume gratings. The initial condition for solving the Eqs.

(2.109) for a transmission grating is given by the amplitudes A0(0) and A1(0)

when entering the interaction region, and the solution is given by

A0(z) ¼ (A0(0) cos (�z)þ iA1(0) sin (�z)) exp (� dz)

A1(z) ¼ (A1(0) cos (�z)þ iA0(0) sin (�z)) exp (� dz):
(2:111)

When a single beam is incident on the grating, the initial conditions are

A0(0) ¼ A(i) and A1(0) ¼ 0. The dependence of the intensities on the position is

depicted in Fig. 2.8. Because the absorption of the material is considered to be

weak, we may then use Eq. 2.78 to compute the amplitude and phase grating

amplitudes, and the diffraction efficiency of a grating of thickness d is obtained as

hd(d) ¼ I1

I (i)
¼ sin2 pDnd

l cos c
þ sinh2 Dad

4 cos c

� �
exp [� 2dd]: (2:112)

Reflection volume gratings. In the reflection case, the Bragg condition causes

the diffracted wave to travel into the region in front of the grating, while behind

the grating region, only the transmitted beam corresponding to diffraction

order m ¼ 0 is observed. Therefore, the diffracted beam is often referred to as

a reflected beam.
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Assuming a volume grating of thickness d, the initial conditions are deter-

mined by the wave amplitudes A0(0) and A1(d) as the beams enter the

interaction region from opposite directions. The solutions in this case are

obtained as

A0(z) ¼ A0(0) cosh (zz)� d

z
sinh (zz)

� �
þ iB

�

z
sinh (zz) (2:113)

A1(z) ¼ B cosh (zz)þ d

z
sinh (zz)

� �
� iA0(0)

�

z
sinh (zz) (2:114)

where we have introduced z and B as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ d2

p
, (2:115)

B � A1(0) ¼ iA0(0)� sinh (zd)þ zA1(d)

z cosh (zd)þ d sinh (zd)
(2:116)

and identified the quantity B as the amplitude of the reflected wave at the

boundary z ¼ 0. For a single wave incident on the grating A1(d) ¼ 0 and

neglecting the bulk material absorption (a ¼ 0), we obtain the diffraction

efficiency hd of a pure phase grating (Da ¼ 0) as

hd ¼ tan h2 pDnd

l cos c
: (2:117)
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Figure 2.8. Diffraction at volume gratings: Calculated normalized field densities for an

incidence angle c ¼ 108, assuming an absorption coefficient a ¼ 0:5 cm�1 and a phase-

only transmission grating with k ¼ 4 cm�1 (left figure) and a reflection grating with

k ¼ 2 cm�1 (right figure), respectively.
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2.4.3 Two-Wave Mixing in Electro-Optic Crystals

In this section, we will discuss the interaction of laser beams with the grating

that has been induced in a material due to the spatial modulation of their

intensity I, energy density w, or energy dissipation rate Wf , using the two-wave

mixing in electro-optic crystals as an example. At a light-induced grating

written by two writing beams A and B, each of the beams will be partially

transmitted (with amplitudes AA, 0 and AB, 0) and partially diffracted (with

amplitudes AA, 1 and AB, 1). The transmitted part of one beam happens to be

collinear with the diffracted part of the other beam and vice versa. As the

beams A and B are coherent (for simplicity we will assume ideal coherence

here), the field amplitudes of the respective transmitted and diffracted beams

will add up.

Depending on the material, the light field will produce a material excitation

and produce a modulation of the permittivity that can be approximately

described by

«r(x, z) ¼ «c þ «1 cos (K � rþ f), (2:118)

where f describes a spatial shift between the stationary field modulation and

the induced optical grating that can be caused by the physical mechanism of

grating creation. In a diffusion-driven photorefractive material without exter-

nal field, we have f ¼ p=2 as obtained in Eq. 2.85.

The modulation amplitude «1 of the dielectric tensor is dependent on the

interference tensor of the incident writing beams, i.e.,

«1 ¼ jtr{Dm}j~««1 (2:119)

as can be seen from Eqs. 2.86 and 2.88 for the case of electro-optic crystals. As

diffraction will change the amplitudes of the writing beams (and consequen-

tially the interference tensor Dm) while they propagate through the material,

following the discussion of transmission volume gratings in Section 2.4.2 and

Eq. 2.24, the case of codirectional two-wave mixing can be described by a set of

coupled differential equations for the beam intensities IA and IB

dIA

dz
¼ g

IAIB

IA þ IB

� dIA

dIB

dz
¼ �g

IAIB

IA þ IB

� dIB,

(2:120)

where the coupling constant

g ¼ ppA � pB

nl cos c«0

( pA � ~««1pB) sin f (2:121)
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has been introduced. When there is no spatial shift between the stationary field

modulation and the induced optical grating (i.e., f ¼ 0), the coupling coeffi-

cient is zero, while it reaches a maximum for f ¼ 	p=2. As can be seen from its

definition, the orientation of the polarization vectors of the beams with respect

to each other and to the crystal axes is significant for the magnitude of g.

Following Eq. 2.88, we obtain for a wave mixing of beams with polarization

vectors pA ¼ (pAx, pAy, pAz) and pB ¼ (pBx, pBy, pBz) in BaTiO3

(pA � ~««1pB) / r42 sin j(pAxpBz þ pAzpBx), (2:122)

where the c-axis of the crystal is again assumed to be parallel to the z direction,

and the K vector of the grating is contained in the x–z-plane with an angle j to

the c axis. In Eq. 2.122, we have only considered the contribution of the

dominant nonlinear coefficient r42, and it can be seen that only beams with a

polarization parallel to the x–z-plane (i.e., e–o polarized beams in this case) will

create a significant coupling coefficient g. In order to determine the incidence

angles so that the largest value of g can be obtained, the influence of material

parameters (e.g., the Debye screening length, compare Eq. 2.86) as well as the

limit to the interference contrast given by pA � pB need to be considered.

The solution of Eq. 2.120 is found as

IA(z) ¼ IA(0)
1þm�1

1þm�1 exp (gz)
exp (� dz)

IB(z) ¼ IB(0)
1þm

1þm exp (� gz)
exp (� dz);

(2:123)

Figure 2.9. Calculated inten-

sities of the writing beams in

the interaction region of a

two-wave mixing process as-

suming m ¼ 10, g ¼ 5 cm�1

and d ¼ 0:2 cm�1. After an

interaction length of 1 cm,

beam B has reached maximum

intensity.
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where m ¼ IA(0)=IB(0) denotes the input intensity ratio of the two beams. In

Fig. 2.9, it can be seen that the intensity of one of the beams may be almost fully

transferred into the other beam, only limited by the material absorption.

2.5 Conclusions

Dynamic gratings can be induced by interfering laser beams in almost any

optical material. Some selected works related to laser-induced gratings have

been used as references of this chapter, but inevitable these publications cover

only a small fraction of the research activities in this widespread field. There are

certainly many other important contributions that we could not include here.

The following chapters of this volume are devoted to the photorefractive

materials and will provide a detailed review of the effects related to this

important class of materials, in particular, of the effects related to laser-induced

gratings in photorefractive materials.

Acknowledgments

We would like to thank Prof. G. Montemezzani from the University of Metz,

France and some unknown referee for review and fruitful discussion of this

chapter.

References

1. H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds.: Holographic data storage, Vol. 76

of Springer Series in Optical Sciences, Springer, New York (2000).

2. H.J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt: High density disk storage by

multiplexed microhologramms, IEEE J. Selected Topics Quantum Electron. 4(5),

840–848 (1998).

3. D.C. Meisel, M. Wegener, and K. Busch: Three-dimensional photonic crystals by

holographic lithography using the umbrella configuration: Symmetries and com-

plete photonic band gaps, Phys. Rev. B, 70, 165104 (2004).

4. A. Brignon and J.-P. Huignard, eds.: Phase conjugated laser optics, John Wiley &

Sons (2004).

5. T. Riesbeck, E. Risse, and H.J. Eichler: Pulsed solid-state laser systems with high

brightness by fiber phase conjugation, Proc. SPIE 5120, pp. 494–499, Nov. 2003.

6. P. Yeh, Introduction to photorefractive nonlinear optics, Wiley 1993.

7. L. Solymar, DJ. Webb, and A. Grunnet-Jepson: The physics and applications of

photorefractive materials, Oxford University Press (1996).

8. A.A. Zozulya: Propagation of light beams in photorefractive media: Fanning, self-

bending and formation of self-pumped four-wave-mixing phase conjugation geo-

metries, Phys. Rev Lett. 73 (6), 818–825 (1994).

40 Hans Joachim Eichler and Andreas Hermerschmidt

Gunter / Photorefractive Materials and their Applications 1 chap02 Final Proof page 40 15.11.2005 5:13pm



9. H.J. Eichler, P. Günter, and D.W. Pohl: Laser-induced dynamic gratings, Springer-

Verlag, Berlin (1986).

10. O. Svelto: Principles of lasers, Kluwer Academic/Plenum Publishers (1998).

11. A. Yariv: Quantum electronics, John Wiley & Sons, 3rd edn (1989).

12. A. Yariv and P. Yeh: Optical waves in crystals, John Wiley & Sons (1984).

13. M.BornandE.Wolf: Principles of optics, CambridgeUniversity Press, 7th edn. (1999).
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