
Preface

It seems to me that the notion of convex function is
just as fundamental as positive function or increasing
function. If I am not mistaken in this, the notion ought
to find its place in elementary expositions of the theory
of real functions.

J. L. W. V. Jensen

Convexity is a simple and natural notion which can be traced back to
Archimedes (circa 250 B.C.), in connection with his famous estimate of the
value of π (by using inscribed and circumscribed regular polygons). He no-
ticed the important fact that the perimeter of a convex figure is smaller than
the perimeter of any other convex figure surrounding it.

As a matter of fact, we experience convexity all the time and in many
ways. The most prosaic example is our upright position, which is secured as
long as the vertical projection of our center of gravity lies inside the convex
envelope of our feet. Also, convexity has a great impact on our everyday life
through numerous applications in industry, business, medicine, and art. So
do the problems of optimum allocation of resources and equilibrium of non-
cooperative games.

The theory of convex functions is part of the general subject of convexity,
since a convex function is one whose epigraph is a convex set. Nonetheless
it is an important theory per se, which touches almost all branches of math-
ematics. Graphical analysis is one of the first topics in mathematics which
requires the concept of convexity. Calculus gives us a powerful tool in recog-
nizing convexity, the second-derivative test. Miraculously, this has a natural
generalization for the several variables case, the Hessian test. Motivated by
some deep problems in optimization and control theory, convex function the-
ory has been extended to the framework of infinite dimensional Banach spaces
(and even further).

The recognition of the subject of convex functions as one that deserves
to be studied in its own right is generally ascribed to J. L. W. V. Jensen
[114], [115]. However he was not the first to deal with such functions. Among
his predecessors we should recall here Ch. Hermite [102], O. Hölder [106] and
O. Stolz [233]. During the twentieth century, there was intense research ac-
tivity and significant results were obtained in geometric functional analysis,
mathematical economics, convex analysis, and nonlinear optimization. A clas-
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sic book by G. H. Hardy, J. E. Littlewood and G. Pólya [99] played a large
role in the popularization of the subject of convex functions.

Roughly speaking, there are two basic properties of convex functions that
make them so widely used in theoretical and applied mathematics:
• The maximum is attained at a boundary point.
• Any local minimum is a global one. Moreover, a strictly convex function

admits at most one minimum.
The modern viewpoint on convex functions entails a powerful and elegant

interaction between analysis and geometry. In a memorable paper dedicated
to the Brunn–Minkowski inequality, R. J. Gardner [88, p. 358], described this
reality in beautiful phrases: [convexity] “appears like an octopus, tentacles
reaching far and wide, its shape and color changing as it roams from one area
to the next. It is quite clear that research opportunities abound.”

Over the years a number of notable books dedicated to the theory and ap-
plications of convex functions appeared. We mention here: L. Hörmander [108],
M. A. Krasnosel’skii and Ya. B. Rutickii [132], J. E. Pečarić, F. Proschan and
Y. C. Tong [196], R. R. Phelps [199], [200] and A. W. Roberts and D. E. Var-
berg [212]. The references at the end of this book include many other fine
books dedicated to one aspect or another of the theory.

The title of the book by L. Hörmander, Notions of Convexity, is very
suggestive for the present state of art. In fact, nowadays the study of convex
functions has evolved into a larger theory about functions which are adapted
to other geometries of the domain and/or obey other laws of comparison of
means. Examples are log-convex functions, multiplicatively convex functions,
subharmonic functions, and functions which are convex with respect to a
subgroup of the linear group.

Our book aims to be a thorough introduction to contemporary convex
function theory. It covers a large variety of subjects, from the one real vari-
able case to the infinite dimensional case, including Jensen’s inequality and its
ramifications, the Hardy–Littlewood–Pólya theory of majorization, the the-
ory of gamma and beta functions, the Borell–Brascamp–Lieb form of the
Prékopa–Leindler inequality (as well as the connection with isoperimetric in-
equalities), Alexandrov’s well-known result on the second differentiability of
convex functions, the highlights of Choquet’s theory, a brief account on the
recent solution to Horn’s conjecture, and many more. It is certainly a book
where inequalities play a central role but in no case a book on inequalities.
Many results are new, and the whole book reflects our own experiences, both
in teaching and research.

This book may serve many purposes, ranging from a one-semester gradu-
ate course on Convex Functions and Applications to additional bibliographic
material. In a course for first year graduate students, we used the following
route:

• Background : Sections 1.1–1.3, 1.5, 1.7, 1.8, 1.10.
• The beta and gamma functions: Section 2.2.
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• Convex functions of several variables: Sections 3.1–3.12.
• The variational approach of partial differential equations: Appendix C.

The necessary background is advanced calculus and linear algebra. This
can be covered from many sources, for example, from Analysis I and II by
S. Lang [137], [138]. A thorough presentation of the fundamentals of measure
theory is also available in L. C. Evans and R. F. Gariepy [74]. For further
reading we recommend the classical texts by F. H. Clarke [56] and I. Ekeland
and R. Temam [70].

Our book is not meant to be read from cover to cover. For example, Sec-
tion 1.9, which deals with the Hermite–Hadamard inequality, offers a good
starting point for Choquet’s theory. Then the reader may continue with Chap-
ter 4, where this theory is presented in a slightly more general form, to allow
the presence of certain signed measures. We recommend this chapter to be
studied in parallel with the Lectures on Choquet’s theory by R. R. Phelps
[200]. For the reader’s convenience, we collected in Appendix A all the nec-
essary material on the separation of convex sets in locally convex Hausdorff
spaces (as well as a proof of the Krein–Milman theorem).

Appendix B may be seen both as an illustration of convex function theory
and an introduction to an important topic in real algebraic geometry: the
theory of semi-algebraic sets.

Sections 3.11 and 3.12 offer all necessary background on a further study of
convex geometric analysis, a fast-growing topic which relates many important
branches of mathematics.

To help the reader in understanding the theory presented, each section
ends with exercises (accompanied by hints). Also, each chapter ends with
comments covering supplementary material and historical information. The
primary sources we have relied upon for this book are listed in the references.

In order to avoid any confusion relative to our notation, a symbol index
was added for the convenience of the reader. Notice that our book deals only
with real linear spaces and all Borel measures under attention are assumed to
be regular.

We wish to thank all our colleagues and friends who read and commented
on various versions and parts of the manuscript: Madalina Deaconu, Andaluzia
Matei, Sorin Micu, Florin Popovici, Mircea Preda, Thomas Strömberg, Andrei
Vernescu, Peter Wall, Anna Wedestig and Tudor Zamfirescu.

We also acknowledge the financial support of Wenner–Gren Foundations
(Grant 25 12 2002), which made possible the cooperation of the two authors.

In order to keep in touch with our readers, a web page for this book will
be made available at http://www.inf.ucv.ro/∼niculescu/Convex Functions.html

Craiova and Lule̊a Constantin P. Niculescu
September 2004 Lars-Erik Persson
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Comparative Convexity on Intervals

This chapter is devoted to a succinct presentation of several classes of functions
acting on intervals, which satisfy inequalities of the form

f(M(x, y)) ≤ N(f(x), f(y)),

for a suitable pair of means M and N . Leaving out the case of usual con-
vex functions (when M and N coincide with the arithmetic mean), the most
important classes that arise in applications are:

• the class of log-convex functions (M is the arithmetic mean and N is the
geometric mean)

• the class of multiplicatively convex functions (M and N are both geomet-
ric means)

• the class of Mp-convex functions (M is the arithmetic mean and N is the
power mean of order p).

They all provide important applications to many areas of mathematics.

2.1 Algebraic Versions of Convexity

The usual definition of a convex function (of one real variable) depends on
the structure of R as an ordered vector space. As R is actually an ordered
field, it is natural to investigate what happens when addition is replaced by
multiplication and the arithmetic mean is replaced by the geometric mean.

The characteristic property of the subintervals I of R is

x, y ∈ I and λ ∈ [0, 1] =⇒ (1 − λ)x+ λy ∈ I

so, in order to draw a parallel in the multiplicative case, we must restrict to
the subintervals J of (0,∞) and use instead the following fact:

x, y ∈ J and λ ∈ [0, 1] =⇒ x1−λyλ ∈ J.
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Depending on which type of mean, arithmetic (A) or geometric (G), we
consider on the domain and on the range, we shall encounter one of the fol-
lowing four classes of functions:

• (A,A)-convex functions, the usual convex functions;
• (A,G)-convex functions;
• (G,A)-convex functions;
• (G,G)-convex functions.

More precisely, the (A,G)-convex functions (usually known as log-convex
functions) are those functions f : I → (0,∞) for which

x, y ∈ I and λ ∈ [0, 1] =⇒ f((1 − λ)x+ λy) ≤ f(x)1−λf(y)λ, (AG)

that is, for which log f is convex. If a function f : I → R is log-convex, then
it is also convex. In fact, according to the AM–GM inequality,

f((1 − λ)x+ λy) ≤ f(x)1−λf(y)λ ≤ (1 − λ)f(x) + λf(y).

The converse does not work. For example, the function ex − 1 is convex
and log-concave.

One of the most notable examples of a log-convex function is Euler’s
gamma function,

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0.

The place of Γ in the landscape of log-convex functions is the subject of
the next section.

The class of all (G,A)-convex functions consists of all real-valued func-
tions f (defined on subintervals I of (0,∞)) for which

x, y ∈ I and λ ∈ [0, 1] =⇒ f(x1−λyλ) ≤ (1 − λ)f(x) + λf(y). (GA)

In the context of twice-differentiable functions f : I → R, (G,A)-convexity
means x2f ′′ + xf ′ ≥ 0.

The (G,G)-convex functions (called multiplicatively convex functions in
what follows) are those functions f : I → J (acting on subintervals of (0,∞))
such that

x, y ∈ I and λ ∈ [0, 1] =⇒ f(x1−λyλ) ≤ f(x)1−λf(y)λ. (GG)

Equivalently, f is multiplicatively convex if and only if log f(x) is a convex
function of log x. This fact will be shown in Lemma 2.3.1 below. Due to the
arithmetic-geometric mean inequality, all multiplicatively convex functions
(and also all nondecreasing convex functions) are (G,A)-convex functions.

The theory of multiplicatively convex functions is similar to that of clas-
sical convex functions. In fact, they differ from each other only by a change
of variable and a change of function:
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Lemma 2.1.1 Suppose that I is a subinterval of (0,∞) and f : I → (0,∞)
is a multiplicatively convex function on I. Then

F = log ◦f ◦ exp: log(I) → R

is a convex function. Conversely, if J is an interval and F : J → R is a convex
function, then

f = exp ◦F ◦ log : exp(J) → (0,∞)

is a multiplicatively convex function.

The proof is straightforward. Lemma 2.1.1 can be adapted easily to other
situations and allows us to deduce new inequalities from old ones. This idea
is central to Section 2.3 below.

Exercises

1. (Some geometrical consequences of log-convexity)
(i) A convex quadrilateral ABCD is inscribed in the unit circle. Its sides

satisfy the inequality AB · BC · CD ·DA ≥ 4. Prove that ABCD is
a square.

(ii) Suppose that A, B, C are the angles of a triangle, expressed in radi-
ans. Prove that

sinA sinB sinC <
(3

√
3

2π

)3
ABC <

(√
3

2

)3
,

unless A = B = C.
[Hint : Note that the sine function is log-concave, while x/ sinx is log-
convex on (0, π). ]

2. Let (X,Σ, μ) be a measure space and let f : X → C be a measur-
able function, which is in Lt(μ) for t in a subinterval I of (0,∞). In-
fer from the Cauchy–Buniakovski–Schwarz inequality that the function
t → log

∫
X

|f |t dμ is convex on I.
Remark. The result of this exercise is equivalent to Lyapunov’s inequality
[148]: If a ≥ b ≥ c, then(∫

X

|f |b dμ
)a−c

≤
(∫

X

|f |c dμ
)a−b(∫

X

|f |a dμ
)b−c

(provided the integrability aspects are fixed). Equality holds if and only if
one of the following conditions hold:
(i) f is constant on some subset of Ω and 0 elsewhere;
(ii) a = b;
(iii) b = c;
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(iv) c(2a− b) = ab.

3. (P. Montel [171]) Let I be an interval. Prove that the following assertions
are equivalent for every function f : I → (0,∞):
(i) f is log-convex;
(ii) the function x → eαxf(x) is convex on I for all α ∈ R;
(iii) the function x → [f(x)]α is convex on I for all α > 0.
[Hint : For (iii) ⇒ (i), note that ([f(x)]α − 1)/α is convex for all α > 0
and log f(x) = limα→0+([f(x)]α − 1)/α. Then apply Corollary 1.3.8. ]

4. Prove that the sum of two log-convex functions is also log-convex.
[Hint : Note that this assertion is equivalent to the following inequality for
positive numbers: aαbβ + cαdβ ≤ (a+ c)α(b+ d)β .]

5. (S. Simic [227]) Let (an)n be a sequence of positive numbers. Prove that
the following assertions are equivalent:
(i) (an)n is log-convex (that is, an−1an+1 ≥ a2

n for all n ≥ 1);
(ii) for each x ≥ 0, the sequence Pn(x) =

∑n
k=0 ak

(
n
k

)
xn−k (n ∈ N) is

log-convex.

6. A function f : (0,∞) → R is called completely monotonic if f has deriva-
tives of all orders and satisfies (−1)nf (n)(x) ≥ 0 for all x > 0 and n ∈ N.
In particular, completely monotonic functions are decreasing and convex.
(i) Prove that

(−1)nk(f (k)(x))n ≤ (−1)nk(f (n)(x))k(f(x))n−k

for all x > 0 and all integers n, k with n ≥ k ≥ 0. Infer that any
completely monotonic function is actually log-convex.

(ii) Prove that the function

Vq(x) =
exp(x2)
Γ(q + 1)

∫ ∞

x

e−t2(t2 − x2)q dt

is completely monotonic on (0,∞) if q ∈ (−1, 0].

2.2 The Gamma and Beta Functions

The gamma function Γ: (0,∞) → R is defined by the relation

Γ(x) =
∫ ∞

0
tx−1e−t dt for x > 0.

Theorem 2.2.1 The gamma function has the following properties:
(i) Γ(x+ 1) = xΓ(x) for all x > 0;
(ii) Γ(1) = 1;
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Fig. 2.1. The graph of Γ.

(iii) Γ is log-convex.

Proof. (i) Using integration by parts we get

Γ(x+ 1) =
∫ ∞

0
txe−t dt = [−txe−t]

∣∣∞
t=0 + x

∫ ∞

0
tx−1e−t dt = xΓ(x)

for all x > 0.
The property (ii) is obvious.
(iii) Let x, y > 0 and let λ, μ ≥ 0 with λ + μ = 1. Then, by the Rogers–

Hölder inequality, we have

Γ(λx+ μy) =
∫ ∞

0
tλx+μy−1e−t dt =

∫ ∞

0
(tx−1e−t)λ(ty−1e−t)μ dt

≤
(∫ ∞

0
tx−1e−t dt

)λ(∫ ∞

0
ty−1e−t dt

)μ
= Γλ(x)Γμ(y)

which proves that Γ is log-convex. ��

Corollary 2.2.2 Γ(n+ 1) = n! for all n ∈ N.

Corollary 2.2.3 The gamma function is convex and xΓ(x) approaches 1 as
x → 0+.

C. F. Gauss first noted that Γ attains its minimum at x = 1.461632145 . . . .
The gamma function is the unique log-convex extension of the factorial

function:

Theorem 2.2.4 (H. Bohr and J. Mollerup [32], [10]) Suppose the func-
tion f : (0,∞) → R satisfies the following three conditions:
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(i) f(x+ 1) = xf(x) for all x > 0;
(ii) f(1) = 1;
(iii) f is log-convex.
Then f = Γ.

Proof. By induction, from (i) and (ii) we infer that f(n+1) = n! for all n ∈ N.
Now, let x ∈ (0, 1] and n ∈ N�. Then by (iii) and (i),

f(n+ 1 + x) = f((1 − x)(n+ 1) + x(n+ 2))

≤ [f(n+ 1)]1−x · [f(n+ 2)]x

= [f(n+ 1)]1−x · (n+ 1)x · [f(n+ 1)]x

= (n+ 1)x · f(n+ 1)
= (n+ 1)x · n!

and

n! = f(n+ 1) = f(x(n+ x) + (1 − x)(n+ 1 + x))

≤ [f(n+ x)]x · [f(n+ 1 + x)]1−x

= (n+ x)−x · [f(n+ 1 + x)]x · [f(n+ 1 + x)]1−x

= (n+ x)−x · f(n+ 1 + x).

Thus, since f(n+ 1 + x) = (n+ x)(n− 1 + x) · · ·xf(x), we obtain(
1 +

x

n

)x
≤ (n+ x)(n− 1 + x) · · ·xf(x)

n!nx
≤

(
1 +

1
n

)x
,

which yields

f(x) = lim
n→∞

n!nx

(n+ x)(n− 1 + x) · · ·x for x ∈ (0, 1].

We shall show that the above formula is valid for all x > 0 so that f is
uniquely determined by the conditions (i), (ii) and (iii). Since Γ satisfies all
these three conditions, we must have f = Γ.

To end the proof, suppose that x > 0 and choose an integer number m
such that 0 < x−m ≤ 1. According to (i) and what we have just proved, we
get

f(x) = (x− 1) · · · (x−m)f(x−m)

= (x− 1) · · · (x−m) · lim
n→∞

n!nx−m

(n+ x−m)(n− 1 + x−m) · · · (x−m)

= lim
n→∞

( n!nx

(n+ x)(n− 1 + x) · · ·x

· (n+ x)(n+ x− 1) · · · (n+ x− (m− 1))
nm

)
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= lim
n→∞

n!nx

(n+ x)(n− 1 + x) · · ·x
· lim
n→∞

((
1 +

x

n

)(
1 +

x− 1
n

)
· · ·

(
1 +

x−m+ 1
n

))
= lim
n→∞

n!nx

(n+ x)(n− 1 + x) · · ·x.

��

Corollary 2.2.5 Γ(x) = lim
n→∞

n!nx

(n+ x)(n− 1 + x) · · ·x for all x > 0.

Before establishing a fundamental identity linking the gamma and sine
functions, we need to express sinx as an infinite product:

Theorem 2.2.6 (L. Euler) For all real numbers x,

sinx = x

∞∏
k=1

(
1 − x2

k2π2

)
.

Proof. De Moivre’s formula shows that sin(2n+ 1)θ is a polynomial of degree
2n + 1 in sin θ (for each n ∈ N, arbitrarily fixed). This polynomial has roots
± sin(kπ/(2n+ 1)) for k = 0, . . . , n. It follows that

sin(2n+ 1)θ = (2n+ 1) sin θ
n∏
k=1

(
1 − sin2 θ

sin2 kπ
2n+1

)
.

Suppose that x > 0 and fix arbitrarily two integers m and n such that
x < m < n. The last identity shows that

sinx
(2n+ 1) sin x

2n+1
=

n∏
k=1

(
1 − sin2 x

2n+1

sin2 kπ
2n+1

)
.

Denote by ak the k-th factor in this last product. Since 2θ/π < sin θ < θ
when 0 < θ < π/2, we find that

0 < 1 − x2

4k2 < ak < 1 for m < k ≤ n,

which yields

1 > am+1 · · · an >
n∏
k=1

(
1 − x2

4k2

)
> 1 − x2

4

n∑
k=m+1

1
k2 > 1 − x2

4m
.

Hence
sinx

(2n+ 1) sin x
2n+1
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lies between(
1 − x2

4m

) n∏
k=1

(
1 − sin2 x

2n+1

sin2 kπ
2n+1

)
and

n∏
k=1

(
1 − sin2 x

2n+1

sin2 kπ
2n+1

)
and so, letting n → ∞, we deduce that sinx/x lies between(

1 − x2

4m

) ∞∏
k=1

(
1 − x2

k2π2

)
and

∞∏
k=1

(
1 − x2

k2π2

)
.

The proof ends by letting m → ∞. ��

Theorem 2.2.7 For all real x with 0 < x < 1,

Γ(x)Γ(1 − x) =
π

sinπx
.

Proof. In fact, by Corollary 2.2.5 and Theorem 2.2.6 above we infer that

Γ(x)Γ(1 − x) = lim
n→∞

n!nxn!n1−x

(n+ x) · · ·x (n+ 1 − x) · · · (1 − x)

=
1

x
∏∞
k=1(1 − x2/k2)

=
π

sinπx
.

��

Corollary 2.2.8 Γ(1/2) =
√
π.

A variant of the last corollary is the formula

1√
2π

∫
R

e−t2/2 dt = 1

which appears in many places in mathematics, statistics and natural sciences.
Another beautiful consequence of Theorem 2.2.4 is the following:

Theorem 2.2.9 (The Gauss–Legendre duplication formula)

Γ
(x

2

)
Γ
(x+ 1

2

)
=

√
π

2x−1 Γ(x) for all x > 0.

Proof. Notice that the function

f(x) =
2x−1
√
π

Γ
(x

2

)
Γ
(x+ 1

2

)
x > 0,

verifies the conditions (i)–(iii) in Theorem 2.2.4 and thus equals Γ. ��

We will prove Stirling’s formula, which is an important tool in analytic
number theory. We shall need the following lemma:



2.2 The Gamma and Beta Functions 73

Lemma 2.2.10 The sequence (an)n, whose n-th term is

an = logn! −
(
n+

1
2

)
log n+ n,

converges.

Proof. We shall show that the sequence is decreasing and bounded below. In
fact,

an − an+1 =
(
n+

1
2

)
log

(
1 +

1
n

)
− 1 ≥ 0

since by the Hermite–Hadamard inequality applied to the convex function 1/x
on [n, n+ 1] we have

log
(

1 +
1
n

)
=

∫ n+1

n

dx

x
≥ 1
n+ 1/2

.

A similar argument (applied to the concave function log x on [u, v]) yields∫ v

u

log x dx ≤ (v − u) log
u+ v

2
,

so that (taking into account the monotonicity of the log function) we get∫ n

1
log x dx =

∫ 1+1/2

1
log x dx+

∫ 2+1/2

1+1/2
log x dx+ · · · +

∫ n

n−1/2
log x dx

≤ 1
2

log
3
2

+ log 2 + · · · + log(n− 1) +
1
2

log n

<
1
2

+ logn! − 1
2

log n.

Since ∫ n

1
log x dx = n log n− n+ 1,

we conclude that

an = logn! −
(
n+

1
2

)
log n+ n >

1
2
.

The result now follows. ��

Theorem 2.2.11 (Stirling’s formula) n! ∼ √
2π nn+1/2e−n.

Proof. Under the notation of the previous lemma, put

bn = ean =
n!

nn+1/2e−n for n = 1, 2, . . . .
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Then the sequence (bn)n converges to some b > 0. Thus

b2n
b2n

=
22n+1/2(n!)2

n1/2(2n)!
→ b2

b
= b as n → ∞.

For n = 1, 2, . . . , let cn =
n!n1/2

(n+ 1
2 ) · · · 3

2 · 1
2

. Then by Corollary 2.2.5, (cn)n

converges to Γ(1/2) =
√
π as n → ∞. Hence

b2n
b2n

= cn

(
1 +

1
2n

)√
2 →

√
2π as n → ∞,

which yields b =
√

2π. Consequently,

bn =
n!

nn+1/2e−n →
√

2π as n → ∞

and the proof is now complete. ��

Closely related to the gamma function is the beta function B, which is the
real function of two variables defined by the formula

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt for x, y > 0.

Theorem 2.2.12 The beta function has the following properties:
(i) B(x, y) = B(y, x) and B(x+ 1, y) = x

x+yB(x, y);
(ii) B(x, y) is a log-convex function of x for each fixed y;

(iii) B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

.

Proof. (i) The first formula is clear. For the second,

B(x+ 1, y) =
∫ 1

0
tx(1 − t)y−1 dt

=
∫ 1

0
(1 − t)x+y−1

( t

1 − t

)x
dt

=
[−(1 − t)x+y

x+ y

( t

1 − t

)x]t=1

t=0
+

∫ 1

0

x

x+ y
tx−1(1 − t)y−1 dt

=
x

x+ y
B(x, y).

(ii) Let a, b, y > 0 and let λ, μ ≥ 0 with λ+ μ = 1. By the Rogers–Hölder
inequality,
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B(λa+ μb, y) =
∫ 1

0
(ta−1(1 − t)y−1)λ(tb−1(1 − t)y−1)μ dt

≤
(∫ 1

0
ta−1(1 − t)y−1 dt

)λ(∫ 1

0
tb−1(1 − t)y−1 dt

)μ
= Bλ(a, y) ·Bμ(a, y).

(iii) Let y > 0 be arbitrarily fixed and consider the function

ϕy(x) =
Γ(x+ y)B(x, y)

Γ(y)
, x > 0.

Then ϕy is a product of log-convex functions and so it is itself log-convex.
Also,

ϕy(x+ 1) =
Γ(x+ y + 1)B(x+ 1, y)

Γ(y)

=
[(x+ y)Γ(x+ y)][x/(x+ y)]B(x, y)

Γ(y)
= xϕy(x)

for all x > 0 and

ϕy(1) =
Γ(1 + y)B(1, y)

Γ(y)
= y

∫ 1

0
(1 − t)y−1 dt = 1.

Thus ϕy = Γ by Theorem 2.2.4, and the assertion (iii) is now clear. ��

Exercises

1. Prove that Γ(n+ 1
2 ) = (2n)!

√
π

n! 4n for n ∈ N.

2. The integrals

In =
∫ π/2

0
sinn t dt (for n ∈ N)

can be computed easily via the recurrence formula nIn = (n − 1)In−2
(where n ≥ 2). Integrate the inequalities sin2n+1 x ≤ sin2n x ≤ sin2n−1 x
over [0, π/2] to infer Wallis’ formula,

π

2
= lim
n→∞

[2 · 2
1 · 3

· 4 · 4
3 · 5

· · · 2n · 2n
(2n− 1) · (2n+ 1)

]
.

Remark. An alternative proof of this formula follows from Corollary 2.2.5,
by noticing that π/2 = (Γ(1/2))2/2.
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3. Establish the formula

B(x, y) = 2
∫ π/2

0
sin2x−1 t · cos2y−1 t dt for x, y > 0,

and infer from it that∫ π/2

0
sin2n t dt =

(2n)!π
22n+1(n!)2

for n ∈ N.

4. Use Corollary 2.2.5 to prove Weierstrass’ formula,

Γ(x) =
e−γx

x

∞∏
n=1

(
1 +

x

n

)−1
ex/n,

where γ = lim
n→∞(1 + 1

2 + · · · + 1
n − log n) = 0. 57722 . . . is Euler’s constant.

5. (The Raabe integral) Prove that

Γ
(1
p

)
Γ
(2
p

)
· · · Γ

(p− 1
p

)
=

(2π)p−1/2

p1/2 for all p ∈ N�.

Then infer the integral formula∫ x+1

x

log Γ(t) dt = x(log x− 1) +
1
2

log 2π for all x ≥ 0.

[Hint : Notice that
∫ x+1
x

log Γ(t) dt−x(log x− 1) is constant. The value at
x = 0 can be computed by using Riemann sums. ]

6. (L. Euler) Prove the formula∫ ∞

0

tx−1

1 + t
dt =

π

sinπx
for 0 < x < 1.

[Hint : Put t = u/(1 − u) and apply Theorem 2.2.12 (iii). ]

7. (An alternative proof of the log-convexity of Γ) Prove the formula

d2

dx2 log Γ(x) =
∞∑
n=0

1
(x+ n)2

for x > 0.

8. (F. John’s approach of the Bohr–Mollerup theorem) Let g be a real-valued
concave function on (0,∞) such that g(x)/x → 0 as x → ∞.
(i) Prove that the difference equation

f(x+ 1) − f(x) = g(x)
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has one and only one convex solution f : (0,∞) → R with f(1) = 0,
and this solution is given by the formula

f(x) = −g(x) + x · lim
n→∞

(
g(n) −

n−1∑
k=1

g(x+ k) − g(k)
x

)
.

(ii) (A Stirling type formula) Prove the existence of the limit

c = lim
x→∞

(
f(x) + g(x) −

∫ x+1/2

1/2
g(t) dt

)
.

Remark. The Bohr–Mollerup theorem concerns the case where g = log
and f = log Γ.

9. (E. Artin [10]) Let U be an open convex subset of Rn and let μ be a Borel
measure on an interval I. Consider the integral transform

F (x) =
∫
I

K(x, t) dμ(t),

where the kernel K(x, t) : U × I → [0,∞) satisfies the following two con-
ditions:
(i) K(x, t) is μ-integrable in t for each fixed x;
(ii) K(x, t) is log-convex in x for each fixed t.
Prove that F is log-convex on U .
[Hint : Apply the Rogers–Hölder inequality, noticing that

K((1 − λ)x+ λy, t) ≤ (K(x, t))1−λ(K(y, t))λ. ]

Remark. The Laplace transform of a function f ∈ L1(0,∞) is given by the
formula (Lf)(x) =

∫ ∞
0 f(t)e−tx dt. By Exercise 9, the Laplace transform of

any nonnegative function is log-convex. In the same way one can show that
the moment μα =

∫ ∞
0 tαf(t) dt, of any random variable with probability

density f , is a log-convex function in α (on each subinterval of [0,∞) where
it is finite).

2.3 Generalities on Multiplicatively Convex Functions

The class of multiplicatively convex functions can be easily described as being
constituted by those functions f (acting on subintervals of (0,∞)) such that
log f(x) is a convex function of log x:

Lemma 2.3.1 Suppose that f : I → (0,∞) is a function defined on a subin-
terval of (0,∞). Then f is multiplicatively convex if and only if
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1 log x1 log f(x1)
1 log x2 log f(x2)
1 log x3 log f(x3)

∣∣∣∣∣∣ ≥ 0

for all x1 ≤ x2 ≤ x3 in I; equivalently, if and only if

f(x1)log x3f(x2)log x1f(x3)log x2 ≥ f(x1)log x2f(x2)log x3f(x3)log x1

for all x1 ≤ x2 ≤ x3 in I.

This is nothing but the translation (via Lemma 2.1.1) of the result of
Lemma 1.3.2.

In the same spirit, we can show that every multiplicatively convex function
f : I → (0,∞) has finite lateral derivatives at each interior point of I (and the
set of all points where f is not differentiable is at most countable). As a conse-
quence, every multiplicatively convex function is continuous in the interior of
its domain of definition. Under the presence of continuity, the multiplicative
convexity can be restated in terms of geometric mean:

Theorem 2.3.2 Suppose that I is a subinterval of (0,∞). A continuous func-
tion f : I → (0,∞) is multiplicatively convex if and only if

x, y ∈ I implies f(
√
xy) ≤

√
f(x)f(y).

Proof. The necessity is clear. The sufficiency part follows from the connection
between the multiplicative convexity and the usual convexity (as noted in
Lemma 2.1.1) and the fact that midpoint convexity is equivalent to convexity
in the presence of continuity. See Theorem 1.1.3. ��

Theorem 2.3.2 reveals the essence of multiplicative convexity as being the
convexity according to the geometric mean; in fact, under the presence of
continuity, the multiplicatively convex functions are precisely those functions
f : I → (0,∞) for which

x1, . . . , xn ∈ I implies f( n
√
x1 · · ·xn) ≤ n

√
f(x1) · · · f(xn).

In this respect, it is natural to call a function f : I → (0,∞) multiplicatively
concave if 1/f is multiplicatively convex, and multiplicatively affine if f is of
the form Cxα for some C > 0 and some α ∈ R.

A refinement of the notion of multiplicative convexity is that of strict
multiplicative convexity, which in the context of continuity will mean

f( n
√
x1 · · ·xn) < n

√
f(x1) · · · f(xn)

unless x1 = · · · = xn. Clearly, Lemma 2.1.1 (which relates the multiplicatively
convex functions and the usual convex functions) has a “strict” counterpart.

A large class of strictly multiplicatively convex functions is indicated by
the following result:
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Proposition 2.3.3 (G. H. Hardy, J. E. Littlewood and G. Pólya
[99, Theorem 177, p. 125]) Every polynomial P (x) with nonnegative co-
efficients is a multiplicatively convex function on (0,∞). More generally, ev-
ery real analytic function f(x) =

∑∞
n=0 cnx

n with nonnegative coefficients is
a multiplicatively convex function on (0, R), where R denotes the radius of
convergence.

Moreover, except for the case of functions Cxn (with C > 0 and n ∈ N),
the above examples exhibit strictly multiplicatively convex functions (which
are also increasing and strictly convex). In particular,

• exp, sinh and cosh on (0,∞);
• tan, sec, csc and 1

x − cotx on (0, π/2);
• arcsin on (0, 1];
• − log(1 − x) and 1+x

1−x on (0, 1).

See the table of series in I. S. Gradshteyn and I. M. Ryzhik [89].

Proof. By continuity, it suffices to prove only the first assertion. Suppose that
P (x) =

∑N
n=0 cnx

n. According to Theorem 2.3.2, we have to prove that

x, y > 0 implies (P (
√
xy))2 ≤ P (x)P (y),

or, equivalently,

x, y > 0 implies (P (xy))2 ≤ P (x2)P (y2).

The later implication is an easy consequence of Cauchy–Buniakovski–
Schwarz inequality. ��

The following result collects a series of useful remarks for proving the
multiplicative convexity of concrete functions:

Lemma 2.3.4

(i) If a function is log-convex and increasing, then it is strictly multiplica-
tively convex.

(ii) If a function f is multiplicatively convex, then the function 1/f is mul-
tiplicatively concave (and vice versa).

(iii) If a function f is multiplicatively convex, increasing and one-to-one, then
its inverse is multiplicatively concave (and vice versa).

(iv) If a function f is multiplicatively convex, so is xα[f(x)]β (for all α ∈ R

and all β > 0).
(v) If f is continuous, and one of the functions f(x)x and f(e1/ log x) is

multiplicatively convex, then so is the other.

In many cases the inequalities based on multiplicative convexity are better
than the direct application of the usual inequalities of convexity (or yield
complementary information). This includes the multiplicative analogue of the
Hardy–Littlewood–Pólya inequality of majorization:
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Proposition 2.3.5 Suppose that x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn
are two families of numbers in a subinterval I of (0,∞) such that

x1 ≥ y1

x1x2 ≥ y1y2

...
x1x2 · · ·xn−1 ≥ y1y2 · · · yn−1

x1x2 · · ·xn = y1y2 · · · yn.

Then
f(x1)f(x2) · · · f(xn) ≥ f(y1)f(y2) · · · f(yn)

for every multiplicatively convex function f : I → (0,∞).

A result due to H. Weyl [245] (see also [155]) gives us the basic example of
a pair of sequences satisfying the hypothesis of Proposition 2.3.5: Consider a
matrix A ∈ Mn(C) having the eigenvalues λ1, . . . , λn and the singular numbers
s1, . . . , sn, and assume that they are rearranged such that |λ1| ≥ · · · ≥ |λn|,
and s1 ≥ · · · ≥ sn. Then:∣∣∣ m∏

k=1

λk

∣∣∣ ≤
m∏
k=1

sk for m = 1, . . . , n− 1 and
∣∣∣ n∏
k=1

λk

∣∣∣ =
n∏
k=1

sk.

Recall that the singular numbers of a matrix A are precisely the eigenvalues
of its modulus, |A| = (A�A)1/2; the spectral mapping theorem assures that
sk = |λk| when A is Hermitian. The fact that all examples come this way was
noted by A. Horn; see [155] for details.

According to the discussion above the following result holds:

Proposition 2.3.6 Let A ∈ Mn(C) be any matrix having the eigenvalues
λ1, . . . , λn and the singular numbers s1, . . . , sn, listed such that |λ1| ≥ · · · ≥
|λn| and s1 ≥ · · · ≥ sn. Then

n∏
k=1

f(sk) ≥
n∏
k=1

f(|λk|)

for every multiplicatively convex function f which is continuous on [0,∞).

In general it is not true that |λk| ≤ sk for all k. A counterexample is given
by the matrix (

0 1
4 0

)
whose eigenvalues are λ1 = 2 > λ2 = −2 and the singular numbers are
s1 = 4 > s2 = 1.
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Exercises

1. (C. H. Kimberling [126]) Suppose that P is a polynomial with nonnegative
coefficients. Prove that

(P (1))n−1P (x1 · · ·xn) ≥ P (x1) · · ·P (xn)

provided that all xk are either in [0, 1] or in [1,∞). This fact complements
Proposition 2.3.3.

2. (The multiplicative analogue of Popoviciu’s inequality) Suppose there is
given a multiplicatively convex function f : I → (0,∞). Infer from Theo-
rem 2.3.5 that

f(x) f(y) f(z) f3( 3
√
xyz) ≥ f2(

√
xy)f2(

√
yz)f2(

√
zx)

for all x, y, z ∈ I. Moreover, for the strictly multiplicatively convex func-
tions the equality occurs only when x = y = z.

3. Recall that the inverse sine function is strictly multiplicatively convex on
(0, 1] and infer the following two inequalities in a triangle ΔABC:

sin
A

2
sin

B

2
sin

C

2
<

(
sin

(1
2

3
√
ABC

))3
<

1
8

sinA sinB sinC < (sin 3
√
ABC)3 <

3
√

3
8

unless A = B = C.

4. (P. Montel [171]) Let I ⊂ (0,∞) be an interval and suppose that f is
a continuous and positive function on I. Prove that f is multiplicatively
convex if and only if

2f(x) ≤ kαf(kx) + k−αf(x/k)

for all α ∈ R, x ∈ I, and k > 0, such that kx and x/k both belong to I.

5. (The multiplicative mean) According to Lemma 2.1.1, the multiplicative
analog of the arithmetic mean is

M∗(f) = exp
(

1
log b− log a

∫ log b

log a
log f(et) dt

)
= exp

(
1

log b− log a

∫ b

a

log f(t)
dt

t

)
,

that is, the geometric mean of f with respect to the measure dt/t. Notice
that

M∗(1) = 1
inf f ≤ f ≤ sup f ⇒ inf f ≤ M∗(f) ≤ sup f

M∗(fg) = M∗(f)M∗(g).
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(i) Let f : [a, b] → (0,∞) be a continuous function defined on a subin-
terval of (0,∞) and let ϕ : J → (0,∞) be a multiplicatively convex
continuous function defined on an interval J which includes the image
of f . Prove that

ϕ(M∗(f)) ≤ M∗(ϕ ◦ f),

which is the multiplicative analogue of Jensen’s inequality.
(ii) Suppose that 0 < a < b and let f : [a, b] → (0,∞) be a multiplica-

tively convex continuous function. Prove the following analogue of
Hermite–Hadamard inequality,

f(
√
ab) ≤ M∗(f) ≤

√
f(a)f(b);

the left-hand side inequality is strict unless f is multiplicatively affine,
while the right-hand side inequality is strict unless f is multiplica-
tively affine on each of the subintervals [a,

√
ab] and [

√
ab, b]. These

inequalities can be improved following an idea similar to that of Re-
mark 1.9.3:

f(a1/2b1/2) ≤ (f(a3/4b1/4)f(a1/4b3/4))1/2 ≤ M∗(f)

≤ (f(a1/2b1/2))1/2f(a)1/4f(b)1/4

≤ (f(a)f(b))1/2.

(iii) Notice that M∗(f) = exp( b−a
log b−log a ) for f = exp |[a,b] (0 < a < b).

Then, infer from (ii) the inequalities:

a3/4b1/4 + a1/4b3/4

2
<

b− a

log b− log a
<

1
2

(a+ b

2
+

√
ab

)
exp

( b− a

log b− log a

)
<

eb − ea

b− a
.

6. Let f : I → (0,∞) be a function which is multiplicatively convex or multi-
plicatively concave and let a > 0.
(i) Prove that( n∏

k=1

f(ak/n)
)1/n

>
(n+1∏
k=1

f(ak/(n+1))
)1/(n+1)

> M∗(f)

for all n = 1, 2, 3, . . . in each of the following two cases:
• I = [1, a] (with a > 1) and f is increasing;
• I = [a, 1] (with 0 < a < 1) and f is decreasing.

(ii) Prove that the above inequalities will be reversed in each of the fol-
lowing two cases:
• I = [1, a] (with a > 1) and f is decreasing;
• I = [a, 1] (with 0 < a < 1) and f is increasing.

(iii) Illustrate the assertions (i) and (ii) in the case of the functions 1+log x
and expx, for x ≥ 1, and sin(πx/2) and cos(πx/2), for x ∈ (0, 1].
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2.4 Multiplicative Convexity of Special Functions

We start this section by noticing that the indefinite integral of a multiplica-
tively convex function has the same nature:

Proposition 2.4.1 (P. Montel [171]) Let f : [0, a) → [0,∞) be a continu-
ous function which is multiplicatively convex on (0, a). Then

F (x) =
∫ x

0
f(t) dt

is also continuous on [0, a) and multiplicatively convex on (0, a).

Proof. Due to the continuity of F , it suffices to show that

(F (
√
xy))2 ≤ F (x)F (y) for all x, y ∈ [0, a),

which is a consequence of the corresponding inequality at the level of integral
sums,

[√
xy

n

n−1∑
k=0

f
(
k

√
xy

n

)]2
≤

[x
n

n−1∑
k=0

f
(
k
x

n

)][ y
n

n−1∑
k=0

f
(
k
y

n

)]
,

that is, of the inequality

[n−1∑
k=0

f
(
k

√
xy

n

)]2
≤

[n−1∑
k=0

f
(
k
x

n

)][n−1∑
k=0

f
(
k
y

n

)]
.

To see that the later inequality holds, first notice that[
f
(
k

√
xy

n

)]2
≤

[
f
(
k
x

n

)][
f
(
k
y

n

)]
and then apply the Cauchy–Buniakovski–Schwarz inequality. ��

According to Proposition 2.4.1, the logarithmic integral ,

Li(x) =
∫ x

2

dt

log t
, x ≥ 2,

is multiplicatively convex. This function is important in number theory. For
example, if π(x) counts the number of primes p such that 2 ≤ p ≤ x, then
an equivalent formulation of the Riemann hypothesis is the existence of a
function C : (0,∞) → (0,∞) such that

|π(x) − Li(x)| ≤ C(ε)x1/2+ε for all x ≥ 2 and all ε > 0.
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Since the function tan is continuous on [0, π/2) and strictly multiplicatively
convex on (0, π/2), a repeated application of Proposition 2.4.1 shows that the
Lobacevski’s function

L(x) = −
∫ x

0
log cos t dt

is strictly multiplicatively convex on (0, π/2).
Starting with t/(sin t), (which is strictly multiplicatively convex on (0, π/2])

and then switching to (sin t)/t, a similar argument leads us to the fact that
the integral sine function,

Si(x) =
∫ x

0

sin t
t

dt,

is strictly multiplicatively concave on (0, π/2].
Another striking fact is the following:

Proposition 2.4.2 Γ is a strictly multiplicatively convex function on [1,∞).

Proof. In fact, log Γ(1 + x) is strictly convex and increasing on (1,∞). More-
over, an increasing strictly convex function of a strictly convex function is
strictly convex. Hence, F (x) = log Γ(1 + ex) is strictly convex on (0,∞) and
thus Γ(1 + x) = expF (log x) is strictly multiplicatively convex on [1,∞). As
Γ(1 + x) = xΓ(x), we conclude that Γ itself is strictly multiplicatively convex
on [1,∞). ��

According to Proposition 2.4.2,

Γ3( 3
√
xyz) < Γ(x)Γ(y)Γ(z) for all x, y, z ≥ 1

except the case where x = y = z.
On the other hand, by the multiplicative version of Popoviciu’s inequality

(Exercise 2, Section 2.3), we infer that

Γ(x)Γ(y)Γ(z)Γ3( 3
√
xyz) ≥ Γ2(

√
xy)Γ2(

√
yz)Γ2(

√
zx)

for all x, y, z ≥ 1; the equality occurs only for x = y = z.
Another application of Proposition 2.4.2 is the fact that the function

Γ(2x+1)/Γ(x+1) is strictly multiplicatively convex on [1,∞). This can be seen
by using the Gauss–Legendre duplication formula given by Theorem 2.2.9.

Exercises

1. (D. Gronau and J. Matkowski [90]) Prove the following converse to Propo-
sition 2.4.2: If f : (0,∞) → (0,∞) verifies the functional equation

f(x+ 1) = xf(x),

the normalization condition f(1) = 1, and f is multiplicatively convex on
an interval (a,∞), for some a > 0, then f = Γ.
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2. Let f : I → (0,∞) be a differentiable function defined on a subinterval I
of (0,∞). Prove that the following assertions are equivalent:
(i) f is multiplicatively convex;
(ii) the function xf ′(x)/f(x) is nondecreasing;
(iii) f verifies the inequality

f(x)
f(y)

≥
(x
y

)yf ′(y)/f(y)
for all x, y ∈ I.

A similar statement works for the multiplicatively concave functions. Il-
lustrate this fact by considering the restriction of sin(cosx) to (0, π/2).

3. The psi function (also known as the digamma function) is defined by

Psi(x) =
d

dx
log Γ(x) =

Γ′(x)
Γ(x)

, x > 0

and it can be represented as

Psi(x) = −γ −
∫ 1

0

tx−1 − 1
1 − t

dt,

where γ is Euler’s constant. See [9], [89].
(i) Prove that the function Psi satisfies the functional equation

ψ(x+ 1) = ψ(x) +
1
x
.

(ii) Infer from Proposition 2.4.2 and the preceding exercise the inequality

Γ(x)
Γ(y)

≥
(x
y

)y Psi(y)
for all x, y ≥ 1.

4. Let f : I → (0,∞) be a twice differentiable function defined on a subin-
terval I of (0,∞). Prove that f is multiplicatively convex if and only if it
verifies the differential inequality

x[f(x)f ′′(x) − f ′2(x)] + f(x)f ′(x) ≥ 0 for all x > 0.

Infer that the integral sine function is multiplicatively concave.

2.5 An Estimate of the AM–GM Inequality

Suppose that I is a subinterval of (0,∞) and that f : I → (0,∞) is a twice
differentiable function. According to Lemma 2.1.1, the values of the parameter
α ∈ R for which the function
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ϕ(x) = f(x) · x(−α/2) log x

is multiplicatively convex on I are precisely those for which the function

Φ(x) = logϕ(ex) = log f(ex) − αx2

2

is convex on log(I). Since the convexity of Φ is equivalent to Φ′′ ≥ 0, we infer
that ϕ is multiplicatively convex if and only if α ≤ α(f), where

α(f) = inf
x∈log(I)

d2

dx2 log f(ex)

= inf
x∈I

x2
(
f(x)f ′′(x) − (f ′(x))2

)
+ xf(x)f ′(x)

f(x)2
.

By considering also the upper bound

β(f) = sup
x∈log(I)

d2

dx2 log f(ex),

we arrive at the following result:

Lemma 2.5.1 Under the above hypotheses, we have

exp
(α(f)

2n2

∑
1≤j<k≤n

(log xj − log xk)2
)

≤
( n∏
k=1

f(xk)
)1/n/

f

(( n∏
k=1

xk

)1/n)

≤ exp
(β(f)

2n2

∑
1≤j<k≤n

(log xj − log xk)2
)

for all x1, . . . , xn ∈ I.

Particularly, for f(x) = ex, x ∈ [A,B] (where 0 < A ≤ B), we have
α(f) = A and β(f) = B, and we are led to the following improvement upon
the AM–GM inequality:

Lemma 2.5.2 Suppose that 0 < A ≤ B and n ∈ N�. Then

A

2n2

∑
1≤j<k≤n

(log xj − log xk)2 ≤ 1
n

n∑
k=1

xk −
( n∏
k=1

xk

)1/n

≤ B

2n2

∑
1≤j<k≤n

(log xj − log xk)2

for all x1, . . . , xn ∈ [A,B].
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Since
1

2n2

∑
1≤j<k≤n

(log xj − log xk)2

represents the variance of the random variable whose distribution is(
log x1 log x2 . . . log xn
1/n 1/n . . . 1/n

)
,

Lemma 2.5.2 reveals the probabilistic character of the AM–GM inequality.
Using the usual device to approximate the integrable functions by step func-
tions, we can derive from Lemma 2.5.2 the following more general result:

Theorem 2.5.3 Let (Ω,Σ, P ) be a probability space and let X be a random
variable on this space, taking values in the interval [A,B], where 0 < A ≤ B.
Then

A ≤ E(X) − eE(logX)

var(logX)
≤ B.

Here E(Z) =
∫
X
Z(ω) dP (ω) represents the mathematical expectation of

the random variable Z, and var(Z) = E((Z − E(Z))2
)

the variance of Z.

Exercises

1. (H. Kober; see [166, p. 81]) Suppose that x1, . . . , xn are distinct positive
numbers, and λ1, . . . , λn are positive numbers such that λ1 + · · · +λn = 1.
Prove that

A(x1, . . . , xn ;λ1, . . . , λn) −G(x1, . . . , xn ;λ1, . . . , λn)∑
i<j(

√
xi − √

xj)2

lies between infi λi/(n− 1) and supi λi.

2. (P. H. Diananda; see [166, p. 83]) Under the same hypothesis as in the
precedent exercise, prove that

A(x1, . . . , xn ;λ1, . . . , λn) −G(x1, . . . , xn ;λ1, . . . , λn)∑
i<j λiλj(

√
xi − √

xj)2

lies between 1/(1 − infi λi) and 1/ infi λi.

3. Suppose that x1, . . . , xn and λ1, . . . , λn are positive numbers for which
λ1 + · · · + λn = 1. Put An = A(x1, . . . , xn ;λ1, . . . , λn) and Gn =
G(x1, . . . , xn ;λ1, . . . , λn).
(i) Compute the integral

J(x, y) =
∫ ∞

0

t dt

(1 + t)(x+ yt)2
.

(ii) Infer that An/Gn = exp(
∑n
k=1 λk(xk −An)2J(xk, An)).
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2.6 (M, N)-Convex Functions

The four algebraic variants of convexity we considered in the preceding sec-
tions can be embedded into a more general framework, by taking two regular
means M and N (on the intervals I and J respectively) and calling a function
f : I → J to be (M,N)-midpoint convex if it satisfies

f(M(x, y)) ≤ N(f(x), f(y))

for all x, y ∈ I. As noticed in the Introduction, if f is continuous, this yields
the (M,N)-convexity of f , that is,

f(M(x, y ; 1 − λ, λ)) ≤ N(f(x), f(y) ; 1 − λ, λ)

for all x, y ∈ I and all λ ∈ [0, 1]. The sundry notions such as (M,N)-strict
convexity and (M,N)-concavity can be introduced in a natural way.

Many important results, such as the left-hand side of the Hermite–
Hadamard inequality and the Jensen inequality, extend to this framework.
See Theorems A, B and C in the Introduction.

Other results, like Lemma 2.1.1, can be extended only in the context of
quasi-arithmetic means:

Lemma 2.6.1 (J. Aczél [2]) If ϕ and ψ are two continuous and strictly
monotonic functions (on intervals I and J respectively) and ψ is increasing,
then a function f : I → J is (M[ϕ],M[ψ])-convex if and only if ψ ◦ f ◦ ϕ−1 is
convex on ϕ(I) in the usual sense.

Proof. In fact, f is (M[ϕ],M[ψ])-convex if and only if

ψ
(
f
(
ϕ−1((1 − λ)u+ λv)

)) ≤ (1 − λ)ψ
(
f(ϕ−1(u))

)
+ λψ

(
f(ϕ−1(v))

)
for all u, v ∈ ϕ(I) and λ ∈ [0, 1]. ��

A nice illustration of Lemma 2.6.1 was recently given by D. Borwein,
J. Borwein, G. Fee and R. Girgensohn [35], who proved that the volume Vn(p)
of the ellipsoid {x ∈ Rn | ‖x‖Lp ≤ 1} is (H,G)-strictly concave as a function
of p:

Theorem 2.6.2 Given α > 1, the function Vα(p) = 2α Γ(1+1/p)α

Γ(1+α/p) verifies the
inequality

V 1−λ
α (p)V λα (q) < Vα

(
1

1−λ
p + λ

q

)
,

for all p, q > 0, p �= q and all λ ∈ (0, 1).
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Proof. According to Lemma 2.6.1 it suffices to prove that the function

Uα(x) = − log(Vα(1/x)/2α) = log Γ(1 + αx) − α log Γ(1 + x)

is strictly convex on (0,∞) for every α > 1. Using the psi function,

Psi(x) =
d

dx
log Γ(x),

we have
U ′′
α(x) = α2 d

dx
Psi(1 + αx) − α

d

dx
Psi(1 + x).

Then U ′′
α(x) > 0 on (0,∞) means (x/α)U ′′

α(x) > 0 on (0,∞), and the latter
holds if the function x → x d

dx Psi(1 + x) is strictly increasing. Or, according
to [9], [89],

d

dx
Psi(1 + x) =

∫ ∞

0

ueux

eu − 1
du,

and an easy computation shows that

d

dx

(
x
d

dx
Psi(1 + x)

)
=

∫ ∞

0

u[(u− 1)eu + 1]eux

(eu − 1)2
du > 0.

The result now follows. ��

As stated in [35, p. 634], the volume function Vn(p) is neither convex nor
concave for n ≥ 3.

In the next chapter we shall encounter the class of Mp-convex functions
(−∞ ≤ p ≤ ∞). A function f : I → R is said to be Mp-convex if

f((1 − λ)x+ λy) ≤ Mp(f(x), f(y) ; 1 − λ, λ)

for all x, y ∈ I and all λ ∈ [0, 1] (that is, f is (A,Mp)-convex). In order to
avoid trivial situations, the theory of Mp-convex functions is usually restricted
to nonnegative functions when p ∈ R, p �= 1.

The case p = 1 corresponds to the usual convex functions, while for p = 0
we retrieve the log-convex functions. The case p = ∞ is that of quasiconvex
functions, that is, of functions f : I → R such that

f((1 − λ)x+ λy) ≤ sup{f(x), f(y)}
for all x, y ∈ I and all λ ∈ [0, 1]. Clearly, a function f : I → R is quasiconvex
if and only if its sublevel sets {x | f(x) ≤ α} are convex for all α ∈ R.

If p > 0 (or p < 0), a function f is Mp-convex if and only if fp is convex
(or concave, respectively). According to Exercise 8, Section 1.1,

Mp(x, y ; 1 − λ, λ) ≤ Mq(x, y ; 1 − λ, λ) for − ∞ ≤ p ≤ q ≤ ∞,

which shows that every Mp-convex function is also Mq-convex for all q ≥ p.
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Exercises

1. Suppose that I and J are nondegenerate intervals and p, q, r ∈ R, p < q.
Prove that for every function f : I → J the following two implications hold
true:
• If f is (Mq,Mr)-convex and increasing, then it is also (Mp,Mr)-convex;
• If f is (Mp,Mr)-convex and decreasing, then it is also (Mq,Mr)-convex.
Conclude that the function Vα(p) of Theorem 2.6.2 is also (A,G)-concave
and (H,A)-concave.

2. Suppose that M and N are two regular means (respectively on the inter-
vals I and J) and the function N(·, 1) is concave. Prove that:
(i) for every two (M,N)-convex functions f, g : I → J , the function f+g

is (M,N)-convex;
(ii) for every (M,N)-convex function f : I → J and α > 0, the function

αf is (M,N)-convex.

3. Suppose that f : I → R is a continuous function which is differentiable on
int I. Prove that f is quasiconvex if and only if for each x, y ∈ int I,

f(y) ≤ f(x) implies f ′(x)(y − x) ≤ 0.

4. (K. Knopp and B. Jessen; see [99, p. 66]) Suppose that ϕ and ψ are
two continuous functions defined in an interval I such that ϕ is strictly
monotonic and ψ is increasing.
(i) Prove that

M[ϕ](x1, . . . , xn;λ1, . . . , λn) = M[ψ](x1, . . . , xn;λ1, . . . , λn)

for every family x1, . . . , xn of elements of I and every family λ1, . . . , λn
of nonnegative numbers with

∑n
k=1 λk = 1 (n ∈ N�) if and only if

ψ ◦ ϕ−1 is affine, that is, ψ = αϕ + β for some constants α and β,
with α �= 0.

(ii) Infer that any power mean Mp is a mean M[ϕ], where ϕ(x) = log x,
if p = 0, and ϕ(x) = (xp − 1)/p, if p �= 0.

5. (M. Nagumo, B. de Finetti and B. Jessen; see [99, p. 68]) Let ϕ be a
continuous increasing function on (0,∞) such that the quasi-arithmetic
mean M[ϕ] is positively homogeneous. Prove that M[ϕ] is one of the power
means.
[Hint : By Exercise 4 (i), we can replace ϕ by ϕ−ϕ(1), so we may assume
that ϕ(1) = 0. The same argument yields two functions α and β such that
ϕ(cx) = α(c)ϕ(x)+β(c) for all x > 0, c > 0. The condition ϕ(1) = 0 shows
that β = ϕ, so for reasons of symmetry,

ϕ(cx) = α(c)ϕ(x) + ϕ(c) = α(x)ϕ(c) + ϕ(x).
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Letting fixed c �= 1, we obtain that α is of the form α(x) = 1 + kϕ(x) for
some constant k. Then ϕ verifies the functional equation

ϕ(xy) = kϕ(x)ϕ(y) + ϕ(x) + ϕ(y)

for all x > 0, y > 0. When k = 0 we find that ϕ(x) = C log x for some
constant C, so M[ϕ] = M0. When k �= 0 we notice that χ = kϕ+ 1 verifies
χ(xy) = χ(x)χ(y) for all x > 0, y > 0. This leads to ϕ(x) = (xp − 1)/k,
for some p �= 0, hence M[ϕ] = Mp. ]

6. (Convexity with respect to Stolarsky’s means) One can prove that the ex-
ponential function is (L,L)-convex. See Exercise 5 (iii), Section 2.3. Prove
that this function is also (I, I)-convex. What can be said about the loga-
rithmic function? Here L and I are respectively the logarithmic mean and
the identric mean.

7. (Few affine functions with respect to the logarithmic mean; see [157]) Prove
that the only (L,L)-affine functions f : (0,∞) → (0,∞) are the constant
functions and the linear functions f(x) = cx, for c > 0. Infer that the
logarithmic mean is not a power mean.

2.7 Relative Convexity

The comparison of quasi-arithmetic means is related to convexity via the
following result:

Lemma 2.7.1 Suppose that ϕ,ψ : I → R are two strictly monotonic contin-
uous functions. If ϕ is increasing, then

M[ψ] ≤ M[ϕ]

if and only if ϕ ◦ ψ−1 is convex.

Lemma 2.7.1 has important consequences. For example, it yields Clark-
son’s inequalities (which in turn extend the parallelogram law). The following
approach (in the spirit of Orlicz spaces) is due to J. Lamperti [136]:

Theorem 2.7.2 Suppose that Φ: [0,∞) → R, is an increasing and continu-
ous function with Φ(0) = 0 and Φ(

√
x) convex. Consider a σ-finite measure

space (X,Σ, μ) and denote by LΦ(X) the set of all equivalence classes of all
μ-measurable real-valued functions f such that

IΦ(f) =
∫
X

Φ(|f(x)|) dμ < ∞.

If f + g and f − g belong to LΦ(X), then

IΦ(f + g) + IΦ(f − g) ≥ 2IΦ(f) + 2IΦ(g). (2.1)
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If Φ(
√
x) is concave and f and g belong to LΦ(X), then the reverse inequality

is true. If the convexity or concavity of Φ(
√
x) is strict, equality holds in (2.1)

if and only if fg = 0 almost everywhere.

Corollary 2.7.3 (Clarkson’s inequalities [57]) If 2 ≤ p < ∞, and f and
g belong to Lp(μ), then

‖f + g‖pLp + ‖f − g‖pLp ≥ 2‖f‖pLp + 2‖g‖pLp .

If 0 < p ≤ 2, then the reverse inequality holds. In either case, if p �= 2,
equality occurs if and only if fg = 0 almost everywhere.

Clarkson’s inequalities easily imply the uniform convexity of the spaces
Lp(μ) for 1 < p < ∞ (see Exercise 2). J. Lamperti applied Corollary 2.7.3 to
give the general form of the linear isometries T : Lp(μ) → Lp(μ), for p > 0,
p �= 2.

Clarkson’s inequalities are improved on by Hanner’s inequalities. See Ex-
ercise 7, Section 3.6.

Proof of Theorem 2.7.2. It suffices to prove the following result: Suppose that
Φ: [0,∞) → R is a continuous increasing function with Φ(0) = 0 and Φ(

√
t)

convex. Then

Φ(|z + w|) + Φ(|z − w|) ≥ 2Φ(|z|) + 2Φ(|w|), (2.2)

for all z, w ∈ C, while if Φ(
√
t) is concave the reverse inequality is true.

Provided the convexity or concavity is strict, equality holds if and only if
zw = 0.

In fact, since Φ(
√
t) is convex, we infer from Lemma 2.7.1 and the paral-

lelogram law the inequality

Φ−1
{Φ(|z + w|) + Φ(|z − w|)

2

}
≥

{ |z + w|2 + |z − w|2
2

}1/2

= (|z|2 + |w|2)1/2.
(2.3)

On the other hand, the convexity of Φ(
√
t) and the fact that Φ(0) = 0 yield

that Φ(
√
t)/t is nondecreasing, that is, t2/Φ(t) is nonincreasing (respectively

decreasing if the convexity is strict). See Theorem 1.3.1. Taking into account
the result of Exercise 1, we infer

Φ−1{Φ(|z|) + Φ(|w|)} ≤ (|z|2 + |w|2)1/2, (2.4)

and thus (2.2) follows from (2.3), (2.4) and the fact that Φ is increasing. When
Φ(

√
t) is strictly convex, we also obtain from Exercise 1 the fact that (2.4)

(and thus (2.2)) is strict unless z or w is zero. ��
Lemma 2.7.1 leads us naturally to consider the following concept of relative

convexity:
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Definition 2.7.4 Suppose that f and g are two real-valued functions defined
on the same set X, and g is not a constant function. Then f is said to be
convex relative to g (abbreviated, g � f) if∣∣∣∣∣∣

1 g(x) f(x)
1 g(y) f(y)
1 g(z) f(z)

∣∣∣∣∣∣ ≥ 0,

whenever x, y, z ∈ X with g(x) ≤ g(y) ≤ g(z).

When X is an interval and g is continuous and increasing, a small com-
putation shows that the condition g � f is equivalent with the convexity of
f ◦ g−1 (on the interval J = g(I)).

Examples 2.7.5
Under appropriate assumptions on the domain and the range of the function f ,
the following statements hold true:
(i) f is convex if and only if id �f ;
(ii) f is log-convex if and only if id � log f ;
(iii) f is (G,G)-convex if and only if log � log f ;
(iv) f is (G,A)-convex if and only if log �f .

A more exotic illustration of the concept of relative convexity is the fol-
lowing fact:

f � fα for all f : X → R+ and all α ≥ 1.

For example, sin � sin2 on [0, π], and |x| � x2 on R.

In the context of C1-differentiable functions, f is convex with respect
to an increasing function g if f ′/g′ is nondecreasing; in the context of
C2-differentiable functions, f is convex with respect to g if and only if
f ′′/f ′ ≥ g′′/g′ (provided these ratios exist).

It is important to notice that relative convexity is part of comparative
convexity. For this we need the integral analogue of quasi-arithmetic mean,

M[ϕ]

(
id[s,t];

1
t− s

dx
)

= ϕ−1
(

1
t− s

∫ t

s

ϕ(x) dx
)
.

In fact, if g � f , then

f
(
M[g]

(
id[a,b];

1
b− a

dx
))

= f

(
g−1

(
1

b− a

∫ b

a

g(x) dx
))

≤ 1
b− a

∫ b

a

f(x) dx = M1(f |[a,b])

for all a < b in the domain of f and g.
From the above discussion we can infer the following remark due to

H. Alzer [7]: Suppose that f is an increasing continuous function (act-
ing on subintervals of (0,∞)) and 1/f−1 is convex. Then 1/x � f . As
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M[1/x](id[a,b] ; 1
b−adx) coincides with the logarithmic mean L(a, b), it follows

that

f(L(a, b)) ≤ 1
b− a

∫ b

a

f(x) dx = M1(f |[a,b]).
We end this section by extending the Hardy–Littlewood–Pólya inequality

to the context of relative convexity. Our approach is based on two technical
lemmas.

Lemma 2.7.6 If f, g : X → R are two functions such that g � f , then

g(x) = g(y) implies f(x) = f(y).

Proof. Since g is not constant, then there must be a z ∈ X such that g(x) =
g(y) �= g(z). One of the following two cases may occur:

Case 1: g(x) = g(y) < g(z). This yields

0 ≤
∣∣∣∣∣∣
1 g(x) f(x)
1 g(x) f(y)
1 g(z) f(z)

∣∣∣∣∣∣ = (g(z) − g(x))(f(x) − f(y))

and thus f(x) ≥ f(y). A similar argument gives us the reverse inequality,
f(x) ≤ f(y).

Case 2: g(z) < g(x) = g(y). This case can be treated in a similar way. ��

Lemma 2.7.7 (The generalization of Galvani’s Lemma) If g � f and
x, u, v are points of X such that g(x) /∈ {g(u), g(v)} and g(u) ≤ g(v), then

f(v) − f(x)
g(v) − g(x)

≥ f(u) − f(x)
g(u) − g(x)

.

Proof. In fact, the following three cases may occur:
Case 1: g(x) < g(u) ≤ g(v). Then

0 ≤
∣∣∣∣∣∣
1 g(x) f(x)
1 g(u) f(u)
1 g(v) f(v)

∣∣∣∣∣∣
= (g(u) − g(x))(f(v) − f(x)) − (g(v) − g(x))(f(u) − f(x))

and the conclusion of Lemma 2.7.7 is clear.
Case 2: g(u) ≤ g(v) < g(x). This case can be treated in the same way.
Case 3: g(u) < g(x) < g(v). According to the discussion above we have

f(u) − f(x)
g(u) − g(x)

=
f(x) − f(u)
g(x) − g(u)

≤ f(v) − f(u)
g(v) − g(u)

=
f(u) − f(v)
g(u) − g(v)

≤ f(x) − f(v)
g(x) − g(v)

=
f(v) − f(x)
g(v) − g(x)

and the proof is now complete. ��
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Theorem 2.7.8 (The generalization of the Hardy–Littlewood–Pólya
inequality) Let f, g : X → R be two functions such that g � f and consider
points x1, . . . , xn, y1, . . . , yn ∈ X and weights p1, . . . , pn ∈ R such that:
(i) g(x1) ≥ · · · ≥ g(xn) and g(y1) ≥ · · · ≥ g(yn);
(ii)

∑r
k=1 pkg(xk) ≤ ∑r

k=1 pkg(yk) for every r = 1, . . . , n;
(iii)

∑n
k=1 pkg(xk) =

∑n
k=1 pkg(yk).

Then
n∑
k=1

pkf(xk) ≤
n∑
k=1

pkf(yk).

Proof. By mathematical induction. The case n = 1 is clear. Assuming the
conclusion of Theorem 2.7.8 valid for all families of length n − 1, let us pass
to the families of length n. The case where g(xk) = g(yk) for some index k
can be settled easily by our hypothesis and Lemma 2.7.6. Therefore we may
restrict ourselves to the case where g(xk) �= g(yk) for all indices k. By Abel’s
summation formula,

n∑
k=1

pkf(yk) −
n∑
k=1

pkf(xk) (2.5)

equals

f(yn) − f(xn)
g(yn) − g(xn)

( n∑
i=1

pig(yi) −
n∑
i=1

pig(xi)
)

+
n−1∑
k=1

(f(yk) − f(xk)
g(yk) − g(xk)

− f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

)( k∑
i=1

pig(yi) −
k∑
i=1

pig(xi)
)

which, by (iii), reduces to

n−1∑
k=1

(f(yk) − f(xk)
g(yk) − g(xk)

− f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

)( k∑
i=1

pig(yi) −
k∑
i=1

pig(xi)
)
.

According to (ii), the proof will be complete if we show that

f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

≤ f(yk) − f(xk)
g(yk) − g(xk)

for all indices k.
In fact, if g(xk) = g(xk+1) or g(yk) = g(yk+1) for some index k, this follows

from (i) and Lemmas 2.7.6 and 2.7.7.
When g(xk) > g(xk+1) and g(yk) > g(yk+1) the following two cases may

occur:
Case 1: g(xk) �= g(yk+1). By a twice application of Lemma 2.7.7 we get
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f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

=
f(xk+1) − f(yk+1)
g(xk+1) − g(yk+1)

≤ f(xk) − f(yk+1)
g(xk) − g(yk+1)

=
f(yk+1) − f(xk)
g(yk+1) − g(xk)

≤ f(yk) − f(xk)
g(yk) − g(xk)

.

Case 2: g(xk) = g(yk+1). In this case, g(xk+1) < g(xk) = g(yk+1) < g(yk),
and Lemmas 2.7.6 and 2.7.7 lead us to

f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

=
f(xk) − f(xk+1)
g(xk) − g(xk+1)

=
f(xk+1) − f(xk)
g(xk+1) − g(xk)

≤ f(yk) − f(xk)
g(yk) − g(xk)

.

Consequently, (2.5) is a sum of nonnegative terms, and the proof is com-
plete. ��

The classical Hardy–Littlewood–Pólya inequality corresponds to the case
where X is an interval, g is the identity, and pk = 1 for all k. In this case, the
hypothesis (i) can be replaced by the following one:
(i′) g(x1) ≥ · · · ≥ g(xn),
see Theorem 1.5.4. When X is an interval, g is the identity, and p1, . . . , pn
are arbitrary weights, then the result of Theorem 2.7.8 is known as Fuchs’
inequality [83]. Clearly, Fuchs’ inequality implies Corollary 1.4.3 above.

In a similar way, we can extend another important result in majorization
theory, the Tomić–Weyl theorem. See Exercise 5.

Exercises

1. (R. Cooper; see [99, p. 84]) Suppose that ϕ,ψ : I → (0,∞) are two con-
tinuous bijective functions. If ϕ and ψ vary in the same direction and ϕ/ψ
is nonincreasing, then

ψ−1
( n∑
k=1

ψ(xk)
)

≤ ϕ−1
( n∑
k=1

ϕ(xk)
)

for every finite family x1, . . . , xn of elements of I.
[Hint : If h(x)/x is nonincreasing for x > 0, then h(

∑n
k=1 xk) ≤ ∑n

k=1 h(xk)
for every finite family x1, . . . , xn of positive numbers. See Section 1.3, Ex-
ercise 8. ]

2. Infer from Clarkson’s inequalities the uniform convexity of the spaces
Lp(μ), for 1 < p < ∞, that is, if x and y are in the unit ball of Lp(μ), then

inf
{

1 −
∥∥∥x+ y

2

∥∥∥ ∣∣∣ ‖x− y‖ ≥ ε
}
> 0 for all ε ∈ (0, 2].
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3. Suppose that F, g : I → J are two continuous functions and g is strictly
monotone. Prove that g � F if and only if for every α ≥ 0 and every
[a, b] ⊂ I the function F − αg attains its maximum either at a or at b.
Remark. This result can be used to prove sharpened versions of the max-
imum principle for elliptic partial differential operators. See [242].

4. Suppose that f : [0, π/2] → R is a function such that

(f(y) − f(z)) cosx+ (f(z) − f(x)) cos y + (f(x) − f(y)) cos z ≥ 0

for all x ≥ y ≥ z in [0, π/2]. Prove that

f
(π

7

)
− f

(2π
7

)
+ f

(3π
7

)
≤ f(0) − f

(π
3

)
+ f

(π
2

)
.

5. (An extension of the Tomić–Weyl theorem) Suppose that f, g : X → R

are two synchronous functions with g � f . Consider points x1, . . . , xn,
y1, . . . , yn in X and real weights p1, . . . , pn such that:
(i) g(x1) ≥ · · · ≥ g(xn) and g(y1) ≥ · · · ≥ g(yn);
(ii)

∑m
k=1 pkg(xk) ≤ ∑m

k=1 pkg(yk) for all m = 1, . . . , n.
Prove that

n∑
k=1

pkf(xk) ≤
n∑
k=1

pkf(yk).

2.8 Comments

The idea of transforming a nonconvex function into a convex one by a change
of variable has a long history. As far as we know, the class of all multiplica-
tively convex functions was first considered by P. Montel [171] in a beautiful
paper discussing the possible analogues of convex functions in n variables. He
motivates his study with the following two classical results:

Hadamard’s Three Circles Theorem Let f be an analytical function in
the annulus a < |z| < b. Then logM(r) is a convex function of log r, where

M(r) = sup
|z|=r

|f(z)|.

G. H. Hardy’s Mean Value Theorem Let f be an analytical function
in the annulus a < |z| < b and let p ∈ [1,∞). Then logMp(r) is a convex
function of log r, where

Mp(r) =
(

1
2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p

.
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As limp→∞Mp(r) = M(r), Hardy’s aforementioned result implies Hada-
mard’s. It is well known that Hadamard’s result is instrumental in deriving
the Riesz–Thorin interpolation theorem (see [99]).

The presentation of the class of multiplicatively convex functions (as was
done in Sections 2.3 and 2.4) follows C. P. Niculescu [176]. The multiplicative
mean (see [178] and Section 2.3, Exercises 5 and 6) provides the right analogue
of the arithmetic mean in a fully multiplicative theory of convexity.

The theory of Euler’s functions gamma and beta follows the same steps as
in E. Artin [10] and R. Webster [243].

As noted by T. Trif [238], the result of Proposition 2.4.2 can be improved:
the gamma function is strictly multiplicatively concave on (0, α] and strictly
multiplicatively convex on [α,∞), where α ≈ 0.21609 is the unique positive
solution of the equation Psi(x) + x d

dx Psi(x) = 0. This fact has a full general-
ization in the context of (Mp,Mp)-convexity.

The quantum analogue of the gamma function, the q-gamma function Γq
of F. H. Jackson, is defined by

Γq(x) =
(q ; q)∞
(qx ; q)∞

(1 − q)1−x for x > 0 (0 < q < 1),

where (a ; q)∞ =
∏∞
k=0(1 − aqk). For it, the Bohr–Mollerup theorem has the

following form: Γq is the only solution of the functional equation

Γq(x+ 1) =
1 − qx

1 − q
Γq(x)

which is log-convex and satisfies Γq(1) = 1 (see [9]). Γq is multiplicatively
convex at least on (2,∞) (see D. Gronau and J. Matkowski [91]).

The well-known inequalities in a triangle ΔABC, such as

sinA+ sinB + sinC ≤ 3
√

3/2 and sinA sinB sinC ≤ 3
√

3/8,

can be traced back to an old paper by G. Berkhan [21], from 1907.
R. A. Satnoianu [221] observed that the functions which are convex, mul-

tiplicatively convex and increasing are the source of Erdős–Mordell type in-
equalities in a triangle. Examples of such functions are numerous. See Propo-
sition 2.3.3.

The estimate given in Theorem 2.5.3 for the AM–GM inequality was
mentioned in [176].

The general notion of mean was clarified by B. de Finetti [80].
The idea to consider the general notion of (M,N)-convex function (asso-

ciated to a pair of means) can be traced back to G. Aumann [13]. Important
contributions came from J. Aczél [2], [3], J. Matkowski [157], J. Matkowski
and J. Rätz [158], [159]. The canonical extension of a mean, as well as Theo-
rems A, B and C in the Introduction, are due to C. P. Niculescu [183].

The result of Exercise 5, Section 2.6, concerning the characterization of
the power means among the quasi-arithmetic means, was recently extended
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by J. Matkowski [157] to the context of strict and homogeneous means which
verify some nondegeneracy conditions.

The comparability Lemma 2.7.1 is due to B. Jessen (see [99, p. 75]). The
concept of relative convexity can be also traced back to Jessen (see [99, The-
orem 92, p. 75]). Later, it was developed by G. T. Cargo [47], N. Elezović and
J. Pečarić [71] and many others. The generalization of the classical inequal-
ities of Hardy–Littlewood–Pólya, Fuchs and Tomić–Weyl to the framework
of relative convexity follows closely the paper [189] by C. P. Niculescu and
F. Popovici.

Recently, M. Bessenyei and Z. Páles [26] have considered a more general
concept of relative convexity, which goes back to a result of G. Pólya; see
[99, Theorem 123, p. 98]. Given a pair (ω1, ω2) of continuous functions on an
interval I, such that ∣∣∣∣ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ �= 0 for all x < y, (2.6)

a function f : I → R is said to be (ω1, ω2)-convex if∣∣∣∣∣∣
f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ≥ 0

for all x < y < z in I. It is proved that the (ω1, ω2)-convexity implies the
continuity of f at the interior points of I, as well as the integrability on
compact subintervals of I.

If I is an open interval, ω1 > 0 and the determinant in formula (2.6) is
positive, then f is (ω1, ω2)-convex if and only if the function f/ω1 ◦ (ω2/ω1)−1

is convex in the usual sense. Under these restrictions, M. Bessenyei and
Z. Páles proved a Hermite–Hadamard type inequality. Note that this case
of (ω1, ω2)-convexity falls under the incidence of relative convexity.

There is much information available nowadays concerning the Clarkson
type inequalities, and several applications have been described. Here we just
mention that even the general Edmunds–Triebel logarithmic spaces satisfy
Clarkson’s inequalities: see [191], where some applications and relations to
several previous results and references are also presented.

A classical result due to P. Jordan and J. von Neumann asserts that
the parallelogram law characterizes Hilbert spaces among Banach spaces. See
M. M. Day [64, pp. 151–153]. There are two important generalizations of the
parallelogram law (both simple consequences of the inner-product structure).

The Leibniz–Lagrange identity. Suppose there is given a system of
weighted points (x1,m1), . . . , (xr,mr) in an inner-product space H, whose
barycenter position is

xG =
r∑

k=1

mkxk

/ r∑
k=1

mk.
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Then for all points x ∈ H we have the equalities
r∑

k=1

mk‖x− xk‖2 =
( r∑
k=1

mk

)
‖x− xG‖2 +

r∑
k=1

mk‖xG − xk‖2

=
( r∑
k=1

mk

)
‖x− xG‖2 +

1∑r
k=1mk

·
∑
i<j

mimj‖xi − xj‖2.

This identity is at the origin of many well-known formulas concerning the
distances between some special points in a triangle. For example, in the case
where x1, x2, x3 are the vertices of a triangle and m1,m2,m3 are proportional
to the length sides a, b, c, then xG is precisely the center I of the inscribed
circle. The above identity gives us (for x = O, the center of the circumscribed
circle) the celebrated formula of Euler ,

OI2 = R(R− 2r).

More information can be found at www.neiu.edu/∼mathclub/Seminar Notes/

Some Mathematical Consequences of the Law of the Lever.

E. Hlawka’s identity. We have

‖x‖2 + ‖y‖2 + ‖z‖2 + ‖x+ y + z‖2 = ‖x+ y‖2 + ‖y + z‖2 + ‖z + x‖2,

for all x, y, z in an inner-product space H.

This yields Hlawka’s inequality : In any inner-product space H, for all
x, y, z ∈ H we have

‖x+ y + z‖ + ‖x‖ + ‖y‖ + ‖z‖ − ‖x+ y‖ − ‖y + z‖ − ‖z + x‖ ≥ 0.

In fact, based on Hlawka’s identity, the left-hand side equals

(‖x‖ + ‖y‖ − ‖x+ y‖)
(

1 − ‖x‖ + ‖y‖ + ‖x+ y‖
‖x‖ + ‖y‖ + ‖z‖ + ‖x+ y + z‖

)
+ (‖y‖ + ‖z‖ − ‖y + z‖)

(
1 − ‖y‖ + ‖z‖ + ‖y + z‖

‖x‖ + ‖y‖ + ‖z‖ + ‖x+ y + z‖
)

+ (‖z‖ + ‖x‖ − ‖z + x‖)
(

1 − ‖z‖ + ‖x‖ + ‖z + x‖
‖x‖ + ‖y‖ + ‖z‖ + ‖x+ y + z‖

)
which is a combination of nonnegative terms.

Hlawka’s inequality is not characteristic to Euclidean spaces! In fact, it was
extended by J. Lindenstrauss and A. Pe
lczyński [146] to all Banach spaces E
whose finite dimensional subspaces can be embedded (linearly and isomet-
rically) in suitable spaces Lp([0, 1]), with 1 ≤ p ≤ 2. On the other hand,
Hlawka’s inequality does not work for all Banach spaces. A counterexample
is provided by C2, endowed with the sup norm, and the vectors x = (1,−1),
y = (i, i), z = (−i, 1).

A large generalization of Hlawka’s inequality, based on ergodic theory, was
given by M. Rădulescu and S. Rădulescu [210].


