
“Though what I’m saying is perhaps not new, I have
felt it quite vividly on this new occasion.”

J. W. Goethe, in a letter from Naples, 17 May 1787

Foreword

The present textbook is my best effort to write a lively, problem-oriented and under-
standable introduction to classical modern algebra. Besides careful exposition, my
goals were to lead the reader right away to interesting subject matter and to assume
no more background than that provided by a first course in linear algebra.

In keeping with these goals, the exposition is by and large geared toward certain
motivating problems; relevant conceptual tools are introduced gradually as needed.
This way of doing things seems more likely to hold the reader’s attention than a
more or less systematic stringing together of theorems and proofs. The pace is more
leisurely and gentle in the beginning, later faster and less cautious, so the book lends
itself to self-study.

This first volume, primarily about fields and Galois theory, in order to deal with
the latter introduces just the necessary amount of group theory. It also covers basic
applications to number theory, ring extensions and algebraic geometry. I have found
it advantageous for various reasons to bring into play early on the notion of the
algebraic closure of a field. Naturally, Galois’ beautiful results on solvable groups
of prime degree could not be left out, nor could Dedekind’s Galois-theoretical arith-
metic reduction principle. Infinite Galois extensions are not neglected either. Finally,
it seemed appropriate to include the fundamentals of transcendental extensions.

At the end of the volume there is a collection of exercises, interspersed with
remarks that enrich the text. The problems chosen are of widely varying degrees of
difficulty, but very many of them are accompanied by hints — sometimes amounting
to an outline of the solution — and in any case there are no outright riddles. These
exercises are of course meant to allow readers to practice their grasp of the material,
but they serve another important purpose as well: precisely because the main text
was kept short and to the point, without lots of side-results, the appendix will give
the reader a better idea of the wealth of consequences and applications derived from
the theory.

The linear algebra facts used, when not totally elementary, are accompanied by
references to my Lineare Algebra, now published by Spektrum Akademischer Verlag
and abbreviated LA I and LA II. This has not been translated, but equivalent spots in
other linear algebra textbooks are not hard to find. Theorems and lesser results are
numbered within each chapter in sequence, the latter being marked F1, F2, : : :— the
F is inherited from the German word Feststellung. Allusions to historical matters
are made only infrequently (but certainly not at random). When a theorem or other
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result bears the name of a mathematician, this is sometimes a matter of tradition
more than of accurate historical origination.

The first German edition of this book appeared in 1987. I thank my colleagues
who, already back at the writing stage, favored it with their interest and gave me
encouragement — none more than the late H.-J. Nastold, with whom I had many
fruitful conversations, W. Lütkebohmert, who once remarked that there was no
suitable textbook for the German Algebra I course, O. Willhöft, who suggested
several good problems, and H. Schulze-Relau and H. Epkenhans, whose critical
perusal of large portions of the manuscript was a great help. The second (1991) and
third (1995) editions benefited from the remarks of numerous readers, to whom I
am likewise thankful, in particular R. Alfes, H. Coers, H. Daldrop and R. Schopohl.
The response and comments on the part of students were also highly motivating.
Special thanks are due to the publisher BI-Wissenschaftsverlag (later acquired by
Spektrum) and its editor H. Engesser, who got me going in the first place.

The publication of this English version gives me great pleasure. I’m grateful
to Springer-Verlag New York and its mathematics editor Mark Spencer, for their
support and competent handling of the project. And not least for seeing to it that
the translation be done by Silvio Levy: I have observed the progress of his task with
increasing appreciation and have incorporated many of the changes he suggested, in
a process of collaboration that led to noticeable improvements. Further perfecting
is of course possible, and readers’ suggestions and criticism will continue to be
welcome and relevant for future reprints.

Münster, July 2005 Falko Lorenz
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Algebraic Extensions

1. Let K be a field and E an extension of K. One writes this assumption in short
as

Let E=K be a field extension;

and the word “field” is often omitted when it can be inferred from the context.
An element ˛ of E is called algebraic over K if there exists a polynomial

f .X /¤ 0 in KŒX � such that
f .˛/D 0:

If ˛ is not algebraic over K, we say that ˛ is transcendental over K.

Remarks. (a) If K D � and E D �, the elements of E algebraic over K are called
simply algebraic numbers, and the elements of E transcendental over K are
called transcendental numbers. Example: ˛ WD 3

p
2 is an algebraic number,

since ˛ is a root of the polynomial X 3 � 2 2 �ŒX �.

(b) The set of algebraic numbers is countable (since �ŒX � is countable and any
nonzero polynomial in �ŒX � has finitely many roots in �). Therefore the set
of transcendental numbers must be uncountable. To actually be able to exhibit
a transcendental number is a different (and much harder) matter.

Theorem 1. Let M be a subset of � containing 0 and 1. Any point z 2 M is
algebraic over K WD �.M [ M /.

The proof will be given later in this chapter. But first we quote a famous result:

Theorem 2 (Lindemann 1882). The number � is transcendental.

Corollary. The quadrature of the circle with ruler and compass is impossible.

Proof. If it were possible, we would have � 2 �; by Theorem 1 then � would be
algebraic, which by Lindemann’s Theorem is not the case. ˜

Lindemann’s Theorem can be proved using relatively elementary algebraic and
analytic arguments, but the proof is on the whole quite intricate. We will go into it
later on (Chapter 17).
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2. Now we start our study of field theory with the following statement:

F1. Let E=K be a field extension. If ˛ 2 E is algebraic over K, then

K.˛/ WK <1:

Proof. Suppose there exists a nonzero polynomial

(1) f .X /D X n C an�1X n�1 C � � � C a0 2 KŒX �

such that f .˛/D0; we have assumed without loss of generality that f is normalized
(has leading coefficient 1). There exists a unique homomorphism of K-algebras '
from the polynomial ring KŒX � into E such that '.X /D ˛ (see page 21); its image

R D im' � E

consists precisely of those elements of E that can be written as polynomial ex-
pressions g.˛/ in ˛ with coefficients in K. But in writing such an expression we
immediately see from the relation

(2) ˛n D �.an�1˛
n�1 C � � � C a1˛C a0/

that only terms of degree less than n are needed, so in fact

(3) R D fc0 C c1˛C � � � C cn�1˛
n�1 j ci 2 Kg:

Thus, as a vector space over K, the dimension of R is at most n. Since R, being
a subring of E, has no zero-divisors, a simple argument (given a bit further down)
shows that R is actually a field. It follows that K.˛/ � R (using the definition of
K.˛/), and therefore that R D K.˛/. From (3) we then get

(4) K.˛/D fc0 C c1˛C � � � C cn�1˛
n�1 j ci 2 Kg:

In particular,

(5) K.˛/ WK 	 n. ˜

F2. Let R be an integral domain (that is, a commutative ring with no zero divisors
and with 1 ¤ 0), and let K be a subfield of R. If R is finite-dimensional as a K-vector
space, R is a field.

Proof. For a given a ¤ 0 in R, consider the map h W R ! R given by multiplication
by a, namely, h.x/D ax for all x in R. Then h is an endomorphism (linear map)
of the K-vector space R. Since R has no zero-divisors, h is injective. Because R is
assumed finite-dimensional over K, it is also surjective. In particular, there exists
b 2 R such that ab D 1. ˜

Remark. It can be proved in an analogous way that an integral domain that has
finite cardinality is a field.
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3. Let E=K be a field extension, and let ˛ 2 E be algebraic over K. Consider
on the K-vector space K.˛/ the endomorphism h defined by multiplication by ˛.
The minimal polynomial of h is called the minimal polynomial of ˛ over K, and we
denote it by

MiPoK .˛/:

This is the lowest-degree normalized polynomial in KŒX � that has ˛ as a zero. (That
there can be only one such polynomial is clear: if f;g are both normalized and of
degree n, the degree of f � g is less than n.) The degree of f D MiPo˛.K/ is also
called the degree of ˛ over K, and is denoted by Œ˛ WK�.
Example. Consider E D �, K D � and ˛D e2� i=3. Then ˛ is a root of X 3 �1. But
X 3 �1 D .X �1/g.X /, with g.X /D X 2 CX C1; since ˛¤ 1, we have g.˛/D 0.
Let f D MiPoK .˛/; we claim that f D g. Otherwise necessarily degf < deg g, so
f could only be of the form f .X /D X �˛, which is impossible since ˛ … �.

F3. Let E=K be a field extension and let ˛ 2 E be algebraic over K, of degree
n WD Œ˛ WK�. The elements

(6) 1; ˛; ˛2; : : : ; ˛n�1

of E form a basis of K.˛/ over K. In particular,

(7) K.˛/ WK D Œ˛ WK�D deg MiPoK .˛/:

Proof. Let f .X /D X n C� � � Ca1X Ca0 the minimal polynomial of ˛ over K. We
know that

K.˛/ WK 	 nI
see (5) in the proof of F1. There remains to show that 1; ˛; ˛2; : : : ; ˛n�1 are linearly
independent over K. Suppose there is a relation

(8)
n�1X
iD0

ci˛
i D 0 with ci 2 K:

Set g.X / WD Pn�1
iD0 ciX

i . If some ci in (8) were nonzero, g.X / would be a nonzero
polynomial in KŒX � of degree less than n and vanishing at ˛. Contradiction! ˜

4. Let E=K be a field extension and assume ˛ 2 E is algebraic over K. Is it the
case that any ˇ 2 K.˛/ is also algebraic over K?

Definition. An extension E=K is called algebraic if every element of E is algebraic
over K. An extension E=K is called finite if E WK <1.

Remarks. �=� is a finite extension, since � W � D 2. The extension �=� is not
algebraic; see Remark (b) in Section 2.1.

An extension E=K is called transcendental if it is not algebraic.
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F4. If an extension E=K is finite, it is also algebraic; for each ˇ 2 E the degree
Œˇ WK� is a divisor of E WK.

Proof. Let E=K be finite of degree n. Given ˇ 2 E, the n C 1 elements 1; ˇ;

ˇ2; : : : ; ˇn of the n-dimensional K-vector space E are linearly dependent. Therefore
there exist a0; a1; : : : ; an 2 K, not all zero, such that

a01 C a1ˇC � � � C anˇ
n D 0:

Thus ˇ is algebraic over K. By F3, Œˇ WK� D K.ˇ/ WK, and K.ˇ/ WK is a divisor
of E WK by the degree formula (Chapter 1, F7). ˜

We now can easily answer in the affirmative the question asked at the beginning
of this section.

F5. Let E=K be a field extension. If ˛ 2 E is algebraic over K, the extension
K.˛/=K is algebraic.

Proof. If ˛ is algebraic over K, we know from F1 that K.˛/=K is finite. But every
finite field extension is algebraic, by F4. ˜

Together, F1 and F4 afford the following criterion:

F6. Let E=K be a field extension. An element ˛ of E is algebraic over K if and only
if K.˛/=K is finite.

Now it is a cinch to prove Theorem 1, which we can reformulate as follows:

Theorem 1. Let M be a subset of � containing 0 and 1. Let K D �.M [ M /. The
field extension M=K is algebraic.

Proof. Take z 2 M . From F9 of Chapter 1 we know that K.z/ WK <1. Then F6
says that z is algebraic over K. ˜

Remark. The converse of F4 is not true: Not every algebraic extension is finite.
This will soon become obvious. In fact a counterexample comes up naturally in our
context: If E D f0; 1g is the field of all numbers constructible from f0; 1g with
ruler and compass, the field extension E=� is algebraic but not finite. (With what
we know so far this is not very easy to prove, but it’s worth thinking about; see §2.5
in the Appendix.)

Among algebraic extensions, finite extensions can be characterized thus:

F7. Let E=K be a field extension. The following conditions are equivalent:

(i) There are elements ˛1; : : : ; ˛m of E, finite in number and algebraic over K,
such that E D K.˛1; : : : ; ˛m/.

(ii) E=K is finite.
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Proof. (ii) ) (i) is clear; all we need to do is choose a basis ˛1; : : : ; ˛m for E=K.
Then we actually have E D K˛1 C � � � C K˛m, and by F4 all the ˛i are algebraic
over K.

To show (i) ) (ii) we use induction over m. For m D 0 there is nothing to
prove. Assume that (i) holds for some m � 1 and set

K0 D K.˛1; : : : ; ˛m�1/:

Then E D K0.˛m/. Since ˛m is algebraic over K, it is a fortiori algebraic over the
larger field K0. By F1 this implies E WK0 < 1. But by the induction hypothesis,
K0=K is finite. The degree formula (Chapter 1, F7) then implies that E=K is finite.

˜

5. Let E=K be a field extension. A subfield L of E containing K is called an
intermediate field of the extension E=K.

F8. Let E=K be a field extension. The subset

F D f˛ 2 E j ˛ is algebraic over Kg
is an intermediate field of E=K. It is called the algebraic closure of K in E. In
particular, the set of all algebraic numbers is a subfield of �.

Proof. Take ˛; ˇ 2 F . Consider the subfield K.˛; ˇ/ of E. By F7 the extension
K.˛; ˇ/=K is finite (prove this again for practice). Now apply F4; all elements of
K.˛; ˇ/ are algebraic over K, so

K.˛; ˇ/� F:

The elements ˛Cˇ, ˛�ˇ, ˛ˇ and 1=˛ (if ˛ ¤ 0) lie in K.˛; ˇ/, and thus also in
F . So F really is a subfield of E. Clearly K � F , since any ˛ 2 K is a zero of
a polynomial X � ˛ 2 KŒX � and therefore algebraic over K. This completes the
proof. ˜

This proof qualifies as easy, but it’s only easy because we have the right notions
at our disposal. Otherwise, would you be able to write down, at the drop of a hat, a
nontrivial rational polynomial that vanishes at the sum of two numbers, given only
rational polynomials vanishing at one and the other number respectively?

F9 (Transitivity of algebraicness). Let L be an intermediate field of the extension
E=K. If E=L and L=K are algebraic, so is E=K (and vice versa).

Proof. Take ˇ 2 E. By assumption ˇ is algebraic over L. Let ˛0; ˛1; : : : ; ˛n�1

be the coefficients of MiPoL.ˇ/; then ˇ is also algebraic over the subfield F WD
K.˛0; ˛1; : : : ; ˛n�1/. By assumption all the ˛i are algebraic over K. Therefore we
can apply F7 to conclude that F W K is finite. But F.ˇ/ WF is also finite, by F6;
therefore the degree formula gives

F.ˇ/ WK <1:

Using F4 we see in particular that ˇ is algebraic over K. ˜
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F10. Let E=K be a field extension and A a subset of E. If all elements of A are
algebraic over K, the extension K.A/=K is algebraic.

Proof. Clearly K.A/ is the union of all subfields of the form K.M /, where M

ranges over finite subsets of A. By F7, each K.M /=K is finite and therefore also
algebraic. Thus K.A/ contains only elements algebraic over K. (Of course F10
also follows directly from F8.) ˜

F11. Let E=K be a field extension, and L1;L2 intermediate fields of E=K. The field

(9) L1L2 WD L1.L2/D L2.L1/

is called the composite of L1 and L2 in E.

(a) If L1=K is algebraic, so is L1L2=L2.

(b) If L1=K is finite, so is L1L2=L2; moreover L1L2 WL2 	 L1 WK.

(c) If L1=K and L2=K are algebraic, so is L1L2=K.

(d) If L1=K and L2=K are finite, so is L1L2=K; if , moreover, the extension
degrees n1 D L1 WK and n2 D L2 WK are relatively prime, we have L1L2 WK D
n1n2.

Proof. Part (a) follows from F10, taking (9) into account. Part (c) therefore also
follows, thanks to F9. Let L1=K and L2=K be finite. Assuming (b) already proved,
we see from the degree formula that

(10) L1L2 WK D .L1L2 WL2/.L2 WK/	 .L1 WK/.L2 WK/;
which is the first part of (d). Again from the degree formula we obtain that L1L2 WK
is divisible by n1 and by n2. If n1; n2 are relatively prime, L1L2 WK is divisible by
n1n2, which together with (10) gives the second part of (d).

There remains to prove (b). Consider the set R of all finite sums of products ab

with a 2 L1; b 2 L2. Clearly R is a subring of E containing L1 and L2. It is also
clear that any basis of L1=K generates R as an L2-vector space R, so in particular
R WL2 	 L1 WK. If L1 WK < 1, this implies that R is a field (see F2). It follows
that R D L1L2, which concludes the proof. ˜


